id
stringlengths
14
15
text
stringlengths
13
2.7k
source
stringlengths
60
181
b6ec7736d150-4
Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using LabelStudioCallbackHandler¶ Label Studio
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html
3c48617c53e1-0
langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler¶ class langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None)[source]¶ Callback handler for promptlayer. Initialize the PromptLayerCallbackHandler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([pl_id_callback, pl_tags]) Initialize the PromptLayerCallbackHandler. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html
3c48617c53e1-1
on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None) → None[source]¶ Initialize the PromptLayerCallbackHandler. on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html
3c48617c53e1-2
Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html
3c48617c53e1-3
response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html
3c48617c53e1-4
Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using PromptLayerCallbackHandler¶ PromptLayer
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html
3a9a0373edbb-0
langchain_community.callbacks.flyte_callback.import_flytekit¶ langchain_community.callbacks.flyte_callback.import_flytekit() → Tuple[flytekit, renderer][source]¶ Import flytekit and flytekitplugins-deck-standard.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.import_flytekit.html
4f169f0eac44-0
langchain_core.callbacks.stdout.StdOutCallbackHandler¶ class langchain_core.callbacks.stdout.StdOutCallbackHandler(color: Optional[str] = None)[source]¶ Callback Handler that prints to std out. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([color]) Initialize callback handler. on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Print out that we finished a chain. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Print out that we are entering a chain. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id)
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html
4f169f0eac44-1
on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run when agent ends. on_tool_end(output[, color, ...]) If not the final action, print out observation. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(color: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we finished a chain. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html
4f169f0eac44-2
Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we are entering a chain. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html
4f169f0eac44-3
information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run when agent ends. on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ If not the final action, print out observation.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html
4f169f0eac44-4
If not the final action, print out observation. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using StdOutCallbackHandler¶ Argilla Comet Aim Weights & Biases ClearML OpaquePrompts Vector SQL Retriever with MyScale Async API Custom chain
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html
2eee8b557f7d-0
langchain_community.callbacks.arthur_callback.ArthurCallbackHandler¶ class langchain_community.callbacks.arthur_callback.ArthurCallbackHandler(arthur_model: ArthurModel)[source]¶ Callback Handler that logs to Arthur platform. Arthur helps enterprise teams optimize model operations and performance at scale. The Arthur API tracks model performance, explainability, and fairness across tabular, NLP, and CV models. Our API is model- and platform-agnostic, and continuously scales with complex and dynamic enterprise needs. To learn more about Arthur, visit our website at https://www.arthur.ai/ or read the Arthur docs at https://docs.arthur.ai/ Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(arthur_model) Initialize callback handler. from_credentials(model_id[, arthur_url, ...]) Initialize callback handler from Arthur credentials. on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) On chain end, do nothing. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) On chain start, do nothing. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) On LLM end, send data to Arthur.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
2eee8b557f7d-1
On LLM end, send data to Arthur. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) On new token, pass. on_llm_start(serialized, prompts, **kwargs) On LLM start, save the input prompts on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(arthur_model: ArthurModel) → None[source]¶ Initialize callback handler. classmethod from_credentials(model_id: str, arthur_url: Optional[str] = 'https://app.arthur.ai', arthur_login: Optional[str] = None, arthur_password: Optional[str] = None) → ArthurCallbackHandler[source]¶ Initialize callback handler from Arthur credentials. Parameters model_id (str) – The ID of the arthur model to log to. arthur_url (str, optional) – The URL of the Arthur instance to log to. Defaults to “https://app.arthur.ai”.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
2eee8b557f7d-2
Defaults to “https://app.arthur.ai”. arthur_login (str, optional) – The login to use to connect to Arthur. Defaults to None. arthur_password (str, optional) – The password to use to connect to Arthur. Defaults to None. Returns The initialized callback handler. Return type ArthurCallbackHandler on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ On chain end, do nothing. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ On chain start, do nothing. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ On LLM end, send data to Arthur. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ On new token, pass.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
2eee8b557f7d-3
On new token, pass. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ On LLM start, save the input prompts on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using ArthurCallbackHandler¶ Arthur
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html
f40f4b91d42b-0
