repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
DaveTCode/CreatureRogue
CreatureRogue/models/battle_creature.py
1
3117
from CreatureRogue.models.creature import Creature from CreatureRogue.data_layer.data import StaticGameData, HP_STAT from CreatureRogue.data_layer.pokeball import Pokeball from CreatureRogue.data_layer.stat import Stat class BattleCreature: """ When in battle a creature can have stat adjustments and other values can be modified. The battle creature is an encapsulating object which is used to capture this information in an easily discardable manner. """ stat_adjust_factors = {-6: 1 / 4, -5: 2 / 7, -4: 1 / 3, -3: 2 / 5, -2: 1 / 2, -1: 2 / 3, 0: 1.0, 1: 1.5, 2: 2.0, 3: 2.5, 4: 3.0, 5: 3.5, 6: 4.0} def __init__(self, creature: Creature, static_game_data: StaticGameData): self.static_game_data = static_game_data self.creature = creature self.stat_adjusts = {stat: 0 for stat in self.creature.stats} def adjust_stat_adjusts(self, stat: Stat, value: int) -> int: """ The only adjustment to statistics of a creature in battle is done through these factors which range from -6 to 6. Returns the amount by which we actually adjusted the stat. :param stat: The stat to update. :param value: An integer amount to adjust the stat. Will be capped so safe to call with any value. """ old_val = self.stat_adjusts[stat] self.stat_adjusts[stat] += value self.stat_adjusts[stat] = max(-6, min(6, self.stat_adjusts[stat])) return self.stat_adjusts[stat] - old_val def stat_value(self, stat: Stat) -> float: """ The current value of a stat in battle is the base stat for that creature (i.e. the value pre battle) multiplied by the factor gained from moves performed on the creature during battle. These factors are fixed and are capped at 1/4 to 4. :param stat: The stat is an object from the static game data that specifies which statistic we're interested in. """ return self.creature.stats[stat] * BattleCreature.stat_adjust_factors[self.stat_adjusts[stat]] def modified_catch_rate(self, pokeball: Pokeball) -> float: """ Calculates the modified catch rate of a creature. This is based on a variety of factors including the status of the creature, the ball used and the current hit points. It is calculated in BattleCreature rather than Creature because it is only applicable during a battle. :param pokeball: The catch rate is also determined by the type of pokeball used to catch the creature. """ # TODO - Add status effects hp_stat = self.static_game_data.stats[HP_STAT] triple_max_hp = 3 * self.creature.max_stat(hp_stat) return (triple_max_hp - 2 * self.stat_value(hp_stat)) * self.creature.species.capture_rate * pokeball.catch_rate / triple_max_hp def __str__(self): return str(self.creature)
mit
-7,488,282,965,211,967,000
41.69863
136
0.623997
false
maqnius/compscie-mc
setup.py
1
4429
# particlesim # Copyright (C) 2017 Mark Niehues, Stefaan Hessmann, Jaap Pedersen, # Simon Treu, Hanna Wulkow, Thomas Hadler # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # from setuptools import setup import versioneer import sys from setuptools import Extension import os class lazy_cythonize(list): """evaluates extension list lazyly. pattern taken from http://tinyurl.com/qb8478q""" def __init__(self, callback): self._list, self.callback = None, callback def c_list(self): if self._list is None: self._list = self.callback() return self._list def __iter__(self): for e in self.c_list(): yield e def __getitem__(self, ii): return self.c_list()[ii] def __len__(self): return len(self.c_list()) def extensions(): from numpy import get_include from Cython.Build import cythonize ext_fast_sor = Extension( "*", sources=["particlesim/*.pyx"], include_dirs=[get_include()], extra_compile_args=["-O3", "-std=c99"]) exts = [ext_fast_sor] return cythonize(exts) def get_cmdclass(): versioneer_cmds = versioneer.get_cmdclass() class sdist(versioneer_cmds['sdist']): """ensure cython files are compiled to c, when distributing""" def run(self): # only run if .git is present if not os.path.exists('.git'): print("Not on git, can not create source distribution") return try: from Cython.Build import cythonize print("cythonizing sources") cythonize(extensions()) except ImportError: warnings.warn('sdist cythonize failed') return versioneer_cmds['sdist'].run(self) versioneer_cmds['sdist'] = sdist from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = ['particlesim'] def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) versioneer_cmds['test'] = PyTest return versioneer_cmds setup( cmdclass=get_cmdclass(), ext_modules=lazy_cythonize(extensions), name='particlesim', version=versioneer.get_version(), description="Simulates multi particle systems with MMC", classifiers=[ 'Development Status :: 1 - Planning', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)', 'Natural Language :: English', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Chemistry', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics'], keywords=[], url='https://github.com/maqnius/compscie-mc', author='Mark Niehues, Stefaan Hessmann, Jaap Pedersen, Simon Treu, Hanna Wulkow', author_email='[email protected], [email protected], [email protected], [email protected], [email protected]', license='GPLv3+', packages=['particlesim', 'particlesim.utils', 'particlesim.lib'], setup_requires=[ 'numpy>=1.7.0', 'setuptools>=0.6', 'scipy>=0.6'], package_dir = {'particlesim': 'particlesim'}, install_requires=['numpy>=1.7.0','cython>=0.22'], tests_require=['pytest'] )
gpl-3.0
-7,637,551,307,956,457,000
37.181034
134
0.632423
false
bolkedebruin/airflow
tests/providers/jenkins/operators/test_jenkins_job_trigger.py
1
7229
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import jenkins import mock from airflow.exceptions import AirflowException from airflow.providers.jenkins.hooks.jenkins import JenkinsHook from airflow.providers.jenkins.operators.jenkins_job_trigger import JenkinsJobTriggerOperator class TestJenkinsOperator(unittest.TestCase): @unittest.skipIf(mock is None, 'mock package not present') def test_execute(self): jenkins_mock = mock.Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_build_info.return_value = \ {'result': 'SUCCESS', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job'} jenkins_mock.build_job_url.return_value = \ 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = mock.Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock the_parameters = {'a_param': 'blip', 'another_param': '42'} with mock.patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked,\ mock.patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers') \ as mock_make_request: mock_make_request.side_effect = \ [{'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used task_id="operator_test", job_name="a_job_on_jenkins", parameters=the_parameters, sleep_time=1) operator.execute(None) self.assertEqual(jenkins_mock.get_build_info.call_count, 1) jenkins_mock.get_build_info.assert_called_once_with(name='a_job_on_jenkins', number='1') @unittest.skipIf(mock is None, 'mock package not present') def test_execute_job_polling_loop(self): jenkins_mock = mock.Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.side_effect = \ [{'result': None}, {'result': 'SUCCESS', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job'}] jenkins_mock.build_job_url.return_value = \ 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = mock.Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock the_parameters = {'a_param': 'blip', 'another_param': '42'} with mock.patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked,\ mock.patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers') \ as mock_make_request: mock_make_request.side_effect = \ [{'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used parameters=the_parameters, sleep_time=1) operator.execute(None) self.assertEqual(jenkins_mock.get_build_info.call_count, 2) @unittest.skipIf(mock is None, 'mock package not present') def test_execute_job_failure(self): jenkins_mock = mock.Mock(spec=jenkins.Jenkins, auth='secret') jenkins_mock.get_job_info.return_value = {'nextBuildNumber': '1'} jenkins_mock.get_build_info.return_value = { 'result': 'FAILURE', 'url': 'http://aaa.fake-url.com/congratulation/its-a-job'} jenkins_mock.build_job_url.return_value = \ 'http://www.jenkins.url/somewhere/in/the/universe' hook_mock = mock.Mock(spec=JenkinsHook) hook_mock.get_jenkins_server.return_value = jenkins_mock the_parameters = {'a_param': 'blip', 'another_param': '42'} with mock.patch.object(JenkinsJobTriggerOperator, "get_hook") as get_hook_mocked,\ mock.patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers') \ as mock_make_request: mock_make_request.side_effect = \ [{'body': '', 'headers': {'Location': 'http://what-a-strange.url/18'}}, {'body': '{"executable":{"number":"1"}}', 'headers': {}}] get_hook_mocked.return_value = hook_mock operator = JenkinsJobTriggerOperator( dag=None, task_id="operator_test", job_name="a_job_on_jenkins", parameters=the_parameters, jenkins_connection_id="fake_jenkins_connection", # The hook is mocked, this connection won't be used sleep_time=1) self.assertRaises(AirflowException, operator.execute, None) @unittest.skipIf(mock is None, 'mock package not present') def test_build_job_request_settings(self): jenkins_mock = mock.Mock(spec=jenkins.Jenkins, auth='secret', timeout=2) jenkins_mock.build_job_url.return_value = 'http://apache.org' with mock.patch( 'airflow.providers.jenkins.operators.jenkins_job_trigger.jenkins_request_with_headers' ) as mock_make_request: operator = JenkinsJobTriggerOperator( dag=None, task_id="build_job_test", job_name="a_job_on_jenkins", jenkins_connection_id="fake_jenkins_connection") operator.build_job(jenkins_mock) mock_request = mock_make_request.call_args_list[0][0][1] self.assertEqual(mock_request.method, 'POST') self.assertEqual(mock_request.url, 'http://apache.org') if __name__ == "__main__": unittest.main()
apache-2.0
-5,934,285,332,554,292,000
44.465409
105
0.611841
false
SocialCognitiveSystems/PRIMO
examples/soft_evidence_example.py
1
1034
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Feb 9 16:52:39 2017 @author: jpoeppel """ import numpy as np from primo2.networks import BayesianNetwork from primo2.nodes import DiscreteNode from primo2.inference.exact import VariableElimination from primo2.inference.exact import FactorTree from primo2.inference.mcmc import MCMC from primo2.inference.mcmc import GibbsTransition bn = BayesianNetwork() cloth = DiscreteNode("cloth", ["green","blue", "red"]) sold = DiscreteNode("sold") bn.add_node(cloth) bn.add_node(sold) bn.add_edge("cloth", "sold") cloth.set_cpd(np.array([0.3,0.3,0.4])) sold.set_cpd(np.array([[0.4, 0.4, 0.8], [0.6, 0.6, 0.2]])) tree = FactorTree.create_jointree(bn) print(tree.marginals(["sold"]).get_potential()) tree.set_evidence({"cloth": np.array([0.7,0.25,0.05])}) print(tree.marginals(["sold"]).get_potential()) print(tree.marginals(["cloth"]).get_potential()) tree.set_evidence({"cloth": "green"}) print(tree.marginals(["cloth"]).get_potential())
lgpl-3.0
-5,473,858,586,788,435,000
23.046512
55
0.692456
false
PolyLAN/polybanking
server/paiements/models.py
1
5633
from django.db import models from configs.models import Config from django.template import defaultfilters from django.utils.timezone import localtime class Transaction(models.Model): """Represent one transation""" config = models.ForeignKey(Config) reference = models.CharField(max_length=255) extra_data = models.TextField(blank=True, null=True) amount = models.IntegerField() postfinance_id = models.CharField(max_length=255, blank=True, null=True) POSTFINANCE_STATUS = ( ('??', 'Unknow'), ('0', 'Invalid or incomplete'), ('1', 'Cancelled by customer'), ('2', 'Authorisation declined'), ('4', 'Order stored'), ('40', 'Stored waiting external result'), ('41', 'Waiting for client payment'), ('5', 'Authorised'), ('50', 'Authorized waiting external result'), ('51', 'Authorisation waiting'), ('52', 'Authorisation not known'), ('55', 'Standby'), ('56', 'OK with scheduled payments'), ('57', 'Not OK with scheduled payments'), ('59', 'Authoris. to be requested manually'), ('6', 'Authorised and cancelled'), ('61', 'Author. deletion waiting'), ('62', 'Author. deletion uncertain'), ('63', 'Author. deletion refused'), ('64', 'Authorised and cancelled'), ('7', 'Payment deleted'), ('71', 'Payment deletion pending'), ('72', 'Payment deletion uncertain'), ('73', 'Payment deletion refused'), ('74', 'Payment deleted'), ('75', 'Deletion handled by merchant'), ('8', 'Refund'), ('81', 'Refund pending'), ('82', 'Refund uncertain'), ('83', 'Refund refused'), ('84', 'Refund'), ('85', 'Refund handled by merchant'), ('9', 'Payment requested'), ('91', 'Payment processing'), ('92', 'Payment uncertain'), ('93', 'Payment refused'), ('94', 'Refund declined by the acquirer'), ('95', 'Payment handled by merchant'), ('96', 'Refund reversed'), ('99', 'Being processed'), ) postfinance_status = models.CharField(max_length=2, choices=POSTFINANCE_STATUS, default='??') INTERNAL_STATUS = ( ('cr', 'Transation created'), ('fw', 'User forwarded to PostFinance'), ('fb', 'Feedback from PostFinance'), ) internal_status = models.CharField(max_length=2, choices=INTERNAL_STATUS, default='cr') ipn_needed = models.BooleanField(default=False) creation_date = models.DateTimeField(auto_now_add=True) last_userforwarded_date = models.DateTimeField(blank=True, null=True) last_user_back_from_postfinance_date = models.DateTimeField(blank=True, null=True) last_postfinance_ipn_date = models.DateTimeField(blank=True, null=True) last_ipn_date = models.DateTimeField(blank=True, null=True) brand = models.CharField(max_length=128, default='') card = models.CharField(max_length=128, default='') def amount_chf(self): """Return the amount in CHF""" return self.amount / 100.0 def postfinance_status_good(self): """Return true if the status of the transaction is good (valid)""" return self.postfinance_status in ('5', '9') def internal_status_good(self): """Return true if the internal status of the transaction if good (user back from postfinance)""" return self.internal_status == 'fb' def __unicode__(self): return self.reference def dump_api(self, add_config=False): """Return values for API""" retour = {} for val in ['reference', 'extra_data', 'amount', 'postfinance_id', 'postfinance_status', 'internal_status', 'ipn_needed', 'brand', 'card']: retour[val] = str(getattr(self, val)) for val in ['creation_date', 'last_userforwarded_date', 'last_user_back_from_postfinance_date', 'last_postfinance_ipn_date', 'last_ipn_date']: if getattr(self, val): retour[val] = str(localtime(getattr(self, val))) else: retour[val] = '' for cal, name in [('get_postfinance_status_display', 'postfinance_status_text'), ('get_internal_status_display', 'internal_status_text'), ('amount_chf', 'amount_chf')]: retour[name] = getattr(self, cal)() if add_config: retour['config'] = self.config.name return retour class TransactionLog(models.Model): """A transaction log""" transaction = models.ForeignKey(Transaction) when = models.DateTimeField(auto_now_add=True) extra_data = models.TextField() LOG_TYPE = ( ('created', 'Transaction created'), ('userForwarded', 'User forwarded'), ('userBackFromPostfinance', 'User back from postfinance'), ('postfinanceId', 'Postfinance ID set'), ('postfinanceStatus', 'Postfinance status changed'), ('ipnfailled', 'IPN Failled'), ('ipnsuccess', 'IPN Success'), ) log_type = models.CharField(max_length=64, choices=LOG_TYPE) def dump_api(self): """Return values for API""" retour = {} for val in ['when']: if getattr(self, val): retour[val] = str(localtime(getattr(self, val))) else: retour[val] = '' for val in ['extra_data', 'log_type']: retour[val] = str(getattr(self, val)) for cal, name in [('get_log_type_display', 'log_type_text')]: retour[name] = getattr(self, cal)() return retour
bsd-2-clause
6,611,243,239,914,717,000
33.558282
176
0.587431
false
simplereach/nsq2kafka
nsq2kafka/__main__.py
1
3204
""" USAGE: nsq2kafka [OPTIONS] EXAMPLES: # Basic example nsq2kafka --nsq-topic=test --nsq-nsqd-tcp-addresses=localhost:4150 # Realistic example nsq2kafka --nsq-topic=json_clicks \ --nsq-lookupd-http-addresses=lookupd1.example.com:4161,lookupd2.example.com:4161 \ --nsq-max-in-flight=5000 \ --nsq-channel=nsq2Kafka \ --kafka-bootstrap-servers=kafka1.example.com:9092,kafka2.exampkel.com:9092 \ --kafka-topic=click_stream_json \ --kafka-message-key=user_id """ from nsq2kafka import NSQ2Kafka import tornado.options import tornado.log def main(): tornado.options.define('nsq_topic', type=str, group='NSQ', help='specifies the desired NSQ topic') tornado.options.define('nsq_channel', type=str, group='NSQ', default='nsq2kafka#ephemeral', help='specifies the desired NSQ channel') tornado.options.define('nsq_nsqd_tcp_addresses', type=str, multiple=True, group='NSQ', help='a sequence of string addresses of the nsqd instances this reader should connect to') tornado.options.define('nsq_lookupd_http_addresses', type=str, multiple=True, group='NSQ', help='a sequence of string addresses of the nsqlookupd instances this reader should query ' 'for producers of the specified topic') tornado.options.define('nsq_max_in_flight', type=int, default=500, group='NSQ', help='the maximum number of messages this reader will pipeline for processing. this value ' 'will be divided evenly amongst the configured/discovered nsqd producers') tornado.options.define('kafka_bootstrap_servers', type=str, group='Kafka', default='localhost:9092', multiple=True, help='host[:port] string (or list of host[:port] strings) that the producer should contact ' 'to bootstrap initial cluster metadata') tornado.options.define('kafka_topic', type=str, group='Kafka', help='The Kafka Topic to publish the messages') tornado.options.define('kafka_message_key', type=str, group='Kafka', help='When the message is in JSON format, use a key from the message to determine the kafka ' 'partition') tornado.options.parse_command_line() nsq2kafka = NSQ2Kafka(**tornado.options.options.as_dict()) nsq2kafka.start() if __name__ == '__main__': main()
apache-2.0
-6,539,842,116,995,485,000
43.5
120
0.505306
false
getting-things-gnome/gtg
tests/tools/test_tags.py
1
4125
# ----------------------------------------------------------------------------- # Getting Things GNOME! - a personal organizer for the GNOME desktop # Copyright (c) 2008-2014 - Lionel Dricot & Bertrand Rousseau # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/>. # ----------------------------------------------------------------------------- from unittest import TestCase from GTG.core.tag import extract_tags_from_text, parse_tag_list class TestExtractTags(TestCase): """ extract_tags_from_text """ def assertTags(self, text, expected_tags): tag_list = extract_tags_from_text(text) self.assertEqual(expected_tags, tag_list) def test_doesnt_find_empty_tag(self): self.assertTags("", []) def test_finds_tag_at_beginning(self): self.assertTags("@tag some other text", ["@tag"]) def test_finds_tag_at_end(self): self.assertTags("some text ended with @endtag", ["@endtag"]) def test_ignores_emails(self): self.assertTags( "no @emails allowed: [email protected]", ["@emails"]) def test_ignores_diffs(self): self.assertTags("no @@diff stuff", []) def test_accepts_hypen_in_tag(self): self.assertTags("@do-this-today", ["@do-this-today"]) self.assertTags("@con--tinuous---hypen-s", ["@con--tinuous---hypen-s"]) def test_ignores_hypen_at_end_of_tag(self): self.assertTags("@hypen-at-end- some other text", ["@hypen-at-end"]) self.assertTags("@hypen-at-end-, with comma", ["@hypen-at-end"]) def test_accepts_dot_in_tag(self): self.assertTags("text @gtg-0.3", ["@gtg-0.3"]) def test_ignores_dot_at_end_of_tag(self): self.assertTags("@tag.", ["@tag"]) def test_accepts_slash_in_tag(self): self.assertTags("@do/this/today", ["@do/this/today"]) def test_ignores_slash_at_end_of_tag(self): self.assertTags("@slash/es/", ["@slash/es"]) def test_accepts_colon_in_tag(self): self.assertTags("@my:tag", ["@my:tag"]) def ignore_colon_at_end(self): self.assertTags("@:a:b:c:", ["@:a:b:c"]) def test_accepts_ampersand_in_tag(self): self.assertTags("@home&work", ["@home&work"]) class TestParseTagList(TestCase): """ parse_tag_list """ def test_parses_positive_single_tag(self): self.assertEqual(parse_tag_list("tag"), [("tag", True)]) self.assertEqual(parse_tag_list("@tag"), [("@tag", True)]) def test_parses_postivie_tag_list(self): self.assertEqual( parse_tag_list("a b c"), [("a", True), ("b", True), ("c", True)], ) self.assertEqual( parse_tag_list("@a @b @c"), [("@a", True), ("@b", True), ("@c", True)], ) def test_parses_negative_single_tag(self): self.assertEqual(parse_tag_list("!tag"), [("tag", False)]) self.assertEqual(parse_tag_list("!@tag"), [("@tag", False)]) def test_parses_negative_tag_list(self): self.assertEqual( parse_tag_list("!a !b !c"), [("a", False), ("b", False), ("c", False)], ) self.assertEqual( parse_tag_list("!@a !@b !@c"), [("@a", False), ("@b", False), ("@c", False)], ) def test_parses_mixed_tags(self): self.assertEqual( parse_tag_list("add !remove"), [("add", True), ("remove", False)], ) self.assertEqual( parse_tag_list("!remove add"), [("remove", False), ("add", True)], )
gpl-3.0
8,190,053,820,863,928,000
34.560345
79
0.574303
false
pre-commit/pre-commit
tests/languages/r_test.py
1
3688
import os.path import pytest from pre_commit.languages import r from testing.fixtures import make_config_from_repo from testing.fixtures import make_repo from tests.repository_test import _get_hook_no_install def _test_r_parsing( tempdir_factory, store, hook_id, expected_hook_expr={}, expected_args={}, config={}, expect_path_prefix=True, ): repo_path = 'r_hooks_repo' path = make_repo(tempdir_factory, repo_path) config = config or make_config_from_repo(path) hook = _get_hook_no_install(config, store, hook_id) ret = r._cmd_from_hook(hook) expected_cmd = 'Rscript' expected_opts = ( '--no-save', '--no-restore', '--no-site-file', '--no-environ', ) expected_path = os.path.join( hook.prefix.prefix_dir if expect_path_prefix else '', f'{hook_id}.R', ) expected = ( expected_cmd, *expected_opts, *(expected_hook_expr or (expected_path,)), *expected_args, ) assert ret == expected def test_r_parsing_file_no_opts_no_args(tempdir_factory, store): hook_id = 'parse-file-no-opts-no-args' _test_r_parsing(tempdir_factory, store, hook_id) def test_r_parsing_file_opts_no_args(tempdir_factory, store): with pytest.raises(ValueError) as excinfo: r._entry_validate(['Rscript', '--no-init', '/path/to/file']) msg = excinfo.value.args assert msg == ( 'The only valid syntax is `Rscript -e {expr}`', 'or `Rscript path/to/hook/script`', ) def test_r_parsing_file_no_opts_args(tempdir_factory, store): hook_id = 'parse-file-no-opts-args' expected_args = ['--no-cache'] _test_r_parsing( tempdir_factory, store, hook_id, expected_args=expected_args, ) def test_r_parsing_expr_no_opts_no_args1(tempdir_factory, store): hook_id = 'parse-expr-no-opts-no-args-1' _test_r_parsing( tempdir_factory, store, hook_id, expected_hook_expr=('-e', '1+1'), ) def test_r_parsing_expr_no_opts_no_args2(tempdir_factory, store): with pytest.raises(ValueError) as execinfo: r._entry_validate(['Rscript', '-e', '1+1', '-e', 'letters']) msg = execinfo.value.args assert msg == ('You can supply at most one expression.',) def test_r_parsing_expr_opts_no_args2(tempdir_factory, store): with pytest.raises(ValueError) as execinfo: r._entry_validate( [ 'Rscript', '--vanilla', '-e', '1+1', '-e', 'letters', ], ) msg = execinfo.value.args assert msg == ( 'The only valid syntax is `Rscript -e {expr}`', 'or `Rscript path/to/hook/script`', ) def test_r_parsing_expr_args_in_entry2(tempdir_factory, store): with pytest.raises(ValueError) as execinfo: r._entry_validate(['Rscript', '-e', 'expr1', '--another-arg']) msg = execinfo.value.args assert msg == ('You can supply at most one expression.',) def test_r_parsing_expr_non_Rscirpt(tempdir_factory, store): with pytest.raises(ValueError) as execinfo: r._entry_validate(['AnotherScript', '-e', '{{}}']) msg = execinfo.value.args assert msg == ('entry must start with `Rscript`.',) def test_r_parsing_file_local(tempdir_factory, store): path = 'path/to/script.R' hook_id = 'local-r' config = { 'repo': 'local', 'hooks': [{ 'id': hook_id, 'name': 'local-r', 'entry': f'Rscript {path}', 'language': 'r', }], } _test_r_parsing( tempdir_factory, store, hook_id=hook_id, expected_hook_expr=(path,), config=config, expect_path_prefix=False, )
mit
8,101,526,320,860,956,000
27.589147
74
0.600325
false
QISKit/qiskit-sdk-py
test/python/quantum_info/states/test_densitymatrix.py
1
12921
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Tests for DensityMatrix quantum state class.""" import unittest import logging import numpy as np from numpy.testing import assert_allclose from qiskit.test import QiskitTestCase from qiskit import QiskitError from qiskit import QuantumRegister, QuantumCircuit from qiskit.extensions.standard import HGate from qiskit.quantum_info.random import random_unitary from qiskit.quantum_info.states import DensityMatrix, Statevector from qiskit.quantum_info.operators.operator import Operator logger = logging.getLogger(__name__) class TestDensityMatrix(QiskitTestCase): """Tests for DensityMatrix class.""" @classmethod def rand_vec(cls, n, normalize=False): """Return complex vector or statevector""" seed = np.random.randint(0, np.iinfo(np.int32).max) logger.debug("rand_vec RandomState seeded with seed=%s", seed) rng = np.random.RandomState(seed) vec = rng.rand(n) + 1j * rng.rand(n) if normalize: vec /= np.sqrt(np.dot(vec, np.conj(vec))) return vec @classmethod def rand_rho(cls, n): """Return random pure state density matrix""" rho = cls.rand_vec(n, normalize=True) return np.outer(rho, np.conjugate(rho)) def test_init_array_qubit(self): """Test subsystem initialization from N-qubit array.""" # Test automatic inference of qubit subsystems rho = self.rand_rho(8) for dims in [None, 8]: state = DensityMatrix(rho, dims=dims) assert_allclose(state.data, rho) self.assertEqual(state.dim, 8) self.assertEqual(state.dims(), (2, 2, 2)) def test_init_array(self): """Test initialization from array.""" rho = self.rand_rho(3) state = DensityMatrix(rho) assert_allclose(state.data, rho) self.assertEqual(state.dim, 3) self.assertEqual(state.dims(), (3,)) rho = self.rand_rho(2 * 3 * 4) state = DensityMatrix(rho, dims=[2, 3, 4]) assert_allclose(state.data, rho) self.assertEqual(state.dim, 2 * 3 * 4) self.assertEqual(state.dims(), (2, 3, 4)) def test_init_array_except(self): """Test initialization exception from array.""" rho = self.rand_rho(4) self.assertRaises(QiskitError, DensityMatrix, rho, dims=[4, 2]) self.assertRaises(QiskitError, DensityMatrix, rho, dims=[2, 4]) self.assertRaises(QiskitError, DensityMatrix, rho, dims=5) def test_init_densitymatrix(self): """Test initialization from DensityMatrix.""" rho1 = DensityMatrix(self.rand_rho(4)) rho2 = DensityMatrix(rho1) self.assertEqual(rho1, rho2) def test_init_statevector(self): """Test initialization from DensityMatrix.""" vec = self.rand_vec(4) target = DensityMatrix(np.outer(vec, np.conjugate(vec))) rho = DensityMatrix(Statevector(vec)) self.assertEqual(rho, target) def test_from_circuit(self): """Test initialization from a circuit.""" # random unitaries u0 = random_unitary(2).data u1 = random_unitary(2).data # add to circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.unitary(u0, [qr[0]]) circ.unitary(u1, [qr[1]]) target_vec = Statevector(np.kron(u1, u0).dot([1, 0, 0, 0])) target = DensityMatrix(target_vec) rho = DensityMatrix.from_instruction(circ) self.assertEqual(rho, target) # Test tensor product of 1-qubit gates circuit = QuantumCircuit(3) circuit.h(0) circuit.x(1) circuit.ry(np.pi / 2, 2) target = DensityMatrix.from_label('000').evolve(Operator(circuit)) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) # Test decomposition of Controlled-u1 gate lam = np.pi / 4 circuit = QuantumCircuit(2) circuit.h(0) circuit.h(1) circuit.cu1(lam, 0, 1) target = DensityMatrix.from_label('00').evolve(Operator(circuit)) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) # Test decomposition of controlled-H gate circuit = QuantumCircuit(2) circ.x(0) circuit.ch(0, 1) target = DensityMatrix.from_label('00').evolve(Operator(circuit)) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) def test_from_instruction(self): """Test initialization from an instruction.""" target_vec = Statevector(np.dot(HGate().to_matrix(), [1, 0])) target = DensityMatrix(target_vec) rho = DensityMatrix.from_instruction(HGate()) self.assertEqual(rho, target) def test_from_label(self): """Test initialization from a label""" x_p = DensityMatrix(np.array([[0.5, 0.5], [0.5, 0.5]])) x_m = DensityMatrix(np.array([[0.5, -0.5], [-0.5, 0.5]])) y_p = DensityMatrix(np.array([[0.5, -0.5j], [0.5j, 0.5]])) y_m = DensityMatrix(np.array([[0.5, 0.5j], [-0.5j, 0.5]])) z_p = DensityMatrix(np.diag([1, 0])) z_m = DensityMatrix(np.diag([0, 1])) label = '0+r' target = z_p.tensor(x_p).tensor(y_p) self.assertEqual(target, DensityMatrix.from_label(label)) label = '-l1' target = x_m.tensor(y_m).tensor(z_m) self.assertEqual(target, DensityMatrix.from_label(label)) def test_equal(self): """Test __eq__ method""" for _ in range(10): rho = self.rand_rho(4) self.assertEqual(DensityMatrix(rho), DensityMatrix(rho.tolist())) def test_rep(self): """Test Operator representation string property.""" state = DensityMatrix(self.rand_rho(2)) self.assertEqual(state.rep, 'DensityMatrix') def test_copy(self): """Test DensityMatrix copy method""" for _ in range(5): rho = self.rand_rho(4) orig = DensityMatrix(rho) cpy = orig.copy() cpy._data[0] += 1.0 self.assertFalse(cpy == orig) def test_is_valid(self): """Test is_valid method.""" state = DensityMatrix(np.eye(2)) self.assertFalse(state.is_valid()) for _ in range(10): state = DensityMatrix(self.rand_rho(4)) self.assertTrue(state.is_valid()) def test_to_operator(self): """Test to_operator method for returning projector.""" for _ in range(10): rho = self.rand_rho(4) target = Operator(rho) op = DensityMatrix(rho).to_operator() self.assertEqual(op, target) def test_evolve(self): """Test evolve method for operators.""" for _ in range(10): op = random_unitary(4) rho = self.rand_rho(4) target = DensityMatrix(np.dot(op.data, rho).dot(op.adjoint().data)) evolved = DensityMatrix(rho).evolve(op) self.assertEqual(target, evolved) def test_evolve_subsystem(self): """Test subsystem evolve method for operators.""" # Test evolving single-qubit of 3-qubit system for _ in range(5): rho = self.rand_rho(8) state = DensityMatrix(rho) op0 = random_unitary(2) op1 = random_unitary(2) op2 = random_unitary(2) # Test evolve on 1-qubit op = op0 op_full = Operator(np.eye(4)).tensor(op) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0]), target) # Evolve on qubit 1 op_full = Operator(np.eye(2)).tensor(op).tensor(np.eye(2)) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[1]), target) # Evolve on qubit 2 op_full = op.tensor(np.eye(4)) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2]), target) # Test evolve on 2-qubits op = op1.tensor(op0) # Evolve on qubits [0, 2] op_full = op1.tensor(np.eye(2)).tensor(op0) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0, 2]), target) # Evolve on qubits [2, 0] op_full = op0.tensor(np.eye(2)).tensor(op1) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2, 0]), target) # Test evolve on 3-qubits op = op2.tensor(op1).tensor(op0) # Evolve on qubits [0, 1, 2] op_full = op target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0, 1, 2]), target) # Evolve on qubits [2, 1, 0] op_full = op0.tensor(op1).tensor(op2) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2, 1, 0]), target) def test_conjugate(self): """Test conjugate method.""" for _ in range(10): rho = self.rand_rho(4) target = DensityMatrix(np.conj(rho)) state = DensityMatrix(rho).conjugate() self.assertEqual(state, target) def test_expand(self): """Test expand method.""" for _ in range(10): rho0 = self.rand_rho(2) rho1 = self.rand_rho(3) target = np.kron(rho1, rho0) state = DensityMatrix(rho0).expand(DensityMatrix(rho1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (2, 3)) assert_allclose(state.data, target) def test_tensor(self): """Test tensor method.""" for _ in range(10): rho0 = self.rand_rho(2) rho1 = self.rand_rho(3) target = np.kron(rho0, rho1) state = DensityMatrix(rho0).tensor(DensityMatrix(rho1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (3, 2)) assert_allclose(state.data, target) def test_add(self): """Test add method.""" for _ in range(10): rho0 = self.rand_rho(4) rho1 = self.rand_rho(4) state0 = DensityMatrix(rho0) state1 = DensityMatrix(rho1) self.assertEqual(state0.add(state1), DensityMatrix(rho0 + rho1)) self.assertEqual(state0 + state1, DensityMatrix(rho0 + rho1)) def test_add_except(self): """Test add method raises exceptions.""" state1 = DensityMatrix(self.rand_rho(2)) state2 = DensityMatrix(self.rand_rho(3)) self.assertRaises(QiskitError, state1.add, state2) def test_subtract(self): """Test subtract method.""" for _ in range(10): rho0 = self.rand_rho(4) rho1 = self.rand_rho(4) state0 = DensityMatrix(rho0) state1 = DensityMatrix(rho1) self.assertEqual(state0.subtract(state1), DensityMatrix(rho0 - rho1)) self.assertEqual(state0 - state1, DensityMatrix(rho0 - rho1)) def test_subtract_except(self): """Test subtract method raises exceptions.""" state1 = DensityMatrix(self.rand_rho(2)) state2 = DensityMatrix(self.rand_rho(3)) self.assertRaises(QiskitError, state1.subtract, state2) def test_multiply(self): """Test multiply method.""" for _ in range(10): rho = self.rand_rho(4) state = DensityMatrix(rho) val = np.random.rand() + 1j * np.random.rand() self.assertEqual(state.multiply(val), DensityMatrix(val * rho)) self.assertEqual(val * state, DensityMatrix(val * state)) def test_negate(self): """Test negate method""" for _ in range(10): rho = self.rand_rho(4) state = DensityMatrix(rho) self.assertEqual(-state, DensityMatrix(-1 * rho)) if __name__ == '__main__': unittest.main()
