id
stringlengths
14
15
text
stringlengths
13
2.7k
source
stringlengths
60
181
7db934eb7ab9-2
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using LLMResult¶ Ollama Async callbacks
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.llm_result.LLMResult.html
ff1e78e47922-0
langchain_core.outputs.chat_generation.ChatGeneration¶ class langchain_core.outputs.chat_generation.ChatGeneration[source]¶ Bases: Generation A single chat generation output. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param message: BaseMessage [Required]¶ The message output by the chat model. param text: str = ''¶ SHOULD NOT BE SET DIRECTLY The text contents of the output message. param type: Literal['ChatGeneration'] = 'ChatGeneration'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
ff1e78e47922-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
ff1e78e47922-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
97f60d030f11-0
langchain_core.outputs.generation.Generation¶ class langchain_core.outputs.generation.Generation[source]¶ Bases: Serializable A single text generation output. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param text: str [Required]¶ Generated text output. param type: Literal['Generation'] = 'Generation'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
97f60d030f11-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool[source]¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
97f60d030f11-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
d612fcdebb7b-0
langchain_core.outputs.chat_result.ChatResult¶ class langchain_core.outputs.chat_result.ChatResult[source]¶ Bases: BaseModel Class that contains all results for a single chat model call. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generations: List[langchain_core.outputs.chat_generation.ChatGeneration] [Required]¶ List of the chat generations. This is a List because an input can have multiple candidate generations. param llm_output: Optional[dict] = None¶ For arbitrary LLM provider specific output. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
d612fcdebb7b-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
d612fcdebb7b-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
767e29491e32-0
langchain_core.outputs.generation.GenerationChunk¶ class langchain_core.outputs.generation.GenerationChunk[source]¶ Bases: Generation A Generation chunk, which can be concatenated with other Generation chunks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param text: str [Required]¶ Generated text output. param type: Literal['Generation'] = 'Generation'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
767e29491e32-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
767e29491e32-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
899e9ac0ab53-0
langchain_core.outputs.chat_generation.ChatGenerationChunk¶ class langchain_core.outputs.chat_generation.ChatGenerationChunk[source]¶ Bases: ChatGeneration A ChatGeneration chunk, which can be concatenated with otherChatGeneration chunks. message¶ The message chunk output by the chat model. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param message: BaseMessageChunk [Required]¶ The message output by the chat model. param text: str = ''¶ SHOULD NOT BE SET DIRECTLY The text contents of the output message. param type: Literal['ChatGenerationChunk'] = 'ChatGenerationChunk'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
899e9ac0ab53-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes.
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
899e9ac0ab53-2
A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
5f8eb7ba8192-0
langchain_core.load.dump.default¶ langchain_core.load.dump.default(obj: Any) → Any[source]¶ Return a default value for a Serializable object or a SerializedNotImplemented object.
https://api.python.langchain.com/en/latest/load/langchain_core.load.dump.default.html
0a1674f2908e-0
langchain_core.load.load.Reviver¶ class langchain_core.load.load.Reviver(secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None)[source]¶ Reviver for JSON objects. Methods __init__([secrets_map, valid_namespaces]) __init__(secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None) → None[source]¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.load.Reviver.html
bf4895e73af3-0
langchain_core.load.serializable.try_neq_default¶ langchain_core.load.serializable.try_neq_default(value: Any, key: str, model: BaseModel) → bool[source]¶ Try to determine if a value is different from the default. Parameters value – The value. key – The key. model – The model. Returns Whether the value is different from the default.
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.try_neq_default.html
1f1ec4e11933-0
langchain_core.load.load.load¶ langchain_core.load.load.load(obj: Any, *, secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None) → Any[source]¶ Revive a LangChain class from a JSON object. Use this if you already have a parsed JSON object, eg. from json.load or orjson.loads. Parameters obj – The object to load. secrets_map – A map of secrets to load. valid_namespaces – A list of additional namespaces (modules) to allow to be deserialized. Returns Revived LangChain objects.
https://api.python.langchain.com/en/latest/load/langchain_core.load.load.load.html
33981bd41120-0
langchain_core.load.dump.dumps¶ langchain_core.load.dump.dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) → str[source]¶ Return a json string representation of an object.