langchain_community.callbacks.aim_callback.AimCallbackHandler¶ class langchain_community.callbacks.aim_callback.AimCallbackHandler(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True)[source]¶ Callback Handler that logs to Aim. Parameters repo (str, optional) – Aim repository path or Repo object to which Run object is bound. If skipped, default Repo is used. experiment_name (str, optional) – Sets Run’s experiment property. ‘default’ if not specified. Can be used later to query runs/sequences. system_tracking_interval (int, optional) – Sets the tracking interval in seconds for system usage metrics (CPU, Memory, etc.). Set to None to disable system metrics tracking. log_system_params (bool, optional) – Enable/Disable logging of system params such as installed packages, git info, environment variables, etc. This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run and then logs the response to Aim. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([repo, experiment_name, ...]) Initialize callback handler. flush_tracker([repo, experiment_name, ...]) Flush the tracker and reset the session. get_custom_callback_meta() on_agent_action(action, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
f40f4b91d42b-1
get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. setup(**kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
f40f4b91d42b-2
reset_callback_meta() Reset the callback metadata. setup(**kwargs) __init__(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True) → None[source]¶ Initialize callback handler. flush_tracker(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True, langchain_asset: Any = None, reset: bool = True, finish: bool = False) → None[source]¶ Flush the tracker and reset the session. Parameters repo (str, optional) – Aim repository path or Repo object to which Run object is bound. If skipped, default Repo is used. experiment_name (str, optional) – Sets Run’s experiment property. ‘default’ if not specified. Can be used later to query runs/sequences. system_tracking_interval (int, optional) – Sets the tracking interval in seconds for system usage metrics (CPU, Memory, etc.). Set to None to disable system metrics tracking. log_system_params (bool, optional) – Enable/Disable logging of system params such as installed packages, git info, environment variables, etc. langchain_asset – The langchain asset to save. reset – Whether to reset the session. finish – Whether to finish the run. Returns – None get_custom_callback_meta() → Dict[str, Any]¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
f40f4b91d42b-3
Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
f40f4b91d42b-4
Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. reset_callback_meta() → None¶ Reset the callback metadata. setup(**kwargs: Any) → None[source]¶ Examples using AimCallbackHandler¶ Aim
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
529f4ce349fd-0
langchain_community.callbacks.openai_info.get_openai_token_cost_for_model¶ langchain_community.callbacks.openai_info.get_openai_token_cost_for_model(model_name: str, num_tokens: int, is_completion: bool = False) → float[source]¶ Get the cost in USD for a given model and number of tokens. Parameters model_name – Name of the model num_tokens – Number of tokens. is_completion – Whether the model is used for completion or not. Defaults to False. Returns Cost in USD.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.get_openai_token_cost_for_model.html
bb1f9e64291f-0
langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler¶ class langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler[source]¶ Callback handler that returns an async iterator. Attributes always_verbose ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline queue done Methods __init__() aiter() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, ...]) Run when chain ends running. on_chain_error(error, *, run_id[, ...]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html
bb1f9e64291f-1
Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run on retriever end. on_retriever_error(error, *, run_id[, ...]) Run on retriever error. on_retriever_start(serialized, query, *, run_id) Run on retriever start. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id, tags]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running. on_tool_error(error, *, run_id[, ...]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__() → None[source]¶ async aiter() → AsyncIterator[str][source]¶ async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent action. async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent end. async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html
bb1f9e64291f-2
Run when chain ends running. async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain errors. async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when chain starts running. async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. async on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled. async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html
bb1f9e64291f-3
Run when LLM starts running. async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever end. async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever error. async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run on retriever start. async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on arbitrary text. async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool ends running. async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html
bb1f9e64291f-4
Run when tool errors. async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html
1f850873a824-0
langchain_core.callbacks.base.CallbackManagerMixin¶ class langchain_core.callbacks.base.CallbackManagerMixin[source]¶ Mixin for callback manager. Methods __init__() on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__()¶ on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.CallbackManagerMixin.html
1f850873a824-1
Run when LLM starts running. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when Retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.CallbackManagerMixin.html
e0f816ba71c6-0