apache-2.0
5,895,433,002,586,173,000
36.452174
89
0.590512
false
kain88-de/mdanalysis
package/MDAnalysis/analysis/encore/similarity.py
1
64696
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # MDAnalysis --- http://www.mdanalysis.org # Copyright (c) 2006-2016 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # """ ================================================================================= Ensemble Similarity Calculations --- :mod:`MDAnalysis.analysis.encore.similarity` ================================================================================= :Author: Matteo Tiberti, Wouter Boomsma, Tone Bengtsen .. versionadded:: 0.16.0 The module contains implementations of similarity measures between protein ensembles described in [Lindorff-Larsen2009]_. The implementation and examples are described in [Tiberti2015]_. The module includes facilities for handling ensembles and trajectories through the :class:`Universe` class, performing clustering or dimensionality reduction of the ensemble space, estimating multivariate probability distributions from the input data, and more. ENCORE can be used to compare experimental and simulation-derived ensembles, as well as estimate the convergence of trajectories from time-dependent simulations. ENCORE includes three different methods for calculations of similarity measures between ensembles implemented in individual functions: + **Harmonic Ensemble Similarity** : :func:`hes` + **Clustering Ensemble Similarity** : :func:`ces` + **Dimensional Reduction Ensemble Similarity** : :func:`dres` as well as two methods to evaluate the convergence of trajectories: + **Clustering based convergence evaluation** : :func:`ces_convergence` + **Dimensionality-reduction based convergence evaluation** : :func:`dres_convergence` When using this module in published work please cite [Tiberti2015]_. References ========== .. [Lindorff-Larsen2009] Similarity Measures for Protein Ensembles. Lindorff-Larsen, K. Ferkinghoff-Borg, J. PLoS ONE 2008, 4, e4203. .. [Tiberti2015] ENCORE: Software for Quantitative Ensemble Comparison. Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, Kresten Lindorff- Larsen. PLoS Comput Biol. 2015, 11 .. _Examples: Examples ======== The examples show how to use ENCORE to calculate a similarity measurement of two simple ensembles. The ensembles are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples first execute: :: >>> from MDAnalysis import Universe >>> import MDAnalysis.analysis.encore as encore >>> from MDAnalysis.tests.datafiles import PSF, DCD, DCD2 To calculate the Harmonic Ensemble Similarity (:func:`hes`) two ensemble objects are first created and then used for calculation: :: >>> ens1 = Universe(PSF, DCD) >>> ens2 = Universe(PSF, DCD2) >>> print encore.hes([ens1, ens2]) (array([[ 0. , 38279683.95892926], [ 38279683.95892926, 0. ]]), None) Here None is returned in the array as the default details parameter is False. HES can assume any non-negative value, i.e. no upper bound exists and the measurement can therefore be used as an absolute scale. The calculation of the Clustering Ensemble Similarity (:func:`ces`) is computationally more expensive. It is based on clustering algorithms that in turn require a similarity matrix between the frames the ensembles are made of. The similarity matrix is derived from a distance matrix (By default a RMSD matrix; a full RMSD matrix between each pairs of elements needs to be computed). The RMSD matrix is automatically calculated. :: >>> ens1 = Universe(PSF, DCD) >>> ens2 = Universe(PSF, DCD2) >>> CES, details = encore.ces([ens1, ens2]) >>> print CES [[ 0. 0.68070702] [ 0.68070702 0. ]] However, we may want to reuse the RMSD matrix in other calculations e.g. running CES with different parameters or running DRES. In this case we first compute the RMSD matrix alone: >>> rmsd_matrix = encore.get_distance_matrix( encore.utils.merge_universes([ens1, ens2]), save_matrix="rmsd.npz") In the above example the RMSD matrix was also saved in rmsd.npz on disk, and so can be loaded and re-used at later times, instead of being recomputed: >>> rmsd_matrix = encore.get_distance_matrix( encore.utils.merge_universes([ens1, ens2]), load_matrix="rmsd.npz") For instance, the rmsd_matrix object can be re-used as input for the Dimensional Reduction Ensemble Similarity (:func:`dres`) method. DRES is based on the estimation of the probability density in a dimensionally-reduced conformational space of the ensembles, obtained from the original space using either the Stochastic Proximity Embedding algorithm or the Principal Component Analysis. As the algorithms require the distance matrix calculated on the original space, we can reuse the previously-calculated RMSD matrix. In the following example the dimensions are reduced to 3 using the saved RMSD matrix and the default SPE dimensional reduction method. : :: >>> DRES,details = encore.dres([ens1, ens2], distance_matrix = rmsd_matrix) >>> print DRES [[ 0. , 0.67453198] [ 0.67453198, 0. ]] In addition to the quantitative similarity estimate, the dimensional reduction can easily be visualized, see the ``Example`` section in :mod:`MDAnalysis.analysis.encore.dimensionality_reduction.reduce_dimensionality`. Due to the stochastic nature of SPE, two identical ensembles will not necessarily result in an exactly 0 estimate of the similarity, but will be very close. For the same reason, calculating the similarity with the :func:`dres` twice will not result in necessarily identical values but rather two very close values. It should be noted that both in :func:`ces` and :func:`dres` the similarity is evaluated using the Jensen-Shannon divergence resulting in an upper bound of ln(2), which indicates no similarity between the ensembles and a lower bound of 0.0 signifying two identical ensembles. In contrast, the :func:`hes` function uses a symmetrized version of the Kullback-Leibler divergence, which is unbounded. Functions for ensemble comparisons ================================== .. autofunction:: hes .. autofunction:: ces .. autofunction:: dres Function reference ================== .. All functions are included via automodule :members:. """ from __future__ import print_function, division, absolute_import from six.moves import range, zip import MDAnalysis as mda import numpy as np import warnings import logging try: from scipy.stats import gaussian_kde except ImportError: gaussian_kde = None msg = "scipy.stats.gaussian_kde could not be imported. " \ "Dimensionality reduction ensemble comparisons will not " \ "be available." warnings.warn(msg, category=ImportWarning) logging.warn(msg) del msg from ...coordinates.memory import MemoryReader from .confdistmatrix import get_distance_matrix from .bootstrap import (get_distance_matrix_bootstrap_samples, get_ensemble_bootstrap_samples) from .clustering.cluster import cluster from .clustering.ClusteringMethod import AffinityPropagationNative from .dimensionality_reduction.DimensionalityReductionMethod import ( StochasticProximityEmbeddingNative) from .dimensionality_reduction.reduce_dimensionality import ( reduce_dimensionality) from .covariance import ( covariance_matrix, ml_covariance_estimator, shrinkage_covariance_estimator) from .utils import merge_universes from .utils import trm_indices_diag, trm_indices_nodiag # Low boundary value for log() argument - ensure no nans EPSILON = 1E-15 xlogy = np.vectorize( lambda x, y: 0.0 if (x <= EPSILON and y <= EPSILON) else x * np.log(y)) def discrete_kullback_leibler_divergence(pA, pB): """Kullback-Leibler divergence between discrete probability distribution. Notice that since this measure is not symmetric :: :math:`d_{KL}(p_A,p_B) != d_{KL}(p_B,p_A)` Parameters ---------- pA : iterable of floats First discrete probability density function pB : iterable of floats Second discrete probability density function Returns ------- dkl : float Discrete Kullback-Liebler divergence """ return np.sum(xlogy(pA, pA / pB)) # discrete dJS def discrete_jensen_shannon_divergence(pA, pB): """Jensen-Shannon divergence between discrete probability distributions. Parameters ---------- pA : iterable of floats First discrete probability density function pB : iterable of floats Second discrete probability density function Returns ------- djs : float Discrete Jensen-Shannon divergence """ return 0.5 * (discrete_kullback_leibler_divergence(pA, (pA + pB) * 0.5) + discrete_kullback_leibler_divergence(pB, (pA + pB) * 0.5)) # calculate harmonic similarity def harmonic_ensemble_similarity(sigma1, sigma2, x1, x2): """ Calculate the harmonic ensemble similarity measure as defined in [Tiberti2015]_. Parameters ---------- sigma1 : numpy.array Covariance matrix for the first ensemble. sigma2 : numpy.array Covariance matrix for the second ensemble. x1: numpy.array Mean for the estimated normal multivariate distribution of the first ensemble. x2: numpy.array Mean for the estimated normal multivariate distribution of the second ensemble. Returns ------- dhes : float harmonic similarity measure """ # Inverse covariance matrices sigma1_inv = np.linalg.pinv(sigma1) sigma2_inv = np.linalg.pinv(sigma2) # Difference between average vectors d_avg = x1 - x2 # Distance measure trace = np.trace(np.dot(sigma1, sigma2_inv) + np.dot(sigma2, sigma1_inv) - 2 * np.identity(sigma1.shape[0])) d_hes = 0.25 * (np.dot(np.transpose(d_avg), np.dot(sigma1_inv + sigma2_inv, d_avg)) + trace) return d_hes def clustering_ensemble_similarity(cc, ens1, ens1_id, ens2, ens2_id, selection="name CA"): """Clustering ensemble similarity: calculate the probability densities from the clusters and calculate discrete Jensen-Shannon divergence. Parameters ---------- cc : encore.clustering.ClustersCollection Collection from cluster calculated by a clustering algorithm (e.g. Affinity propagation) ens1 : :class:`~MDAnalysis.core.universe.Universe` First ensemble to be used in comparison ens1_id : int First ensemble id as detailed in the ClustersCollection metadata ens2 : :class:`~MDAnalysis.core.universe.Universe` Second ensemble to be used in comparison ens2_id : int Second ensemble id as detailed in the ClustersCollection metadata selection : str Atom selection string in the MDAnalysis format. Default is "name CA". Returns ------- djs : float Jensen-Shannon divergence between the two ensembles, as calculated by the clustering ensemble similarity method """ ens1_coordinates = ens1.trajectory.timeseries(ens1.select_atoms(selection), format='fac') ens2_coordinates = ens2.trajectory.timeseries(ens2.select_atoms(selection), format='fac') tmpA = np.array([np.where(c.metadata['ensemble_membership'] == ens1_id)[ 0].shape[0] / float(ens1_coordinates.shape[0]) for c in cc]) tmpB = np.array([np.where(c.metadata['ensemble_membership'] == ens2_id)[ 0].shape[0] / float(ens2_coordinates.shape[0]) for c in cc]) # Exclude clusters which have 0 elements in both ensembles pA = tmpA[tmpA + tmpB > EPSILON] pB = tmpB[tmpA + tmpB > EPSILON] return discrete_jensen_shannon_divergence(pA, pB) def cumulative_clustering_ensemble_similarity(cc, ens1_id, ens2_id, ens1_id_min=1, ens2_id_min=1): """ Calculate clustering ensemble similarity between joined ensembles. This means that, after clustering has been performed, some ensembles are merged and the dJS is calculated between the probability distributions of the two clusters groups. In particular, the two ensemble groups are defined by their ensembles id: one of the two joined ensembles will comprise all the ensembles with id [ens1_id_min, ens1_id], and the other ensembles will comprise all the ensembles with id [ens2_id_min, ens2_id]. Parameters ---------- cc : encore.ClustersCollection Collection from cluster calculated by a clustering algorithm (e.g. Affinity propagation) ens1_id : int First ensemble id as detailed in the ClustersCollection metadata ens2_id : int Second ensemble id as detailed in the ClustersCollection metadata Returns ------- djs : float Jensen-Shannon divergence between the two ensembles, as calculated by the clustering ensemble similarity method """ ensA = [np.where(np.logical_and( c.metadata['ensemble_membership'] <= ens1_id, c.metadata['ensemble_membership']) >= ens1_id_min)[0].shape[0] for c in cc] ensB = [np.where(np.logical_and( c.metadata['ensemble_membership'] <= ens2_id, c.metadata['ensemble_membership']) >= ens2_id_min)[0].shape[0] for c in cc] sizeA = float(np.sum(ensA)) sizeB = float(np.sum(ensB)) tmpA = np.array(ensA) / sizeA tmpB = np.array(ensB) / sizeB # Exclude clusters which have 0 elements in both ensembles pA = tmpA[tmpA + tmpB > EPSILON] pB = tmpB[tmpA + tmpB > EPSILON] return discrete_jensen_shannon_divergence(pA, pB) def gen_kde_pdfs(embedded_space, ensemble_assignment, nensembles, nsamples): """ Generate Kernel Density Estimates (KDE) from embedded spaces and elaborate the coordinates for later use. Parameters ---------- embedded_space : numpy.array Array containing the coordinates of the embedded space ensemble_assignment : numpy.array Array containing one int per ensemble conformation. These allow to distinguish, in the complete embedded space, which conformations belong to each ensemble. For instance if ensemble_assignment is [1,1,1,1,2,2], it means that the first four conformations belong to ensemble 1 and the last two to ensemble 2 nensembles : int Number of ensembles nsamples : int samples to be drawn from the ensembles. Will be required in a later stage in order to calculate dJS. Returns ------- kdes : scipy.stats.gaussian_kde KDEs calculated from ensembles resamples : list of numpy.array For each KDE, draw samples according to the probability distribution of the KDE mixture model embedded_ensembles : list of numpy.array List of numpy.array containing, each one, the elements of the embedded space belonging to a certain ensemble """ kdes = [] embedded_ensembles = [] resamples = [] if gaussian_kde is None: # hack: if we are running with minimal dependencies then scipy was # not imported and we have to bail here (see scipy import at top) raise ImportError("For Kernel Density Estimation functionality you" "need to import scipy") for i in range(1, nensembles + 1): this_embedded = embedded_space.transpose()[ np.where(np.array(ensemble_assignment) == i)].transpose() embedded_ensembles.append(this_embedded) kdes.append(gaussian_kde( this_embedded)) # # Set number of samples # if not nsamples: # nsamples = this_embedded.shape[1] * 10 # Resample according to probability distributions for this_kde in kdes: resamples.append(this_kde.resample(nsamples)) return (kdes, resamples, embedded_ensembles) def dimred_ensemble_similarity(kde1, resamples1, kde2, resamples2, ln_P1_exp_P1=None, ln_P2_exp_P2=None, ln_P1P2_exp_P1=None, ln_P1P2_exp_P2=None): """ Calculate the Jensen-Shannon divergence according the the Dimensionality reduction method. In this case, we have continuous probability densities, this we need to integrate over the measurable space. The aim is to first calculate the Kullback-Liebler divergence, which is defined as: .. math:: D_{KL}(P(x) || Q(x)) = \\int_{-\\infty}^{\\infty}P(x_i) ln(P(x_i)/Q(x_i)) = \\langle{}ln(P(x))\\rangle{}_P - \\langle{}ln(Q(x))\\rangle{}_P where the :math:`\\langle{}.\\rangle{}_P` denotes an expectation calculated under the distribution P. We can, thus, just estimate the expectation values of the components to get an estimate of dKL. Since the Jensen-Shannon distance is actually more complex, we need to estimate four expectation values: .. math:: \\langle{}log(P(x))\\rangle{}_P \\langle{}log(Q(x))\\rangle{}_Q \\langle{}log(0.5*(P(x)+Q(x)))\\rangle{}_P \\langle{}log(0.5*(P(x)+Q(x)))\\rangle{}_Q Parameters ---------- kde1 : scipy.stats.gaussian_kde Kernel density estimation for ensemble 1 resamples1 : numpy.array Samples drawn according do kde1. Will be used as samples to calculate the expected values according to 'P' as detailed before. kde2 : scipy.stats.gaussian_kde Kernel density estimation for ensemble 2 resamples2 : numpy.array Samples drawn according do kde2. Will be used as sample to calculate the expected values according to 'Q' as detailed before. ln_P1_exp_P1 : float or None Use this value for :math:`\\langle{}log(P(x))\\rangle{}_P`; if None, calculate it instead ln_P2_exp_P2 : float or None Use this value for :math:`\\langle{}log(Q(x))\\rangle{}_Q`; if None, calculate it instead ln_P1P2_exp_P1 : float or None Use this value for :math:`\\langle{}log(0.5*(P(x)+Q(x)))\\rangle{}_P`; if None, calculate it instead ln_P1P2_exp_P2 : float or None Use this value for :math:`\\langle{}log(0.5*(P(x)+Q(x)))\\rangle{}_Q`; if None, calculate it instead Returns ------- djs : float Jensen-Shannon divergence calculated according to the dimensionality reduction method """ if not ln_P1_exp_P1 and not ln_P2_exp_P2 and not ln_P1P2_exp_P1 and not \ ln_P1P2_exp_P2: ln_P1_exp_P1 = np.average(np.log(kde1.evaluate(resamples1))) ln_P2_exp_P2 = np.average(np.log(kde2.evaluate(resamples2))) ln_P1P2_exp_P1 = np.average(np.log( 0.5 * (kde1.evaluate(resamples1) + kde2.evaluate(resamples1)))) ln_P1P2_exp_P2 = np.average(np.log( 0.5 * (kde1.evaluate(resamples2) + kde2.evaluate(resamples2)))) return 0.5 * ( ln_P1_exp_P1 - ln_P1P2_exp_P1 + ln_P2_exp_P2 - ln_P1P2_exp_P2) def cumulative_gen_kde_pdfs(embedded_space, ensemble_assignment, nensembles, nsamples, ens_id_min=1, ens_id_max=None): """ Generate Kernel Density Estimates (KDE) from embedded spaces and elaborate the coordinates for later use. However, consider more than one ensemble as the space on which the KDE will be generated. In particular, will use ensembles with ID [ens_id_min, ens_id_max]. Parameters ---------- embedded_space : numpy.array Array containing the coordinates of the embedded space ensemble_assignment : numpy.array array containing one int per ensemble conformation. These allow to distinguish, in the complete embedded space, which conformations belong to each ensemble. For instance if ensemble_assignment is [1,1,1,1,2,2], it means that the first four conformations belong to ensemble 1 and the last two to ensemble 2 nensembles : int Number of ensembles nsamples : int Samples to be drawn from the ensembles. Will be required in a later stage in order to calculate dJS. ens_id_min : int Minimum ID of the ensemble to be considered; see description ens_id_max : int Maximum ID of the ensemble to be considered; see description. If None, it will be set to the maximum possible value given the number of ensembles. Returns ------- kdes : scipy.stats.gaussian_kde KDEs calculated from ensembles resamples : list of numpy.array For each KDE, draw samples according to the probability distribution of the kde mixture model embedded_ensembles : list of numpy.array List of numpy.array containing, each one, the elements of the embedded space belonging to a certain ensemble """ if gaussian_kde is None: # hack: if we are running with minimal dependencies then scipy was # not imported and we have to bail here (see scipy import at top) raise ImportError("For Kernel Density Estimation functionality you" "need to import scipy") kdes = [] embedded_ensembles = [] resamples = [] if not ens_id_max: ens_id_max = nensembles + 1 for i in range(ens_id_min, ens_id_max): this_embedded = embedded_space.transpose()[np.where( np.logical_and(ensemble_assignment >= ens_id_min, ensemble_assignment <= i))].transpose() embedded_ensembles.append(this_embedded) kdes.append( gaussian_kde(this_embedded)) # Resample according to probability distributions for this_kde in kdes: resamples.append(this_kde.resample(nsamples)) return (kdes, resamples, embedded_ensembles) def write_output(matrix, base_fname=None, header="", suffix="", extension="dat"): """ Write output matrix with a nice format, to stdout and optionally a file. Parameters ---------- matrix : encore.utils.TriangularMatrix Matrix containing the values to be printed base_fname : str Basic filename for output. If None, no files will be written, and the matrix will be just printed on standard output header : str Text to be written just before the matrix suffix : str String to be concatenated to basename, in order to get the final file name extension : str Extension for the output file """ if base_fname is not None: fname = base_fname + "-" + suffix + "." + extension else: fname = None matrix.square_print(header=header, fname=fname) def prepare_ensembles_for_convergence_increasing_window(ensemble, window_size, selection="name CA"): """ Generate ensembles to be fed to ces_convergence or dres_convergence from a single ensemble. Basically, the different slices the algorithm needs are generated here. Parameters ---------- ensemble : :class:`~MDAnalysis.core.universe.Universe` object Input ensemble window_size : int size of the window (in number of frames) to be used selection : str Atom selection string in the MDAnalysis format. Default is "name CA" Returns ------- tmp_ensembles : The original ensemble is divided into different ensembles, each being a window_size-long slice of the original ensemble. The last ensemble will be bigger if the length of the input ensemble is not exactly divisible by window_size. """ ens_size = ensemble.trajectory.timeseries(ensemble.select_atoms(selection), format='fac').shape[0] rest_slices = ens_size // window_size residuals = ens_size % window_size slices_n = [0] tmp_ensembles = [] for rs in range(rest_slices - 1): slices_n.append(slices_n[-1] + window_size) slices_n.append(slices_n[-1] + residuals + window_size) for s,sl in enumerate(slices_n[:-1]): tmp_ensembles.append(mda.Universe( ensemble.filename, ensemble.trajectory.timeseries(format='fac') [slices_n[s]:slices_n[s + 1], :, :], format=MemoryReader)) return tmp_ensembles def hes(ensembles, selection="name CA", cov_estimator="shrinkage", weights='mass', align=False, details=False, estimate_error=False, bootstrapping_samples=100, calc_diagonal=False): """ Calculates the Harmonic Ensemble Similarity (HES) between ensembles using the symmetrized version of Kullback-Leibler divergence as described in [Tiberti2015]_. Parameters ---------- ensembles : list List of Universe objects for similarity measurements. selection : str, optional Atom selection string in the MDAnalysis format. Default is "name CA" cov_estimator : str, optional Covariance matrix estimator method, either shrinkage, `shrinkage`, or Maximum Likelyhood, `ml`. Default is shrinkage. weights : str/array_like, optional specify optional weights. If ``mass`` then chose masses of ensemble atoms align : bool, optional Whether to align the ensembles before calculating their similarity. Note: this changes the ensembles in-place, and will thus leave your ensembles in an altered state. (default is False) details : bool, optional Save the mean and covariance matrix for each ensemble in a numpy array (default is False). estimate_error : bool, optional Whether to perform error estimation (default is False). bootstrapping_samples : int, optional Number of times the similarity matrix will be bootstrapped (default is 100), only if estimate_error is True. calc_diagonal : bool, optional Whether to calculate the diagonal of the similarity scores (i.e. the similarities of every ensemble against itself). If this is False (default), 0.0 will be used instead. Returns ------- numpy.array (bidimensional) Harmonic similarity measurements between each pair of ensembles. Notes ----- The method assumes that each ensemble is derived from a multivariate normal distribution. The mean and covariance matrix are, thus, estimatated from the distribution of each ensemble and used for comparision by the symmetrized version of Kullback-Leibler divergence defined as: .. math:: D_{KL}(P(x) || Q(x)) = \\int_{-\\infty}^{\\infty}P(x_i) ln(P(x_i)/Q(x_i)) = \\langle{}ln(P(x))\\rangle{}_P - \\langle{}ln(Q(x))\\rangle{}_P where the :math:`\\langle{}.\\rangle{}_P` denotes an expectation calculated under the distribution P. For each ensemble, the mean conformation is estimated as the average over the ensemble, and the covariance matrix is calculated by default using a shrinkage estimation method (or by a maximum-likelihood method, optionally). Note that the symmetrized version of the Kullback-Leibler divergence has no upper bound (unlike the Jensen-Shannon divergence used by for instance CES and DRES). When using this similarity measure, consider whether you want to align the ensembles first (see example below). Example ------- To calculate the Harmonic Ensemble similarity, two ensembles are created as Universe objects from a topology file and two trajectories. The topology- and trajectory files used are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples see the module `Examples`_ for how to import the files: :: >>> ens1 = Universe(PSF, DCD) >>> ens2 = Universe(PSF, DCD2) >>> HES, details = encore.hes([ens1, ens2]) >>> print HES [[ 0. 38279683.95892926] [ 38279683.95892926 0. ]] You can use the align=True option to align the ensembles first. This will align everything to the current timestep in the first ensemble. Note that this changes the ens1 and ens2 objects: >>> print encore.hes([ens1, ens2], align=True)[0] [[ 0. 