https://api.python.langchain.com/en/latest/load/langchain_core.load.dump.dumps.html
64e3f7b28c1f-0
langchain_core.load.serializable.Serializable¶ class langchain_core.load.serializable.Serializable[source]¶ Bases: BaseModel, ABC Serializable base class. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.Serializable.html
64e3f7b28c1f-1
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str][source]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.Serializable.html
64e3f7b28c1f-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented][source]¶ to_json_not_implemented() → SerializedNotImplemented[source]¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.Serializable.html
d055c0df6946-0
langchain_core.load.serializable.to_json_not_implemented¶ langchain_core.load.serializable.to_json_not_implemented(obj: object) → SerializedNotImplemented[source]¶ Serialize a “not implemented” object. Parameters obj – object to serialize Returns SerializedNotImplemented
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.to_json_not_implemented.html
a22d9592f5ce-0
langchain_core.load.serializable.SerializedConstructor¶ class langchain_core.load.serializable.SerializedConstructor[source]¶ Serialized constructor. lc: int¶ id: List[str]¶ type: Literal['constructor']¶ kwargs: Dict[str, Any]¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.SerializedConstructor.html
87a6d5370b9a-0
langchain_core.load.serializable.SerializedSecret¶ class langchain_core.load.serializable.SerializedSecret[source]¶ Serialized secret. lc: int¶ id: List[str]¶ type: Literal['secret']¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.SerializedSecret.html
4102fe05f7bb-0
langchain_core.load.serializable.SerializedNotImplemented¶ class langchain_core.load.serializable.SerializedNotImplemented[source]¶ Serialized not implemented. lc: int¶ id: List[str]¶ type: Literal['not_implemented']¶ repr: Optional[str]¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.SerializedNotImplemented.html
70746422f425-0
langchain_core.load.dump.dumpd¶ langchain_core.load.dump.dumpd(obj: Any) → Dict[str, Any][source]¶ Return a json dict representation of an object.
https://api.python.langchain.com/en/latest/load/langchain_core.load.dump.dumpd.html
5e20ff9ae8b8-0
langchain_core.load.serializable.BaseSerialized¶ class langchain_core.load.serializable.BaseSerialized[source]¶ Base class for serialized objects. lc: int¶ id: List[str]¶
https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.BaseSerialized.html
911f60783050-0
langchain_core.load.load.loads¶ langchain_core.load.load.loads(text: str, *, secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None) → Any[source]¶ Revive a LangChain class from a JSON string. Equivalent to load(json.loads(text)). Parameters text – The string to load. secrets_map – A map of secrets to load. valid_namespaces – A list of additional namespaces (modules) to allow to be deserialized. Returns Revived LangChain objects.
https://api.python.langchain.com/en/latest/load/langchain_core.load.load.loads.html
0452e81de1d1-0
langchain_core.prompts.chat.BaseStringMessagePromptTemplate¶ class langchain_core.prompts.chat.BaseStringMessagePromptTemplate[source]¶ Bases: BaseMessagePromptTemplate, ABC Base class for message prompt templates that use a string prompt template. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Additional keyword arguments to pass to the prompt template. param prompt: langchain_core.prompts.string.StringPromptTemplate [Required]¶ String prompt template. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseStringMessagePromptTemplate.html
0452e81de1d1-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. abstract format(**kwargs: Any) → BaseMessage[source]¶ Format the prompt template. Parameters **kwargs – Keyword arguments to use for formatting. Returns Formatted message. format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format messages from kwargs. Parameters **kwargs – Keyword arguments to use for formatting. Returns List of BaseMessages. classmethod from_orm(obj: Any) → Model¶ classmethod from_template(template: str, template_format: str = 'f-string', partial_variables: Optional[Dict[str, Any]] = None, **kwargs: Any) → MessagePromptTemplateT[source]¶ Create a class from a string template. Parameters template – a template. template_format – format of the template. partial_variables – A dictionary of variables that can be used to partiallyfill in the template. For example, if the template is ”{variable1} {variable2}”, and partial_variables is {“variable1”: “foo”}, then the final prompt will be “foo {variable2}”. **kwargs – keyword arguments to pass to the constructor. Returns A new instance of this class.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseStringMessagePromptTemplate.html
0452e81de1d1-2
Returns A new instance of this class. classmethod from_template_file(template_file: Union[str, Path], input_variables: List[str], **kwargs: Any) → MessagePromptTemplateT[source]¶ Create a class from a template file. Parameters template_file – path to a template file. String or Path. input_variables – list of input variables. **kwargs – keyword arguments to pass to the constructor. Returns A new instance of this class. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseStringMessagePromptTemplate.html
0452e81de1d1-3
