id
stringlengths 14
15
| text
stringlengths 13
2.7k
| source
stringlengths 60
181
|
---|---|---|
b6ec7736d150-4 | Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
Examples using LabelStudioCallbackHandler¶
Label Studio | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.labelstudio_callback.LabelStudioCallbackHandler.html |
3c48617c53e1-0 | langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler¶
class langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None)[source]¶
Callback handler for promptlayer.
Initialize the PromptLayerCallbackHandler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([pl_id_callback, pl_tags])
Initialize the PromptLayerCallbackHandler.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id]) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
3c48617c53e1-1 | on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None) → None[source]¶
Initialize the PromptLayerCallbackHandler.
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
3c48617c53e1-2 | Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
3c48617c53e1-3 | response (LLMResult): The response which was generated beforethe error occurred.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
3c48617c53e1-4 | Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when tool starts running.
Examples using PromptLayerCallbackHandler¶
PromptLayer | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
3a9a0373edbb-0 | langchain_community.callbacks.flyte_callback.import_flytekit¶
langchain_community.callbacks.flyte_callback.import_flytekit() → Tuple[flytekit, renderer][source]¶
Import flytekit and flytekitplugins-deck-standard. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.import_flytekit.html |
4f169f0eac44-0 | langchain_core.callbacks.stdout.StdOutCallbackHandler¶
class langchain_core.callbacks.stdout.StdOutCallbackHandler(color: Optional[str] = None)[source]¶
Callback Handler that prints to std out.
Initialize callback handler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([color])
Initialize callback handler.
on_agent_action(action[, color])
Run on agent action.
on_agent_finish(finish[, color])
Run on agent end.
on_chain_end(outputs, **kwargs)
Print out that we finished a chain.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Print out that we are entering a chain.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id) | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html |
4f169f0eac44-1 | on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text[, color, end])
Run when agent ends.
on_tool_end(output[, color, ...])
If not the final action, print out observation.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(color: Optional[str] = None) → None[source]¶
Initialize callback handler.
on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Print out that we finished a chain.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html |
4f169f0eac44-2 | Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Print out that we are entering a chain.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) – | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html |
4f169f0eac44-3 | information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶
Run when agent ends.
on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
If not the final action, print out observation. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html |
4f169f0eac44-4 | If not the final action, print out observation.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when tool starts running.
Examples using StdOutCallbackHandler¶
Argilla
Comet
Aim
Weights & Biases
ClearML
OpaquePrompts
Vector SQL Retriever with MyScale
Async API
Custom chain | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.stdout.StdOutCallbackHandler.html |
2eee8b557f7d-0 | langchain_community.callbacks.arthur_callback.ArthurCallbackHandler¶
class langchain_community.callbacks.arthur_callback.ArthurCallbackHandler(arthur_model: ArthurModel)[source]¶
Callback Handler that logs to Arthur platform.
Arthur helps enterprise teams optimize model operations
and performance at scale. The Arthur API tracks model
performance, explainability, and fairness across tabular,
NLP, and CV models. Our API is model- and platform-agnostic,
and continuously scales with complex and dynamic enterprise needs.
To learn more about Arthur, visit our website at
https://www.arthur.ai/ or read the Arthur docs at
https://docs.arthur.ai/
Initialize callback handler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(arthur_model)
Initialize callback handler.
from_credentials(model_id[, arthur_url, ...])
Initialize callback handler from Arthur credentials.
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
on_agent_finish(finish, **kwargs)
Do nothing
on_chain_end(outputs, **kwargs)
On chain end, do nothing.
on_chain_error(error, **kwargs)
Do nothing when LLM chain outputs an error.
on_chain_start(serialized, inputs, **kwargs)
On chain start, do nothing.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
On LLM end, send data to Arthur. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html |
2eee8b557f7d-1 | On LLM end, send data to Arthur.
on_llm_error(error, **kwargs)
Do nothing when LLM outputs an error.
on_llm_new_token(token, **kwargs)
On new token, pass.
on_llm_start(serialized, prompts, **kwargs)
On LLM start, save the input prompts
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Do nothing
on_tool_end(output[, observation_prefix, ...])
Do nothing when tool ends.
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
on_tool_start(serialized, input_str, **kwargs)
Do nothing when tool starts.