6880.34140106] [ 6880.34140106 0. ]] Alternatively, for greater flexibility in how the alignment should be done you can call use an AlignTraj object manually: >>> from MDAnalysis.analysis import align >>> align.AlignTraj(ens1, ens1, select="name CA", in_memory=True).run() >>> align.AlignTraj(ens2, ens1, select="name CA", in_memory=True).run() >>> print encore.hes([ens1, ens2])[0] [[ 0. 7032.19607004] [ 7032.19607004 0. ]] """ if not isinstance(weights, (list, tuple, np.ndarray)) and weights == 'mass': weights = ['mass' for _ in range(len(ensembles))] elif weights is not None: if len(weights) != len(ensembles): raise ValueError("need weights for every ensemble") else: weights = [None for _ in range(len(ensembles))] # Ensure in-memory trajectories either by calling align # with in_memory=True or by directly calling transfer_to_memory # on the universe. if align: for e, w in zip(ensembles, weights): mda.analysis.align.AlignTraj(e, ensembles[0], select=selection, weights=w, in_memory=True).run() else: for ensemble in ensembles: ensemble.transfer_to_memory() if calc_diagonal: pairs_indices = list(trm_indices_diag(len(ensembles))) else: pairs_indices = list(trm_indices_nodiag(len(ensembles))) logging.info("Chosen metric: Harmonic similarity") if cov_estimator == "shrinkage": covariance_estimator = shrinkage_covariance_estimator logging.info(" Covariance matrix estimator: Shrinkage") elif cov_estimator == "ml": covariance_estimator = ml_covariance_estimator logging.info(" Covariance matrix estimator: Maximum Likelihood") else: logging.error( "Covariance estimator {0} is not supported. " "Choose between 'shrinkage' and 'ml'.".format(cov_estimator)) return None out_matrix_eln = len(ensembles) xs = [] sigmas = [] if estimate_error: data = [] ensembles_list = [] for i, ensemble in enumerate(ensembles): ensembles_list.append( get_ensemble_bootstrap_samples( ensemble, samples=bootstrapping_samples)) for t in range(bootstrapping_samples): logging.info("The coordinates will be bootstrapped.") xs = [] sigmas = [] values = np.zeros((out_matrix_eln, out_matrix_eln)) for i, e_orig in enumerate(ensembles): xs.append(np.average( ensembles_list[i][t].trajectory.timeseries( e_orig.select_atoms(selection), format=('fac')), axis=0).flatten()) sigmas.append(covariance_matrix(ensembles_list[i][t], weights=weights[i], estimator=covariance_estimator, selection=selection)) for pair in pairs_indices: value = harmonic_ensemble_similarity(x1=xs[pair[0]], x2=xs[pair[1]], sigma1=sigmas[pair[0]], sigma2=sigmas[pair[1]]) values[pair[0], pair[1]] = value values[pair[1], pair[0]] = value data.append(values) avgs = np.average(data, axis=0) stds = np.std(data, axis=0) return (avgs, stds) # Calculate the parameters for the multivariate normal distribution # of each ensemble values = np.zeros((out_matrix_eln, out_matrix_eln)) for e, w in zip(ensembles, weights): # Extract coordinates from each ensemble coordinates_system = e.trajectory.timeseries(e.select_atoms(selection), format='fac') # Average coordinates in each system xs.append(np.average(coordinates_system, axis=0).flatten()) # Covariance matrices in each system sigmas.append(covariance_matrix(e, weights=w, estimator=covariance_estimator, selection=selection)) for i, j in pairs_indices: value = harmonic_ensemble_similarity(x1=xs[i], x2=xs[j], sigma1=sigmas[i], sigma2=sigmas[j]) values[i, j] = value values[j, i] = value # Save details as required if details: kwds = {} for i in range(out_matrix_eln): kwds['ensemble{0:d}_mean'.format(i + 1)] = xs[i] kwds['ensemble{0:d}_covariance_matrix'.format(i + 1)] = sigmas[i] details = np.array(kwds) else: details = None return values, details def ces(ensembles, selection="name CA", clustering_method=AffinityPropagationNative( preference=-1.0, max_iter=500, convergence_iter=50, damping=0.9, add_noise=True), distance_matrix=None, estimate_error=False, bootstrapping_samples=10, ncores=1, calc_diagonal=False, allow_collapsed_result=True): """ Calculates the Clustering Ensemble Similarity (CES) between ensembles using the Jensen-Shannon divergence as described in [Tiberti2015]_. Parameters ---------- ensembles : list List of ensemble objects for similarity measurements selection : str, optional Atom selection string in the MDAnalysis format. Default is "name CA" clustering_method : A single or a list of instances of the :class:`MDAnalysis.analysis.encore.clustering.ClusteringMethod` classes from the clustering module. Different parameters for the same clustering method can be explored by adding different instances of the same clustering class. Clustering methods options are the Affinity Propagation (default), the DBSCAN and the KMeans. The latter two methods need the sklearn python module installed. distance_matrix : encore.utils.TriangularMatrix Distance matrix clustering methods. If this parameter is not supplied the matrix will be calculated on the fly. estimate_error : bool, optional Whether to perform error estimation (default is False). Only bootstrapping mode is supported. bootstrapping_samples : int, optional number of samples to be used for estimating error. ncores : int, optional Maximum number of cores to be used (default is 1). calc_diagonal : bool, optional Whether to calculate the diagonal of the similarity scores (i.e. the similarities of every ensemble against itself). If this is False (default), 0.0 will be used instead. allow_collapsed_result: bool, optional Whether a return value of a list of one value should be collapsed into just the value. Returns ------- ces, details : numpy.array, numpy.array ces contains the similarity values, arranged in a numpy.array. If only one clustering_method is provided the output will be a 2-dimensional square symmetrical numpy.array. The order of the matrix elements depends on the order of the input ensembles: for instance, if ensemble = [ens1, ens2, ens3] the matrix elements [0,2] and [2,0] will both contain the similarity value between ensembles ens1 and ens3. Elaborating on the previous example, if *n* ensembles are given and *m* clustering_methods are provided the output will be a list of *m* arrays ordered by the input sequence of methods, each with a *n*x*n* symmetrical similarity matrix. details contains information on the clustering: the individual size of each cluster, the centroids and the frames associated with each cluster. Notes ----- In the Jensen-Shannon divergence the upper bound of ln(2) signifies no similarity between the two ensembles, the lower bound, 0.0, signifies identical ensembles. To calculate the CES, the affinity propagation method (or others, if specified) is used to partition the whole space of conformations. The population of each ensemble in each cluster is then taken as a probability density function. Different probability density functions from each ensemble are finally compared using the Jensen-Shannon divergence measure. Examples -------- To calculate the Clustering Ensemble similarity, two ensembles are created as Universe object using a topology file and two trajectories. The topology- and trajectory files used are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples see the module `Examples`_ for how to import the files. Here the simplest case of just two instances of :class:`Universe` is illustrated: :: >>> ens1 = Universe(PSF, DCD) >>> ens2 = Universe(PSF, DCD2) >>> CES,details = encore.ces([ens1,ens2]) >>> print CES [[ 0. 0.68070702] [ 0.68070702 0. ]] To use a different clustering method, set the parameter clustering_method (Note that the sklearn module must be installed). Likewise, different parameters for the same clustering method can be explored by adding different instances of the same clustering class: :: >>> CES, details = encore.ces([ens1,ens2], clustering_method = [encore.DBSCAN(eps=0.45), encore.DBSCAN(eps=0.50)]) >>> print "eps=0.45: ", CES[0] eps=0.45: [[ 0. 0.20447236] [ 0.20447236 0. ]] >>> print "eps=0.5: ", CES[1] eps=0.5: [[ 0. 0.25331629] [ 0.25331629 0. ]]" """ for ensemble in ensembles: ensemble.transfer_to_memory() if calc_diagonal: pairs_indices = list(trm_indices_diag(len(ensembles))) else: pairs_indices = list(trm_indices_nodiag(len(ensembles))) clustering_methods = clustering_method if not hasattr(clustering_method, '__iter__'): clustering_methods = [clustering_method] any_method_accept_distance_matrix = \ np.any([method.accepts_distance_matrix for method in clustering_methods]) all_methods_accept_distance_matrix = \ np.all([method.accepts_distance_matrix for method in clustering_methods]) # Register which ensembles the samples belong to ensemble_assignment = [] for i, ensemble in enumerate(ensembles): ensemble_assignment += [i+1]*len(ensemble.trajectory) # Calculate distance matrix if not provided if any_method_accept_distance_matrix and not distance_matrix: distance_matrix = get_distance_matrix(merge_universes(ensembles), selection=selection, ncores=ncores) if estimate_error: if any_method_accept_distance_matrix: distance_matrix = \ get_distance_matrix_bootstrap_samples( distance_matrix, ensemble_assignment, samples=bootstrapping_samples, ncores=ncores) if not all_methods_accept_distance_matrix: ensembles_list = [] for i, ensemble in enumerate(ensembles): ensembles_list.append( get_ensemble_bootstrap_samples( ensemble, samples=bootstrapping_samples)) ensembles = [] for j in range(bootstrapping_samples): ensembles.append([]) for i, e in enumerate(ensembles_list): ensembles[-1].append(e[j]) else: # if all methods accept distances matrices, duplicate # ensemble so that it matches size of distance matrices # (no need to resample them since they will not be used) ensembles = [ensembles]*bootstrapping_samples # Call clustering procedure ccs = cluster(ensembles, method= clustering_methods, selection=selection, distance_matrix = distance_matrix, ncores = ncores, allow_collapsed_result=False) # Do error analysis if estimate_error: k = 0 values = {} avgs = [] stds = [] for i, p in enumerate(clustering_methods): failed_runs = 0 values[i] = [] for j in range(bootstrapping_samples): if ccs[k].clusters is None: failed_runs += 1 k += 1 continue values[i].append(np.zeros((len(ensembles[j]), len(ensembles[j])))) for pair in pairs_indices: # Calculate dJS this_djs = \ clustering_ensemble_similarity(ccs[k], ensembles[j][ pair[0]], pair[0] + 1, ensembles[j][ pair[1]], pair[1] + 1, selection=selection) values[i][-1][pair[0], pair[1]] = this_djs values[i][-1][pair[1], pair[0]] = this_djs k += 1 outs = np.array(values[i]) avgs.append(np.average(outs, axis=0)) stds.append(np.std(outs, axis=0)) if hasattr(clustering_method, '__iter__'): pass else: avgs = avgs[0] stds = stds[0] return avgs, stds values = [] details = {} for i, p in enumerate(clustering_methods): if ccs[i].clusters is None: continue else: values.append(np.zeros((len(ensembles), len(ensembles)))) for pair in pairs_indices: # Calculate dJS this_val = \ clustering_ensemble_similarity(ccs[i], ensembles[pair[0]], pair[0] + 1, ensembles[pair[1]], pair[1] + 1, selection=selection) values[-1][pair[0], pair[1]] = this_val values[-1][pair[1], pair[0]] = this_val details['clustering'] = ccs if allow_collapsed_result and not hasattr(clustering_method, '__iter__'): values = values[0] return values, details def dres(ensembles, selection="name CA", dimensionality_reduction_method = StochasticProximityEmbeddingNative( dimension=3, distance_cutoff = 1.5, min_lam=0.1, max_lam=2.0, ncycle=100, nstep=10000), distance_matrix=None, nsamples=1000, estimate_error=False, bootstrapping_samples=100, ncores=1, calc_diagonal=False, allow_collapsed_result=True): """ Calculates the Dimensional Reduction Ensemble Similarity (DRES) between ensembles using the Jensen-Shannon divergence as described in [Tiberti2015]_. Parameters ---------- ensembles : list List of ensemble objects for similarity measurements selection : str, optional Atom selection string in the MDAnalysis format. Default is "name CA" dimensionality_reduction_method : A single or a list of instances of the DimensionalityReductionMethod classes from the dimensionality_reduction module. Different parameters for the same method can be explored by adding different instances of the same dimensionality reduction class. Provided methods are the Stochastic Proximity Embedding (default) and the Principal Component Analysis. distance_matrix : encore.utils.TriangularMatrix conformational distance matrix, It will be calculated on the fly from the ensemble data if it is not provided. nsamples : int, optional Number of samples to be drawn from the ensembles (default is 1000). This is used to resample the density estimates and calculate the Jensen-Shannon divergence between ensembles. estimate_error : bool, optional Whether to perform error estimation (default is False) bootstrapping_samples : int, optional number of samples to be used for estimating error. ncores : int, optional Maximum number of cores to be used (default is 1). calc_diagonal : bool, optional Whether to calculate the diagonal of the similarity scores (i.e. the simlarities of every ensemble against itself). If this is False (default), 0.0 will be used instead. allow_collapsed_result: bool, optional Whether a return value of a list of one value should be collapsed into just the value. Returns ------- dres, details : numpy.array, numpy.array dres contains the similarity values, arranged in numpy.array. If one number of dimensions is provided as an integer, the output will be a 2-dimensional square symmetrical numpy.array. The order of the matrix elements depends on the order of the input ensemble: for instance, if ensemble = [ens1, ens2, ens3] then the matrix elements [0,2] and [2,0] will both contain the similarity value between ensembles ens1 and ens3. Elaborating on the previous example, if *n* ensembles are given and *m* methods are provided the output will be a list of *m* arrays ordered by the input sequence of methods, each with a *n*x*n* symmetrical similarity matrix. details provide an array of the reduced_coordinates. Notes ----- To calculate the similarity, the method first projects the ensembles into lower dimensions by using the Stochastic Proximity Embedding (or others) algorithm. A gaussian kernel-based density estimation method is then used to estimate the probability density for each ensemble which is then used to compute the Jensen-Shannon divergence between each pair of ensembles. In the Jensen-Shannon divergence the upper bound of ln(2) signifies no similarity between the two ensembles, the lower bound, 0.0, signifies identical ensembles. However, due to the stochastic nature of the dimensional reduction in :func:`dres`, two identical ensembles will not necessarily result in an exact 0.0 estimate of the similarity but will be very close. For the same reason, calculating the similarity with the :func:`dres` twice will not result in two identical numbers; small differences have to be expected. Examples -------- To calculate the Dimensional Reduction Ensemble similarity, two ensembles are created as Universe objects from a topology file and two trajectories. The topology- and trajectory files used are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples see the module `Examples`_ for how to import the files. Here the simplest case of comparing just two instances of :class:`Universe` is illustrated: :: >>> ens1 = Universe(PSF,DCD) >>> ens2 = Universe(PSF,DCD2) >>> DRES, details = encore.dres([ens1,ens2]) >>> print DRES [[ 0. 0.67996043] [ 0.67996043 0. ]] In addition to the quantitative similarity estimate, the dimensional reduction can easily be visualized, see the ``Example`` section in :mod:`MDAnalysis.analysis.encore.dimensionality_reduction.reduce_dimensionality`` To use a different dimensional reduction methods, simply set the parameter dimensionality_reduction_method. Likewise, different parameters for the same clustering method can be explored by adding different instances of the same method class: :: >>> DRES, details = encore.dres([ens1,ens2], dimensionality_reduction_method = encore.PrincipalComponentAnalysis(dimension=2)) >>> print DRES [[ 0. 0.69314718] [ 0.69314718 0. ]] """ for ensemble in ensembles: ensemble.transfer_to_memory() if calc_diagonal: pairs_indices = list(trm_indices_diag(len(ensembles))) else: pairs_indices = list(trm_indices_nodiag(len(ensembles))) dimensionality_reduction_methods = dimensionality_reduction_method if not hasattr(dimensionality_reduction_method, '__iter__'): dimensionality_reduction_methods = [dimensionality_reduction_method] any_method_accept_distance_matrix = \ np.any([method.accepts_distance_matrix for method in dimensionality_reduction_methods]) all_methods_accept_distance_matrix = \ np.all([method.accepts_distance_matrix for method in dimensionality_reduction_methods]) # Register which ensembles the samples belong to ensemble_assignment = [] for i, ensemble in enumerate(ensembles): ensemble_assignment += [i+1]*len(ensemble.trajectory) # Calculate distance matrix if not provided if any_method_accept_distance_matrix and not distance_matrix: distance_matrix = get_distance_matrix(merge_universes(ensembles), selection=selection, ncores=ncores) if estimate_error: if any_method_accept_distance_matrix: distance_matrix = \ get_distance_matrix_bootstrap_samples( distance_matrix, ensemble_assignment, samples=bootstrapping_samples, ncores=ncores) if not all_methods_accept_distance_matrix: ensembles_list = [] for i, ensemble in enumerate(ensembles): ensembles_list.append( get_ensemble_bootstrap_samples( ensemble, samples=bootstrapping_samples)) ensembles = [] for j in range(bootstrapping_samples): ensembles.append(ensembles_list[i, j] for i in range(ensembles_list.shape[0])) else: # if all methods accept distances matrices, duplicate # ensemble so that it matches size of distance matrices # (no need to resample them since they will not be used) ensembles = [ensembles] * bootstrapping_samples # Call dimensionality reduction procedure coordinates, dim_red_details = reduce_dimensionality( ensembles, method=dimensionality_reduction_methods, selection=selection, distance_matrix = distance_matrix, ncores = ncores, allow_collapsed_result = False) details = {} details["reduced_coordinates"] = coordinates details["dimensionality_reduction_details"] = details if estimate_error: k = 0 values = {} avgs = [] stds = [] for i,method in enumerate(dimensionality_reduction_methods): values[i] = [] for j in range(bootstrapping_samples): values[i].append(np.zeros((len(ensembles[j]), len(ensembles[j])))) kdes, resamples, embedded_ensembles = gen_kde_pdfs( coordinates[k], ensemble_assignment, len(ensembles[j]), nsamples=nsamples) for pair in pairs_indices: this_value = dimred_ensemble_similarity(kdes[pair[0]], resamples[pair[0]], kdes[pair[1]], resamples[pair[1]]) values[i][-1][pair[0], pair[1]] = this_value values[i][-1][pair[1], pair[0]] = this_value k += 1 outs = np.array(values[i]) avgs.append(np.average(outs, axis=0)) stds.append(np.std(outs, axis=0)) if hasattr(dimensionality_reduction_method, '__iter__'): pass else: avgs = avgs[0] stds = stds[0] return avgs, stds values = [] for i,method in enumerate(dimensionality_reduction_methods): values.append(np.zeros((len(ensembles), len(ensembles)))) kdes, resamples, embedded_ensembles = gen_kde_pdfs(coordinates[i], ensemble_assignment, len(ensembles), nsamples=nsamples) for pair in pairs_indices: this_value = dimred_ensemble_similarity(kdes[pair[0]], resamples[pair[0]], kdes[pair[1]], resamples[pair[1]]) values[-1][pair[0], pair[1]] = this_value values[-1][pair[1], pair[0]] = this_value if allow_collapsed_result and not hasattr(dimensionality_reduction_method, '__iter__'): values = values[0] return values, details def ces_convergence(original_ensemble, window_size, selection="name CA", clustering_method=AffinityPropagationNative( preference=-1.0, max_iter=500, convergence_iter=50, damping=0.9, add_noise=True), ncores=1): """ Use the CES to evaluate the convergence of the ensemble/trajectory. CES will be calculated between the whole trajectory contained in an ensemble and windows of such trajectory of increasing sizes, so that the similarity values should gradually drop to zero. The rate at which the value reach zero will be indicative of how much the trajectory keeps on resampling the same regions of the conformational space, and therefore of convergence. Parameters ---------- original_ensemble : :class:`~MDAnalysis.core.universe.Universe` object ensemble containing the trajectory whose convergence has to estimated window_size : int Size of window to be used, in number of frames selection : str, optional Atom selection string in the MDAnalysis format. Default is "name CA" clustering_method : MDAnalysis.analysis.encore.clustering.ClusteringMethod A single or a list of instances of the ClusteringMethod classes from the clustering module. Different parameters for the same clustering method can be explored by adding different instances of the same clustering class. ncores : int, optional Maximum number of cores to be used (default is 1). Returns ------- out : np.array array of shape (number_of_frames / window_size, preference_values). Example -------- To calculate the convergence of a trajectory using the clustering ensemble similarity method a Universe object is created from a topology file and the trajectory. The topology- and trajectory files used are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples see the module `Examples`_ for how to import the files. Here the simplest case of evaluating the convergence is illustrated by splitting the trajectory into a window_size of 10 frames : :: >>> ens1 = Universe(PSF,DCD) >>> ces_conv = encore.ces_convergence(ens1, 10) >>> print ces_conv [[ 0.48194205] [ 0.40284672] [ 0.31699026] [ 0.25220447] [ 0.19829817] [ 0.14642725] [ 0.09911411] [ 0.05667391] [ 0. ]] """ ensembles = prepare_ensembles_for_convergence_increasing_window( original_ensemble, window_size, selection=selection) ccs = cluster(ensembles, selection=selection, method=clustering_method, allow_collapsed_result=False, ncores=ncores) out = [] for cc in ccs: if cc.clusters is None: continue out.append(np.zeros(len(ensembles))) for j, ensemble in enumerate(ensembles): out[-1][j] = cumulative_clustering_ensemble_similarity( cc, len(ensembles), j + 1) out = np.array(out).T return out def dres_convergence(original_ensemble, window_size, selection="name CA", dimensionality_reduction_method = \ StochasticProximityEmbeddingNative( dimension=3, distance_cutoff=1.5, min_lam=0.1, max_lam=2.0, ncycle=100, nstep=10000 ), nsamples=1000, ncores=1): """ Use the DRES to evaluate the convergence of the ensemble/trajectory. DRES will be calculated between the whole trajectory contained in an ensemble and windows of such trajectory of increasing sizes, so that the similarity values should gradually drop to zero. The rate at which the value reach zero will be indicative of how much the trajectory keeps on resampling the same ares of the conformational space, and therefore of convergence. Parameters ---------- original_ensemble : :class:`~MDAnalysis.core.universe.Universe` object ensemble containing the trajectory whose convergence has to estimated window_size : int Size of window to be used, in number of frames selection : str, optional Atom selection string in the MDAnalysis format. Default is "name CA" dimensionality_reduction_method : A single or a list of instances of the DimensionalityReductionMethod classes from the dimensionality_reduction module. Different parameters for the same method can be explored by adding different instances of the same dimensionality reduction class. nsamples : int, optional Number of samples to be drawn from the ensembles (default is 1000). This is akin to the nsamples parameter of dres(). ncores : int, optional Maximum number of cores to be used (default is 1). Returns ------- out : np.array array of shape (number_of_frames / window_size, preference_values). Example -------- To calculate the convergence of a trajectory using the DRES method, a Universe object is created from a topology file and the trajectory. The topology- and trajectory files used are obtained from the MDAnalysis test suite for two different simulations of the protein AdK. To run the examples see the module `Examples`_ for how to import the files. Here the simplest case of evaluating the convergence is illustrated by splitting the trajectory into a window_size of 10 frames : :: >>> ens1 = Universe(PSF,DCD) >>> dres_conv = encore.dres_convergence(ens1, 10) >>> print dres_conv [[ 0.5295528 ] [ 0.40716539] [ 0.31158669] [ 0.25314041] [ 0.20447271] [ 0.13212364] [ 0.06979114] [ 0.05214759] [ 0. ]] Here, the rate at which the values reach zero will be indicative of how much the trajectory keeps on resampling the same ares of the conformational space, and therefore of convergence. """ ensembles = prepare_ensembles_for_convergence_increasing_window( original_ensemble, window_size, selection=selection) coordinates, dimred_details = \ reduce_dimensionality( ensembles, selection=selection, method=dimensionality_reduction_method, allow_collapsed_result=False, ncores=ncores) ensemble_assignment = [] for i, ensemble in enumerate(ensembles): ensemble_assignment += [i+1]*len(ensemble.trajectory) ensemble_assignment = np.array(ensemble_assignment) out = [] for i, _ in enumerate(coordinates): out.append(np.zeros(len(ensembles))) kdes, resamples, embedded_ensembles = \ cumulative_gen_kde_pdfs( coordinates[i], ensemble_assignment=ensemble_assignment, nensembles=len(ensembles), nsamples=nsamples) for j, ensemble in enumerate(ensembles): out[-1][j] = dimred_ensemble_similarity(kdes[-1], resamples[-1], kdes[j], resamples[j]) out = np.array(out).T return out
gpl-2.0
-8,989,456,600,809,411,000
36.353349
190
0.612341
false
grnet/synnefo
snf-cyclades-app/synnefo/volume/management/commands/volume-detach.py
1
3271
# Copyright (C) 2010-2017 GRNET S.A. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import distutils from optparse import make_option from django.core.management.base import CommandError from synnefo.volume import volumes from synnefo.management import common from snf_django.management.utils import parse_bool from snf_django.management.commands import SynnefoCommand from snf_django.lib.api import Credentials HELP_MSG = "Detach a volume from a server" class Command(SynnefoCommand): # umask = 0o007 can_import_settings = True args = "<Volume ID> [<Volume ID> ...]" option_list = SynnefoCommand.option_list + ( make_option( "--wait", dest="wait", default="True", choices=["True", "False"], metavar="True|False", help="Wait for Ganeti jobs to complete."), make_option( "-f", "--force", dest="force", action="store_true", default=False, help="Do not prompt for confirmation"), ) def confirm_detachment(self, force, resource='', args=''): if force is True: return True ids = ', '.join(args) self.stdout.write("Are you sure you want to detach %s %s?" " [Y/N] " % (resource, ids)) try: answer = distutils.util.strtobool(raw_input()) if answer != 1: raise CommandError("Aborting detachment") except ValueError: raise CommandError("Unaccepted input value. Please choose yes/no" " (y/n).") @common.convert_api_faults def handle(self, *args, **options): if not args: raise CommandError("Please provide a volume ID") force = options['force'] message = "volumes" if len(args) > 1 else "volume" self.confirm_detachment(force, message, args) credentials = Credentials("snf-manage", is_admin=True) for volume_id in args: self.stdout.write("\n") try: volume = volumes.detach(volume_id, credentials) wait = parse_bool(options["wait"]) if volume.machine is not None: volume.machine.task_job_id = volume.backendjobid common.wait_server_task(volume.machine, wait, stdout=self.stdout) else: self.stdout.write("Successfully detached volume %s\n" % volume) except CommandError as e: self.stdout.write("Error -- %s\n" % e.message)
gpl-3.0
2,331,411,874,501,529,600
35.752809
77
0.593397
false
princeofdarkness76/libcmaes
python/cma_multiplt.py
1
3443
#!/usr/bin/env python """In a OS shell:: python cma_multiplt.py data_file_name or in a python shell:: import cma_multiplt as lcmaplt lcmaplt.plot(data_file_name) """ # CMA-ES, Covariance Matrix Adaptation Evolution Strategy # Copyright (c) 2014 Inria # Author: Emmanuel Benazera <[email protected]> # # This file is part of libcmaes. # # libcmaes is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # libcmaes is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with libcmaes. If not, see <http://www.gnu.org/licenses/>. ## import sys, pylab, csv import numpy as np from matplotlib.pylab import figure, ioff, ion, subplot, semilogy, hold, grid, axis, title, text, xlabel, isinteractive, draw, gcf # TODO: the above direct imports clutter the interface in a Python shell # number of static variables at the head of every line (i.e. independent of problem dimension) single_values = 4 def plot(filename): # read data into numpy array dat = np.loadtxt(filename,dtype=float) dim = int(np.ceil(np.shape(dat)[1] - single_values) / 3) # we estimate the problem dimension from the data #print dim fvalue = np.absolute(dat[:,0]) fevals = dat[:,1] sigma = dat[:,2] kappa = dat[:,3] if dim > 0: eigenvc = [] for c in range(single_values,single_values+dim): eigenvc.append(c) eigenv = dat[:,eigenvc] stdsc = [] for c in range(single_values+dim,single_values+2*dim): stdsc.append(c) stds = dat[:,stdsc] minstds = np.amin(stds,axis=1) maxstds = np.amax(stds,axis=1) xmeanc = [] for c in range(single_values+2*dim,single_values+3*dim): xmeanc.append(c) xmean = dat[:,xmeanc] # plot data. pylab.rcParams['font.size'] = 10 xlab = "function evaluations" # plot fvalue, sigma, kappa if dim > 0: subplot(221) semilogy(fevals,fvalue,'b') semilogy(fevals,sigma,'g') semilogy(fevals,kappa,'r') if dim > 0: semilogy(fevals,sigma*minstds,'y') semilogy(fevals,sigma*maxstds,'y') title('f-value (blue), sigma (green), kappa (red)') grid(True) if dim == 0: pylab.xlabel(xlab) pylab.show(); msg = ' --- press return to continue --- ' raw_input(msg) if sys.version < '3' else input(msg) sys.exit(1) # plot xmean subplot(222) pylab.plot(fevals,xmean) title('Object Variables (mean, ' + str(dim) + '-D)') grid(True) # plot eigenvalues subplot(223) semilogy(fevals,eigenv,'-b') pylab.xlabel(xlab) title('Eigenvalues') grid(True) # plot std deviations subplot(224) semilogy(fevals,stds) pylab.xlabel(xlab) title('Standard Deviation in all coordinates') grid(True) pylab.show() if __name__ == "__main__": plot(sys.argv[1]) msg = ' --- press return to continue --- ' raw_input(msg) if sys.version < '3' else input(msg)