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property input_variables: List[str]¶ Input variables for this prompt template. Returns List of input variable names. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseStringMessagePromptTemplate.html
9347c411d58d-0
langchain_core.prompts.chat.BaseMessagePromptTemplate¶ class langchain_core.prompts.chat.BaseMessagePromptTemplate[source]¶ Bases: Serializable, ABC Base class for message prompt templates. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseMessagePromptTemplate.html
9347c411d58d-1
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. abstract format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format messages from kwargs. Should return a list of BaseMessages. Parameters **kwargs – Keyword arguments to use for formatting. Returns List of BaseMessages. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool[source]¶ Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseMessagePromptTemplate.html
9347c411d58d-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ abstract property input_variables: List[str]¶ Input variables for this prompt template. Returns List of input variables. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.BaseMessagePromptTemplate.html
e76735a61cb4-0
langchain_core.prompts.chat.MessagesPlaceholder¶ class langchain_core.prompts.chat.MessagesPlaceholder[source]¶ Bases: BaseMessagePromptTemplate Prompt template that assumes variable is already list of messages. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param optional: bool = False¶ param variable_name: str [Required]¶ Name of variable to use as messages. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.MessagesPlaceholder.html
e76735a61cb4-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format messages from kwargs. Parameters **kwargs – Keyword arguments to use for formatting. Returns List of BaseMessage. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.MessagesPlaceholder.html
e76735a61cb4-2
A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property input_variables: List[str]¶ Input variables for this prompt template. Returns List of input variable names. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using MessagesPlaceholder¶ Set env var OPENAI_API_KEY or load from a .env file: Conversational Retrieval Agent Agents Memory in LLMChain Add Memory to OpenAI Functions Agent
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.MessagesPlaceholder.html
e76735a61cb4-3
Agents Memory in LLMChain Add Memory to OpenAI Functions Agent Types of `MessagePromptTemplate` Adding memory
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.MessagesPlaceholder.html
a95cc778182f-0
langchain_core.prompts.chat.ChatPromptTemplate¶ class langchain_core.prompts.chat.ChatPromptTemplate[source]¶ Bases: BaseChatPromptTemplate A prompt template for chat models. Use to create flexible templated prompts for chat models. Examples from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate.from_messages([ ("system", "You are a helpful AI bot. Your name is {name}."), ("human", "Hello, how are you doing?"), ("ai", "I'm doing well, thanks!"), ("human", "{user_input}"), ]) messages = template.format_messages( name="Bob", user_input="What is your name?" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param input_types: Dict[str, Any] [Optional]¶ A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. param input_variables: List[str] [Required]¶ List of input variables in template messages. Used for validation. param messages: List[MessageLike] [Required]¶ List of messages consisting of either message prompt templates or messages. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶ param validate_template: bool = False¶ Whether or not to try validating the template. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-1
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. append(message: Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]) → None[source]¶ Append message to the end of the chat template. Parameters message – representation of a message to append. assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-2
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-3
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-4
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. extend(messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]]) → None[source]¶ Extend the chat template with a sequence of messages. format(**kwargs: Any) → str[source]¶ Format the chat template into a string. Parameters **kwargs – keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns formatted string format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format the chat template into a list of finalized messages. Parameters **kwargs – keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns list of formatted messages format_prompt(**kwargs: Any) → PromptValue¶ Format prompt. Should return a PromptValue.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-5