__init__(arthur_model: ArthurModel) → None[source]¶
Initialize callback handler.
classmethod from_credentials(model_id: str, arthur_url: Optional[str] = 'https://app.arthur.ai', arthur_login: Optional[str] = None, arthur_password: Optional[str] = None) → ArthurCallbackHandler[source]¶
Initialize callback handler from Arthur credentials.
Parameters
model_id (str) – The ID of the arthur model to log to.
arthur_url (str, optional) – The URL of the Arthur instance to log to.
Defaults to “https://app.arthur.ai”. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html |
2eee8b557f7d-2 | Defaults to “https://app.arthur.ai”.
arthur_login (str, optional) – The login to use to connect to Arthur.
Defaults to None.
arthur_password (str, optional) – The password to use to connect to
Arthur. Defaults to None.
Returns
The initialized callback handler.
Return type
ArthurCallbackHandler
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing when agent takes a specific action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Do nothing
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain end, do nothing.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM chain outputs an error.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain start, do nothing.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
On LLM end, send data to Arthur.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM outputs an error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
On new token, pass. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html |
2eee8b557f7d-3 | On new token, pass.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
On LLM start, save the input prompts
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Do nothing
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Do nothing when tool ends.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
Examples using ArthurCallbackHandler¶
Arthur | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arthur_callback.ArthurCallbackHandler.html |
f40f4b91d42b-0 | langchain_community.callbacks.aim_callback.AimCallbackHandler¶
class langchain_community.callbacks.aim_callback.AimCallbackHandler(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True)[source]¶
Callback Handler that logs to Aim.
Parameters
repo (str, optional) – Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (str, optional) – Sets Run’s experiment property.
‘default’ if not specified. Can be used later to query runs/sequences.
system_tracking_interval (int, optional) – Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to None
to disable system metrics tracking.
log_system_params (bool, optional) – Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run
and then logs the response to Aim.
Initialize callback handler.
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([repo, experiment_name, ...])
Initialize callback handler.
flush_tracker([repo, experiment_name, ...])
Flush the tracker and reset the session.
get_custom_callback_meta()
on_agent_action(action, **kwargs) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html |
f40f4b91d42b-1 | get_custom_callback_meta()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
reset_callback_meta()
Reset the callback metadata.
setup(**kwargs) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html |
f40f4b91d42b-2 | reset_callback_meta()
Reset the callback metadata.
setup(**kwargs)
__init__(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True) → None[source]¶
Initialize callback handler.
flush_tracker(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True, langchain_asset: Any = None, reset: bool = True, finish: bool = False) → None[source]¶
Flush the tracker and reset the session.
Parameters
repo (str, optional) – Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (str, optional) – Sets Run’s experiment property.
‘default’ if not specified. Can be used later to query runs/sequences.
system_tracking_interval (int, optional) – Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to None
to disable system metrics tracking.
log_system_params (bool, optional) – Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
langchain_asset – The langchain asset to save.
reset – Whether to reset the session.
finish – Whether to finish the run.
Returns – None
get_custom_callback_meta() → Dict[str, Any]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html |
f40f4b91d42b-3 | Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html |
f40f4b91d42b-4 | Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
reset_callback_meta() → None¶
Reset the callback metadata.
setup(**kwargs: Any) → None[source]¶
Examples using AimCallbackHandler¶
Aim | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html |
529f4ce349fd-0 | langchain_community.callbacks.openai_info.get_openai_token_cost_for_model¶
langchain_community.callbacks.openai_info.get_openai_token_cost_for_model(model_name: str, num_tokens: int, is_completion: bool = False) → float[source]¶
Get the cost in USD for a given model and number of tokens.
Parameters
model_name – Name of the model
num_tokens – Number of tokens.
is_completion – Whether the model is used for completion or not.
Defaults to False.
Returns
Cost in USD. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.get_openai_token_cost_for_model.html |
bb1f9e64291f-0 | langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler¶
class langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler[source]¶
Callback handler that returns an async iterator.
Attributes
always_verbose
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
queue
done
Methods
__init__()
aiter()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, ...])
Run when chain ends running.
on_chain_error(error, *, run_id[, ...])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html |
bb1f9e64291f-1 | Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run on retriever end.
on_retriever_error(error, *, run_id[, ...])
Run on retriever error.
on_retriever_start(serialized, query, *, run_id)
Run on retriever start.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id, tags])
Run on arbitrary text.
on_tool_end(output, *, run_id[, ...])