langchain_core.callbacks.manager.AsyncParentRunManager¶ class langchain_core.callbacks.manager.AsyncParentRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async Parent Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html
e0f816ba71c6-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → AsyncCallbackManager[source]¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type AsyncCallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager abstract get_sync() → RunManager¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type RunManager async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html
e0f816ba71c6-2
Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html
afec54c65575-0
langchain_community.callbacks.utils.BaseMetadataCallbackHandler¶ class langchain_community.callbacks.utils.BaseMetadataCallbackHandler[source]¶ This class handles the metadata and associated function states for callbacks. step¶ The current step. Type int starts¶ The number of times the start method has been called. Type int ends¶ The number of times the end method has been called. Type int errors¶ The number of times the error method has been called. Type int text_ctr¶ The number of times the text method has been called. Type int ignore_llm_¶ Whether to ignore llm callbacks. Type bool ignore_chain_¶ Whether to ignore chain callbacks. Type bool ignore_agent_¶ Whether to ignore agent callbacks. Type bool ignore_retriever_¶ Whether to ignore retriever callbacks. Type bool always_verbose_¶ Whether to always be verbose. Type bool chain_starts¶ The number of times the chain start method has been called. Type int chain_ends¶ The number of times the chain end method has been called. Type int llm_starts¶ The number of times the llm start method has been called. Type int llm_ends¶ The number of times the llm end method has been called. Type int llm_streams¶ The number of times the text method has been called. Type int tool_starts¶ The number of times the tool start method has been called. Type int tool_ends¶ The number of times the tool end method has been called. Type int agent_ends¶ The number of times the agent end method has been called. Type int on_llm_start_records¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html
afec54c65575-1
Type int on_llm_start_records¶ A list of records of the on_llm_start method. Type list on_llm_token_records¶ A list of records of the on_llm_token method. Type list on_llm_end_records¶ A list of records of the on_llm_end method. Type list on_chain_start_records¶ A list of records of the on_chain_start method. Type list on_chain_end_records¶ A list of records of the on_chain_end method. Type list on_tool_start_records¶ A list of records of the on_tool_start method. Type list on_tool_end_records¶ A list of records of the on_tool_end method. Type list on_agent_finish_records¶ A list of records of the on_agent_end method. Type list Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_llm Whether to ignore LLM callbacks. Methods __init__() get_custom_callback_meta() reset_callback_meta() Reset the callback metadata. __init__() → None[source]¶ get_custom_callback_meta() → Dict[str, Any][source]¶ reset_callback_meta() → None[source]¶ Reset the callback metadata.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html
55013cb337d4-0
langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun¶ class langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager for LLM run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, *[, chunk]) Run when LLM generates a new token. on_retry(retry_state, **kwargs) Run on a retry event.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html
55013cb337d4-1
on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager get_sync() → CallbackManagerForLLMRun[source]¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type CallbackManagerForLLMRun async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – The LLM result.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html
55013cb337d4-2
Parameters response (LLMResult) – The LLM result. async on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (Exception or KeyboardInterrupt) – The error. kwargs (Any) – Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. Parameters token (str) – The new token. async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. async on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html
a744e8c22df3-0
langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler¶ class langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler(dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None)[source]¶ Callback Handler that logs into Argilla. Parameters dataset_name – name of the FeedbackDataset in Argilla. Note that it must exist in advance. If you need help on how to create a FeedbackDataset in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name – name of the workspace in Argilla where the specified FeedbackDataset lives in. Defaults to None, which means that the default workspace will be used. api_url – URL of the Argilla Server that we want to use, and where the FeedbackDataset lives in. Defaults to None, which means that either ARGILLA_API_URL environment variable or the default will be used. api_key – API Key to connect to the Argilla Server. Defaults to None, which means that either ARGILLA_API_KEY environment variable or the default will be used. Raises ImportError – if the argilla package is not installed. ConnectionError – if the connection to Argilla fails. FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails. Examples >>> from langchain_community.llms import OpenAI >>> from langchain_community.callbacks import ArgillaCallbackHandler >>> argilla_callback = ArgillaCallbackHandler( ... dataset_name="my-dataset", ... workspace_name="my-workspace", ... api_url="http://localhost:6900", ... api_key="argilla.apikey", ... ) >>> llm = OpenAI( ... temperature=0,
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-1