Format prompt. Should return a PromptValue. :param **kwargs: Keyword arguments to use for formatting. Returns PromptValue. classmethod from_messages(messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]]) → ChatPromptTemplate[source]¶ Create a chat prompt template from a variety of message formats. Examples Instantiation from a list of message templates: template = ChatPromptTemplate.from_messages([ ("human", "Hello, how are you?"), ("ai", "I'm doing well, thanks!"), ("human", "That's good to hear."), ]) Instantiation from mixed message formats: template = ChatPromptTemplate.from_messages([ SystemMessage(content="hello"), ("human", "Hello, how are you?"), ]) Parameters messages – sequence of message representations. A message can be represented using the following formats: (1) BaseMessagePromptTemplate, (2) BaseMessage, (3) 2-tuple of (message type, template); e.g., (“human”, “{user_input}”), (4) 2-tuple of (message class, template), (4) a string which is shorthand for (“human”, template); e.g., “{user_input}” Returns a chat prompt template classmethod from_orm(obj: Any) → Model¶ classmethod from_role_strings(string_messages: List[Tuple[str, str]]) → ChatPromptTemplate[source]¶ [Deprecated] Create a chat prompt template from a list of (role, template) tuples. Parameters string_messages – list of (role, template) tuples. string_messages – list of (role, template) tuples. Returns
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-6
string_messages – list of (role, template) tuples. Returns a chat prompt template[Deprecated] Create a chat prompt template from a list of (role, template) tuples. Returns a chat prompt template Notes Deprecated since version 0.0.260: Use from_messages classmethod instead. classmethod from_strings(string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]]) → ChatPromptTemplate[source]¶ [Deprecated] Create a chat prompt template from a list of (role class, template) tuples. Parameters string_messages – list of (role class, template) tuples. string_messages – list of (role class, template) tuples. Returns a chat prompt template[Deprecated] Create a chat prompt template from a list of (role class, template) tuples. Returns a chat prompt template Notes Deprecated since version 0.0.260: Use from_messages classmethod instead. classmethod from_template(template: str, **kwargs: Any) → ChatPromptTemplate[source]¶ Create a chat prompt template from a template string. Creates a chat template consisting of a single message assumed to be from the human. Parameters template – template string **kwargs – keyword arguments to pass to the constructor. Returns A new instance of this class. get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-7
This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ invoke(input: Dict, config: Optional[RunnableConfig] = None) → PromptValue¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-8
classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ partial(**kwargs: Union[str, Callable[[], str]]) → ChatPromptTemplate[source]¶ Get a new ChatPromptTemplate with some input variables already filled in. Parameters **kwargs – keyword arguments to use for filling in template variables. Ought
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-9
Parameters **kwargs – keyword arguments to use for filling in template variables. Ought to be a subset of the input variables. Returns A new ChatPromptTemplate. Example from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate.from_messages( [ ("system", "You are an AI assistant named {name}."), ("human", "Hi I'm {user}"), ("ai", "Hi there, {user}, I'm {name}."), ("human", "{input}"), ] ) template2 = template.partial(user="Lucy", name="R2D2") template2.format_messages(input="hello") pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Returns a new runnable. pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this runnable with another object to create a RunnableSequence. save(file_path: Union[Path, str]) → None[source]¶ Save prompt to file. Parameters file_path – path to file. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-10
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-11
on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Any¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
a95cc778182f-12
constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using ChatPromptTemplate¶ Facebook Messenger Chat loaders iMessage Anthropic 🚅 LiteLLM Konko OpenAI Google Cloud Platform Vertex AI PaLM JinaChat Context OpenAI Functions Metadata Tagger Figma Fireworks Fallbacks Set env var OPENAI_API_KEY or load from a .env file: Multiple Retrieval Sources Structure answers with OpenAI functions Multi-agent authoritarian speaker selection MultiVector Retriever Memory in LLMChain Retry parser Pydantic (JSON) parser Few-shot examples for chat models Prompt pipelining Using OpenAI functions interface.md First we add a step to load memory sql_db.md prompt_llm_parser.md Adding memory multiple_chains.md Code writing Using tools Adding moderation
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
7443c0b5f148-0
langchain.prompts.example_selector.ngram_overlap.ngram_overlap_score¶ langchain.prompts.example_selector.ngram_overlap.ngram_overlap_score(source: List[str], example: List[str]) → float[source]¶ Compute ngram overlap score of source and example as sentence_bleu score. Use sentence_bleu with method1 smoothing function and auto reweighting. Return float value between 0.0 and 1.0 inclusive. https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf
https://api.python.langchain.com/en/latest/prompts/langchain.prompts.example_selector.ngram_overlap.ngram_overlap_score.html
f64853b2b75f-0
langchain_experimental.prompts.load.load_prompt¶ langchain_experimental.prompts.load.load_prompt(path: Union[str, Path]) → BasePromptTemplate[source]¶ Unified method for loading a prompt from LangChainHub or local fs. Examples using load_prompt¶ Amazon Comprehend Moderation Chain Serialization