lgpl-3.0
8,315,465,058,020,034,000
28.93913
130
0.641301
false
eljost/pysisyphus
tests_staging/test_prfo/prfo.py
1
3942
#!/usr/bin/env python3 # Johannes Steinmetzer, April 2019 # See [1] https://pubs.acs.org/doi/pdf/10.1021/j100247a015 # Banerjee, 1985 # [2] # import matplotlib.pyplot as plt import numpy as np import sympy as sym def make_funcs(): x, y, = sym.symbols("x y") f_ = (1 - y)*x**2*sym.exp(-x**2) + (1/2)*y**2 f = sym.lambdify((x, y), f_) g_ = sym.derive_by_array(f_, (x, y)) g = sym.lambdify((x, y), g_) H_ = sym.derive_by_array(g_, (x, y)) H = sym.lambdify((x, y), H_) return f, g, H def plot(f, g, H, xs, ys): X, Y = np.meshgrid(xs, ys) Z = f(X, Y) levels = np.linspace(0, 2, 75) # fig, ax = plt.subplots(figsize=(12, 8)) # cf = ax.contour(X, Y, Z, levels=levels) # fig.colorbar(cf) # plt.show() neg_eigvals = list() grads = list() for x_ in xs: for y_ in ys: hess = H(x_, y_) eigvals = np.linalg.eigvals(hess) if eigvals.min() < 0: neg_eigvals.append((x_, y_)) grad = np.linalg.norm(g(x_, y_)) grads.append(grad) neg_eigvals = np.array(neg_eigvals) grads = np.array(grads) fig, ax = plt.subplots(figsize=(12, 8)) cf = ax.contour(X, Y, Z, levels=levels) ax.scatter(*neg_eigvals.T, c="r", s=15, label="neg. eigval.") ax.scatter(X.T, Y.T, c="b", s=5*grads, label="norm(grad)") ax.legend() fig.colorbar(cf) plt.show() def prfo(x, H_getter, grad_getter): fg = lambda x: -np.array(grad_getter(*x)) Hg = lambda x: np.array(H_getter(*x)) f = fg(x) H = Hg(x) eigvals, eigvecs = np.linalg.eigh(H) neg_eigvals = eigvals < 0 assert neg_eigvals.sum() >= 1 print(f"found {neg_eigvals.sum()} negative eigenvalues") # Transform to eigensystem of hessian f_trans = eigvecs.T.dot(f) mu = 0 max_mat = np.array(((eigvals[mu], -f_trans[mu]), (-f_trans[mu], 0))) min_mat = np.bmat(( (np.diag(eigvals[1:]), -f_trans[1:,None]), (-f_trans[None,1:], [[0]]) )) # Scale eigenvectors of the largest (smallest) eigenvector # of max_mat (min_mat) so the last item is 1. max_evals, max_evecs = np.linalg.eigh(max_mat) # Eigenvalues and -values are sorted, so we just use the last # eigenvector corresponding to the biggest eigenvalue. max_step = max_evecs.T[-1] lambda_max = max_step[-1] max_step = max_step[:-1] / lambda_max min_evals, min_evecs = np.linalg.eigh(min_mat) # Again, as everything is sorted we use the (smalelst) first eigenvalue. min_step = np.asarray(min_evecs.T[0]).flatten() lambda_min = min_step[-1] min_step = min_step[:-1] / lambda_min # Still in the hessian eigensystem prfo_step = np.zeros_like(f) prfo_step[0] = max_step[0] prfo_step[1:] = min_step # Transform back step = eigvecs.dot(prfo_step) norm = np.linalg.norm(step) if norm > 0.1: step = 0.1 * step / norm return step def run(): x0 = (0.5, 0.2) f, g, H = make_funcs() xs = np.linspace(-1.3, 1.3, 50) ys = np.linspace(-0.7, 1.9, 50) plot(f, g, H, xs, ys) prfo(x0, H, g) fq = -np.array(g(*x0)) hess = np.array(H(*x0)) x = x0 opt_xs = [x, ] for i in range(15): step = prfo(x, H, g) print("norm(step)", np.linalg.norm(step)) grad = g(*x) gn = np.linalg.norm(grad) if gn < 1e-5: print("Converged") break x_new = x + step opt_xs.append(x_new) x = x_new opt_xs = np.array(opt_xs) X, Y = np.meshgrid(xs, ys) Z = f(X, Y) levels = np.linspace(0, 2, 75) fig, ax = plt.subplots() cf = ax.contour(X, Y, Z, levels=levels) ax.plot(*opt_xs.T, "ro-", label="TSopt") fig.colorbar(cf) ax.set_xlim(xs.min(), xs.max()) ax.set_ylim(ys.min(), ys.max()) plt.show() if __name__ == "__main__": run()
gpl-3.0
-8,698,081,270,007,493,000
26.381944
76
0.538305
false
leaffan/pynhldb
_check_player_stats.py
1
3669
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse from operator import attrgetter from sqlalchemy import and_, String, cast from db.common import session_scope from db.player import Player from db.team import Team from db.player_game import PlayerGame from db.player_season import PlayerSeason # TODO: command line arguments, comparison of all applicable stat values season = 2016 season_type = 'RS' stat_criterion = 'assists' PS_PG_MAPPING = { 'shots': 'shots_on_goal', 'shifts': 'no_shifts', 'toi': 'toi_overall' } if __name__ == '__main__': # retrieving arguments specified on command line parser = argparse.ArgumentParser( description='Download NHL game summary reports.') parser.add_argument( '-s', '--season', dest='season', required=False, metavar='season to check stats for', help="Season for which stats data will be checked") parser.add_argument( '-t', '--type', dest='season_type', required=False, metavar='season type', choices=['RS', 'PO'], help="Season type, e.g. regular season (RS) or playoffs (PO)") parser.add_argument( '-c', '--criterion', dest='stat_criterion', required=False, choices=[ 'goals', 'assists', 'points', 'pim', 'plus_minus', 'shots', 'hits', 'blocks', 'shifts', 'toi' ], metavar='statistics criterion to be checked', help="Statistics criterion to be checked") args = parser.parse_args() if args.season is not None: season = int(args.season) else: season = 2017 if args.stat_criterion is not None: stat_criterion = args.stat_criterion else: stat_criterion = 'goals' if args.season_type is not None: season_type = args.season_type else: season_type = 'RS' with session_scope() as session: # retrieving player seasons for specified season and season type pseasons = session.query(PlayerSeason).filter( and_( PlayerSeason.season == season, PlayerSeason.season_type == season_type ) ).all() print("+ %d individual season statlines retrieved" % len(pseasons)) for pseason in sorted(pseasons)[:]: plr = Player.find_by_id(pseason.player_id) # retrieving individual player games for specified player # TODO: group by team, i.e. for players with multiple stints with # a team in one season pgames = session.query(PlayerGame).filter( and_( PlayerGame.player_id == pseason.player_id, cast(PlayerGame.game_id, String).like("%d02%%" % season), PlayerGame.team_id == pseason.team_id ) ).all() if stat_criterion in PS_PG_MAPPING: stats_value = sum( map(attrgetter(PS_PG_MAPPING[stat_criterion]), pgames)) else: stats_value = sum(map(attrgetter(stat_criterion), pgames)) team = Team.find_by_id(pseason.team_id) # print(plr, stats_value, getattr(pseason, stat_criterion)) try: assert stats_value == getattr(pseason, stat_criterion) except Exception as e: print(plr) print("\t %s in player games for %s: %d" % ( stat_criterion.capitalize(), team, stats_value)) print("\t %s in player season stats for %s: %d" % ( stat_criterion.capitalize(), team, getattr(pseason, stat_criterion)))
mit
-6,396,806,094,362,557,000
32.972222
77
0.579722
false
pmorerio/curriculum-dropout
double_mnist/DataSet.py
1
3260
"""Functions for reading MNIST data.""" import numpy as np from load import doubleMnist from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.framework import dtypes class DataSet(object): def __init__(self, images, labels, dtype=dtypes.float32, reshape=True): """Construct a DataSet. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. """ dtype = dtypes.as_dtype(dtype).base_dtype if dtype not in (dtypes.uint8, dtypes.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: #assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == dtypes.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(np.float32) #images = np.multiply(images, 1.0 / 255.0) self._images = images-0.5 self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size): """Return the next `batch_size` examples from this data set.""" start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = np.arange(self._num_examples) np.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(data_dir='/data/datasets/', dtype=dtypes.float32, reshape=True, validation_size=1000): train_images, train_labels, test_images, test_labels = doubleMnist(data_dir) validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] train = DataSet(train_images, train_labels, dtype=dtype, reshape=reshape) validation = DataSet(validation_images, validation_labels, dtype=dtype, reshape=reshape) test = DataSet(test_images, test_labels, dtype=dtype, reshape=reshape) return base.Datasets(train=train, validation=validation, test=test)
gpl-3.0
-1,294,835,172,818,895,000
31.277228
81
0.618098
false
metpy/MetPy
metpy/cbook.py
1
3238
# Copyright (c) 2008,2015,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Collection of generally useful utility code from the cookbook.""" import os import numpy as np import pooch from . import __version__ try: string_type = basestring except NameError: string_type = str # TODO: This can go away when we remove Python 2 def is_string_like(s): """Check if an object is a string.""" return isinstance(s, string_type) POOCH = pooch.create( path=pooch.os_cache('metpy'), base_url='https://github.com/Unidata/MetPy/raw/{version}/staticdata/', version='v' + __version__, version_dev='master', env='TEST_DATA_DIR') # Check if we're running from a git clone and if so, bash the path attribute with the path # to git's local data store (un-versioned) # Look for the staticdata directory (i.e. this is a git checkout) if os.path.exists(os.path.join(os.path.dirname(__file__), '..', 'staticdata')): POOCH.path = os.path.join(os.path.dirname(__file__), '..', 'staticdata') POOCH.load_registry(os.path.join(os.path.dirname(__file__), 'static-data-manifest.txt')) def get_test_data(fname, as_file_obj=True): """Access a file from MetPy's collection of test data.""" path = POOCH.fetch(fname) # If we want a file object, open it, trying to guess whether this should be binary mode # or not if as_file_obj: return open(path, 'rb') return path class Registry(object): """Provide a generic function registry. This provides a class to instantiate, which then has a `register` method that can be used as a decorator on functions to register them under a particular name. """ def __init__(self): """Initialize an empty registry.""" self._registry = {} def register(self, name): """Register a callable with the registry under a particular name. Parameters ---------- name : str The name under which to register a function Returns ------- dec : callable A decorator that takes a function and will register it under the name. """ def dec(func): self._registry[name] = func return func return dec def __getitem__(self, name): """Return any callable registered under name.""" return self._registry[name] def broadcast_indices(x, minv, ndim, axis): """Calculate index values to properly broadcast index array within data array. See usage in interp. """ ret = [] for dim in range(ndim): if dim == axis: ret.append(minv) else: broadcast_slice = [np.newaxis] * ndim broadcast_slice[dim] = slice(None) dim_inds = np.arange(x.shape[dim]) ret.append(dim_inds[tuple(broadcast_slice)]) return tuple(ret) def iterable(value): """Determine if value can be iterated over.""" # Special case for pint Quantities if hasattr(value, 'magnitude'): value = value.magnitude return np.iterable(value) __all__ = ('Registry', 'broadcast_indices', 'get_test_data', 'is_string_like', 'iterable')
bsd-3-clause
2,880,880,812,459,009,000
27.910714
91
0.633416
false
catmaid/CATMAID
django/applications/catmaid/control/label.py
1
18054
# -*- coding: utf-8 -*- from collections import defaultdict import json from typing import Any, DefaultDict, List, Optional, Union from django.db import connection from django.http import HttpRequest, Http404, JsonResponse, HttpResponse from django.shortcuts import get_object_or_404 from rest_framework.decorators import api_view from catmaid.models import Project, Class, ClassInstance, Relation, Connector, \ ConnectorClassInstance, UserRole, Treenode, TreenodeClassInstance, \ ChangeRequest from catmaid.control.authentication import (requires_user_role, can_edit_or_fail, PermissionError) from catmaid.control.common import get_request_bool from catmaid.fields import Double3D SKELETON_LABEL_CARDINALITY = { 'soma': 1, } """ The maximum number of relationships specific labels should have with nodes of a single skeleton. This is only used to generate warnings, not enforced. """ def get_link_model(node_type:str) -> Union[ConnectorClassInstance, TreenodeClassInstance]: """ Return the model class that represents the a label link for nodes of the given node type. """ if node_type == 'treenode': return TreenodeClassInstance elif node_type == 'connector': return ConnectorClassInstance else: raise Exception(f'Unknown node type: "{node_type}"') @requires_user_role(UserRole.Annotate) def label_remove(request:HttpRequest, project_id=None) -> JsonResponse: label_id = int(request.POST['label_id']) if request.user.is_superuser: try: label = ClassInstance.objects.get(id=label_id, class_column__class_name='label') except ClassInstance.DoesNotExist: raise ValueError("Could not find label with ID %s" % label_id) is_referenced = TreenodeClassInstance.objects.filter( class_instance_id=label_id).exists() if is_referenced: raise ValueError("Only unreferenced labels are allowed to be removed") else: label.delete() return JsonResponse({ 'deleted_labels': [label_id], 'message': 'success' }) raise PermissionError('Only super users can delete unreferenced labels') @api_view(['GET']) @requires_user_role(UserRole.Browse) def labels_all(request:HttpRequest, project_id=None) -> JsonResponse: """List all labels (front-end node *tags*) in use. --- parameters: - name: project_id description: Project containing node of interest required: true type: - type: array items: type: string description: Labels used in this project required: true """ cursor = connection.cursor() cursor.execute(""" SELECT COALESCE(json_agg(name ORDER BY name), '[]'::json)::text FROM class_instance WHERE project_id = %(project_id)s AND class_id = ( SELECT id FROM class WHERE class_name = 'label' AND project_id = %(project_id)s ) """, { 'project_id': project_id, }) return HttpResponse(cursor.fetchone()[0], content_type='text/json') @api_view(['GET']) @requires_user_role(UserRole.Browse) def labels_all_detail(request:HttpRequest, project_id=None) -> JsonResponse: """List all labels (front-end node *tags*) in use alongside their IDs. --- parameters: - name: project_id description: Project containing node of interest required: true type: - type: array items: type: string description: Labels used in this project required: true """ cursor = connection.cursor() cursor.execute(""" SELECT COALESCE(json_agg(json_build_object('id', id, 'name', name) ORDER BY name), '[]'::json)::text FROM class_instance WHERE project_id = %(project_id)s AND class_id = ( SELECT id FROM class WHERE class_name = 'label' AND project_id = %(project_id)s ) """, { 'project_id': project_id, }) return HttpResponse(cursor.fetchone()[0], content_type='text/json') @api_view(['GET']) @requires_user_role(UserRole.Browse) def get_label_stats(request:HttpRequest, project_id=None) -> JsonResponse: """Get usage statistics of node labels. --- parameters: - name: project_id description: Project from which to get label stats required: true type: - type: array items: type: array items: type: string description: [labelID, labelName, skeletonID, treenodeID] description: Labels used in this project required: true """ labeled_as_relation = Relation.objects.get(project=project_id, relation_name='labeled_as') cursor = connection.cursor() cursor.execute(""" SELECT ci.id, ci.name, t.skeleton_id, t.id FROM class_instance ci JOIN treenode_class_instance tci ON tci.class_instance_id = ci.id JOIN treenode t ON tci.treenode_id = t.id WHERE ci.project_id = %s AND tci.relation_id = %s; """, [project_id, labeled_as_relation.id]) return JsonResponse(cursor.fetchall(), safe=False) @api_view(['GET']) @requires_user_role(UserRole.Browse) def labels_for_node(request:HttpRequest, project_id=None, node_type:Optional[str]=None, node_id=None) -> JsonResponse: """List all labels (front-end node *tags*) attached to a particular node. --- parameters: - name: project_id description: Project containing node of interest required: true - name: node_type description: Either 'connector', 'treenode' or 'location' required: true - name: node_id description: ID of node to list labels for required: true type: - type: array items: type: string description: Labels used on a particular node required: true """ if node_type == 'treenode': qs = TreenodeClassInstance.objects.filter( relation__relation_name='labeled_as', class_instance__class_column__class_name='label', treenode=node_id, project=project_id).select_related('class_instance') elif node_type == 'location' or node_type == 'connector': qs = ConnectorClassInstance.objects.filter( relation__relation_name='labeled_as', class_instance__class_column__class_name='label', connector=node_id, project=project_id).select_related('class_instance') else: raise Http404(f'Unknown node type: "{node_type}"') return JsonResponse([link.class_instance.name for link in qs], safe=False) @requires_user_role(UserRole.Browse) def labels_for_nodes(request:HttpRequest, project_id=None) -> JsonResponse: # Two POST variables, which are each an array of integers stringed together # with commas as separators treenode_ids = request.POST.get('treenode_ids', '').strip() connector_ids = request.POST.get('connector_ids', '').strip() result:DefaultDict[Any, List] = defaultdict(list) cursor = connection.cursor() if treenode_ids: # Could use treenode_ids directly as a string, but it is good to sanitize arguments cursor.execute(''' SELECT treenode.id, class_instance.name FROM treenode, class_instance, treenode_class_instance, relation WHERE relation.id = treenode_class_instance.relation_id AND relation.relation_name = 'labeled_as' AND treenode_class_instance.treenode_id = treenode.id AND class_instance.id = treenode_class_instance.class_instance_id AND treenode.id IN (%s) ''' % ','.join(str(int(x)) for x in treenode_ids.split(','))) # convoluted to sanitize for row in cursor.fetchall(): result[row[0]].append(row[1]) if connector_ids: cursor.execute(''' SELECT connector.id, class_instance.name FROM connector, class_instance, connector_class_instance, relation WHERE relation.id = connector_class_instance.relation_id AND relation.relation_name = 'labeled_as' AND connector_class_instance.connector_id = connector.id AND class_instance.id = connector_class_instance.class_instance_id AND connector.id IN (%s) ''' % ','.join(str(int(x)) for x in connector_ids.split(','))) # convoluted to sanitize for row in cursor.fetchall(): result[row[0]].append(row[1]) return JsonResponse(result) @requires_user_role(UserRole.Annotate) def label_update(request:HttpRequest, project_id, location_id, ntype:str) -> JsonResponse: """ location_id is the ID of a treenode or connector. ntype is either 'treenode' or 'connector'. """ labeled_as_relation = Relation.objects.get(project=project_id, relation_name='labeled_as') p = get_object_or_404(Project, pk=project_id) # TODO will FAIL when a tag contains a comma by itself new_tags = request.POST['tags'].split(',') delete_existing_labels = get_request_bool(request.POST, 'delete_existing', True) kwargs = {'relation': labeled_as_relation, 'class_instance__class_column__class_name': 'label'} table = get_link_model(ntype) if 'treenode' == ntype: kwargs['treenode__id'] = location_id node = Treenode.objects.get(id=location_id) elif 'connector' == ntype: kwargs['connector__id'] = location_id node = Connector.objects.get(id=location_id) if not table: raise Http404(f'Unknown node type: "{ntype}"') # Get the existing list of tags for the tree node/connector and delete any # that are not in the new list. existing_labels = table.objects.filter(**kwargs).select_related('class_instance') existing_names = set(ele.class_instance.name for ele in existing_labels) duplicate_labels = table.objects.filter(**kwargs).exclude(class_instance__name__in=new_tags).select_related('class_instance') other_labels = [] deleted_labels = [] if delete_existing_labels: # Iterate over all labels that should get deleted to check permission # on each one. Remember each label that couldn't be deleted in the # other_labels array. for label in duplicate_labels: try: can_edit_or_fail(request.user, label.id, table._meta.db_table) if remove_label(label.id, ntype): deleted_labels.append(label) else: other_labels.append(label) except: other_labels.append(label) # Create change requests for labels associated to the treenode by other users for label in other_labels: change_request_params = { 'type': 'Remove Tag', 'project': p, 'user': request.user, 'recipient': node.user, 'location': Double3D(node.location_x, node.location_y, node.location_z), ntype: node, 'description': "Remove tag '%s'" % label.class_instance.name, 'validate_action': 'from catmaid.control.label import label_exists\n' + 'is_valid = label_exists(%s, "%s")' % (str(label.id), ntype), 'approve_action': 'from catmaid.control.label import remove_label\n' + 'remove_label(%s, "%s")' % (str(label.id), ntype) } ChangeRequest(**change_request_params).save() # Add any new labels. label_class = Class.objects.get(project=project_id, class_name='label') kwargs = {'user': request.user, 'project': p, 'relation': labeled_as_relation, ntype: node} new_labels = [] for tag_name in new_tags: if len(tag_name) > 0 and tag_name not in existing_names: # Make sure the tag instance exists existing_tags = tuple(ClassInstance.objects.filter( project=p, name=tag_name, class_column=label_class)) if len(existing_tags) < 1: tag = ClassInstance( project=p, name=tag_name, user=request.user, class_column=label_class) tag.save() else: tag = existing_tags[0] # Associate the tag with the treenode/connector. kwargs['class_instance'] = tag tci = table(**kwargs) # creates new TreenodeClassInstance or ConnectorClassInstance tci.save() new_labels.append(tag_name) if node.user != request.user: # Inform the owner of the node that the tag was added and give them the option of removing it. change_request_params = { 'type': 'Add Tag', 'description': 'Added tag \'' + tag_name + '\'', 'project': p, 'user': request.user, 'recipient': node.user, 'location': Double3D(node.location_x, node.location_y, node.location_z), ntype: node, 'validate_action': 'from catmaid.control.label import label_exists\n' + 'is_valid = label_exists(%s, "%s")' % (str(tci.id), ntype), 'reject_action': 'from catmaid.control.label import remove_label\n' + 'remove_label(%s, "%s")' % (str(tci.id), ntype) } ChangeRequest(**change_request_params).save() response = { 'message': 'success', 'new_labels': new_labels, 'duplicate_labels': [label.class_instance.name for label in duplicate_labels if label not in deleted_labels], 'deleted_labels': [label.class_instance.name for label in deleted_labels], } # Check if any labels on this node violate cardinality restrictions on # its skeleton. if 'treenode' == ntype: limited_labels = {label: SKELETON_LABEL_CARDINALITY[label] \ for label in new_tags if label in SKELETON_LABEL_CARDINALITY} if limited_labels: ll_names, ll_maxes = zip(*limited_labels.items()) cursor = connection.cursor() cursor.execute(""" SELECT ll.name, COUNT(tci.treenode_id), ll.max FROM class_instance ci, treenode_class_instance tci, treenode tn, unnest(%s::text[], %s::bigint[]) AS ll (name, max) WHERE ci.name = ll.name AND ci.project_id = %s AND ci.class_id = %s AND tci.class_instance_id = ci.id AND tci.relation_id = %s AND tn.id = tci.treenode_id AND tn.skeleton_id = %s GROUP BY ll.name, ll.max HAVING COUNT(tci.treenode_id) > ll.max """, ( list(ll_names), list(ll_maxes), p.id, label_class.id, labeled_as_relation.id, node.skeleton_id)) if cursor.rowcount: response['warning'] = 'The skeleton has too many of the following tags: ' + \ ', '.join('{0} ({1}, max. {2})'.format(*row) for row in cursor.fetchall()) return JsonResponse(response) def label_exists(label_id, node_type) -> bool: # This checks to see if the exact instance of the tag being applied to a node/connector still exists. # If the tag was removed and added again then this will return False. table = get_link_model(node_type) try: label = table.objects.get(pk=label_id) return True except table.DoesNotExist: return False @requires_user_role(UserRole.Annotate) def remove_label_link(request:HttpRequest, project_id, ntype:str, location_id) -> JsonResponse: label = request.POST.get('tag', None) if not label: raise ValueError("No label parameter given") table = get_link_model(ntype) try: if 'treenode' == ntype: link_id = table.objects.get(treenode_id=location_id, class_instance__name=label).id elif 'connector' == ntype: link_id = table.objects.get(connector_id=location_id, class_instance__name=label).id except TreenodeClassInstance.DoesNotExist: raise ValueError("Node %s does not have a label with name \"%s\"." % (location_id, label)) except ConnectorClassInstance.DoesNotExist: raise ValueError("Connector %s does not have a label with name \"%s\"." % (location_id, label)) if remove_label(link_id, ntype): return JsonResponse({ 'deleted_link': link_id, 'message': 'success' }) else: return JsonResponse({ 'error': 'Could not remove label' }) def remove_label(label_id, node_type:str) -> bool: # This removes an exact instance of a tag being applied to a node/connector, it does not look up the tag by name. # If the tag was removed and added again then this will do nothing and the tag will remain. table = get_link_model(node_type) try: label_link = table.objects.get(pk=label_id) label = label_link.class_instance label_link.delete() # Remove class instance for the deleted label if it is no longer linked # to any nodes. if 0 == label.treenodeclassinstance_set.count() + label.connectorclassinstance_set.count(): label.delete() return True except table.DoesNotExist: return False
gpl-3.0
-8,427,443,500,740,408,000
37.742489
129
0.597153
false
carragom/modoboa
modoboa/admin/tests/test_mapfiles.py
1
2357
"""Test map files generation.""" import os from django.conf import settings from django.core.management import call_command from django.test import TestCase from modoboa.core.utils import parse_map_file from modoboa.lib.test_utils import MapFilesTestCaseMixin class MapFilesTestCase(MapFilesTestCaseMixin, TestCase): """Test case for admin.""" MAP_FILES = [ "sql-domains.cf", "sql-domain-aliases.cf", "sql-aliases.cf", "sql-maintain.cf", "sql-sender-login-mailboxes.cf", "sql-sender-login-mailboxes-extra.cf", "sql-sender-login-aliases.cf" ] def test_map_upgrade(self): """Check that map content is used.""" dburl = "postgres://user:password@localhost/testdb" call_command( "generate_postfix_maps", "--dburl", dburl, "--destdir", self.workdir) # Now upgrade files. Map credentials should be preserved. call_command("generate_postfix_maps", "--destdir", self.workdir) for f in self.MAP_FILES: mapcontent = parse_map_file(os.path.join(self.workdir, f)) self.assertEqual(mapcontent["user"], "user") self.assertEqual(mapcontent["password"], "password") self.assertEqual(mapcontent["dbname"], "testdb") # Now force overwrite, credentials should be different call_command( "generate_postfix_maps", "--destdir", self.workdir, "--force-overwrite") dbsettings = settings.DATABASES["default"] for f in self.MAP_FILES: mapcontent = parse_map_file(os.path.join(self.workdir, f)) if dbsettings["ENGINE"] == "django.db.backends.sqlite3": self.assertEqual(mapcontent["dbpath"], dbsettings["NAME"]) else: self.assertEqual(mapcontent["user"], dbsettings["USER"]) self.assertEqual( mapcontent["password"], dbsettings["PASSWORD"]) self.assertEqual(mapcontent["dbname"], dbsettings["NAME"]) # Now modify a file manually path = os.path.join(self.workdir, "sql-domains.cf") with open(path, "a") as fp: fp.write("pouet") call_command("generate_postfix_maps", "--destdir", self.workdir) with open(path) as fp: content = fp.read() self.assertIn("pouet", content)
isc
7,982,682,497,764,823,000
38.283333
76
0.616886
false
lzw120/django
mysite/mysite/books/models.py
1
1105
from django.db import models # Create your models here. class Publisher(models.Model): name = models.CharField(max_length = 30) address = models.CharField(max_length = 50) city = models.CharField(max_length = 60) state_province = models.CharField(max_length = 30) country = models.CharField(max_length = 50) website = models.URLField() def __str__(self): return '%s, %s, %s'%(self.name, self.address, self.country) class Author(models.Model): salutation = models.CharField(max_length = 10) first_name = models.CharField(max_length = 30) last_name = models.CharField(max_length = 40) email = models.EmailField() headshot = models.ImageField(upload_to = '/tmp') def __str__(self): return '%s %s'%(self.first_name, self.last_name) class Book(models.Model): title = models.CharField(max_length = 100) authors = models.ManyToManyField(Author) publisher = models.ForeignKey(Publisher) publication_date = models.DateField() def __str__(self): return self.title
bsd-3-clause
-6,974,113,854,544,279,000
28.864865
67
0.638009
false
sunlightlabs/sitegeist