... ) >>> llm = OpenAI( ... temperature=0, ... callbacks=[argilla_callback], ... verbose=True, ... openai_api_key="API_KEY_HERE", ... ) >>> llm.generate([ ... "What is the best NLP-annotation tool out there? (no bias at all)", ... ]) "Argilla, no doubt about it." Initializes the ArgillaCallbackHandler. Parameters dataset_name – name of the FeedbackDataset in Argilla. Note that it must exist in advance. If you need help on how to create a FeedbackDataset in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name – name of the workspace in Argilla where the specified FeedbackDataset lives in. Defaults to None, which means that the default workspace will be used. api_url – URL of the Argilla Server that we want to use, and where the FeedbackDataset lives in. Defaults to None, which means that either ARGILLA_API_URL environment variable or the default will be used. api_key – API Key to connect to the Argilla Server. Defaults to None, which means that either ARGILLA_API_KEY environment variable or the default will be used. Raises ImportError – if the argilla package is not installed. ConnectionError – if the connection to Argilla fails. FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails. Attributes BLOG_URL DEFAULT_API_URL ISSUES_URL REPO_URL ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-2
ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(dataset_name[, workspace_name, ...]) Initializes the ArgillaCallbackHandler. on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing on_chain_end(outputs, **kwargs) If either the parent_run_id or the run_id is in self.prompts, then log the outputs to Argilla, and pop the run from self.prompts. on_chain_error(error, **kwargs) Do nothing when LLM chain outputs an error. on_chain_start(serialized, inputs, **kwargs) If the key input is in inputs, then save it in self.prompts using either the parent_run_id or the run_id as the key. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Log records to Argilla when an LLM ends. on_llm_error(error, **kwargs) Do nothing when LLM outputs an error. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Save the prompts in memory when an LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-3
on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. __init__(dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None) → None[source]¶ Initializes the ArgillaCallbackHandler. Parameters dataset_name – name of the FeedbackDataset in Argilla. Note that it must exist in advance. If you need help on how to create a FeedbackDataset in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name – name of the workspace in Argilla where the specified FeedbackDataset lives in. Defaults to None, which means that the default workspace will be used. api_url – URL of the Argilla Server that we want to use, and where the FeedbackDataset lives in. Defaults to None, which means that either ARGILLA_API_URL environment variable or the default will be used. api_key – API Key to connect to the Argilla Server. Defaults to None, which means that either ARGILLA_API_KEY environment variable or the default will be used. Raises ImportError – if the argilla package is not installed. ConnectionError – if the connection to Argilla fails.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-4
ConnectionError – if the connection to Argilla fails. FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails. on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ If either the parent_run_id or the run_id is in self.prompts, then log the outputs to Argilla, and pop the run from self.prompts. The behavior differs if the output is a list or not. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM chain outputs an error. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ If the key input is in inputs, then save it in self.prompts using either the parent_run_id or the run_id as the key. This is done so that we don’t log the same input prompt twice, once when the LLM starts and once when the chain starts. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Log records to Argilla when an LLM ends. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-5
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when LLM outputs an error. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Save the prompts in memory when an LLM starts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
a744e8c22df3-6
Do nothing when tool outputs an error. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Examples using ArgillaCallbackHandler¶ Argilla
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html
35bc7c1ebb88-0
langchain_core.callbacks.manager.CallbackManagerForToolRun¶ class langchain_core.callbacks.manager.CallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for tool run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html
35bc7c1ebb88-1
on_tool_error(error, **kwargs) Run when tool errors. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html
35bc7c1ebb88-2
Parameters text (str) – The received text. Returns The result of the callback. Return type Any on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (str) – The output of the tool. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (Exception or KeyboardInterrupt) – The error. Examples using CallbackManagerForToolRun¶ Defining Custom Tools
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html
ad26dbb70cce-0
langchain_core.callbacks.manager.BaseRunManager¶ class langchain_core.callbacks.manager.BaseRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Base class for run manager (a bound callback manager). Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html
ad26dbb70cce-1
Run on arbitrary text. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. classmethod get_noop_manager() → BRM[source]¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html
de45cdc3bc79-0
langchain_community.callbacks.tracers.comet.CometTracer¶ class langchain_community.callbacks.tracers.comet.CometTracer(**kwargs: Any)[source]¶ Comet Tracer. Initialize the Comet Tracer. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(**kwargs) Initialize the Comet Tracer. flush() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html
de45cdc3bc79-1
Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(**kwargs: Any) → None[source]¶ Initialize the Comet Tracer. flush() → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html