Run when tool ends running.
on_tool_error(error, *, run_id[, ...])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__() → None[source]¶
async aiter() → AsyncIterator[str][source]¶
async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on agent action.
async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on agent end.
async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when chain ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html |
bb1f9e64291f-2 | Run when chain ends running.
async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when chain errors.
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when chain starts running.
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
async on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred.
async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html |
bb1f9e64291f-3 | Run when LLM starts running.
async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on retriever end.
async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on retriever error.
async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run on retriever start.
async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on arbitrary text.
async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when tool ends running.
async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when tool errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html |
bb1f9e64291f-4 | Run when tool errors.
async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when tool starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html |
1f850873a824-0 | langchain_core.callbacks.base.CallbackManagerMixin¶
class langchain_core.callbacks.base.CallbackManagerMixin[source]¶
Mixin for callback manager.
Methods
__init__()
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__()¶
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when LLM starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.CallbackManagerMixin.html |
1f850873a824-1 | Run when LLM starts running.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when Retriever starts running.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when tool starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.CallbackManagerMixin.html |
e0f816ba71c6-0 | langchain_core.callbacks.manager.AsyncParentRunManager¶
class langchain_core.callbacks.manager.AsyncParentRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Async Parent Run Manager.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
get_sync()
Get the equivalent sync RunManager.
on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html |
e0f816ba71c6-1 | on_text(text, **kwargs)
Run when text is received.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
get_child(tag: Optional[str] = None) → AsyncCallbackManager[source]¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
abstract get_sync() → RunManager¶
Get the equivalent sync RunManager.
Returns
The sync RunManager.
Return type
RunManager
async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html |
e0f816ba71c6-2 | Run on a retry event.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncParentRunManager.html |
afec54c65575-0 | langchain_community.callbacks.utils.BaseMetadataCallbackHandler¶
class langchain_community.callbacks.utils.BaseMetadataCallbackHandler[source]¶
This class handles the metadata and associated function states for callbacks.
step¶
The current step.
Type
int
starts¶
The number of times the start method has been called.
Type
int
ends¶
The number of times the end method has been called.
Type
int
errors¶
The number of times the error method has been called.
Type
int
text_ctr¶
The number of times the text method has been called.
Type
int
ignore_llm_¶
Whether to ignore llm callbacks.
Type
bool
ignore_chain_¶
Whether to ignore chain callbacks.
Type
bool
ignore_agent_¶
Whether to ignore agent callbacks.
Type
bool
ignore_retriever_¶
Whether to ignore retriever callbacks.
Type
bool
always_verbose_¶
Whether to always be verbose.
Type
bool
chain_starts¶
The number of times the chain start method has been called.
Type
int
chain_ends¶
The number of times the chain end method has been called.
Type
int
llm_starts¶
The number of times the llm start method has been called.
Type
int
llm_ends¶
The number of times the llm end method has been called.
Type
int
llm_streams¶
The number of times the text method has been called.
Type
int
tool_starts¶
The number of times the tool start method has been called.
Type
int
tool_ends¶
The number of times the tool end method has been called.
Type
int
agent_ends¶
The number of times the agent end method has been called.
Type
int
on_llm_start_records¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html |
afec54c65575-1 | Type
int
on_llm_start_records¶
A list of records of the on_llm_start method.
Type
list
on_llm_token_records¶
A list of records of the on_llm_token method.
Type
list
on_llm_end_records¶
A list of records of the on_llm_end method.
Type
list
on_chain_start_records¶
A list of records of the on_chain_start method.
Type
list
on_chain_end_records¶
A list of records of the on_chain_end method.
Type
list
on_tool_start_records¶
A list of records of the on_tool_start method.
Type
list
on_tool_end_records¶
A list of records of the on_tool_end method.
Type
list
on_agent_finish_records¶
A list of records of the on_agent_end method.
Type
list
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_llm
Whether to ignore LLM callbacks.
Methods
__init__()
get_custom_callback_meta()
reset_callback_meta()
Reset the callback metadata.
__init__() → None[source]¶
get_custom_callback_meta() → Dict[str, Any][source]¶
reset_callback_meta() → None[source]¶
Reset the callback metadata. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html |
55013cb337d4-0 | langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun¶
class langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Async callback manager for LLM run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
get_sync()
Get the equivalent sync RunManager.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, *[, chunk])
Run when LLM generates a new token.
on_retry(retry_state, **kwargs)
Run on a retry event. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
55013cb337d4-1 | on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
get_sync() → CallbackManagerForLLMRun[source]¶
Get the equivalent sync RunManager.