https://api.python.langchain.com/en/latest/prompts/langchain_experimental.prompts.load.load_prompt.html
6cf5485ef6ca-0
langchain_core.prompts.loading.load_prompt¶ langchain_core.prompts.loading.load_prompt(path: Union[str, Path]) → BasePromptTemplate[source]¶ Unified method for loading a prompt from LangChainHub or local fs. Examples using load_prompt¶ Amazon Comprehend Moderation Chain Serialization
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.loading.load_prompt.html
6670df147e83-0
langchain_core.prompts.string.validate_jinja2¶ langchain_core.prompts.string.validate_jinja2(template: str, input_variables: List[str]) → None[source]¶ Validate that the input variables are valid for the template. Issues a warning if missing or extra variables are found. Parameters template – The template string. input_variables – The input variables.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.validate_jinja2.html
b516d2a52a5c-0
langchain_core.prompts.prompt.PromptTemplate¶ class langchain_core.prompts.prompt.PromptTemplate[source]¶ Bases: StringPromptTemplate A prompt template for a language model. A prompt template consists of a string template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model. The template can be formatted using either f-strings (default) or jinja2 syntax. Security warning: Prefer using template_format=”f-string” instead oftemplate_format=”jinja2”, or make sure to NEVER accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution. As of LangChain 0.0.329, Jinja2 templates will be rendered using Jinja2’s SandboxedEnvironment by default. This sand-boxing should be treated as a best-effort approach rather than a guarantee of security, as it is an opt-out rather than opt-in approach. Despite the sand-boxing, we recommend to never use jinja2 templates from untrusted sources. Example from langchain_core.prompts import PromptTemplate # Instantiation using from_template (recommended) prompt = PromptTemplate.from_template("Say {foo}") prompt.format(foo="bar") # Instantiation using initializer prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param input_types: Dict[str, Any] [Optional]¶ A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. param input_variables: List[str] [Required]¶ A list of the names of the variables the prompt template expects.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-1
A list of the names of the variables the prompt template expects. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶ param template: str [Required]¶ The prompt template. param template_format: Union[Literal['f-string'], Literal['jinja2']] = 'f-string'¶ The format of the prompt template. Options are: ‘f-string’, ‘jinja2’. param validate_template: bool = False¶ Whether or not to try validating the template. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-2
Assigns new fields to the dict output of this runnable. Returns a new runnable. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-3
exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-4
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. format(**kwargs: Any) → str[source]¶ Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example prompt.format(variable1="foo") format_prompt(**kwargs: Any) → PromptValue¶ Create Chat Messages. classmethod from_examples(examples: List[str], suffix: str, input_variables: List[str], example_separator: str = '\n\n', prefix: str = '', **kwargs: Any) → PromptTemplate[source]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-5
Take examples in list format with prefix and suffix to create a prompt. Intended to be used as a way to dynamically create a prompt from examples. Parameters examples – List of examples to use in the prompt. suffix – String to go after the list of examples. Should generally set up the user’s input. input_variables – A list of variable names the final prompt template will expect. example_separator – The separator to use in between examples. Defaults to two new line characters. prefix – String that should go before any examples. Generally includes examples. Default to an empty string. Returns The final prompt generated. classmethod from_file(template_file: Union[str, Path], input_variables: Optional[List[str]] = None, **kwargs: Any) → PromptTemplate[source]¶ Load a prompt from a file. Parameters template_file – The path to the file containing the prompt template. input_variables – [DEPRECATED] A list of variable names the final prompt template will expect. input_variables is ignored as from_file now delegates to from_template(). Returns The prompt loaded from the file. classmethod from_orm(obj: Any) → Model¶ classmethod from_template(template: str, *, template_format: str = 'f-string', partial_variables: Optional[Dict[str, Any]] = None, **kwargs: Any) → PromptTemplate[source]¶ Load a prompt template from a template. Security warning: Prefer using template_format=”f-string” instead oftemplate_format=”jinja2”, or make sure to NEVER accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution. As of LangChain 0.0.329, Jinja2 templates will be rendered using Jinja2’s SandboxedEnvironment by default. This sand-boxing should be treated as a best-effort approach rather than a guarantee of security,
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-6