sitegeist/data/census/migrations/0003_auto__add_field_tract_B08301_001E__add_field_tract_B08301_002E__add_fi.py
1
39582
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Tract.B08301_001E' db.add_column('census_tract', 'B08301_001E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_002E' db.add_column('census_tract', 'B08301_002E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_003E' db.add_column('census_tract', 'B08301_003E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_004E' db.add_column('census_tract', 'B08301_004E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_005E' db.add_column('census_tract', 'B08301_005E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_006E' db.add_column('census_tract', 'B08301_006E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_007E' db.add_column('census_tract', 'B08301_007E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_008E' db.add_column('census_tract', 'B08301_008E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_009E' db.add_column('census_tract', 'B08301_009E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_010E' db.add_column('census_tract', 'B08301_010E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_011E' db.add_column('census_tract', 'B08301_011E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_012E' db.add_column('census_tract', 'B08301_012E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_013E' db.add_column('census_tract', 'B08301_013E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_014E' db.add_column('census_tract', 'B08301_014E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_015E' db.add_column('census_tract', 'B08301_015E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_016E' db.add_column('census_tract', 'B08301_016E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_017E' db.add_column('census_tract', 'B08301_017E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_018E' db.add_column('census_tract', 'B08301_018E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_019E' db.add_column('census_tract', 'B08301_019E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_020E' db.add_column('census_tract', 'B08301_020E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) # Adding field 'Tract.B08301_021E' db.add_column('census_tract', 'B08301_021E', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=12, decimal_places=2, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Tract.B08301_001E' db.delete_column('census_tract', 'B08301_001E') # Deleting field 'Tract.B08301_002E' db.delete_column('census_tract', 'B08301_002E') # Deleting field 'Tract.B08301_003E' db.delete_column('census_tract', 'B08301_003E') # Deleting field 'Tract.B08301_004E' db.delete_column('census_tract', 'B08301_004E') # Deleting field 'Tract.B08301_005E' db.delete_column('census_tract', 'B08301_005E') # Deleting field 'Tract.B08301_006E' db.delete_column('census_tract', 'B08301_006E') # Deleting field 'Tract.B08301_007E' db.delete_column('census_tract', 'B08301_007E') # Deleting field 'Tract.B08301_008E' db.delete_column('census_tract', 'B08301_008E') # Deleting field 'Tract.B08301_009E' db.delete_column('census_tract', 'B08301_009E') # Deleting field 'Tract.B08301_010E' db.delete_column('census_tract', 'B08301_010E') # Deleting field 'Tract.B08301_011E' db.delete_column('census_tract', 'B08301_011E') # Deleting field 'Tract.B08301_012E' db.delete_column('census_tract', 'B08301_012E') # Deleting field 'Tract.B08301_013E' db.delete_column('census_tract', 'B08301_013E') # Deleting field 'Tract.B08301_014E' db.delete_column('census_tract', 'B08301_014E') # Deleting field 'Tract.B08301_015E' db.delete_column('census_tract', 'B08301_015E') # Deleting field 'Tract.B08301_016E' db.delete_column('census_tract', 'B08301_016E') # Deleting field 'Tract.B08301_017E' db.delete_column('census_tract', 'B08301_017E') # Deleting field 'Tract.B08301_018E' db.delete_column('census_tract', 'B08301_018E') # Deleting field 'Tract.B08301_019E' db.delete_column('census_tract', 'B08301_019E') # Deleting field 'Tract.B08301_020E' db.delete_column('census_tract', 'B08301_020E') # Deleting field 'Tract.B08301_021E' db.delete_column('census_tract', 'B08301_021E') models = { 'census.tract': { 'B01001_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_003E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_004E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_005E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_006E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_007E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_008E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_009E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_010E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_011E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_012E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_013E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_014E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_015E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_016E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_017E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_018E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_019E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_020E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_021E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_022E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_023E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_024E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_025E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_026E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_027E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_028E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_029E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_030E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_031E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_032E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_033E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_034E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_035E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_036E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_037E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_038E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_039E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_040E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_041E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_042E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_043E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_044E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_045E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_046E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_047E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_048E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01001_049E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01002_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B01003_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_003E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_004E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_005E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_006E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_007E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_008E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_009E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_010E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_011E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_012E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_013E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_014E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_015E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_016E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_017E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_018E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_019E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_020E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_021E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_022E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_023E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_024E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_025E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_026E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_027E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_028E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_029E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_030E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_031E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_032E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_033E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_034E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_035E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_036E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_037E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_038E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_039E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_040E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_041E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_042E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_043E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_044E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_045E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_046E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_047E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_048E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_049E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_050E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_051E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_052E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_053E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_054E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_055E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_056E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_057E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_058E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_059E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_060E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_061E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_062E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_063E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_064E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_065E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_066E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_067E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_068E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_069E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_070E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_071E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_072E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_073E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_074E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_075E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_076E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_077E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_078E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_079E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_080E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_081E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_082E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_083E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_084E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_085E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_086E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_087E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_088E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_089E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_090E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_091E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_092E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_093E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_094E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_095E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_096E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_097E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_098E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_099E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_100E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_101E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_102E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_103E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_104E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_105E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_106E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_107E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B04003_108E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_003E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_004E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_005E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_006E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_007E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_008E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_009E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_010E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_011E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_012E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_013E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_014E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_015E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_016E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_017E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_018E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_019E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_020E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B08301_021E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B11005_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B11005_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_003E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_004E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_005E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_006E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_007E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_008E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_009E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_010E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_011E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_012E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_013E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_014E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_015E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_016E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19001_017E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B19013_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25003_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25003_002E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25003_003E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25058_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25064_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'B25077_001E': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'Meta': {'ordering': "('state', 'county', 'tract')", 'object_name': 'Tract'}, 'county': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'tract': ('django.db.models.fields.CharField', [], {'max_length': '12'}) } } complete_apps = ['census']
bsd-3-clause
-209,414,603,140,993,950
98.454774
150
0.562958
false
arunkgupta/gramps
gramps/gen/filters/rules/person/_hasnoteregexp.py
1
1683
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2002-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ #------------------------------------------------------------------------- # # Standard Python modules # #------------------------------------------------------------------------- from ....ggettext import gettext as _ #------------------------------------------------------------------------- # # GRAMPS modules # #------------------------------------------------------------------------- from .._hasnoteregexbase import HasNoteRegexBase #------------------------------------------------------------------------- # "People having notes that contain a substring" #------------------------------------------------------------------------- class HasNoteRegexp(HasNoteRegexBase): name = _('People having notes containing <regular expression>') description = _("Matches people whose notes contain text " "matching a regular expression")
gpl-2.0
4,759,022,016,701,117,000
36.4
75
0.537136
false
Anaethelion/django-mapentity
mapentity/urls.py
1
1523
from django.conf import settings from django.conf.urls import patterns, url, include from . import app_settings from . import registry from .views import (map_screenshot, history_delete, serve_attachment, JSSettings, Convert) if app_settings['ACTION_HISTORY_ENABLED']: from .models import LogEntry _MEDIA_URL = settings.MEDIA_URL.replace(app_settings['ROOT_URL'], '') if _MEDIA_URL.startswith('/'): _MEDIA_URL = _MEDIA_URL[1:] if _MEDIA_URL.endswith('/'): _MEDIA_URL = _MEDIA_URL[:-1] urlpatterns = patterns( '', url(r'^map_screenshot/$', map_screenshot, name='map_screenshot'), url(r'^convert/$', Convert.as_view(), name='convert'), url(r'^history/delete/$', history_delete, name='history_delete'), url(r'^api/auth/', include('rest_framework.urls', namespace='rest_framework')), # See default value in app_settings.JS_SETTINGS. # Will be overriden, most probably. url(r'^api/settings.json$', JSSettings.as_view(), name='js_settings'), ) if settings.DEBUG or app_settings['SENDFILE_HTTP_HEADER']: urlpatterns += patterns( '', url(r'^%s/(?P<path>paperclip/(?P<app_label>.+)_(?P<model_name>.+)/(?P<pk>\d+)/.+)$' % _MEDIA_URL, serve_attachment), ) if app_settings['ACTION_HISTORY_ENABLED']: from mapentity.registry import MapEntityOptions class LogEntryOptions(MapEntityOptions): menu = False dynamic_views = ['List', 'JsonList', 'Layer'] urlpatterns += registry.register(LogEntry, LogEntryOptions)
bsd-3-clause
-6,971,764,326,602,294,000
32.844444
124
0.662508
false
tanmoy7989/candidacy_plot_scripts
plot_transferability.py
1
3441
import os, sys import numpy as np import pickle import matplotlib import matplotlib.cm as cm from matplotlib.ticker import MaxNLocator import matplotlib.pyplot as plt # Build dependencies import setup axlbls = setup.lbl_dict units = setup.units_dict matplotlib.rcParams.update(setup.params) # Data and target locations c25_dir = os.path.expanduser('~/c25ld/data/analysis/feb15_runs_fsw') c40_dir = os.path.expanduser('~/c25ld/data/analysis/transferability/c40') c50_dir = os.path.expanduser('~/c25ld/data/analysis/transferability/c50') c18_dir = os.path.expanduser('~/c25ld/data/analysis/transferability/c18') c12_dir = os.path.expanduser('~/c25ld/data/analysis/transferability/c12') fftypes = ['lj', 'wca'] ### ------------------- Plot_dicts---------------------------------------------- ncases = 4 case_dirs = {1: c12_dir, 2: c18_dir, 3: c40_dir, 4: c50_dir} case_titles = {1: 'c-12 X 3', 2: 'c-18 X 2', 3: 'c-40', 4: 'c-50'} cgtypes = ['SP', 'SPLD', 'LD'] clrs = {'AA': 'red', 'CG': 'blue'} #------------------------ PLotting---------------------------------------------- def make1Dplot(geom_prop, fftype): fig = plt.figure(figsize = (8,4)) axlist = [] nrows = len(cgtypes) ncols = ncases for i, cgtype in enumerate(cgtypes): AA_pickle_name = 'AA_%s_hist1D_%s.pickle' % (fftype, geom_prop) CG_pickle_name = 'CG_%s_%s_hist1D_%s.pickle' % (fftype, cgtype, geom_prop) for case in range(ncases): target_dir = case_dirs[case+1] AA_pickle = os.path.join(target_dir, AA_pickle_name); print AA_pickle CG_pickle = os.path.join(target_dir, CG_pickle_name); print cgtype, CG_pickle AA_data = pickle.load(open(AA_pickle, 'r')) CG_data = pickle.load(open(CG_pickle, 'r')) ax = fig.add_subplot(nrows, ncols, i*ncases + case+1) if not case == 3: ax.plot(AA_data['bin_centers']+3*case, AA_data['bin_vals'], linestyle = 'solid', color = clrs['AA'], label = 'AA') ax.plot(CG_data['bin_centers']+3*case, CG_data['bin_vals'], linestyle = 'dashed',color = clrs['CG'], label = 'CG') else: ax.plot(AA_data['bin_centers']+3*case, AA_data['bin_vals'], linestyle = 'solid', color = clrs['AA'], label = '') ax.plot(CG_data['bin_centers']+3*case, CG_data['bin_vals'], linestyle = 'dashed',color = clrs['CG'], label = cgtype) ax.xaxis.labelpad = 0.5 ax.yaxis.labelpad = 0.5 if not case == 0: ax.set_yticklabels([]) ax.set_ylabel('') elif case == 0: ax.yaxis.set_major_locator(MaxNLocator(nbins = 5, prune = 'both')) if not i == 2: ax.set_xticklabels([]) ax.set_xlabel('') elif i == 2: ax.xaxis.set_major_locator(MaxNLocator(nbins = 5, prune = 'both')) if i == 0: ax.set_title(case_titles[case+1]) if i == 0 and case == 0: loc = 'best' if geom_prop == 'SASA_atom' else 2 leg = ax.legend(loc = loc, prop = {'size': 8}) leg.get_frame().set_linewidth(0.0) leg.get_frame().set_alpha(0.3) if case == 3: leg = ax.legend(loc = 1, prop = {'size': 8}) leg.get_frame().set_linewidth(0.0) leg.get_frame().set_alpha(0.3) plt.subplots_adjust(hspace = 0.0, wspace = 0.0, bottom = 0.15) plt.figtext(0.45, 0.030, axlbls[geom_prop], fontsize = 'large') plt.figtext(0.035, 0.40, axlbls['dist'], fontsize = 'large', rotation = 90) geom_prop = sys.argv[1] fftype = sys.argv[2] make1Dplot(geom_prop, fftype) plt.savefig('%s_%s_transferability.%s' % (geom_prop, fftype, setup.params['savefig.format'])) #plt.show()
gpl-2.0
1,855,099,025,161,924,000
36.402174
120
0.617262
false
JohnUrban/poreminion
poreminion/winner.py
1
3048
from poretools import * import sys ## Nov 4, 2014 ## TODO for pipeline Id want both the "details" and the "fa" files ## This would require a --saveas option -- and it will save both. ## Might also want it to save the fastas to their own files when --each #logging import logging logger = logging.getLogger('poreminion') def run(parser, args): longest_size = 0 longest_size_2d = 0 longest_size_template = 0 longest_size_complement = 0 longest_read = None longest_read_2d = None longest_read_template = None longest_read_complement = None if args.type == 'each': each=True args.type='all' else: each=False for fast5 in Fast5FileSet(args.files): fas = fast5.get_fastas(args.type) for fa in fas: readtype = fa.name.split()[0].split("_")[-1] readlen = len(fa.seq) if each: if readtype == "template" and readlen > longest_size_template: longest_size_template = readlen longest_read_template = fa elif (readtype == "2D" or readtype == "twodirections") and readlen > longest_size_2d: longest_size_2d = readlen longest_read_2d = fa elif readtype == "complement" and readlen > longest_size_complement: longest_size_complement = readlen longest_read_complement = fa else: if fa and len(fa.seq) > longest_size: longest_size = len(fa.seq) longest_read = fa fast5.close() ## logger.info("Wow, it's a whopper: your longest read is %d bases." % (longest_size,)) if args.details: if each: if longest_read_2d: print ("\t").join([longest_read_2d.name.split()[0], str(longest_size_2d)]) if longest_read_template: print ("\t").join([longest_read_template.name.split()[0], str(longest_size_template)]) if longest_read_complement: print ("\t").join([longest_read_complement.name.split()[0], str(longest_size_complement)]) else: print ("\t").join([longest_read.name.split()[0], str(longest_size)]) else: if each: if longest_read_2d: print longest_read_2d if longest_read_template: print longest_read_template if longest_read_complement: print longest_read_complement else: print longest_read
mit
6,711,413,643,191,066,000
41.929577
122
0.472441
false
jeremiedecock/snippets
python/urllib/get_html_setup_http_headers_basic_shutil_version.py
1
3087
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2015 Jérémie DECOCK (http://www.jdhp.org) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Warning: # The urllib2 (from Python 2.x) module has been split across several modules in # Python 3 named "urllib.request" and "urllib.error". # Urllib (and thus urllib2) is part of the Python3 standard library but this is # not the case for urllib3 ! # "urllib and urllib2 have little to do with each other. They were designed to # be independent and standalone, each solving a different scope of problems, # and urllib3 follows in a similar vein." # Online documentation: # - https://docs.python.org/3/library/urllib.request.html # - http://stackoverflow.com/questions/24226781/changing-user-agent-in-python-3-for-urrlib-urlopen # - http://stackoverflow.com/questions/802134/changing-user-agent-on-urllib2-urlopen import argparse import shutil import urllib.request HTTP_HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0 Iceweasel/38.2.1', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3', 'Accept-Encoding': 'gzip, deflate' } def main(): """Main function""" # PARSE OPTIONS ########################################################### parser = argparse.ArgumentParser(description='An urllib snippet.') parser.add_argument("url", nargs=1, metavar="URL", help="The URL of the webpage to parse.") args = parser.parse_args() url = args.url[0] print("URL:", url) print() # HTTP REQUEST ############################################################ # See http://stackoverflow.com/questions/7243750/download-file-from-web-in-python-3 http_request = urllib.request.Request(url, data=None, headers=HTTP_HEADERS) with urllib.request.urlopen(http_request) as http_response, open('out.html', 'wb') as out_file: shutil.copyfileobj(http_response, out_file) if __name__ == '__main__': main()
mit
8,728,841,368,720,717,000
41.260274
106
0.694327
false
openstack/storlets
tests/functional/python/test_broken_storlet.py
1
1840
# Copyright (c) 2010-2016 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from swiftclient import client from swiftclient.exceptions import ClientException from tests.functional.python import StorletPythonFunctionalTest import unittest from storlets.agent.common.utils import DEFAULT_PY2 class TestBrokenStorlet(StorletPythonFunctionalTest): def setUp(self, version=None): self.storlet_log = 'broken.log' self.content = 'abcdefghijklmonp' self.additional_headers = {} super(TestBrokenStorlet, self).setUp( storlet_dir='broken', storlet_name='broken.py', storlet_main='broken.BrokenStorlet', storlet_file='source.txt', version=version) def test_get(self): resp = dict() req_headers = {'X-Run-Storlet': self.storlet_name} with self.assertRaises(ClientException) as cm: client.get_object( self.url, self.token, self.container, self.storlet_file, response_dict=resp, headers=req_headers) e = cm.exception self.assertEqual(e.http_status, 503) class TestBrokenStorletRunPy2(TestBrokenStorlet): def setUp(self): super(TestBrokenStorletRunPy2, self).setUp(version=DEFAULT_PY2) if __name__ == '__main__': unittest.main()
apache-2.0
-372,028,531,723,554,370
34.384615
72
0.694565
false
bolkedebruin/airflow
airflow/operators/email_operator.py
1
1165
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module is deprecated. Please use `airflow.providers.email.operators.email`.""" import warnings # pylint: disable=unused-import from airflow.providers.email.operators.email import EmailOperator # noqa warnings.warn( "This module is deprecated. Please use `airflow.providers.email.operators.email`.", DeprecationWarning, stacklevel=2 )
apache-2.0
-6,296,083,574,177,880,000
39.172414
87
0.764807
false
anaran/olympia
apps/users/helpers.py
1
3160
import random from django.utils.encoding import smart_unicode import jinja2 from jingo import register, env from tower import ugettext as _ import amo @register.function def emaillink(email, title=None, klass=None): if not email: return "" fallback = email[::-1] # reverse # inject junk somewhere i = random.randint(0, len(email) - 1) fallback = u"%s%s%s" % (jinja2.escape(fallback[:i]), u'<span class="i">null</span>', jinja2.escape(fallback[i:])) # replace @ and . fallback = fallback.replace('@', '&#x0040;').replace('.', '&#x002E;') if title: title = jinja2.escape(title) else: title = '<span class="emaillink">%s</span>' % fallback node = (u'<a%s href="#">%s</a><span class="emaillink js-hidden">%s</span>' % ((' class="%s"' % klass) if klass else '', title, fallback)) return jinja2.Markup(node) @register.filter def user_link(user): if not user: return '' return jinja2.Markup(_user_link(user)) @register.function def users_list(users, size=None, max_text_length=None): if not users: return '' tail = [] if size and size < len(users): users = users[:size] tail = [_('others', 'user_list_others')] if max_text_length: user_list = [_user_link(user, max_text_length) for user in users] else: user_list = map(_user_link, users) return jinja2.Markup(', '.join(user_list + tail)) @register.inclusion_tag('users/helpers/addon_users_list.html') @jinja2.contextfunction def addon_users_list(context, addon): ctx = dict(context.items()) ctx.update(addon=addon, amo=amo) return ctx def _user_link(user, max_text_length=None): if isinstance(user, basestring): return user username = user.name if max_text_length and len(user.name) > max_text_length: username = user.name[:max_text_length].strip() + '...' return u'<a href="%s" title="%s">%s</a>' % ( user.get_url_path(), jinja2.escape(user.name), jinja2.escape(smart_unicode(username))) @register.filter @jinja2.contextfilter def user_vcard(context, user, table_class='person-info', is_profile=False): c = dict(context.items()) c.update({ 'profile': user, 'table_class': table_class, 'is_profile': is_profile }) t = env.get_template('users/vcard.html').render(c) return jinja2.Markup(t) @register.inclusion_tag('users/report_abuse.html') @jinja2.contextfunction def user_report_abuse(context, hide, profile): new = dict(context.items()) new.update({'hide': hide, 'profile': profile, 'abuse_form': context['abuse_form']}) return new @register.filter def contribution_type(type): return amo.CONTRIB_TYPES[type] @register.function def user_data(amo_user): anonymous, currency, pre_auth, email = True, 'USD', False, '' if hasattr(amo_user, 'is_anonymous'): anonymous = amo_user.is_anonymous() if not anonymous: email = amo_user.email return {'anonymous': anonymous, 'currency': currency, 'email': email}