de45cdc3bc79-2
End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html
de45cdc3bc79-3
Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for a tool run. on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html
de45cdc3bc79-4
Handle an error for a tool run. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html
9596b213dcb2-0
langchain_core.callbacks.base.BaseCallbackHandler¶ class langchain_core.callbacks.base.BaseCallbackHandler[source]¶ Base callback handler that handles callbacks from LangChain. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html
9596b213dcb2-1
Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__()¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html
9596b213dcb2-2
Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) –
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html
9596b213dcb2-3
information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html
9596b213dcb2-4
Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using BaseCallbackHandler¶ Ollama Custom callback handlers Multiple callback handlers Async callbacks Streaming final agent output
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html
fe8885fa9eb1-0
langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler¶ class langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler[source]¶ Callback handler for streaming. Only works with LLMs that support streaming. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run on agent end. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
fe8885fa9eb1-1
Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run on arbitrary text. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__()¶ on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
fe8885fa9eb1-2
Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, **kwargs: Any) → None[source]¶ Run on arbitrary text. on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Examples using StreamingStdOutCallbackHandler¶ Anthropic 🚅 LiteLLM Ollama GPT4All Arthur
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
fe8885fa9eb1-3
🚅 LiteLLM Ollama GPT4All Arthur Chat Over Documents with Vectara TextGen Llama.cpp Titan Takeoff Eden AI C Transformers Huggingface TextGen Inference Replicate Run LLMs locally Set env var OPENAI_API_KEY or load from a .env file Use local LLMs WebResearchRetriever
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html
1bdea059977a-0
langchain_community.callbacks.utils.load_json¶ langchain_community.callbacks.utils.load_json(json_path: Union[str, Path]) → str[source]¶ Load json file to a string. Parameters json_path (str) – The path to the json file. Returns The string representation of the json file. Return type (str)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.load_json.html
55e5b7367076-0
langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler¶ class langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False)[source]¶ Callback handler that returns an async iterator. Only the final output of the agent will be iterated. Instantiate AsyncFinalIteratorCallbackHandler. Parameters answer_prefix_tokens – Token sequence that prefixes the answer. Default is [“Final”, “Answer”, “:”] strip_tokens – Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix – Should answer prefix itself also be streamed? Attributes always_verbose ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(*[, answer_prefix_tokens, ...]) Instantiate AsyncFinalIteratorCallbackHandler. aiter() append_to_last_tokens(token) check_if_answer_reached() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, ...]) Run when chain ends running. on_chain_error(error, *, run_id[, ...]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
55e5b7367076-1
Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run on retriever end. on_retriever_error(error, *, run_id[, ...]) Run on retriever error. on_retriever_start(serialized, query, *, run_id) Run on retriever start. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id, tags]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running. on_tool_error(error, *, run_id[, ...]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False) → None[source]¶ Instantiate AsyncFinalIteratorCallbackHandler. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
55e5b7367076-2
Instantiate AsyncFinalIteratorCallbackHandler. Parameters answer_prefix_tokens – Token sequence that prefixes the answer. Default is [“Final”, “Answer”, “:”] strip_tokens – Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix – Should answer prefix itself also be streamed? async aiter() → AsyncIterator[str]¶ append_to_last_tokens(token: str) → None[source]¶ check_if_answer_reached() → bool[source]¶ async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent action. async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent end. async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain ends running. async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain errors. async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when chain starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
55e5b7367076-3
Run when chain starts running. async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. async on_llm_error(error: BaseException, **kwargs: Any) → None¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled. async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever end. async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever error.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
55e5b7367076-4
Run on retriever error. async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run on retriever start. async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on arbitrary text. async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool ends running. async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool errors. async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
bae05565ce8b-0
langchain_core.callbacks.base.RetrieverManagerMixin¶ class langchain_core.callbacks.base.RetrieverManagerMixin[source]¶ Mixin for Retriever callbacks. Methods __init__() on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. __init__()¶ on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when Retriever errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.RetrieverManagerMixin.html
