|
--- |
|
dataset_info: |
|
features: |
|
- name: id_doc |
|
dtype: string |
|
- name: words |
|
sequence: |
|
sequence: |
|
sequence: string |
|
- name: lemmas |
|
sequence: |
|
sequence: |
|
sequence: string |
|
- name: msds |
|
sequence: |
|
sequence: |
|
sequence: string |
|
- name: ne_tags |
|
sequence: |
|
sequence: |
|
sequence: string |
|
- name: mentions |
|
list: |
|
- name: id_mention |
|
dtype: string |
|
- name: mention_data |
|
struct: |
|
- name: idx_par |
|
dtype: uint32 |
|
- name: idx_sent |
|
dtype: uint32 |
|
- name: word_indices |
|
sequence: uint32 |
|
- name: global_word_indices |
|
sequence: uint32 |
|
- name: coref_clusters |
|
sequence: |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 21547216 |
|
num_examples: 756 |
|
download_size: 21892324 |
|
dataset_size: 21547216 |
|
license: cc-by-sa-4.0 |
|
language: |
|
- sl |
|
pretty_name: SentiCoref |
|
size_categories: |
|
- n<1K |
|
--- |
|
|
|
# Dataset card for SentiCoref |
|
|
|
### Usage |
|
``` |
|
import datasets |
|
data = datasets.load_dataset("cjvt/senticoref", trust_remote_code=True) |
|
``` |
|
|
|
### Dataset Summary |
|
The dataset contains the SentiCoref corpus, annotated for coreference. It is part of the SUK training bundle of corpora. |
|
For more details please check the paper or the [Clarin repository](http://hdl.handle.net/11356/1959) from which this dataset is being loaded. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
``` |
|
{ |
|
'id_doc': 'senticoref1', |
|
'words': [ |
|
[ |
|
['Evropska', 'komisija', 'mora', 'narediti', 'analizo', 'vzrokov', 'rasti', 'cen', 'hrane', ',', 'menita', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], |
|
['Bo', 'evropska', 'komisija', 'analizirala', 'vzroke', 'rasti', 'cen', 'hrane', '.'], |
|
... |
|
], |
|
... |
|
], |
|
'lemmas': [ |
|
[ |
|
['evropski', 'komisija', 'morati', 'narediti', 'analiza', 'vzrok', 'rast', 'cena', 'hrana', ',', 'meniti', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], |
|
['biti', 'evropski', 'komisija', 'analizirati', 'vzrok', 'rast', 'cena', 'hrana', '.'], |
|
... |
|
] |
|
], |
|
'msds': [ |
|
[ |
|
['mte:Ppnzei', 'mte:Sozei', 'mte:Ggnste', 'mte:Ggdn', 'mte:Sozet', 'mte:Sommr', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U', 'mte:Ggnstd', 'mte:Ppnmeid', 'mte:Somei', 'mte:Slmei', 'mte:Vp', 'mte:Zstmeiem', 'mte:Ppnmeid', 'mte:Somei', 'mte:U'], |
|
['mte:Gp-pte-n', 'mte:Ppnzei', 'mte:Sozei', 'mte:Ggvd-ez', 'mte:Sommt', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U'], |
|
... |
|
], |
|
... |
|
], |
|
'ne_tags': [ |
|
[ |
|
['B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PER', 'O', 'O', 'O', 'O', 'O'], |
|
['O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O'], |
|
... |
|
], |
|
... |
|
], |
|
'mentions': [ |
|
{'id_mention': 'senticoref1.1.1.ne1', 'mention_data': {'idx_par': 0, 'idx_sent': 0, 'word_indices': [0, 1], 'global_word_indices': [0, 1]}}, |
|
... |
|
], |
|
'coref_clusters': [ |
|
['senticoref1.1.1.ne1', 'senticoref1.1.2.ne1', 'senticoref1.1.3.ne1'], |
|
['senticoref1.1.1.phr52-1', 'senticoref1.1.3.phr52-2', 'senticoref1.1.11.phr52-3'], |
|
['senticoref1.1.1.t5', 'senticoref1.1.3.t6', 'senticoref1.1.11.t11', 'senticoref1.1.11.t17'], |
|
['senticoref1.1.1.phr13-1', 'senticoref1.1.2.phr13-2'], |
|
... |
|
] |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `id_doc`: a string ID of the document (corresponds to file name in this case); |
|
- `words`: a `List[List[List[String]]]` containing document words; |
|
- `lemmas`: a `List[List[List[String]]]` containing document lemmas; |
|
- `msds`: a `List[List[List[String]]]` containing document morphosyntactic features, encoded using MULTEXT-East V6; |
|
- `ne_tags`: a `List[List[List[String]]]` containing document named entity tags, encoded using IOB2 scheme; |
|
- `mentions`: a list of dicts for each mention. Each mention contains an ID (`id_mention`) and |
|
positions of words inside mention (determined by `idx_sent`, `word_indices`; |
|
or equivalently `global_word_indices` if sentences are flattened into a single list) |
|
- `coref_clusters`: a list of lists of strings containing mention IDs contained inside each coreference cluster. |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
Špela Arhar Holdt; et al. (please see http://hdl.handle.net/11356/1959 for the full list of contributors) |
|
|
|
### Licensing Information |
|
|
|
CC BY-SA 4.0 |
|
|
|
### Citation Information |
|
|
|
``` |
|
@article{senticoref-paper, |
|
title={Neural coreference resolution for Slovene language}, |
|
author={Matej Klemen and Slavko Žitnik}, |
|
journal={Computer Science and Information Systems}, |
|
year={2022}, |
|
volume={19}, |
|
pages={495-521} |
|
} |
|
``` |
|
|
|
``` |
|
@misc{suk-clarin, |
|
title = {Training corpus {SUK} 1.1}, |
|
author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja}, |
|
url = {http://hdl.handle.net/11356/1959}, |
|
note = {Slovenian language resource repository {CLARIN}.{SI}}, |
|
copyright = {Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)}, |
|
issn = {2820-4042}, |
|
year = {2024} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset. |