Returns
The sync RunManager.
Return type
CallbackManagerForLLMRun
async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
Parameters
response (LLMResult) – The LLM result. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
55013cb337d4-2 | Parameters
response (LLMResult) – The LLM result.
async on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
kwargs (Any) – Additional keyword arguments.
- response (LLMResult): The response which was generated before
the error occurred.
async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
Parameters
token (str) – The new token.
async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
a744e8c22df3-0 | langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler¶
class langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler(dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None)[source]¶
Callback Handler that logs into Argilla.
Parameters
dataset_name – name of the FeedbackDataset in Argilla. Note that it must
exist in advance. If you need help on how to create a FeedbackDataset in
Argilla, please visit
https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html.
workspace_name – name of the workspace in Argilla where the specified
FeedbackDataset lives in. Defaults to None, which means that the
default workspace will be used.
api_url – URL of the Argilla Server that we want to use, and where the
FeedbackDataset lives in. Defaults to None, which means that either
ARGILLA_API_URL environment variable or the default will be used.
api_key – API Key to connect to the Argilla Server. Defaults to None, which
means that either ARGILLA_API_KEY environment variable or the default
will be used.
Raises
ImportError – if the argilla package is not installed.
ConnectionError – if the connection to Argilla fails.
FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails.
Examples
>>> from langchain_community.llms import OpenAI
>>> from langchain_community.callbacks import ArgillaCallbackHandler
>>> argilla_callback = ArgillaCallbackHandler(
... dataset_name="my-dataset",
... workspace_name="my-workspace",
... api_url="http://localhost:6900",
... api_key="argilla.apikey",
... )
>>> llm = OpenAI(
... temperature=0, | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-1 | ... )
>>> llm = OpenAI(
... temperature=0,
... callbacks=[argilla_callback],
... verbose=True,
... openai_api_key="API_KEY_HERE",
... )
>>> llm.generate([
... "What is the best NLP-annotation tool out there? (no bias at all)",
... ])
"Argilla, no doubt about it."
Initializes the ArgillaCallbackHandler.
Parameters
dataset_name – name of the FeedbackDataset in Argilla. Note that it must
exist in advance. If you need help on how to create a FeedbackDataset
in Argilla, please visit
https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html.
workspace_name – name of the workspace in Argilla where the specified
FeedbackDataset lives in. Defaults to None, which means that the
default workspace will be used.
api_url – URL of the Argilla Server that we want to use, and where the
FeedbackDataset lives in. Defaults to None, which means that either
ARGILLA_API_URL environment variable or the default will be used.
api_key – API Key to connect to the Argilla Server. Defaults to None, which
means that either ARGILLA_API_KEY environment variable or the default
will be used.
Raises
ImportError – if the argilla package is not installed.
ConnectionError – if the connection to Argilla fails.
FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails.
Attributes
BLOG_URL
DEFAULT_API_URL
ISSUES_URL
REPO_URL
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-2 | ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(dataset_name[, workspace_name, ...])
Initializes the ArgillaCallbackHandler.
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
on_agent_finish(finish, **kwargs)
Do nothing
on_chain_end(outputs, **kwargs)
If either the parent_run_id or the run_id is in self.prompts, then log the outputs to Argilla, and pop the run from self.prompts.
on_chain_error(error, **kwargs)
Do nothing when LLM chain outputs an error.
on_chain_start(serialized, inputs, **kwargs)
If the key input is in inputs, then save it in self.prompts using either the parent_run_id or the run_id as the key.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Log records to Argilla when an LLM ends.
on_llm_error(error, **kwargs)
Do nothing when LLM outputs an error.
on_llm_new_token(token, **kwargs)
Do nothing when a new token is generated.
on_llm_start(serialized, prompts, **kwargs)
Save the prompts in memory when an LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-3 | on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Do nothing
on_tool_end(output[, observation_prefix, ...])
Do nothing when tool ends.
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
on_tool_start(serialized, input_str, **kwargs)
Do nothing when tool starts.
__init__(dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None) → None[source]¶
Initializes the ArgillaCallbackHandler.