be treated as a best-effort approach rather than a guarantee of security, as it is an opt-out rather than opt-in approach. Despite the sand-boxing, we recommend to never use jinja2 templates from untrusted sources. Parameters template – The template to load. template_format – The format of the template. Use jinja2 for jinja2, and f-string or None for f-strings. partial_variables – A dictionary of variables that can be used to partiallyfill in the template. For example, if the template is ”{variable1} {variable2}”, and partial_variables is {“variable1”: “foo”}, then the final prompt will be “foo {variable2}”. Returns The prompt template loaded from the template. get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-7
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ invoke(input: Dict, config: Optional[RunnableConfig] = None) → PromptValue¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-8
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶ Return a partial of the prompt template. pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Returns a new runnable. pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this runnable with another object to create a RunnableSequence. save(file_path: Union[Path, str]) → None¶ Save the prompt. Parameters file_path – Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-9
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-10
Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Any¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-11
The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict[str, Any]¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using PromptTemplate¶ RePhraseQueryRetriever Zapier Natural Language Actions Dall-E Image Generator Streamlit Chat Message History Context Argilla Comet Aim Weights & Biases SageMaker Tracking Rebuff MLflow Flyte Vectara Text Generation Natural Language APIs your local model path Google Drive Google Vertex AI PaLM Predibase Hugging Face Local Pipelines Eden AI Fallbacks Reversible data anonymization with Microsoft Presidio Data anonymization with Microsoft Presidio Removing logical fallacies from model output Amazon Comprehend Moderation Chain Pairwise String Comparison Criteria Evaluation Set env var OPENAI_API_KEY or load from a .env file Set env var OPENAI_API_KEY or load from a .env file: Question Answering Retrieve from vector stores directly Improve document indexing with HyDE Structure answers with OpenAI functions Neo4j DB QA chain Multi-agent authoritarian speaker selection Agent Debates with Tools Bash chain How to use a SmartLLMChain Elasticsearch SQL MultiQueryRetriever WebResearchRetriever
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
b516d2a52a5c-12
Elasticsearch SQL MultiQueryRetriever WebResearchRetriever Lost in the middle: The problem with long contexts Custom Memory Memory in the Multi-Input Chain Memory in LLMChain Multiple Memory classes Customizing Conversational Memory Conversation Knowledge Graph Logging to file Retry parser Datetime parser Pydantic (JSON) parser Select by maximal marginal relevance (MMR) Select by n-gram overlap Prompt pipelining Template formats Connecting to a Feature Store Router Transformation Custom chain Async API First we add a step to load memory Configure Runnable traces
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html
96f45cef3041-0
langchain_core.prompts.string.jinja2_formatter¶ langchain_core.prompts.string.jinja2_formatter(template: str, **kwargs: Any) → str[source]¶ Format a template using jinja2. Security warning: As of LangChain 0.0.329, this method uses Jinja2’sSandboxedEnvironment by default. However, this sand-boxing should be treated as a best-effort approach rather than a guarantee of security. Do not accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution. https://jinja.palletsprojects.com/en/3.1.x/sandbox/
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.jinja2_formatter.html
9b0c3229b5f9-0
langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate¶ class langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate[source]¶ Bases: BaseChatPromptTemplate, _FewShotPromptTemplateMixin Chat prompt template that supports few-shot examples. The high level structure of produced by this prompt template is a list of messages consisting of prefix message(s), example message(s), and suffix message(s). This structure enables creating a conversation with intermediate examples like: System: You are a helpful AI Assistant Human: What is 2+2? AI: 4 Human: What is 2+3? AI: 5 Human: What is 4+4? This prompt template can be used to generate a fixed list of examples or else to dynamically select examples based on the input. Examples Prompt template with a fixed list of examples (matching the sample conversation above): from langchain_core.prompts import ( FewShotChatMessagePromptTemplate, ChatPromptTemplate ) examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, ] example_prompt = ChatPromptTemplate.from_messages( [('human', '{input}'), ('ai', '{output}')] ) few_shot_prompt = FewShotChatMessagePromptTemplate( examples=examples, # This is a prompt template used to format each individual example. example_prompt=example_prompt, ) final_prompt = ChatPromptTemplate.from_messages( [ ('system', 'You are a helpful AI Assistant'), few_shot_prompt, ('human', '{input}'), ] ) final_prompt.format(input="What is 4+4?")