5d7cb73fdf74-0
langchain_community.callbacks.openai_info.OpenAICallbackHandler¶ class langchain_community.callbacks.openai_info.OpenAICallbackHandler[source]¶ Callback Handler that tracks OpenAI info. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. completion_tokens ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. prompt_tokens raise_error run_inline successful_requests total_cost total_tokens Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Collect token usage. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, **kwargs) Print out the token.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
5d7cb73fdf74-1
on_llm_new_token(token, **kwargs) Print out the token. on_llm_start(serialized, prompts, **kwargs) Print out the prompts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__() → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
5d7cb73fdf74-2
Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Collect token usage. on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Print out the token. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Print out the prompts.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
5d7cb73fdf74-3
Print out the prompts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
5d7cb73fdf74-4
Run when tool starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
48f578961ebe-0
langchain_community.callbacks.context_callback.import_context¶ langchain_community.callbacks.context_callback.import_context() → Any[source]¶ Import the getcontext package.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.import_context.html
11a92afafa38-0
langchain_core.callbacks.manager.CallbackManager¶ class langchain_core.callbacks.manager.CallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
11a92afafa38-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager[source]¶ Configure the callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
11a92afafa38-2
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured callback manager. Return type CallbackManager copy() → T¶ Copy the callback manager. on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The callback manager for the chain run. Return type CallbackManagerForChainRun on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachlist of messages as an LLM run. Return type List[CallbackManagerForLLMRun] on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
11a92afafa38-3
Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachprompt as an LLM run. Return type List[CallbackManagerForLLMRun] on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The callback manager for the tool run. Return type CallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager. Examples using CallbackManager¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
11a92afafa38-4
Set handlers as the only handlers on the callback manager. Examples using CallbackManager¶ Anthropic 🚅 LiteLLM Ollama Llama.cpp Titan Takeoff Run LLMs locally Set env var OPENAI_API_KEY or load from a .env file Use local LLMs WebResearchRetriever
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html
9f599766a37c-0
langchain_core.callbacks.base.ChainManagerMixin¶ class langchain_core.callbacks.base.ChainManagerMixin[source]¶ Mixin for chain callbacks. Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. __init__()¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain errors.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.ChainManagerMixin.html
66ae87f7bbd9-0
langchain_community.callbacks.utils.import_pandas¶ langchain_community.callbacks.utils.import_pandas() → Any[source]¶ Import the pandas python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.import_pandas.html
c59a767fbabd-0
langchain_community.callbacks.utils.import_textstat¶ langchain_community.callbacks.utils.import_textstat() → Any[source]¶ Import the textstat python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.import_textstat.html
9b558d269f49-0
langchain_core.callbacks.manager.ahandle_event¶ async langchain_core.callbacks.manager.ahandle_event(handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any) → None[source]¶ Generic event handler for AsyncCallbackManager. Note: This function is used by langserve to handle events. Parameters handlers – The list of handlers that will handle the event event_name – The name of the event (e.g., “on_llm_start”) ignore_condition_name – Name of the attribute defined on handler that if True will cause the handler to be skipped for the given event *args – The arguments to pass to the event handler **kwargs – The keyword arguments to pass to the event handler
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.ahandle_event.html
68c47a547665-0
langchain_community.callbacks.llmonitor_callback.identify¶ langchain_community.callbacks.llmonitor_callback.identify(user_id: str, user_props: Any = None) → UserContextManager[source]¶ Builds an LLMonitor UserContextManager Parameters user_id (-) – The user id. user_props (-) – The user properties. Returns A context manager that sets the user context.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.identify.html
705646c62a7b-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler[source]¶ Generates markdown labels for LLMThought containers. Pass a custom subclass of this to StreamlitCallbackHandler to override its default labeling logic. Methods __init__() get_final_agent_thought_label() Return the markdown label for the agent's final thought - the "Now I have the answer" thought, that doesn't involve a tool. get_history_label() Return a markdown label for the special 'history' container that contains overflow thoughts. get_initial_label() Return the markdown label for a new LLMThought that doesn't have an associated tool yet. get_tool_label(tool, is_complete) Return the label for an LLMThought that has an associated tool. __init__()¶ get_final_agent_thought_label() → str[source]¶ Return the markdown label for the agent’s final thought - the “Now I have the answer” thought, that doesn’t involve a tool. get_history_label() → str[source]¶ Return a markdown label for the special ‘history’ container that contains overflow thoughts. get_initial_label() → str[source]¶ Return the markdown label for a new LLMThought that doesn’t have an associated tool yet. get_tool_label(tool: ToolRecord, is_complete: bool) → str[source]¶ Return the label for an LLMThought that has an associated tool. Parameters tool – The tool’s ToolRecord is_complete – True if the thought is complete; False if the thought is still receiving input. Return type The markdown label for the thought’s container.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler.html