Parameters
dataset_name – name of the FeedbackDataset in Argilla. Note that it must
exist in advance. If you need help on how to create a FeedbackDataset
in Argilla, please visit
https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html.
workspace_name – name of the workspace in Argilla where the specified
FeedbackDataset lives in. Defaults to None, which means that the
default workspace will be used.
api_url – URL of the Argilla Server that we want to use, and where the
FeedbackDataset lives in. Defaults to None, which means that either
ARGILLA_API_URL environment variable or the default will be used.
api_key – API Key to connect to the Argilla Server. Defaults to None, which
means that either ARGILLA_API_KEY environment variable or the default
will be used.
Raises
ImportError – if the argilla package is not installed.
ConnectionError – if the connection to Argilla fails. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-4 | ConnectionError – if the connection to Argilla fails.
FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails.
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing when agent takes a specific action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Do nothing
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
If either the parent_run_id or the run_id is in self.prompts, then
log the outputs to Argilla, and pop the run from self.prompts. The behavior
differs if the output is a list or not.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM chain outputs an error.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
If the key input is in inputs, then save it in self.prompts using
either the parent_run_id or the run_id as the key. This is done so that
we don’t log the same input prompt twice, once when the LLM starts and once
when the chain starts.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Log records to Argilla when an LLM ends.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-5 | on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM outputs an error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Do nothing when a new token is generated.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Save the prompts in memory when an LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Do nothing
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Do nothing when tool ends.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when tool outputs an error. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
a744e8c22df3-6 | Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
Examples using ArgillaCallbackHandler¶
Argilla | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.argilla_callback.ArgillaCallbackHandler.html |
35bc7c1ebb88-0 | langchain_core.callbacks.manager.CallbackManagerForToolRun¶
class langchain_core.callbacks.manager.CallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Callback manager for tool run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html |
35bc7c1ebb88-1 | on_tool_error(error, **kwargs)
Run when tool errors.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
get_child(tag: Optional[str] = None) → CallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html |
35bc7c1ebb88-2 | Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
Parameters
output (str) – The output of the tool.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
Examples using CallbackManagerForToolRun¶
Defining Custom Tools | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForToolRun.html |
ad26dbb70cce-0 | langchain_core.callbacks.manager.BaseRunManager¶
class langchain_core.callbacks.manager.BaseRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Base class for run manager (a bound callback manager).
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html |
ad26dbb70cce-1 | Run on arbitrary text.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None[source]¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
classmethod get_noop_manager() → BRM[source]¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.BaseRunManager.html |
de45cdc3bc79-0 | langchain_community.callbacks.tracers.comet.CometTracer¶
class langchain_community.callbacks.tracers.comet.CometTracer(**kwargs: Any)[source]¶
Comet Tracer.
Initialize the Comet Tracer.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(**kwargs)
Initialize the Comet Tracer.
flush()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html |
de45cdc3bc79-1 | Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
__init__(**kwargs: Any) → None[source]¶
Initialize the Comet Tracer.
flush() → None[source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶
End a trace for a chain run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html |
de45cdc3bc79-2 | End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶
Run on new LLM token. Only available when streaming is enabled. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html |
de45cdc3bc79-3 | Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for a tool run.
on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a tool run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html |
de45cdc3bc79-4 | Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a tool run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.comet.CometTracer.html |
9596b213dcb2-0 | langchain_core.callbacks.base.BaseCallbackHandler¶
class langchain_core.callbacks.base.BaseCallbackHandler[source]¶
Base callback handler that handles callbacks from LangChain.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html |
9596b213dcb2-1 | Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__()¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html |
9596b213dcb2-2 | Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) – | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html |
9596b213dcb2-3 | information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html |
9596b213dcb2-4 | Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when tool starts running.
Examples using BaseCallbackHandler¶
Ollama
Custom callback handlers
Multiple callback handlers
Async callbacks
Streaming final agent output | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html |
fe8885fa9eb1-0 | langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler¶
class langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler[source]¶
Callback handler for streaming. Only works with LLMs that support streaming.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run on agent end.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
fe8885fa9eb1-1 | Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run on arbitrary text.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
__init__()¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
fe8885fa9eb1-2 | Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Run on arbitrary text.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
Examples using StreamingStdOutCallbackHandler¶
Anthropic
🚅 LiteLLM
Ollama
GPT4All
Arthur | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
fe8885fa9eb1-3 | 🚅 LiteLLM
Ollama
GPT4All
Arthur
Chat Over Documents with Vectara
TextGen
Llama.cpp
Titan Takeoff
Eden AI
C Transformers
Huggingface TextGen Inference
Replicate
Run LLMs locally
Set env var OPENAI_API_KEY or load from a .env file
Use local LLMs
WebResearchRetriever | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
1bdea059977a-0 | langchain_community.callbacks.utils.load_json¶
langchain_community.callbacks.utils.load_json(json_path: Union[str, Path]) → str[source]¶
Load json file to a string.