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-1
] ) final_prompt.format(input="What is 4+4?") Prompt template with dynamically selected examples: from langchain_core.prompts import SemanticSimilarityExampleSelector from langchain_core.embeddings import OpenAIEmbeddings from langchain_core.vectorstores import Chroma examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, {"input": "2+4", "output": "6"}, # ... ] to_vectorize = [ " ".join(example.values()) for example in examples ] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts( to_vectorize, embeddings, metadatas=examples ) example_selector = SemanticSimilarityExampleSelector( vectorstore=vectorstore ) from langchain_core import SystemMessage from langchain_core.prompts import HumanMessagePromptTemplate from langchain_core.prompts.few_shot import FewShotChatMessagePromptTemplate few_shot_prompt = FewShotChatMessagePromptTemplate( # Which variable(s) will be passed to the example selector. input_variables=["input"], example_selector=example_selector, # Define how each example will be formatted. # In this case, each example will become 2 messages: # 1 human, and 1 AI example_prompt=( HumanMessagePromptTemplate.from_template("{input}") + AIMessagePromptTemplate.from_template("{output}") ), ) # Define the overall prompt. final_prompt = ( SystemMessagePromptTemplate.from_template( "You are a helpful AI Assistant" ) + few_shot_prompt + HumanMessagePromptTemplate.from_template("{input}") )
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-2
+ few_shot_prompt + HumanMessagePromptTemplate.from_template("{input}") ) # Show the prompt print(final_prompt.format_messages(input="What's 3+3?")) # Use within an LLM from langchain_core.chat_models import ChatAnthropic chain = final_prompt | ChatAnthropic() chain.invoke({"input": "What's 3+3?"}) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param example_prompt: Union[BaseMessagePromptTemplate, BaseChatPromptTemplate] [Required]¶ The class to format each example. param example_selector: Any = None¶ ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided. param examples: Optional[List[dict]] = None¶ Examples to format into the prompt. Either this or example_selector should be provided. param input_types: Dict[str, Any] [Optional]¶ A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. param input_variables: List[str] [Optional]¶ A list of the names of the variables the prompt template will use to pass to the example_selector, if provided. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-3
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-4
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-5
bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-6
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. format(**kwargs: Any) → str[source]¶ Format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt consisting of chat messages. Useful for feeding into a string based completion language model or debugging. Parameters **kwargs – keyword arguments to use for formatting. Returns A string representation of the prompt format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format kwargs into a list of messages. Parameters **kwargs – keyword arguments to use for filling in templates in messages. Returns A list of formatted messages with all template variables filled in. format_prompt(**kwargs: Any) → PromptValue¶ Format prompt. Should return a PromptValue. :param **kwargs: Keyword arguments to use for formatting. Returns PromptValue. classmethod from_orm(obj: Any) → Model¶ get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-7
Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ invoke(input: Dict, config: Optional[RunnableConfig] = None) → PromptValue¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Return whether or not the class is serializable.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-8
Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶ Return a partial of the prompt template. pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Returns a new runnable.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-9
Pick keys from the dict output of this runnable. Returns a new runnable. pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this runnable with another object to create a RunnableSequence. save(file_path: Union[Path, str]) → None¶ Save the prompt. Parameters file_path – Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-10
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
9b0c3229b5f9-11
between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Any¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using FewShotChatMessagePromptTemplate¶ Few-shot examples for chat models
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html
19d4d1ac509e-0
langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector¶ class langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector[source]¶ Bases: BaseExampleSelector, BaseModel Select and order examples based on ngram overlap score (sentence_bleu score). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param example_prompt: langchain_core.prompts.prompt.PromptTemplate [Required]¶ Prompt template used to format the examples. param examples: List[dict] [Required]¶ A list of the examples that the prompt template expects. param threshold: float = -1.0¶ Threshold at which algorithm stops. Set to -1.0 by default. For negative threshold: select_examples sorts examples by ngram_overlap_score, but excludes none. For threshold greater than 1.0: select_examples excludes all examples, and returns an empty list. For threshold equal to 0.0: select_examples sorts examples by ngram_overlap_score, and excludes examples with no ngram overlap with input. add_example(example: Dict[str, str]) → None[source]¶ Add new example to list. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