bsd-3-clause
-6,784,174,316,505,766,000
26.008547
78
0.618671
false
schollii/pypubsub
src/pubsub/utils/misc.py
1
1149
""" Provides useful functions and classes. Most useful are probably printTreeDocs and printTreeSpec. :copyright: Copyright since 2006 by Oliver Schoenborn, all rights reserved. :license: BSD, see LICENSE_BSD_Simple.txt for details. """ import sys __all__ = ('printImported', 'Callback') def printImported(): """Output a list of pubsub modules imported so far""" ll = [mod for mod in sys.modules.keys() if mod.find('pubsub') >= 0] # iter keys ok ll.sort() print('\n'.join(ll)) class Callback: """ This can be used to wrap functions that are referenced by class data if the data should be called as a function. E.g. given >>> def func(): pass >>> class A: ....def __init__(self): self.a = func then doing >>> boo=A(); boo.a() will fail since Python will try to call a() as a method of boo, whereas a() is a free function. But if you have instead "self.a = Callback(func)", then "boo.a()" works as expected. """ def __init__(self, callable_obj): self.__callable = callable_obj def __call__(self, *args, **kwargs): return self.__callable(*args, **kwargs)
bsd-2-clause
7,571,920,059,007,329,000
28.461538
87
0.637946
false
Acurus/PVDB
pnvdb/models/objekt_type.py
1
5437
# -*- coding: utf-8 -*- """ Provide the ObjektType class """ import json import logging from .util import _fetch_data, build_name2id class ObjektType(object): """ Class for individual nvdb-object types. (Data catalogue) """ def __init__(self, nvdb, objekt_type, meta=None): self.nvdb = nvdb if isinstance(objekt_type, int): self.objekt_type = int(objekt_type) else: if isinstance(self.nvdb.name2id, dict): self.objekt_type = self.nvdb.name2id['nvdb_objekter'][objekt_type.lower()] else: build_name2id(self.nvdb) try: self.objekt_type = self.nvdb.name2id['nvdb_objekter'][objekt_type.lower()] except KeyError: logging.error('Objekt_type not found: {}'.format(objekt_type)) return None self.data = None self.metadata logging.debug("Initialized: ObjektType({})".format(self.objekt_type)) def __repr__(self): return "ObjektType({})".format(self.objekt_type) def _update_data(self): self.data = _fetch_data( self.nvdb, 'vegobjekttyper/{}'.format(self.objekt_type)) def dump(self, file_format='json'): """ Function for dumping raw API-result for object. :param file_format: Type of data to dump as. json or xml :type file_format: string :returns: str """ if file_format.lower() == 'json': if not self.data: self.data = _fetch_data(self.nvdb, 'vegobjekttyper/{}' .format(self.objekt_type)) return self.data elif file_format.lower() == 'xml': xml_data = _fetch_data(self.nvdb, 'vegobjekttyper/{}.xml' .format(self.objekt_type), file_format='xml') return xml_data @property def relasjonstyper(self): """ :Attribute type: Dict :keys: ['barn', 'foreldre'] :keys in keys: ['type', 'relasjonstype', 'id'] """ if not self.data: self._update_data() return self.data['relasjonstyper'] def egenskapstype(self, egenskapstype_id=None): """ Function for returning egenskap based on id :param egenskaps_id: Id of the property type you want returned :type egenskaps_id: int :returns: dict unless property is not found. Then None is returned. """ egenskapstype = list( filter(lambda x: x['id'] == egenskapstype_id, self.egenskapstyper)) if len(egenskapstype): return egenskapstype[0] return None @property def egenskapstyper(self): """ :Attribute type: list of Dicts :keys: ['liste', 'navn', 'datatype_tekst', 'veiledning', 'beskrivelse', 'sensitivitet', 'sosinvdbnavn', 'objektliste_dato', 'feltlengde', 'sorteringsnummer', 'id', 'styringsparametere', 'viktighet', 'viktighet_tekst', 'datatype'] """ if not self.data: self._update_data() return self.data['egenskapstyper'] @property def styringsparametere(self): """ :Attribute type: Dict :keys: ['abstrakt_type', 'sideposisjon_relevant', 'retning_relevant', 'ajourhold_splitt', 'må_ha_mor', 'avledet', 'sektype_20k', 'er_dataserie', 'høyde_relevant', 'dekningsgrad', 'overlapp, 'filtrering', 'flyttbar', 'tidsrom_relevant', 'ajourhold_i', 'kjørefelt_relevant'] """ if not self.data: self._update_data() return self.data['styringsparametere'] @property def metadata(self): """ .. todo:: Possible bug. Returns None after reading other attributes :Attribute type: Dict :keys: ['navn', 'veiledning', 'beskrivelse', 'objektliste_dato', 'sosinvdbnavn', 'sorteringsnummer', 'stedfesting', 'id', 'kategorier'] """ #if self.meta: # return self.meta if not self.data: self._update_data() metadata = self.data.copy() del metadata['egenskapstyper'] del metadata['relasjonstyper'] del metadata['styringsparametere'] self.meta = metadata return self.meta @property def barn(self): """ :Attribute type: list of :class:`.ObjektType` """ if not self.data: self._update_data() realasjoner = self.data['relasjonstyper'] return [ObjektType(self.nvdb, i['type']['id']) for i in realasjoner['barn']] @property def foreldre(self): """ :Attribute type: list of :class:`.ObjektType` """ if not self.data: self._update_data() realasjoner = self.data['relasjonstyper'] return [ObjektType(self.nvdb, i['type']['id']) for i in realasjoner['foreldre']] def i_objekt_lista(self): """ Function checking of an object type is part of "Objektlista" :returns: bool """ if not self.data: self._update_data() if 'objektliste_dato' in self.data: return True else: return False
mit
-8,835,561,781,146,418,000
31.73494
97
0.54251
false
leapp-to/prototype
leapp/libraries/stdlib/call.py
1
9615
from __future__ import print_function import codecs import os from leapp.compat import string_types from leapp.libraries.stdlib.eventloop import POLL_HUP, POLL_IN, POLL_OUT, POLL_PRI, EventLoop STDIN = 0 STDOUT = 1 STDERR = 2 def _multiplex(ep, read_fds, callback_raw, callback_linebuffered, encoding='utf-8', write=None, timeout=1, buffer_size=80): # Register the file descriptors (stdout + stderr) with the epoll object # so that we'll get notifications when data are ready to read for fd in read_fds: ep.register(fd, POLL_IN | POLL_PRI) # Register a write file descriptor if write: ep.register(write[0], POLL_OUT) # Offset into the `write[1]` buffer where we should continue writing to stdin offset = 0 # We need to keep track of which file descriptors have already been drained # because when running under `pytest` it seems that all `epoll` events are # received twice so using solely `ep.unregister(fd)` will not work hupped = set() # Total number of 'hupped' file descriptors we expect num_expected = len(read_fds) + (1 if write else 0) # Set up file-descriptor specific buffers where we'll buffer the output buf = {fd: bytes() for fd in read_fds} if encoding: linebufs = {fd: '' for fd in read_fds} decoders = {fd: codecs.getincrementaldecoder(encoding)() for fd in read_fds} def _get_fd_type(fd): """ File descriptors passed via `read_fds` are always representing [stdout, stderr], since arrays start at index 0, we need to add 1 to get the real symbolic value `STDOUT` or `STDERR`. """ return read_fds.index(fd) + 1 while not ep.closed and len(hupped) != num_expected: events = ep.poll(timeout) for fd, event in events: if event == POLL_HUP: hupped.add(fd) ep.unregister(fd) if event & (POLL_IN | POLL_PRI) != 0: fd_type = _get_fd_type(fd) read = os.read(fd, buffer_size) callback_raw((fd, fd_type), read) if encoding: linebufs[fd] += decoders[fd].decode(read) while '\n' in linebufs[fd]: pre, post = linebufs[fd].split('\n', 1) linebufs[fd] = post callback_linebuffered((fd, fd_type), pre) buf[fd] += read elif event == POLL_OUT: # Write data to pipe, `os.write` returns the number of bytes written, # thus we need to offset wfd, data = write if fd in hupped: continue offset += os.write(fd, data[offset:]) if offset == len(data): os.close(fd) hupped.add(fd) ep.unregister(fd) # Process leftovers from line buffering if encoding: for (fd, lb) in linebufs.items(): if lb: # [stdout, stderr] is relayed, stdout=1 a stderr=2 # as the field starting indexed is 0, so the +1 needs to be added callback_linebuffered((fd, _get_fd_type(fd)), lb) return buf def _call(command, callback_raw=lambda fd, value: None, callback_linebuffered=lambda fd, value: None, encoding='utf-8', poll_timeout=1, read_buffer_size=80, stdin=None, env=None): """ :param command: The command to execute :type command: list, tuple :param encoding: Decode output or encode input using this encoding :type encoding: str :param poll_timeout: Timeout used by epoll to wait certain amount of time for activity on file descriptors :type poll_timeout: int :param read_buffer_size: How much data are we going to read from the file descriptors each iteration. The default value of 80 chosen to correspond with suggested terminal line width :type read_buffer_size: int :param callback_raw: Callback executed on raw data (before decoding) as they are read from file descriptors :type callback_raw: ((fd: int, fd_type: int), buffer: bytes) -> None :param callback_linebuffered: Callback executed on decoded lines as they are read from the file descriptors :type callback_linebuffered: ((fd: int, fd_type: int), value: str) -> None :param stdin: String or a file descriptor that will be written to stdin of the child process :type stdin: int, str :param env: Environment variables to use for execution of the command :type env: dict :return: {'stdout' : stdout, 'stderr': stderr, 'signal': signal, 'exit_code': exit_code, 'pid': pid} :rtype: dict """ if not isinstance(command, (list, tuple)): raise TypeError('command parameter has to be a list or tuple') if not callable(callback_raw) or\ (getattr(callback_raw, '__code__', None) and callback_raw.__code__.co_argcount != 2): raise TypeError('callback_raw parameter has to be callable accepting 2 parameters') if (not callable(callback_linebuffered) or (getattr(callback_linebuffered, '__code__', None) and # noqa callback_linebuffered.__code__.co_argcount != 2)): raise TypeError('callback_linebuffered parameter has to be callable accepting 2 parameters') if not isinstance(poll_timeout, int) or isinstance(poll_timeout, bool) or poll_timeout <= 0: raise ValueError('poll_timeout parameter has to be integer greater than zero') if not isinstance(read_buffer_size, int) or isinstance(read_buffer_size, bool) or read_buffer_size <= 0: raise ValueError('read_buffer_size parameter has to be integer greater than zero') environ = os.environ if env: if not isinstance(env, dict): raise TypeError('env parameter has to be a dictionary') environ.update(env) # Create a separate pipe for stdout/stderr # # The parent process is going to use the read-end of the pipes for reading child's # stdout/stderr, whereas the forked children process is going to use the write-end # of the pipes to pass data to parent stdout, wstdout = os.pipe() stderr, wstderr = os.pipe() # We allow stdin to be either a file descriptor (int) or a string and we need to handle # each of those cases differently # # The case where stdin is a file descriptor is simple -- we just need to dup2() the file # descriptor into the child process' stdin. If stdin is a string, though, the situation is # more complicated and we need to create another pipe and write the string to the pipe # in the _multiplex function fstdin, wstdin = None, None stdin_fd, stdin_str = False, False if isinstance(stdin, int): stdin_fd = True elif isinstance(stdin, string_types): stdin_str = True fstdin, wstdin = os.pipe() elif stdin is not None: raise TypeError('stdin has to be either a file descriptor or string, not "{!s}"'.format(type(stdin))) ep = EventLoop() pid = os.fork() if pid > 0: # Since pid > 0, we are in the parent process, so we have to close the write-end # file descriptors os.close(wstdout) os.close(wstderr) # Extra optional arguments for the `_multiplex` function extra = {} if stdin_str: # NOTE: We use the same encoding for encoding the stdin string as well which might # be suboptimal in certain cases -- there are two possible solutions: # 1) Rather than string require the `stdin` parameter to already be bytes() # 2) Add another parameter for stdin_encoding extra['write'] = (wstdin, stdin.encode(encoding)) os.close(fstdin) read = _multiplex( ep, [stdout, stderr], callback_raw, callback_linebuffered, timeout=poll_timeout, buffer_size=read_buffer_size, encoding=encoding, **extra ) # Wait for the child to finish pid, status = os.wait() ep.close() # The status variable is a 16 bit value, where the lower octet describes # the signal which killed the process, and the upper octet is the exit code signal, exit_code = status & 0xff, status >> 8 & 0xff ret = {'signal': signal, 'exit_code': exit_code, 'pid': pid} if not encoding: ret.update({ 'stdout': read[stdout], 'stderr': read[stderr] }) else: ret.update({ 'stdout': read[stdout].decode(encoding), 'stderr': read[stderr].decode(encoding) }) return ret if pid == 0: # We are in the child process, so we need to close the read-end of the pipes # and assign our pipe's file descriptors to stdout/stderr # # If `stdin` is specified as a file descriptor, we simply pass it as the stdin of the # child. In case `stdin` is specified as a string, we pass in the read end of our # stdin pipe if stdin_fd: os.dup2(stdin, STDIN) if stdin_str: os.close(wstdin) os.dup2(fstdin, STDIN) os.close(stdout) os.close(stderr) os.dup2(wstdout, STDOUT) os.dup2(wstderr, STDERR) os.execvpe(command[0], command, env=environ)
lgpl-2.1
-6,441,964,478,796,059,000
43.308756
115
0.604784
false
our-city-app/oca-backend
src/solutions/common/integrations/timeblockr/models.py
1
1400
# -*- coding: utf-8 -*- # Copyright 2021 Green Valley NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.5@@ from google.appengine.ext import ndb from google.appengine.ext.ndb.model import TextProperty, BooleanProperty, JsonProperty, StringProperty from rogerthat.dal import parent_ndb_key from rogerthat.models import NdbModel from rogerthat.rpc import users class TimeblockrSettings(NdbModel): url = TextProperty(default=None) api_key = TextProperty(default=None) enabled = BooleanProperty(default=False) @property def service_user(self): return users.User(self.key.id()) @classmethod def create_key(cls, service_user): return ndb.Key(cls, service_user.email(), parent=parent_ndb_key(service_user)) class TimeblockrAppointment(NdbModel): data = JsonProperty(required=True) user_email = StringProperty(required=True)
apache-2.0
6,770,343,659,073,634,000
32.333333
102
0.747143
false
mganeva/mantid
scripts/AbinsModules/IOmodule.py
1
19826
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + from __future__ import (absolute_import, division, print_function) import h5py import numpy as np import six import subprocess import shutil import hashlib import io import AbinsModules import os from mantid.kernel import logger, ConfigService # noinspection PyMethodMayBeStatic class IOmodule(object): """ Class for Abins I/O HDF file operations. """ def __init__(self, input_filename=None, group_name=None): if isinstance(input_filename, str): self._input_filename = input_filename try: self._hash_input_filename = self.calculate_ab_initio_file_hash() except IOError as err: logger.error(str(err)) except ValueError as err: logger.error(str(err)) # extract name of file from the full path in the platform independent way filename = os.path.basename(self._input_filename) if filename.strip() == "": raise ValueError("Name of the file cannot be an empty string.") else: raise ValueError("Invalid name of input file. String was expected.") if isinstance(group_name, str): self._group_name = group_name else: raise ValueError("Invalid name of the group. String was expected.") core_name = filename[0:filename.rfind(".")] save_dir_path = ConfigService.getString("defaultsave.directory") self._hdf_filename = os.path.join(save_dir_path, core_name + ".hdf5") # name of hdf file try: self._advanced_parameters = self._get_advanced_parameters() except IOError as err: logger.error(str(err)) except ValueError as err: logger.error(str(err)) self._attributes = {} # attributes for group # data for group; they are expected to be numpy arrays or # complex data sets which have the form of Python dictionaries or list of Python # dictionaries self._data = {} # Fields which have a form of empty dictionaries have to be set by an inheriting class. def _valid_hash(self): """ Checks if input ab initio file and content of HDF file are consistent. :returns: True if consistent, otherwise False. """ saved_hash = self.load(list_of_attributes=["hash"]) return self._hash_input_filename == saved_hash["attributes"]["hash"] def _valid_advanced_parameters(self): """ In case of rerun checks if advanced parameters haven't changed. Returns: True if they are the same, otherwise False """ previous_advanced_parameters = self.load(list_of_attributes=["advanced_parameters"]) return self._advanced_parameters == previous_advanced_parameters["attributes"]["advanced_parameters"] def get_previous_ab_initio_program(self): """ :returns: name of ab initio program which was used in the previous calculation. """ return self.load(list_of_attributes=["ab_initio_program"])["attributes"]["ab_initio_program"] def check_previous_data(self): """ Checks if currently used ab initio file is the same as in the previous calculations. Also checks if currently used parameters from AbinsParameters are the same as in the previous calculations. """ if not self._valid_hash(): raise ValueError("Different ab initio file was used in the previous calculations.") if not self._valid_advanced_parameters(): raise ValueError("Different advanced parameters were used in the previous calculations.") def erase_hdf_file(self): """ Erases content of hdf file. """ with h5py.File(self._hdf_filename, 'w') as hdf_file: hdf_file.close() def add_attribute(self, name=None, value=None): """ Adds attribute to the dictionary with other attributes. :param name: name of the attribute :param value: value of the attribute. More about attributes at: http://docs.h5py.org/en/latest/high/attr.html """ self._attributes[name] = value def add_file_attributes(self): """ Adds file attributes: filename and hash of file to the collection of all attributes. """ self.add_attribute("hash", self._hash_input_filename) self.add_attribute("filename", self._input_filename) self.add_attribute("advanced_parameters", self._advanced_parameters) def add_data(self, name=None, value=None): """ Adds data to the dictionary with the collection of other datasets. :param name: name of dataset :param value: value of dataset. Numpy array is expected or complex data sets which have the form of Python dictionaries or list of Python dictionaries. More about dataset at: http://docs.h5py.org/en/latest/high/dataset.html """ self._data[name] = value def _save_attributes(self, group=None): """ Saves attributes to an hdf file. :param group: group to which attributes should be saved. """ for name in self._attributes: if isinstance(self._attributes[name], (np.int64, int, np.float64, float, str, bytes)): group.attrs[name] = self._attributes[name] else: raise ValueError("Invalid value of attribute. String, " "int or bytes was expected! " + name + "= (invalid type : %s) " % type(self._attributes[name])) def _recursively_save_structured_data_to_group(self, hdf_file=None, path=None, dic=None): """ Helper function for saving structured data into an hdf file. :param hdf_file: hdf file object :param path: absolute name of the group :param dic: dictionary to be added """ for key, item in dic.items(): folder = path + key if isinstance(item, (np.int64, int, np.float64, float, str, bytes)): if folder in hdf_file: del hdf_file[folder] hdf_file[folder] = item elif isinstance(item, np.ndarray): if folder in hdf_file: del hdf_file[folder] hdf_file.create_dataset(name=folder, data=item, compression="gzip", compression_opts=9) elif isinstance(item, dict): self._recursively_save_structured_data_to_group(hdf_file=hdf_file, path=folder + '/', dic=item) else: raise ValueError('Cannot save %s type' % type(item)) def _save_data(self, hdf_file=None, group=None): """ Saves data in the form of numpy array, dictionary or list of dictionaries. In case data in group already exist it will be overridden. :param hdf_file: hdf file object to which data should be saved :param group: group to which data should be saved. """ for item in self._data: # case data to save is a simple numpy array if isinstance(self._data[item], np.ndarray): if item in group: del group[item] group.create_dataset(name=item, data=self._data[item], compression="gzip", compression_opts=9) # case data to save has form of list elif isinstance(self._data[item], list): num_el = len(self._data[item]) for el in range(num_el): self._recursively_save_structured_data_to_group(hdf_file=hdf_file, path=group.name + "/" + item + "/%s/" % el, dic=self._data[item][el]) # case data has a form of dictionary elif isinstance(self._data[item], dict): self._recursively_save_structured_data_to_group(hdf_file=hdf_file, path=group.name + "/" + item + "/", dic=self._data[item]) else: raise ValueError('Invalid structured dataset. Cannot save %s type' % type(item)) def save(self): """ Saves datasets and attributes to an hdf file. """ with h5py.File(self._hdf_filename, 'a') as hdf_file: if self._group_name not in hdf_file: hdf_file.create_group(self._group_name) group = hdf_file[self._group_name] if len(self._attributes.keys()) > 0: self._save_attributes(group=group) if len(self._data.keys()) > 0: self._save_data(hdf_file=hdf_file, group=group) # Repack if possible to reclaim disk space try: path = os.getcwd() temp_file = self._hdf_filename[self._hdf_filename.find(".")] + "temphgfrt.hdf5" subprocess.check_call(["h5repack" + " -i " + os.path.join(path, self._hdf_filename) + " -o " + os.path.join(path, temp_file)]) shutil.move(os.path.join(path, temp_file), os.path.join(path, self._hdf_filename)) except OSError: pass # repacking failed: no h5repack installed in the system... but we proceed except IOError: pass except RuntimeError: pass # noinspection PyMethodMayBeStatic def _list_of_str(self, list_str=None): """ Checks if all elements of the list are strings. :param list_str: list to check :returns: True if each entry in the list is a string, otherwise False """ if list_str is None: return False if not (isinstance(list_str, list) and all([isinstance(list_str[item], str) for item in range(len(list_str))])): raise ValueError("Invalid list of items to load!") return True def _load_attributes(self, list_of_attributes=None, group=None): """ Loads collection of attributes from the given group. :param list_of_attributes: :param group: name of group :returns: dictionary with attributes """ results = {} for item in list_of_attributes: results[item] = self._load_attribute(name=item, group=group) return results def _load_attribute(self, name=None, group=None): """ Loads attribute. :param group: group in hdf file :param name: name of attribute :returns: value of attribute """ if name not in group.attrs: raise ValueError("Attribute %s in not present in %s file." % (name, self._hdf_filename)) else: return group.attrs[name] def _load_datasets(self, hdf_file=None, list_of_datasets=None, group=None): """ Loads structured dataset which has a form of Python dictionary directly from an hdf file. :param hdf_file: hdf file object from which data should be loaded :param list_of_datasets: list with names of datasets to be loaded :param group: name of group :returns: dictionary with datasets """ results = {} for item in list_of_datasets: results[item] = self._load_dataset(hdf_file=hdf_file, name=item, group=group) return results # noinspection PyMethodMayBeStatic def _get_subgrp_name(self, path=None): """ Extracts name of the particular subgroup from the absolute name. :param path: absolute name of subgroup :returns: name of subgroup """ reversed_path = path[::-1] end = reversed_path.find("/") return reversed_path[:end] # noinspection PyMethodMayBeStatic def _convert_unicode_to_string_core(self, item=None): """ Convert atom element from unicode to str but only in Python 2 where unicode handling is a mess :param item: converts unicode to item :returns: converted element """ assert isinstance(item, six.text_type) return item.encode('utf-8') def _convert_unicode_to_str(self, object_to_check=None): """ Converts unicode to Python str, works for nested dicts and lists (recursive algorithm). Only required for Python 2 where a mismatch with unicode/str objects is a problem for dictionary lookup :param object_to_check: dictionary, or list with names which should be converted from unicode to string. """ if six.PY2: if isinstance(object_to_check, list): for i in range(len(object_to_check)): object_to_check[i] = self._convert_unicode_to_str(object_to_check[i]) elif isinstance(object_to_check, dict): for item in object_to_check: if isinstance(item, six.text_type): decoded_item = self._convert_unicode_to_string_core(item) item_dict = object_to_check[item] del object_to_check[item] object_to_check[decoded_item] = item_dict item = decoded_item object_to_check[item] = self._convert_unicode_to_str(object_to_check[item]) # unicode element elif isinstance(object_to_check, six.text_type): object_to_check = self._convert_unicode_to_string_core(object_to_check) return object_to_check def _load_dataset(self, hdf_file=None, name=None, group=None): """ Loads one structured dataset. :param hdf_file: hdf file object from which structured dataset should be loaded. :param name: name of dataset :param group: name of the main group :returns: loaded dataset """ if not isinstance(name, str): raise ValueError("Invalid name of the dataset.") if name in group: hdf_group = group[name] else: raise ValueError("Invalid name of the dataset.") # noinspection PyUnresolvedReferences,PyProtectedMember if isinstance(hdf_group, h5py._hl.dataset.Dataset): return hdf_group.value elif all([self._get_subgrp_name(path=hdf_group[el].name).isdigit() for el in hdf_group.keys()]): structured_dataset_list = [] # here we make an assumption about keys which have a numeric values; we assume that always : 1, 2, 3... Max num_keys = len(hdf_group.keys()) for item in range(num_keys): structured_dataset_list.append( self._recursively_load_dict_contents_from_group(hdf_file=hdf_file, path=hdf_group.name + "/%s" % item)) return self._convert_unicode_to_str(object_to_check=structured_dataset_list) else: return self._convert_unicode_to_str( object_to_check=self._recursively_load_dict_contents_from_group(hdf_file=hdf_file, path=hdf_group.name + "/")) def _recursively_load_dict_contents_from_group(self, hdf_file=None, path=None): """ Loads structure dataset which has form of Python dictionary. :param hdf_file: hdf file object from which dataset is loaded :param path: path to dataset in hdf file :returns: dictionary which was loaded from hdf file """ ans = {} for key, item in hdf_file[path].items(): # noinspection PyUnresolvedReferences,PyProtectedMember,PyProtectedMember if isinstance(item, h5py._hl.dataset.Dataset): ans[key] = item.value elif isinstance(item, h5py._hl.group.Group): ans[key] = self._recursively_load_dict_contents_from_group(hdf_file, path + key + '/') return ans def load(self, list_of_attributes=None, list_of_datasets=None): """ Loads all necessary data. :param list_of_attributes: list of attributes to load (list of strings with names of attributes) :param list_of_datasets: list of datasets to load. It is a list of strings with names of datasets. Datasets have a form of numpy arrays. Datasets can also have a form of Python dictionary or list of Python dictionaries. :returns: dictionary with both datasets and attributes """ results = {} with h5py.File(self._hdf_filename, 'r') as hdf_file: if self._group_name not in hdf_file: raise ValueError("No group %s in hdf file." % self._group_name) group = hdf_file[self._group_name] if self._list_of_str(list_str=list_of_attributes): results["attributes"] = self._load_attributes(list_of_attributes=list_of_attributes, group=group) if self._list_of_str(list_str=list_of_datasets): results["datasets"] = self._load_datasets(hdf_file=hdf_file, list_of_datasets=list_of_datasets, group=group) return results # noinspection PyMethodMayBeStatic def _calculate_hash(self, filename=None): """ Calculates hash of a file defined by filename according to sha512 algorithm. :param filename: name of a file to calculate hash (full path to the file) :returns: string representation of hash """ return self._calculate_hash_core(filename=filename, coding='utf-8') def _calculate_hash_core(self, filename=None, coding=None): """ Helper function for calculating hash. :param filename: name of a file to calculate hash :returns: string representation of hash """ hash_calculator = hashlib.sha512() # chop content of a file into chunks to minimize memory consumption for hash creation buf = AbinsModules.AbinsConstants.BUF with io.open(file=filename, mode="rt", encoding=coding, buffering=buf, newline=None) as f: while True: data = f.read(buf) if not data: break hash_calculator.update(data.encode(coding)) return hash_calculator.hexdigest() def _get_advanced_parameters(self): """ Calculates hash of file with advanced parameters. Returns: string representation of hash for file with advanced parameters which contains only hexadecimal digits """ h = self._calculate_hash(filename=AbinsModules.AbinsParameters.__file__.replace(".pyc", ".py")) return h def get_input_filename(self): return self._input_filename def calculate_ab_initio_file_hash(self): """ This method calculates hash of the file with vibrational or phonon data according to SHA-2 algorithm from hashlib library: sha512. :returns: string representation of hash for file with vibrational data which contains only hexadecimal digits """ return self._calculate_hash(filename=self._input_filename)