Parameters
json_path (str) – The path to the json file.
Returns
The string representation of the json file.
Return type
(str) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.load_json.html |
55e5b7367076-0 | langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler¶
class langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False)[source]¶
Callback handler that returns an async iterator.
Only the final output of the agent will be iterated.
Instantiate AsyncFinalIteratorCallbackHandler.
Parameters
answer_prefix_tokens – Token sequence that prefixes the answer.
Default is [“Final”, “Answer”, “:”]
strip_tokens – Ignore white spaces and new lines when comparing
answer_prefix_tokens to last tokens? (to determine if answer has been
reached)
stream_prefix – Should answer prefix itself also be streamed?
Attributes
always_verbose
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(*[, answer_prefix_tokens, ...])
Instantiate AsyncFinalIteratorCallbackHandler.
aiter()
append_to_last_tokens(token)
check_if_answer_reached()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, ...])
Run when chain ends running.
on_chain_error(error, *, run_id[, ...])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html |
55e5b7367076-1 | Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run on retriever end.
on_retriever_error(error, *, run_id[, ...])
Run on retriever error.
on_retriever_start(serialized, query, *, run_id)
Run on retriever start.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id, tags])
Run on arbitrary text.
on_tool_end(output, *, run_id[, ...])
Run when tool ends running.
on_tool_error(error, *, run_id[, ...])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False) → None[source]¶
Instantiate AsyncFinalIteratorCallbackHandler.
Parameters | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html |
55e5b7367076-2 | Instantiate AsyncFinalIteratorCallbackHandler.
Parameters
answer_prefix_tokens – Token sequence that prefixes the answer.
Default is [“Final”, “Answer”, “:”]
strip_tokens – Ignore white spaces and new lines when comparing
answer_prefix_tokens to last tokens? (to determine if answer has been
reached)
stream_prefix – Should answer prefix itself also be streamed?
async aiter() → AsyncIterator[str]¶
append_to_last_tokens(token: str) → None[source]¶
check_if_answer_reached() → bool[source]¶
async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on agent action.
async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on agent end.
async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when chain ends running.
async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when chain errors.
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when chain starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html |
55e5b7367076-3 | Run when chain starts running.
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
async on_llm_error(error: BaseException, **kwargs: Any) → None¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred.
async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on retriever end.
async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on retriever error. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html |
55e5b7367076-4 | Run on retriever error.
async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run on retriever start.
async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run on arbitrary text.
async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when tool ends running.
async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶
Run when tool errors.
async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when tool starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html |
bae05565ce8b-0 | langchain_core.callbacks.base.RetrieverManagerMixin¶
class langchain_core.callbacks.base.RetrieverManagerMixin[source]¶
Mixin for Retriever callbacks.
Methods
__init__()
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
__init__()¶
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.RetrieverManagerMixin.html |
5d7cb73fdf74-0 | langchain_community.callbacks.openai_info.OpenAICallbackHandler¶
class langchain_community.callbacks.openai_info.OpenAICallbackHandler[source]¶
Callback Handler that tracks OpenAI info.
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
completion_tokens
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
prompt_tokens
raise_error
run_inline
successful_requests
total_cost
total_tokens
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Collect token usage.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
on_llm_new_token(token, **kwargs)
Print out the token. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html |
5d7cb73fdf74-1 | on_llm_new_token(token, **kwargs)
Print out the token.
on_llm_start(serialized, prompts, **kwargs)
Print out the prompts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__() → None[source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html |
5d7cb73fdf74-2 | Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Collect token usage.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
:param error: The error that occurred.
:type error: BaseException
:param kwargs: Additional keyword arguments.
response (LLMResult): The response which was generated beforethe error occurred.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Print out the token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Print out the prompts. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html |
5d7cb73fdf74-3 | Print out the prompts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html |
5d7cb73fdf74-4 | Run when tool starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html |
48f578961ebe-0 | langchain_community.callbacks.context_callback.import_context¶
langchain_community.callbacks.context_callback.import_context() → Any[source]¶
Import the getcontext package. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.context_callback.import_context.html |
11a92afafa38-0 | langchain_core.callbacks.manager.CallbackManager¶
class langchain_core.callbacks.manager.CallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Callback manager that handles callbacks from LangChain.