https://api.python.langchain.com/en/latest/prompts/langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector.html
19d4d1ac509e-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/prompts/langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector.html
19d4d1ac509e-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ select_examples(input_variables: Dict[str, str]) → List[dict][source]¶ Return list of examples sorted by ngram_overlap_score with input. Descending order. Excludes any examples with ngram_overlap_score less than or equal to threshold. classmethod update_forward_refs(**localns: Any) → None¶
https://api.python.langchain.com/en/latest/prompts/langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector.html
19d4d1ac509e-3
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using NGramOverlapExampleSelector¶ Select by n-gram overlap
https://api.python.langchain.com/en/latest/prompts/langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector.html
3d7bbb6544a1-0
langchain_core.prompts.chat.HumanMessagePromptTemplate¶ class langchain_core.prompts.chat.HumanMessagePromptTemplate[source]¶ Bases: BaseStringMessagePromptTemplate Human message prompt template. This is a message sent from the user. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Additional keyword arguments to pass to the prompt template. param prompt: langchain_core.prompts.string.StringPromptTemplate [Required]¶ String prompt template. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html
3d7bbb6544a1-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. format(**kwargs: Any) → BaseMessage[source]¶ Format the prompt template. Parameters **kwargs – Keyword arguments to use for formatting. Returns Formatted message. format_messages(**kwargs: Any) → List[BaseMessage]¶ Format messages from kwargs. Parameters **kwargs – Keyword arguments to use for formatting. Returns List of BaseMessages. classmethod from_orm(obj: Any) → Model¶ classmethod from_template(template: str, template_format: str = 'f-string', partial_variables: Optional[Dict[str, Any]] = None, **kwargs: Any) → MessagePromptTemplateT¶ Create a class from a string template. Parameters template – a template. template_format – format of the template. partial_variables – A dictionary of variables that can be used to partiallyfill in the template. For example, if the template is ”{variable1} {variable2}”, and partial_variables is {“variable1”: “foo”}, then the final prompt will be “foo {variable2}”. **kwargs – keyword arguments to pass to the constructor. Returns A new instance of this class.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html
3d7bbb6544a1-2
Returns A new instance of this class. classmethod from_template_file(template_file: Union[str, Path], input_variables: List[str], **kwargs: Any) → MessagePromptTemplateT¶ Create a class from a template file. Parameters template_file – path to a template file. String or Path. input_variables – list of input variables. **kwargs – keyword arguments to pass to the constructor. Returns A new instance of this class. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. classmethod is_lc_serializable() → bool¶ Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html
3d7bbb6544a1-3
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property input_variables: List[str]¶ Input variables for this prompt template. Returns List of input variable names. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using HumanMessagePromptTemplate¶ Anthropic 🚅 LiteLLM Konko OpenAI Google Cloud Platform Vertex AI PaLM JinaChat Context Figma Fireworks Set env var OPENAI_API_KEY or load from a .env file: Structure answers with OpenAI functions CAMEL Role-Playing Autonomous Cooperative Agents Multi-agent authoritarian speaker selection Memory in LLMChain Retry parser Pydantic (JSON) parser Prompt pipelining Using OpenAI functions Code writing
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html
d1cfbdb9a250-0
langchain_core.prompts.string.get_template_variables¶ langchain_core.prompts.string.get_template_variables(template: str, template_format: str) → List[str][source]¶ Get the variables from the template. Parameters template – The template string. template_format – The template format. Should be one of “f-string” or “jinja2”. Returns The variables from the template. Raises ValueError – If the template format is not supported.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.get_template_variables.html
b5b603b848e3-0
langchain_core.prompts.string.StringPromptTemplate¶ class langchain_core.prompts.string.StringPromptTemplate[source]¶ Bases: BasePromptTemplate, ABC String prompt that exposes the format method, returning a prompt. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param input_types: Dict[str, Any] [Optional]¶ A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. param input_variables: List[str] [Required]¶ A list of the names of the variables the prompt template expects. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html
b5b603b848e3-1
Subclasses should override this method if they can run asynchronously. assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html
b5b603b848e3-2
diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html
b5b603b848e3-3
Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. abstract format(**kwargs: Any) → str¶ Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html
b5b603b848e3-4
kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") format_prompt(**kwargs: Any) → PromptValue[source]¶ Create Chat Messages. classmethod from_orm(obj: Any) → Model¶ get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html
b5b603b848e3-5
invoke(input: Dict, config: Optional[RunnableConfig] = None) → PromptValue¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.string.StringPromptTemplate.html