gpl-3.0
4,607,640,801,790,355,000
41.004237
119
0.58968
false
kickstandproject/ripcord
ripcord/tests/db/domain/test_create.py
1
2322
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2013 PolyBeacon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from ripcord.common import exception from ripcord.openstack.common import uuidutils from ripcord.tests.db import base class TestCase(base.FunctionalTest): def test_all_fields(self): row = { 'disabled': True, 'id': 1, 'name': 'example.org', 'project_id': '793491dd5fa8477eb2d6a820193a183b', 'updated_at': None, 'user_id': '02d99a62af974b26b510c3564ba84644', } res = self.db_api.create_domain( name=row['name'], disabled=row['disabled'], project_id=row['project_id'], user_id=row['user_id']) for k, v in row.iteritems(): self.assertEqual(res[k], v) self.assertEqual(type(res['created_at']), datetime.datetime) self.assertTrue(uuidutils.is_uuid_like(res['uuid'])) # NOTE(pabelanger): We add 3 because of created_at, uuid, and hidden # sqlalchemy object. self.assertEqual(len(res.__dict__), len(row) + 3) def test_domain_already_exists(self): row = { 'disabled': False, 'name': 'example.org', 'project_id': '793491dd5fa8477eb2d6a820193a183b', 'updated_at': None, 'user_id': '02d99a62af974b26b510c3564ba84644', } res = self.db_api.create_domain( name=row['name'], disabled=row['disabled'], project_id=row['project_id'], user_id=row['user_id']) self.assertTrue(res) self.assertRaises( exception.DomainAlreadyExists, self.db_api.create_domain, name=row['name'], project_id=row['project_id'], user_id=row['user_id'])
apache-2.0
3,682,769,967,210,309,000
34.723077
76
0.625754
false
wbthomason/cs3240-onedir
server.py
1
10957
import os import json import time from subprocess import call from twisted.web.server import Site, NOT_DONE_YET from twisted.internet import ssl, reactor from twisted.web.resource import Resource import db_access class FileServerResource(Resource): def __init__(self): Resource.__init__(self) self.db = db_access.connect() self.putChild("user", UserResource(self.db)) self.putChild("check", CheckResource(self.db)) self.putChild("files", FileResource(self.db)) class UserResource(Resource): def __init__(self, db): Resource.__init__(self) self.db = db def getChild(self, path, request): return self def render_POST(self, request): urlparts = request.path.split("/") if urlparts[-1] == 'auth': # Need to escape the args for security email = request.args['email'][0] passw = request.args['passw'][0] print "Doing auth stuff! Got data: %s, %s" % (email, passw) if not db_access.login(email, passw, self.db): logstr = "%f: Failed login for %s from %s\n" % (time.time(), email, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps({'auth_key': 0}) elif urlparts[-1] == 'create': # Same as above email = request.args['email'][0] passw = request.args['passw'][0] print "Creating a user! Got data: %s, %s" % (email, passw) db_access.create_account(email, passw, self.db) logstr = "%f: Created %s as requested by %s\n" % (time.time(), email, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) # Assume both email and password are being changed. No change is # accomplished by passing the same arg for new. elif urlparts[-1] == 'update': old_email = request.args['old_email'][0] old_password = request.args['old_password'][0] new_email = request.args['new_email'][0] new_password = request.args['new_password'][0] if db_access.login(old_email, old_password, self.db): db_access.update_account(old_email, old_password, new_email, new_password, self.db) call("mv " + "./files/%s" % old_email + " ./files/%s" % new_email, shell=True) logstr = "%f: Updated from %s and %s to %s and %s from IP %s\n" % ( time.time(), old_email, old_password, new_email, new_password, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) elif urlparts[-1] == 'delete': email = request.args['email'][0] password = request.args['password'][0] if db_access.login(email, password, self.db): db_access.delete_account(email, self.db) call("rm -rf " + "./files/%s" % email, shell=True) logstr = "%f: Deleted %s from %s\n" % (time.time(), email, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps({'auth_key': 0}) elif urlparts[-1] == 'admin': password = request.args['password'][0] if db_access.login('admin', password, self.db): command = request.args['command'][0] if command == "users": logstr = "%f: Admin listed users from %s\n" % (time.time(), str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps({'users': db_access.list_users(self.db)}) elif command == "files": email = request.args['email'][0] logstr = "%f: Admin listed users from %s\n" % (time.time(), str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps({'files': db_access.get_files(email, self.db)}) elif command == "change": old_email = request.args['old_email'][0] new_email = request.args['new_email'][0] new_password = request.args['new_password'][0] db_access.update_account(old_email, '', new_email, new_password, self.db) logstr = "%f: Admin updated from %s to %s and %s from IP %s\n" % ( time.time(), old_email, new_email, new_password, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) elif command == "remove": email = request.args['email'][0] db_access.delete_account(email, self.db) logstr = "%f: Admin deleted %s from %s\n" % (time.time(), email, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps({'auth_key': 1}) class CheckResource(Resource): def __init__(self, db): Resource.__init__(self) self.db = db def render_GET(self, request): id = db_access.get_id(request.args['email'][0], self.db) user = request.args['email'][0] last_check = request.args['last_check'][0] cur = self.db.cursor() checker = "SELECT file FROM user_files WHERE user_id='%d' AND last_update > '%f'" % (int(id), float(last_check)) cur.execute(checker) res = cur.fetchall() data = [item[0] for item in res] print data logstr = "%f: Check request for %s from %s\n" % (time.time(), user, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) return json.dumps(data) # May need to fix things to stream properly. class FileResource(Resource): def __init__(self, db): Resource.__init__(self) self.db = db # Gets file specified in query string. I *think* this streams it, though I need to verify that. def render_GET(self, request): directory = "./files/%s/" % request.args['username'][0] # Behind the scenes work to get versioning data username = request.args['username'][0] file_name_raw = request.args['filename'][0] version = int(db_access.get_version(username, file_name_raw, self.db)) file_parts = file_name_raw.split(".") file_parts.append(str(version)) # Python is a beautiful, terrifying language file_name = "." file_name = file_name.join(file_parts) request.setHeader('Content-Length', os.stat(directory + file_name).st_size) with open("./files/%s/%s" % (username, file_name), 'rb') as readFile: request.write(readFile.read()) logstr = "%f: Request for %s for %s from %s\n" % ( time.time(), file_name_raw, username, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) request.finish() return NOT_DONE_YET # Again, I *think* this streams the file (though, now that I think about it, content.read() definitely doesn't...) def render_PUT(self, request): file_name_raw = request.args['filename'][0] username = request.args['username'][0] # Get the version number, increment it by 1, and secretly make that the file name version = int(db_access.get_version(username, file_name_raw, self.db)) file_parts = file_name_raw.split(".") file_parts.append(str(version + 1)) # Python is a beautful, terrifying language file_name = "." file_name = file_name.join(file_parts) # Update the DB with current version db_access.inc_version(username, file_name_raw, version, self.db) # Because nested one-liners are great coding practice morepath = '/'.join(file_name.split('/')[:-1]) directory = "./files/%s/" % request.args['username'][0] full_dir = directory + morepath + '/' if not os.path.exists(full_dir): os.makedirs(full_dir) with open(directory + file_name, 'wb') as writeFile: writeFile.write(request.content.read()) cur = self.db.cursor() user_id = int(db_access.get_id(username, self.db)) file_size = int(request.args['filesize'][0]) updated = "INSERT INTO user_files (user_id, file, size, last_update) VALUES ('%(uid)d', '%(file)s', '%(size)d', '%(time)f') " \ "ON DUPLICATE KEY UPDATE last_update='%(time)f', size='%(size)d'" \ % {'uid': user_id, 'file': file_name_raw, 'size': file_size, 'time': time.time()} # "UPDATE user_files SET last_update='%f' WHERE file='%s' AND user_id='%d'" % (time.time(), file_name, user_id) cur.execute(updated) self.db.commit() request.write('received') logstr = "%f: %s pushed %s from %s\n" % (time.time(), username, file_name_raw, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) request.finish() return NOT_DONE_YET def render_DELETE(self, request): file_name_raw = request.args['filename'][0] username = request.args['username'][0] cur = self.db.cursor() user_id = int(db_access.get_id(username, self.db)) killswitch = "DELETE FROM user_files WHERE user_id='%(uid)d' AND file='%(filename)s'" % {'uid': user_id, 'filename': file_name_raw} cur.execute(killswitch) self.db.commit() directory = "./files/%s/" % request.args['username'][0] print directory + file_name_raw + '*' call("rm -rf " + directory + file_name_raw + '*', shell=True) logstr = "%f: %s deleted %s from %s\n" % (time.time(), username, file_name_raw, str(request.getClientIP())) print logstr with open('./log.txt', 'a') as log: log.write(logstr) request.finish() return NOT_DONE_YET if __name__ == "__main__": resource = FileServerResource() factory = Site(resource) with open("onedirkey.crt") as keycert: cert = ssl.PrivateCertificate.loadPEM(keycert.read()) reactor.listenTCP(3240, factory) print "Listening on 3240." reactor.run()
mit
-6,860,069,166,581,717,000
42.137795
135
0.544401
false
jbrambleDC/simulacrum
simulacrum/dataset.py
1
6131
import pandas as pd from faker import Faker from uuid import uuid4 import logging import numpy as np from datetime import datetime class DataSet: def __init__(self, length, **kwargs): self.data = self.create(length, **kwargs) def get_data(self): return self.data def num_data(self, ty, length): a = ty['min'] b = ty['max'] return pd.Series(np.random.uniform(a, b, length)) def num_int(self, ty, length): a = ty['min'] b = ty['max'] return pd.Series(np.random.random_integers(a, b, length)) def norm_data(self, ty, length): if len(ty) == 1: return pd.Series(np.random.standard_normal(size=length)) mean = ty['mean'] sd = ty['sd'] return pd.Series(np.random.normal(mean, sd, length)) def exp_data(self, ty, length): B = float(1) / float(ty['lam']) return pd.Series(np.random.exponential(B, length)) def binom_data(self, ty, length): n = ty['n'] p = ty['p'] return pd.Series(np.random.binomial(n, p, length)) def poisson_data(self, ty, length): lam = ty['lam'] return pd.Series(np.random.poisson(lam, length)) def text_data(self, ty, length): res = [] f = Faker() for _ in range(0, length - 1): res.append(f.text()) return pd.Series(res) def name_data(self, ty, length): res = [] f = Faker() for _ in range(0, length - 1): res.append(f.name()) return pd.Series(res) def cats_data(self, ty, length): res = [] f = Faker() for _ in range(0, length - 1): res.append(f.name()) return pd.Series(res) def date_data(self, ty, length): # TODO add error handling and validation for date strings passed res = [] f = Faker() begin = datetime.strptime(ty['begin'], '%Y-%m-%d') end = datetime.strptime(ty['end'], '%Y-%m-%d') for _ in range(0, length - 1): res.append(f.date_time_between_dates(datetime_start=begin, datetime_end=end)) return pd.Series(res) def coords_data(self, ty, length): lat_min = ty['lat_min'] lat_max = ty['lat_max'] lon_min = ty['lon_min'] lon_max = ty['lon_max'] if lat_min not in range(-90, 90) or lat_min > lat_max: logging.error('lat ranges unacceptable; not in [-90, 90] or lat_min > lat_max') if lon_min not in range(-180, 180) or lon_min > lon_max: logging.error('lon ranges unacceptable; not in [-180, 180] or lon_min > lon_max') return pd.Series(zip(np.random.uniform(lat_min, lat_max, length), np.random.uniform(lat_min, lat_max, length))) def address_data(self, ty, length): res = [] f = Faker() for _ in range(0, length - 1): res.append(f.address()) return pd.Series(res) def zip_data(self, ty, length): res = [] f = Faker() for _ in range(0, length - 1): res.append(f.name()) return pd.Series(res) @staticmethod def uuid_data(ty, length): """ Generate a column of random uuids. :param length: The number of uuids. :type length: int. :return: The column of uuids. :rtype: pd.Series """ return pd.Series(list(map(lambda _: uuid4(), range(length)))) @staticmethod def faker_data(ty, length): """ Generate a column based on any faker data type. :param ty: A configuration for the faker data. Must contain faker provider and related args as dict. :param length: The number of rows wanted. :param ty: dict. :param length: The number of rows wanted. :type length: int. :return: The column of Faker data. :rtype: pd.Series """ try: provider = ty["provider"] del ty["provider"] return pd.Series(list(map(lambda _: getattr(Faker(), provider)(**ty), range(length)))) except KeyError: raise KeyError("You have to define the Faker provider.") except AttributeError: raise AttributeError("Faker().{}() is not a valid Faker provider.".format(provider)) def create(self, length, cols=None, types=None, coltypes=None): series_res = {} ops = {'num': self.num_data, 'int': self.num_int, 'norm': self.norm_data, 'exp': self.exp_data, 'bin': self.binom_data, 'pois': self.poisson_data, 'txt': self.text_data, 'name': self.name_data, 'addr': self.address_data, 'zip': self.zip_data, 'date': self.date_data, 'uuid': self.uuid_data, 'faker': self.faker_data} if cols and types and coltypes: logging.error('coltypes should not be defined when cols and types are defined') if (cols and not types) or (types and not cols): logging.error('cols and types must both be defined together, as lists') if (cols and types): validate_types(types) if len(cols) != len(types): logging.error('cols and types must be lists of equal length') for i in len(cols): series_res[col[i]] = ops[types[i]['type']](types[i], length) else: if not coltypes: logging.error('please define either cols and types or coltypes') # Assure iteritems compatibility throught 2.7 and 3+ try: coltypes_items = coltypes.iteritems() except AttributeError: coltypes_items = coltypes.items() for col, typ in coltypes_items: data_builder = ops[typ['type']] del typ['type'] series_res[col] = data_builder(typ, length) return pd.DataFrame(series_res)
mit
-2,031,743,940,998,872,600
32.140541
108
0.536617
false
monovertex/ygorganizer
ygo_cards/tasks/sets.py
1
8666
from __future__ import absolute_import from celery import shared_task from ygo_cards.models import Card, CardVersion, CardSet, UserCardVersion from ygo_core.utils import process_string, slugify from ygo_variables.models import Variable import unirest import urllib from ygo_cards.utils import sn_has_language_code, sn_normalize from ygo_cards.tasks.utils import output_print import dateutil.parser from django.db import transaction API_SETS_LIST = 'http://yugiohprices.com/api/card_sets' API_SET = 'http://yugiohprices.com/api/set_data/{}' def combine_prices(a, b): if a['status'] != 'success': return b elif b['status'] != 'success': return a elif a['status'] != 'success' and b['status'] != 'success': return None a = a['data']['prices'] b = b['data']['prices'] preferred_source = None try: a['updated_at'] = dateutil.parser.parse(a['updated_at']) except: preferred_source = b try: b['updated_at'] = dateutil.parser.parse(b['updated_at']) except: preferred_source = a if preferred_source is None: preferred_source = (a if a['updated_at'] > b['updated_at'] else b) result = { 'status': 'success', 'data': { 'prices': { 'updated_at': preferred_source['updated_at'] } } } for key in a: result_value = None try: value_a = float(a[key]) except: value_a = None try: value_b = float(b[key]) except: value_b = None if value_a is None and value_b is not None: result_value = value_b elif value_a is not None and value_b is None: result_value = value_a elif value_a is not None and value_b is not None: if key == 'low': result_value = min(value_a, value_b) elif key == 'high': result_value = max(value_a, value_b) else: result_value = float(preferred_source[key]) result['data']['prices'][key] = result_value return result @shared_task def fetch_sets(output=output_print): step = Variable.objects.get(identifier='fetch-sets-step') # Fetch a list of sets and mark all sets for updating. if step.get() == 0: output(u' ### Fetching list of sets ### ') created = 0 response = unirest.get(API_SETS_LIST) if response.code == 200: for name in response.body: name = process_string(name) try: CardSet.objects.create(name=name) created += 1 except: pass CardSet.objects.all().update(requires_update=True) step.set(1) output(u'{:d} card sets created.'.format(created)) else: output(u'API call failed') # Fetch individual sets. elif step.get() == 1: output(u' --- Fetching individual sets --- ') limit = Variable.objects.get(identifier='fetch-sets-max').get() sets = CardSet.objects.filter(requires_update=True)[:limit] if len(sets): for card_set in sets: output(u'Fetching set {}...'.format(card_set.name)) response = unirest.get( API_SET.format(urllib.quote(card_set.name, ''))) if (response.code != 200 or response.body['status'] != 'success'): output(u'=!= Failed set {}.'.format(card_set.name)) card_set.with_language_code = True for card_source in response.body['data']['cards']: for card_version_source in card_source['numbers']: if not sn_has_language_code( card_version_source['print_tag']): card_set.with_language_code = False break if not card_set.with_language_code: break new_card_versions = {} for card_source in response.body['data']['cards']: card = Card.find_or_create( name=card_source['name'] ) for card_version_source in card_source['numbers']: set_number = sn_normalize( card_version_source['print_tag'], card_set.with_language_code ) rarity = slugify(card_version_source['rarity']) if (set_number in new_card_versions and rarity in new_card_versions[ set_number]): new_card_versions[set_number][rarity][ 'price_data'] = (combine_prices( new_card_versions[ set_number][rarity]['price_data'], card_version_source['price_data'])) else: if set_number not in new_card_versions: new_card_versions[set_number] = {} new_card_versions[set_number][rarity] = { 'card': card } new_card_versions[set_number][ rarity]['price_data'] = ( card_version_source['price_data']) new_card_versions_pks = [] for set_number, rarities in new_card_versions.iteritems(): for rarity, data in rarities.iteritems(): card_version = CardVersion.find_or_create( set_number=set_number, card=data['card'], card_set=card_set, rarity=rarity ) new_card_versions_pks.append(card_version.pk) data['card_version'] = card_version if (data['price_data'] and data['price_data']['status'] == 'success'): card_version.set_prices(data['price_data']) else: card_version.clear_prices() junk_card_versions = ( CardVersion.objects .filter(card_set=card_set) .exclude(pk__in=new_card_versions_pks) .prefetch_related('user_card_versions', 'user_card_versions__user') .select_related('rarity') .distinct()) for card_version in junk_card_versions: set_number = sn_normalize( card_version.set_number, card_set.with_language_code ) rarity = unicode(card_version.rarity.identifier) try: actual_card_version = new_card_versions[set_number][ rarity]['card_version'] except: try: actual_card_version = new_card_versions[ set_number].itervalues().next()['card_version'] except: card_version.dirty = True card_version.save() continue with transaction.atomic(): for item in card_version.user_card_versions.all(): try: user_card_version = ( UserCardVersion.objects .get(card_version=card_version, user=item.user)) user_card_version.have_count += item.have_count user_card_version.save() except: item.card_version = actual_card_version item.save() card_version.delete() card_set.requires_update = False card_set.save() output(u'Fetched.') else: step.set(0)
mit
2,607,918,986,943,571,500
34.371429
79
0.452804
false
MichaelMGonzalez/MagneticFieldLocalization
SerialCommunication/PIDLerner.py
1
4531
from Communicator import * from PID_Q_Lerner import * import json import os import time import atexit t_fmt = "{00:g}" inf = float("inf") stable_factor = 40 timeout = 13 timeout_penalty = 100 count_until = 2 class PIDLerner: def __init__(self, learning_factor = .1): self.arduino = SerialComm() self.log_file = "data_log_r10.json" self.state = {} self.ittr = 0 self.reset() self.global_start = time.time() self.times = [] self.learning_space = SearchSpace(res = 10 ) if os.path.exists( self.log_file ): self.learning_space.load_from_file( self.log_file ) self.curr_node = self.learning_space.get_random_node() self.get_next_node() self.l_f = learning_factor self.best_time = inf self.best_t_coord = None def reset(self): self.stable_t = inf self.sim_start = time.time() self.r_o_f = inf self.l_o_f = inf self.p_f = inf self.r_t = self.sim_start self.l_t = self.sim_start # Reset Arduino self.arduino.write("STOP", None) time.sleep(.2) self.arduino.write("MOVE_FORWARD", None) self.state["REPORTING_STATE"] = 0 #for k in self.state: self.state[k] = inf def print_state(self): if os.name != "nt": os.system("clear") global_t = int(time.time() - self.global_start) s = str(global_t % 60).zfill(2) m = str((global_t / 60)%60).zfill(2) h = str(global_t / 3600) print "\nUptime:", str( h + ":" + m + ":" + s ) print "\nIteration:", str(self.ittr) t = time.time() - self.sim_start s_t = t - self.stable_t if s_t == t: s_t = 0 print "\nRobot Readings\n" print "BAUD RATE: ", self.arduino.baud_rate, "\n" for s in sorted(self.state): print s, self.state[s] print "\nOscillation Factor:\n" print "Right Wheel Oscillation Factor:", self.r_o_f print "Left Wheel Oscillation Factor:", self.l_o_f print "Product Factor:", self.p_f print "Stable for", s_t, "seconds" print "Time:", t #print "Times Collected:", self.times #print self.learning_space print "\nBest Time", self.best_time print "Best Time Observed at: ", str( self.best_t_coord ) def set_new_pd_vals( self, msg_delay=.3 ): self.reset() n = self.curr_node self.arduino.write("SET_P", float(n.p)) time.sleep(msg_delay) self.arduino.write("SET_D", float(n.d)) time.sleep(msg_delay) def q_update( self, reward ): self.ittr += 1 self.curr_node.times.append(reward) e = self.prev_edge e.weight = ( 1.0 - self.l_f ) * e.weight e.weight += self.l_f * reward self.get_next_node() self.set_new_pd_vals() self.print_state() self.learning_space.dump_to_file( self.log_file ) def get_next_node( self ): self.prev_edge = self.curr_node.get_min_edge() self.curr_node = self.prev_edge.other def check_threshold( self, t ): # Has the threshold been reached? if abs(self.p_f) < stable_factor: if not self.stable_t: self.stable_t = t if t-self.stable_t > count_until: self.times.append( t ) if t < self.best_time: self.best_time = t self.best_t_coord = self.curr_node self.q_update(t) else: self.stable_t = 0 def run_lerner(self): has_run = False try: state = self.state while True: self.learning_space.active = self.curr_node t = time.time() - self.sim_start if t > timeout: self.q_update( timeout_penalty ) self.p_f = (self.l_o_f * self.r_o_f) self.check_threshold(t) v = None if self.arduino.communicator.inWaiting(): v = self.arduino.read() if v: if not has_run: self.set_new_pd_vals() self.arduino.write("MOVE_FORWARD", None) has_run = True msg,val = v # Has state changed? if msg in state and val == state[msg]: continue if str(msg) == "REPORTING_R_CONTROL" and msg in state: dt = t - self.r_t self.r_t = t self.r_o_f = (float(val) - float(state[msg]))/dt if str(msg) == "REPORTING_L_CONTROL" and msg in state: dt = t - self.l_t self.l_t = t self.l_o_f = (float(val) - float(state[msg]))/dt state[msg] = val self.print_state() except KeyboardInterrupt: print "Exiting..." finally: self.arduino.write("STOP", None) self.arduino.close() self.learning_space.dump_to_file( self.log_file ) if __name__ == "__main__": lerner = PIDLerner() lerner.run_lerner()
gpl-3.0
-9,066,643,630,799,897,000
30.685315
63
0.590598
false
quarkslab/arybo
benchs/cmp.py
1
1673
#!/usr/bin/env python3 # import sys if len(sys.argv) <= 2: print("Usage: %s ref new" % sys.argv[0]) sys.exit(1) reff = sys.argv[1] newf = sys.argv[2] class BenchRes: def __init__(self, name, time_ms, mem_mb): self.name = name self.time_ms = time_ms self.mem_mb = mem_mb def __repr__(self): return "%s\t%0.2f\t%0.2f" % (self.name, self.time_ms, self.mem_mb) def str_res(self): return "%0.2f\t%0.2f" % (self.time_ms, self.mem_mb) def read_benchs(f): fd = open(f, "r") ret = list() for l in fd: l = l.strip().split('\t') br = BenchRes(l[0], float(l[1]), float(l[2])) ret.append(br) ret = sorted(ret, key=lambda r: r.name) return ret def gain(old, new): return old/new def gain_time(old, new): return gain(old.time_ms, new.time_ms) def gain_mem(old, new): return gain(old.mem_mb, new.mem_mb) ref = read_benchs(reff) new = read_benchs(newf) #print(ref) #print(new) print("name\ttime_old\ttime_new\ttime_gain\tmem_old\tmem_new\tmem_reduction") iref = 0 inew = 0 while iref < len(ref) and inew < len(new): br_o = ref[iref] br_n = new[inew] if br_o.name == br_n.name: print("%s\t%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f" % (br_o.name, br_o.time_ms, br_n.time_ms, gain_time(br_o, br_n), br_o.mem_mb, br_n.mem_mb, gain_mem(br_o, br_n))) iref += 1 inew += 1 elif br_o.name < br_n.name: print("%s\t%0.2f\tNA\tNA\t%0.2f\tNA\tNA" % (br_o.name, br_o.time_ms, br_o.mem_mb)) iref += 1 else: print("%s\tNA\t%0.2f\tNA\tNA\t%0.2f\tNA" % (br_n.name, br_n.time_ms, br_n.mem_mb)) inew += 1
bsd-3-clause
1,771,513,749,114,655,000
24.348485
174
0.558279
false
lab11/M-ulator
platforms/HT_m3/programming/mbus_message.py
1
2878
#!/usr/bin/python import sys import logging from m3_common import m3_common m3_common.configure_root_logger() logger = logging.getLogger(__name__) class mbus_message_generator(m3_common): TITLE = "MBus Message Generator" def parse_args(self): if len(sys.argv) not in (2,): logger.info("USAGE: %s SERAIL_DEVICE\n" % (sys.argv[0])) logger.info("") sys.exit(2) self.serial_path = sys.argv[1] def install_handler(self): self.ice.msg_handler['B++'] = self.Bpp_callback self.ice.msg_handler['b++'] = self.Bpp_callback def Bpp_callback(self, address, data, broadcast, success): logger.info("") logger.info("Received MBus message:") logger.info(" address: " + address.encode('hex')) logger.info(" data: " + data.encode('hex')) logger.info("broadcast: " + str(broadcast)) logger.info(" success: " + str(success)) logger.info("") def read_binfile(self): pass def set_master(self): self.ice.mbus_set_master_onoff(True) def set_slave(self): self.ice.mbus_set_master_onoff(False) m = mbus_message_generator() m3_common.do_default("Run power-on sequence", m.power_on) m3_common.do_default("Reset M3", m.reset_m3) m3_common.do_default("Act as MBus master", m.set_master, m.set_slave) def build_mbus_message(): logging.info("Build your MBus message. All values hex. Leading 0x optional. Ctrl-C to Quit.") addr = m3_common.default_value("Address ", "0xA5").replace('0x','').decode('hex') data = m3_common.default_value(" Data", "0x12345678").replace('0x','').decode('hex') return add, data def get_mbus_message_to_send(): logging.info("Which message would you like to send?") logging.info("\t0) Custom") logging.info("\t1) Enumerate (0xF0000000, 0x24000000)") logging.info("\t2) SNS Config Bits (0x40, 0x0423dfef)") logging.info("\t2) SNS Sample Setup (0x40, 0x030bf0f0)") logging.info("\t3) SNS Sample Start (0x40, 0x030af0f0)") selection = m3_common.default_value("Choose a message type", "-1") if selection == '0': return build_mbus_message() elif selection == '1': return ("F0000000".decode('hex'), "24000000".decode('hex')) elif selection == '2': return ("40".decode('hex'), "0423dfef".decode('hex')) elif selection == '3': return ("40".decode('hex'), "030bf0f0".decode('hex')) elif selection == '4': return ('40'.decode('hex'), '030af0f0'.decode('hex')) else: logging.info("Please choose one of the numbered options") return get_mbus_message_to_send() while True: try: addr, data = get_mbus_message_to_send() m.ice.mbus_send(addr, data) except KeyboardInterrupt: break logging.info('') logging.info("Exiting.")