Initialize callback manager.
Attributes
is_async
Whether the callback manager is async.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the callback manager.
copy()
Copy the callback manager.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html |
11a92afafa38-1 | Set handlers as the only handlers on the callback manager.
__init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize callback manager.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager[source]¶
Configure the callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html |
11a92afafa38-2 | inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns
The configured callback manager.
Return type
CallbackManager
copy() → T¶
Copy the callback manager.
on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun[source]¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Union[Dict[str, Any], Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The callback manager for the chain run.
Return type
CallbackManagerForChainRun
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachlist of messages as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html |
11a92afafa38-3 | Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachprompt as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun[source]¶
Run when retriever starts running.
on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun[source]¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None.
Returns
The callback manager for the tool run.
Return type
CallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager.
Examples using CallbackManager¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html |
11a92afafa38-4 | Set handlers as the only handlers on the callback manager.
Examples using CallbackManager¶
Anthropic
🚅 LiteLLM
Ollama
Llama.cpp
Titan Takeoff
Run LLMs locally
Set env var OPENAI_API_KEY or load from a .env file
Use local LLMs
WebResearchRetriever | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html |
9f599766a37c-0 | langchain_core.callbacks.base.ChainManagerMixin¶
class langchain_core.callbacks.base.ChainManagerMixin[source]¶
Mixin for chain callbacks.
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
__init__()¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when chain errors. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.ChainManagerMixin.html |
66ae87f7bbd9-0 | langchain_community.callbacks.utils.import_pandas¶
langchain_community.callbacks.utils.import_pandas() → Any[source]¶
Import the pandas python package and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.import_pandas.html |
c59a767fbabd-0 | langchain_community.callbacks.utils.import_textstat¶
langchain_community.callbacks.utils.import_textstat() → Any[source]¶
Import the textstat python package and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.import_textstat.html |
9b558d269f49-0 | langchain_core.callbacks.manager.ahandle_event¶
async langchain_core.callbacks.manager.ahandle_event(handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any) → None[source]¶
Generic event handler for AsyncCallbackManager.
Note: This function is used by langserve to handle events.
Parameters
handlers – The list of handlers that will handle the event
event_name – The name of the event (e.g., “on_llm_start”)
ignore_condition_name – Name of the attribute defined on handler
that if True will cause the handler to be skipped for the given event
*args – The arguments to pass to the event handler
**kwargs – The keyword arguments to pass to the event handler | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.ahandle_event.html |
68c47a547665-0 | langchain_community.callbacks.llmonitor_callback.identify¶
langchain_community.callbacks.llmonitor_callback.identify(user_id: str, user_props: Any = None) → UserContextManager[source]¶
Builds an LLMonitor UserContextManager
Parameters
user_id (-) – The user id.
user_props (-) – The user properties.
Returns
A context manager that sets the user context. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.identify.html |
705646c62a7b-0 | langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler¶
class langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler[source]¶
Generates markdown labels for LLMThought containers. Pass a custom
subclass of this to StreamlitCallbackHandler to override its default
labeling logic.
Methods
__init__()
get_final_agent_thought_label()
Return the markdown label for the agent's final thought - the "Now I have the answer" thought, that doesn't involve a tool.
get_history_label()
Return a markdown label for the special 'history' container that contains overflow thoughts.
get_initial_label()
Return the markdown label for a new LLMThought that doesn't have an associated tool yet.
get_tool_label(tool, is_complete)
Return the label for an LLMThought that has an associated tool.
__init__()¶
get_final_agent_thought_label() → str[source]¶
Return the markdown label for the agent’s final thought -
the “Now I have the answer” thought, that doesn’t involve
a tool.
get_history_label() → str[source]¶
Return a markdown label for the special ‘history’ container
that contains overflow thoughts.
get_initial_label() → str[source]¶
Return the markdown label for a new LLMThought that doesn’t have
an associated tool yet.
get_tool_label(tool: ToolRecord, is_complete: bool) → str[source]¶
Return the label for an LLMThought that has an associated
tool.
Parameters
tool – The tool’s ToolRecord
is_complete – True if the thought is complete; False if the thought
is still receiving input.
Return type
The markdown label for the thought’s container. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler.html |
3d486c888e43-0 | langchain_core.callbacks.manager.CallbackManagerForChainGroup¶
class langchain_core.callbacks.manager.CallbackManagerForChainGroup(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any)[source]¶
Callback manager for the chain group.