3d486c888e43-0
langchain_core.callbacks.manager.CallbackManagerForChainGroup¶ class langchain_core.callbacks.manager.CallbackManagerForChainGroup(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any)[source]¶ Callback manager for the chain group. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the callback manager. copy() Copy the callback manager. on_chain_end(outputs, **kwargs) Run when traced chain group ends. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html
3d486c888e43-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any) → None[source]¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager¶ Configure the callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html
3d486c888e43-2
Defaults to None. Returns The configured callback manager. Return type CallbackManager copy() → CallbackManagerForChainGroup[source]¶ Copy the callback manager. on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when traced chain group ends. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The callback manager for the chain run. Return type CallbackManagerForChainRun on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachlist of messages as an LLM run. Return type List[CallbackManagerForLLMRun]
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html
3d486c888e43-3
Return type List[CallbackManagerForLLMRun] on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachprompt as an LLM run. Return type List[CallbackManagerForLLMRun] on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun¶ Run when retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The callback manager for the tool run. Return type CallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html
3d486c888e43-4
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html
2f3ddc906ca9-0
langchain_community.callbacks.flyte_callback.analyze_text¶ langchain_community.callbacks.flyte_callback.analyze_text(text: str, nlp: Any = None, textstat: Any = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. nlp (spacy.lang) – The spacy language model to use for visualization. Returns A dictionary containing the complexity metrics and visualizationfiles serialized to HTML string. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.analyze_text.html
234dcec587da-0
langchain_community.callbacks.mlflow_callback.import_mlflow¶ langchain_community.callbacks.mlflow_callback.import_mlflow() → Any[source]¶ Import the mlflow python package and raise an error if it is not installed.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.import_mlflow.html
32b1b0a9d6cf-0
langchain_community.callbacks.openai_info.standardize_model_name¶ langchain_community.callbacks.openai_info.standardize_model_name(model_name: str, is_completion: bool = False) → str[source]¶ Standardize the model name to a format that can be used in the OpenAI API. Parameters model_name – Model name to standardize. is_completion – Whether the model is used for completion or not. Defaults to False. Returns Standardized model name.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.standardize_model_name.html
f8fcc9bb66ae-0
langchain_community.callbacks.sagemaker_callback.save_json¶ langchain_community.callbacks.sagemaker_callback.save_json(data: dict, file_path: str) → None[source]¶ Save dict to local file path. Parameters data (dict) – The dictionary to be saved. file_path (str) – Local file path.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.save_json.html
ff55f4a683ec-0
langchain_community.callbacks.tracers.wandb.WandbTracer¶ class langchain_community.callbacks.tracers.wandb.WandbTracer(run_args: Optional[WandbRunArgs] = None, **kwargs: Any)[source]¶ Callback Handler that logs to Weights and Biases. This handler will log the model architecture and run traces to Weights and Biases. This will ensure that all LangChain activity is logged to W&B. Initializes the WandbTracer. Parameters run_args – (dict, optional) Arguments to pass to wandb.init(). If not provided, wandb.init() will be called with no arguments. Please refer to the wandb.init for more details. To use W&B to monitor all LangChain activity, add this tracer like any other LangChain callback: ``` from wandb.integration.langchain import WandbTracer tracer = WandbTracer() chain = LLMChain(llm, callbacks=[tracer]) # …end of notebook / script: tracer.finish() ``` Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([run_args]) Initializes the WandbTracer. finish() Waits for all asynchronous processes to finish and data to upload. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
ff55f4a683ec-1
on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
ff55f4a683ec-2
on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(run_args: Optional[WandbRunArgs] = None, **kwargs: Any) → None[source]¶ Initializes the WandbTracer. Parameters run_args – (dict, optional) Arguments to pass to wandb.init(). If not provided, wandb.init() will be called with no arguments. Please refer to the wandb.init for more details. To use W&B to monitor all LangChain activity, add this tracer like any other LangChain callback: ``` from wandb.integration.langchain import WandbTracer tracer = WandbTracer() chain = LLMChain(llm, callbacks=[tracer]) # …end of notebook / script: tracer.finish() ``` finish() → None[source]¶ Waits for all asynchronous processes to finish and data to upload. Proxy for wandb.finish(). on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
ff55f4a683ec-3
Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html