Initialize callback manager.
Attributes
is_async
Whether the callback manager is async.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the callback manager.
copy()
Copy the callback manager.
on_chain_end(outputs, **kwargs)
Run when traced chain group ends.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html |
3d486c888e43-1 | Set handlers as the only handlers on the callback manager.
__init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any) → None[source]¶
Initialize callback manager.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager¶
Configure the callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html |
3d486c888e43-2 | Defaults to None.
Returns
The configured callback manager.
Return type
CallbackManager
copy() → CallbackManagerForChainGroup[source]¶
Copy the callback manager.
on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶
Run when traced chain group ends.
Parameters
outputs (Union[Dict[str, Any], Any]) – The outputs of the chain.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Union[Dict[str, Any], Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The callback manager for the chain run.
Return type
CallbackManagerForChainRun
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachlist of messages as an LLM run.
Return type
List[CallbackManagerForLLMRun] | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html |
3d486c888e43-3 | Return type
List[CallbackManagerForLLMRun]
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachprompt as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun¶
Run when retriever starts running.
on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None.
Returns
The callback manager for the tool run.
Return type
CallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html |
3d486c888e43-4 | set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManagerForChainGroup.html |
2f3ddc906ca9-0 | langchain_community.callbacks.flyte_callback.analyze_text¶
langchain_community.callbacks.flyte_callback.analyze_text(text: str, nlp: Any = None, textstat: Any = None) → dict[source]¶
Analyze text using textstat and spacy.
Parameters
text (str) – The text to analyze.
nlp (spacy.lang) – The spacy language model to use for visualization.
Returns
A dictionary containing the complexity metrics and visualizationfiles serialized to HTML string.
Return type
(dict) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.flyte_callback.analyze_text.html |
234dcec587da-0 | langchain_community.callbacks.mlflow_callback.import_mlflow¶
langchain_community.callbacks.mlflow_callback.import_mlflow() → Any[source]¶
Import the mlflow python package and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.import_mlflow.html |
32b1b0a9d6cf-0 | langchain_community.callbacks.openai_info.standardize_model_name¶
langchain_community.callbacks.openai_info.standardize_model_name(model_name: str, is_completion: bool = False) → str[source]¶
Standardize the model name to a format that can be used in the OpenAI API.
Parameters
model_name – Model name to standardize.
is_completion – Whether the model is used for completion or not.
Defaults to False.
Returns
Standardized model name. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.standardize_model_name.html |
f8fcc9bb66ae-0 | langchain_community.callbacks.sagemaker_callback.save_json¶
langchain_community.callbacks.sagemaker_callback.save_json(data: dict, file_path: str) → None[source]¶
Save dict to local file path.
Parameters
data (dict) – The dictionary to be saved.
file_path (str) – Local file path. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.save_json.html |
ff55f4a683ec-0 | langchain_community.callbacks.tracers.wandb.WandbTracer¶
class langchain_community.callbacks.tracers.wandb.WandbTracer(run_args: Optional[WandbRunArgs] = None, **kwargs: Any)[source]¶
Callback Handler that logs to Weights and Biases.
This handler will log the model architecture and run traces to Weights and Biases.
This will ensure that all LangChain activity is logged to W&B.
Initializes the WandbTracer.
Parameters
run_args – (dict, optional) Arguments to pass to wandb.init(). If not
provided, wandb.init() will be called with no arguments. Please
refer to the wandb.init for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# …end of notebook / script:
tracer.finish()
```
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([run_args])
Initializes the WandbTracer.
finish()
Waits for all asynchronous processes to finish and data to upload.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs]) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html |
ff55f4a683ec-1 | on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id) | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html |
ff55f4a683ec-2 | on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
__init__(run_args: Optional[WandbRunArgs] = None, **kwargs: Any) → None[source]¶
Initializes the WandbTracer.
Parameters
run_args – (dict, optional) Arguments to pass to wandb.init(). If not
provided, wandb.init() will be called with no arguments. Please
refer to the wandb.init for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# …end of notebook / script:
tracer.finish()
```
finish() → None[source]¶
Waits for all asynchronous processes to finish and data to upload.
Proxy for wandb.finish().
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶
End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a chain run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html |
ff55f4a683ec-3 | Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for an LLM run. | https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html |
Subsets and Splits