gpl-3.0
-2,066,246,356,386,461,400
32.465116
97
0.615705
false
seankelly/buildbot
master/buildbot/test/unit/test_reporters_pushover.py
1
3930
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from __future__ import absolute_import from __future__ import print_function import os from unittest import SkipTest from twisted.internet import defer from twisted.trial import unittest from buildbot.process.properties import Interpolate from buildbot.process.results import SUCCESS from buildbot.reporters.pushover import PushoverNotifier from buildbot.test.fake import fakemaster from buildbot.test.fake import httpclientservice as fakehttpclientservice from buildbot.test.util.config import ConfigErrorsMixin from buildbot.util import httpclientservice class TestPushoverNotifier(ConfigErrorsMixin, unittest.TestCase): def setUp(self): self.master = fakemaster.make_master(testcase=self, wantData=True, wantDb=True, wantMq=True) def setupFakeHttp(self): return self.successResultOf(fakehttpclientservice.HTTPClientService.getFakeService( self.master, self, 'https://api.pushover.net')) @defer.inlineCallbacks def setupPushoverNotifier(self, user_key="1234", api_token=Interpolate("abcd"), **kwargs): pn = PushoverNotifier(user_key, api_token, **kwargs) yield pn.setServiceParent(self.master) yield pn.startService() defer.returnValue(pn) @defer.inlineCallbacks def test_sendMessage(self): _http = self.setupFakeHttp() pn = yield self.setupPushoverNotifier(priorities={'passing': 2}) _http.expect("post", "/1/messages.json", params={'user': "1234", 'token': "abcd", 'message': "Test", 'title': "Tee", 'priority': 2}, content_json={'status': 1, 'request': '98765'}) n = yield pn.sendMessage(body="Test", subject="Tee", results=SUCCESS) j = yield n.json() self.assertEqual(j['status'], 1) self.assertEqual(j['request'], '98765') @defer.inlineCallbacks def test_sendNotification(self): _http = self.setupFakeHttp() pn = yield self.setupPushoverNotifier(otherParams={'sound': "silent"}) _http.expect("post", "/1/messages.json", params={'user': "1234", 'token': "abcd", 'sound': "silent", 'message': "Test"}, content_json={'status': 1, 'request': '98765'}) n = yield pn.sendNotification({'message': "Test"}) j = yield n.json() self.assertEqual(j['status'], 1) self.assertEqual(j['request'], '98765') @defer.inlineCallbacks def test_sendRealNotification(self): creds = os.environ.get('TEST_PUSHOVER_CREDENTIALS') if creds is None: raise SkipTest("real pushover test runs only if the variable " "TEST_PUSHOVER_CREDENTIALS is defined") user, token = creds.split(':') _http = yield httpclientservice.HTTPClientService.getService( self.master, 'https://api.pushover.net') yield _http.startService() pn = yield self.setupPushoverNotifier(user_key=user, api_token=token) n = yield pn.sendNotification({'message': "Buildbot Pushover test passed!"}) j = yield n.json() self.assertEqual(j['status'], 1)
gpl-2.0
4,242,439,390,941,125,600
42.666667
94
0.66285
false
eunchong/build
scripts/slave/ios/host_info.py
1
4450
#!/usr/bin/python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Print information about the tools present on this machine. Usage: ./host_info.py -j /tmp/out.json Writes a json dictionary containing tools information. """ import argparse import json import multiprocessing import os import platform import sys from slave.ios import utils def check_for_tools(): """Checks for the presence of some required tools. Returns: A list of tools present, a list of tools missing. """ available = [] missing = [] # A list of tools that should be present in PATH. tools = [ utils.PLIST_BUDDY, ] def try_call(binary): try: utils.call(binary) available.append(binary) except OSError: missing.append(binary) for tool in tools: try_call(tool) return available, missing def extract_xcode_version(out): """Extracts Xcode version information from the given xcodebuild output. Args: out: List of lines emitted by an xcodebuild -version call. Returns: A 2-tuple of (Xcode Version, Xcode Build Version). """ # Sample output: # Xcode 5.0 # Build version 5A1413 ver = None build_ver = None if len(out) > 0: if ' ' in out[0]: ver = out[0].split()[-1] if len(out) > 1: if ' ' in out[1]: build_ver = out[1].split()[-1] return ver, build_ver def extract_sdks(out): """Extracts Xcode SDK information from the given xcodebuild output. Args: out: List of lines emitted by an xcodebuild -showsdks call. Returns: A list of valid parameters to xcodebuild -sdk. """ # Sample output: # OS X SDKs: # Mac OS X 10.6 -sdk macosx10.6 # OS X 10.8 -sdk macosx10.8 # # iOS SDKs: # iOS 7.0 -sdk iphoneos7.0 # # iOS Simulator SDKs: # Simulator - iOS 6.1 -sdk iphonesimulator6.1 # Simulator - iOS 7.0 -sdk iphonesimulator7.0 return [line.split('-sdk')[-1].strip() for line in out if '-sdk' in line] def get_free_disk_space(): """Returns the amount of free space on the current disk, in GiB. Returns: The amount of free space on the current disk, measured in GiB. """ # Stat the current path for info on the current disk. stat = os.statvfs('.') # Multiply block size by number of free blocks, express in GiB. return stat.f_frsize * stat.f_bavail / 1024.0 / 1024.0 / 1024.0 def get_num_cpus(): """Returns the number of logical CPUs on this machine. Returns: The number of logical CPUs on this machine, or 'unknown' if indeterminate. """ try: return multiprocessing.cpu_count() except NotImplementedError: return 'unknown' def get_python_version(): """Returns the version of Python running this script. Returns: A Python version string. """ return platform.python_version() def get_python_location(): """Returns the location of the Python interpreter running this script. Returns: The full path to the current Python interpreter. """ return sys.executable def get_osx_version(): """Returns the version of Mac OS X installed on this host. Returns: The Mac version string, or the empty string if this host is not a Mac. """ return platform.mac_ver()[0] def main(json_file): """Extracts information about the tools present on this host. Args: json_file: File to write JSON containing the tools information. """ info = { } info['Xcode Version'], info['Xcode Build Version'] = extract_xcode_version( utils.call('xcodebuild', '-version').stdout) info['Xcode SDKs'] = extract_sdks( utils.call('xcodebuild', '-showsdks').stdout) info['Free Space'] = get_free_disk_space() info['Logical CPUs'] = get_num_cpus() info['Python Version'] = get_python_version() info['Python Location'] = get_python_location() info['Mac OS X Version'] = get_osx_version() info['Available Tools'], info['Missing Tools'] = check_for_tools() if json_file: with open(json_file, 'w') as json_file: json.dump(info, json_file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-j', '--json-file', help='Location to write a JSON summary.', metavar='file', type=str, ) sys.exit(main(parser.parse_args().json_file))
bsd-3-clause
-480,386,654,096,618,500
22.670213
78
0.650562
false
Secure-Trading/PythonAPI
securetrading/__init__.py
1
1328
# Secure Trading Python API # Authors: Secure Trading Ltd # Configuration variables from __future__ import unicode_literals from .requestobject import Request from .requestobject import Requests from .responseobject import Response from .exceptions import SecureTradingError from .exceptions import ApiError from .exceptions import HttpError from .exceptions import ConnectionError from .exceptions import SendReceiveError from .converter import Converter from .config import Config from .api import Api from .phrasebook import PhraseBook import securetrading.util import pkgutil import platform dataFile = 'data/errormessages.json' data = pkgutil.get_data('securetrading', dataFile).decode("utf-8") error_messages = securetrading.util.json.loads(data) dataFile = 'data/phrasebook.json' data = pkgutil.get_data('securetrading', dataFile).decode("utf-8") phrase_book = securetrading.util.json.loads(data) __title__ = 'Secure Trading Python API' __version__ = "1.0.16" __author__ = 'Secure Trading Ltd' __license__ = 'MIT' __copyright__ = 'Copyright 2016 Secure Trading Ltd' version_information = ["Python", platform.python_version(), securetrading.__version__, platform.platform(), ] version_info = "::".join(version_information)
mit
-7,403,021,655,991,908,000
29.883721
66
0.723645
false
trol73/avr-ic-tester
scripts/compiler.py
1
7790
#!/usr/bin/python # -*- coding: utf-8 -*- import sys from analyser import Analyser from generator import DataGenerator, convert_pin from ic_parser import load_line from classes import Chip OPTIMIZE_CMD_ALL = True # использовать CMD_SET_ALL вместо CMD_SET OPTIMIZE_CMD_TEST = True # использовать CMD_TEST_ALL вместо CMD_TEST везде, где это возможно OPTIMIZE_LAST_PULSE = True # использовать команду CMD_LAST_PULSE везде, где это возможно OPTIMIZE_SET_AND_TEST = True # использовать команду CMD_SET_AND_TEST вместо сочетания CMD_SET_ALL + CMD_TEST OPTIMIZE_LAST_PULSE_AND_TEST = True # использовать команду CMD_LAST_PULSE_AND_TEST вместо сочетания CMD_LAST_PULSE + CMD_TEST __author__ = 'trol' SRC_TTL = 'data_ttl.ic' OUT_TTL = '../ic-tester/data_ttl.h' SRC_CMOS = 'data_cmos.ic' OUT_CMOS = '../ic-tester/data_cmos.h' #if len(sys.argv) == 2: # src = sys.argv[1] def compile_chip(chip, g): """ Компилирует данные для микросхемы :param g: """ analyser = Analyser(chip.pins, chip.name) g.add_chip(chip.name) first_command_index = len(g.commands) - 1 #g.add_command('CMD_RESET_FULL') inputs = chip.inputs for power in chip.powerPlus: inputs.append(power) for power in chip.powerMinus: inputs.append(power) g.add_command_mask_1('CMD_INIT', inputs, chip.pins) analyser.set_ddr(inputs) # команды for cmd in chip.commands: if cmd.name == 'set': pins0 = cmd.lst0 for power in chip.powerMinus: pins0.append(power) pins1 = cmd.lst1 for power in chip.powerPlus: pins1.append(power) for pullUp in chip.pullUpOutputs: pins1.append(pullUp) analyser.set_pins_to_0(pins0) analyser.set_pins_to_1(pins1) if OPTIMIZE_CMD_ALL: g.add_command_mask_1('CMD_SET_ALL', analyser.get_levels_mask(), chip.pins, 1) else: g.add_command_mask_2('CMD_SET', pins0, pins1, chip.pins) elif cmd.name == 'test': if OPTIMIZE_CMD_TEST: optimized_mask = analyser.get_test_all_mask(cmd.lst0, cmd.lst1) else: optimized_mask = None if optimized_mask is None: g.add_command_mask_2('CMD_TEST', cmd.lst0, cmd.lst1, chip.pins) else: g.add_command_mask_1('CMD_TEST_ALL', optimized_mask, chip.pins, 1) elif cmd.name == 'set+test': pins0 = cmd.lst0 for power in chip.powerMinus: pins0.append(power) pins1 = cmd.lst1 for power in chip.powerPlus: pins1.append(power) for pullUp in chip.pullUpOutputs: pins1.append(pullUp) analyser.set_pins_to_0(pins0) analyser.set_pins_to_1(pins1) if OPTIMIZE_CMD_ALL: g.add_command_mask_1('CMD_SET_ALL', analyser.get_levels_mask(), chip.pins, 1) else: g.add_command_mask_2('CMD_SET', pins0, pins1, chip.pins) if OPTIMIZE_CMD_TEST: optimized_mask = analyser.get_test_all_mask(cmd.lst0_2, cmd.lst1_2) else: optimized_mask = None if optimized_mask is None: g.add_command_mask_2('CMD_TEST', cmd.lst0_2, cmd.lst1_2, chip.pins) else: g.add_command_mask_1('CMD_TEST_ALL', optimized_mask, chip.pins, 1) elif cmd.name == 'pulse+': if OPTIMIZE_LAST_PULSE and analyser.pulse(cmd.pin, '+'): g.add_command('CMD_LAST_PULSE') else: g.add_command('CMD_PULSE_PLUS', convert_pin(cmd.pin, chip.pins, 28)) elif cmd.name == 'pulse-': if OPTIMIZE_LAST_PULSE and analyser.pulse(cmd.pin, '-'): g.add_command('CMD_LAST_PULSE') else: g.add_command('CMD_PULSE_MINUS', convert_pin(cmd.pin, chip.pins, 28)) elif cmd.name == 'config': inputs = cmd.lst0 for power in chip.powerPlus: inputs.append(power) for power in chip.powerMinus: inputs.append(power) chip.inputs = cmd.lst0 chip.outputs = cmd.lst1 g.add_command_mask_1('CMD_INIT', inputs, chip.pins) analyser.set_ddr(inputs) elif cmd.name == 'test-z': pins = cmd.lst1 g.add_command_mask_1('CMD_TEST_Z', pins, chip.pins) elif cmd.name == 'test-oc': pins = cmd.lst1 g.add_command_mask_1('CMD_TEST_OC', pins, chip.pins) elif cmd.name == 'repeat-pulse': g.add_command('CMD_REPEAT_PULSE', cmd.value & 0xff, (cmd.value >> 8) & 0xff) g.add_command('CMD_END') # проходимся по всем команам этой МС и выполняем оптимизации while True: optimized = False for i in range(first_command_index, len(g.commands)): cmd = g.commands[i] if isinstance(cmd, (list, tuple)): cmd_name = cmd[0] else: continue if i+1 < len(g.commands): cmd_next = g.commands[i+1] cmd_next_name = cmd_next[0] else: break #print cmd_name, cmd_next_name if OPTIMIZE_SET_AND_TEST and cmd_name.startswith('CMD_SET_ALL_') and cmd_next_name.startswith('CMD_TEST_ALL_'): optimized = True #print g.commands[i] g.commands[i][0] = 'CMD_SET_ALL_AND_TEST_' + cmd_next_name[len('CMD_TEST_ALL_'):] for j in range(1, len(cmd_next)): g.commands[i].append(cmd_next[j]) #print g.commands[i] del g.commands[i+1] break if OPTIMIZE_LAST_PULSE_AND_TEST and cmd_name == 'CMD_LAST_PULSE' and cmd_next_name.startswith('CMD_TEST_ALL_'): g.commands[i+1][0] = 'CMD_LAST_PULSE_AND_TEST_' + cmd_next_name[len('CMD_TEST_ALL_'):] #print g.commands[i+1] del g.commands[i] optimized = True break # CMD_SET_ALL_16, CMD_TEST_ALL_16 -> CMD_SET_AND_TEST_ALL # CMD_LAST_PULSE, CMD_TEST_ALL_16 -> CMD_LAST_PULSE_AND_TEST_ALL if not optimized: break #first_command_index def process(src, out, suffix): print 'compile', src, 'to', out chips = [] # загружаем файл f = open(src, 'r') for s in f: s = s.strip() l = len(s) if l == 0: continue if l == 1 and (s[0] == '\n' or s[0] == '\r'): continue if s[0] == '#': continue if s[l - 1] == '\n': s = s[:l - 1] if s.startswith('CHIP['): chip = Chip() load_line(chip, s) chips.append(chip) else: load_line(chips[len(chips) - 1], s) f.close() g = DataGenerator(suffix) for chip in chips: #chip.show() compile_chip(chip, g) g.generate(out) print '-------------[Chips]--------------------' for chip in chips: print chip.name.decode('cp1251').encode('utf8') print '----------------------------------------' print 'Total chips: ', len(chips) print 'Data size: ', g.size process(SRC_TTL, OUT_TTL, 'TTL') process(SRC_CMOS, OUT_CMOS, 'CMOS')
gpl-3.0
-7,507,544,284,092,070,000
31.877729
125
0.530881
false
john-mcnamara-intel/dpdk
usertools/dpdk-devbind.py
2
28205
#! /usr/bin/env python # SPDX-License-Identifier: BSD-3-Clause # Copyright(c) 2010-2014 Intel Corporation # from __future__ import print_function import sys import os import getopt import subprocess from os.path import exists, abspath, dirname, basename # The PCI base class for all devices network_class = {'Class': '02', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} acceleration_class = {'Class': '12', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} ifpga_class = {'Class': '12', 'Vendor': '8086', 'Device': '0b30', 'SVendor': None, 'SDevice': None} encryption_class = {'Class': '10', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} intel_processor_class = {'Class': '0b', 'Vendor': '8086', 'Device': None, 'SVendor': None, 'SDevice': None} cavium_sso = {'Class': '08', 'Vendor': '177d', 'Device': 'a04b,a04d', 'SVendor': None, 'SDevice': None} cavium_fpa = {'Class': '08', 'Vendor': '177d', 'Device': 'a053', 'SVendor': None, 'SDevice': None} cavium_pkx = {'Class': '08', 'Vendor': '177d', 'Device': 'a0dd,a049', 'SVendor': None, 'SDevice': None} cavium_tim = {'Class': '08', 'Vendor': '177d', 'Device': 'a051', 'SVendor': None, 'SDevice': None} cavium_zip = {'Class': '12', 'Vendor': '177d', 'Device': 'a037', 'SVendor': None, 'SDevice': None} avp_vnic = {'Class': '05', 'Vendor': '1af4', 'Device': '1110', 'SVendor': None, 'SDevice': None} octeontx2_sso = {'Class': '08', 'Vendor': '177d', 'Device': 'a0f9,a0fa', 'SVendor': None, 'SDevice': None} octeontx2_npa = {'Class': '08', 'Vendor': '177d', 'Device': 'a0fb,a0fc', 'SVendor': None, 'SDevice': None} octeontx2_dma = {'Class': '08', 'Vendor': '177d', 'Device': 'a081', 'SVendor': None, 'SDevice': None} intel_ioat_bdw = {'Class': '08', 'Vendor': '8086', 'Device': '6f20,6f21,6f22,6f23,6f24,6f25,6f26,6f27,6f2e,6f2f', 'SVendor': None, 'SDevice': None} intel_ioat_skx = {'Class': '08', 'Vendor': '8086', 'Device': '2021', 'SVendor': None, 'SDevice': None} intel_ntb_skx = {'Class': '06', 'Vendor': '8086', 'Device': '201c', 'SVendor': None, 'SDevice': None} network_devices = [network_class, cavium_pkx, avp_vnic, ifpga_class] baseband_devices = [acceleration_class] crypto_devices = [encryption_class, intel_processor_class] eventdev_devices = [cavium_sso, cavium_tim, octeontx2_sso] mempool_devices = [cavium_fpa, octeontx2_npa] compress_devices = [cavium_zip] misc_devices = [intel_ioat_bdw, intel_ioat_skx, intel_ntb_skx, octeontx2_dma] # global dict ethernet devices present. Dictionary indexed by PCI address. # Each device within this is itself a dictionary of device properties devices = {} # list of supported DPDK drivers dpdk_drivers = ["igb_uio", "vfio-pci", "uio_pci_generic"] # list of currently loaded kernel modules loaded_modules = None # command-line arg flags b_flag = None status_flag = False force_flag = False args = [] def usage(): '''Print usage information for the program''' argv0 = basename(sys.argv[0]) print(""" Usage: ------ %(argv0)s [options] DEVICE1 DEVICE2 .... where DEVICE1, DEVICE2 etc, are specified via PCI "domain:bus:slot.func" syntax or "bus:slot.func" syntax. For devices bound to Linux kernel drivers, they may also be referred to by Linux interface name e.g. eth0, eth1, em0, em1, etc. Options: --help, --usage: Display usage information and quit -s, --status: Print the current status of all known network, crypto, event and mempool devices. For each device, it displays the PCI domain, bus, slot and function, along with a text description of the device. Depending upon whether the device is being used by a kernel driver, the igb_uio driver, or no driver, other relevant information will be displayed: * the Linux interface name e.g. if=eth0 * the driver being used e.g. drv=igb_uio * any suitable drivers not currently using that device e.g. unused=igb_uio NOTE: if this flag is passed along with a bind/unbind option, the status display will always occur after the other operations have taken place. --status-dev: Print the status of given device group. Supported device groups are: "net", "baseband", "crypto", "event", "mempool" and "compress" -b driver, --bind=driver: Select the driver to use or \"none\" to unbind the device -u, --unbind: Unbind a device (Equivalent to \"-b none\") --force: By default, network devices which are used by Linux - as indicated by having routes in the routing table - cannot be modified. Using the --force flag overrides this behavior, allowing active links to be forcibly unbound. WARNING: This can lead to loss of network connection and should be used with caution. Examples: --------- To display current device status: %(argv0)s --status To display current network device status: %(argv0)s --status-dev net To bind eth1 from the current driver and move to use igb_uio %(argv0)s --bind=igb_uio eth1 To unbind 0000:01:00.0 from using any driver %(argv0)s -u 0000:01:00.0 To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver %(argv0)s -b ixgbe 02:00.0 02:00.1 """ % locals()) # replace items from local variables # This is roughly compatible with check_output function in subprocess module # which is only available in python 2.7. def check_output(args, stderr=None): '''Run a command and capture its output''' return subprocess.Popen(args, stdout=subprocess.PIPE, stderr=stderr).communicate()[0] # check if a specific kernel module is loaded def module_is_loaded(module): global loaded_modules if loaded_modules: return module in loaded_modules # Get list of sysfs modules (both built-in and dynamically loaded) sysfs_path = '/sys/module/' # Get the list of directories in sysfs_path sysfs_mods = [m for m in os.listdir(sysfs_path) if os.path.isdir(os.path.join(sysfs_path, m))] # special case for vfio_pci (module is named vfio-pci, # but its .ko is named vfio_pci) sysfs_mods = [a if a != 'vfio_pci' else 'vfio-pci' for a in sysfs_mods] loaded_modules = sysfs_mods return module in sysfs_mods def check_modules(): '''Checks that igb_uio is loaded''' global dpdk_drivers # list of supported modules mods = [{"Name": driver, "Found": False} for driver in dpdk_drivers] # first check if module is loaded for mod in mods: if module_is_loaded(mod["Name"]): mod["Found"] = True # check if we have at least one loaded module if True not in [mod["Found"] for mod in mods] and b_flag is not None: print("Warning: no supported DPDK kernel modules are loaded", file=sys.stderr) # change DPDK driver list to only contain drivers that are loaded dpdk_drivers = [mod["Name"] for mod in mods if mod["Found"]] def has_driver(dev_id): '''return true if a device is assigned to a driver. False otherwise''' return "Driver_str" in devices[dev_id] def get_pci_device_details(dev_id, probe_lspci): '''This function gets additional details for a PCI device''' device = {} if probe_lspci: extra_info = check_output(["lspci", "-vmmks", dev_id]).splitlines() # parse lspci details for line in extra_info: if len(line) == 0: continue name, value = line.decode().split("\t", 1) name = name.strip(":") + "_str" device[name] = value # check for a unix interface name device["Interface"] = "" for base, dirs, _ in os.walk("/sys/bus/pci/devices/%s/" % dev_id): if "net" in dirs: device["Interface"] = \ ",".join(os.listdir(os.path.join(base, "net"))) break # check if a port is used for ssh connection device["Ssh_if"] = False device["Active"] = "" return device def clear_data(): '''This function clears any old data''' global devices devices = {} def get_device_details(devices_type): '''This function populates the "devices" dictionary. The keys used are the pci addresses (domain:bus:slot.func). The values are themselves dictionaries - one for each NIC.''' global devices global dpdk_drivers # first loop through and read details for all devices # request machine readable format, with numeric IDs and String dev = {} dev_lines = check_output(["lspci", "-Dvmmnnk"]).splitlines() for dev_line in dev_lines: if len(dev_line) == 0: if device_type_match(dev, devices_type): # Replace "Driver" with "Driver_str" to have consistency of # of dictionary key names if "Driver" in dev.keys(): dev["Driver_str"] = dev.pop("Driver") if "Module" in dev.keys(): dev["Module_str"] = dev.pop("Module") # use dict to make copy of dev devices[dev["Slot"]] = dict(dev) # Clear previous device's data dev = {} else: name, value = dev_line.decode().split("\t", 1) value_list = value.rsplit(' ', 1) if len(value_list) > 1: # String stored in <name>_str dev[name.rstrip(":") + '_str'] = value_list[0] # Numeric IDs dev[name.rstrip(":")] = value_list[len(value_list) - 1] \ .rstrip("]").lstrip("[") if devices_type == network_devices: # check what is the interface if any for an ssh connection if # any to this host, so we can mark it later. ssh_if = [] route = check_output(["ip", "-o", "route"]) # filter out all lines for 169.254 routes route = "\n".join(filter(lambda ln: not ln.startswith("169.254"), route.decode().splitlines())) rt_info = route.split() for i in range(len(rt_info) - 1): if rt_info[i] == "dev": ssh_if.append(rt_info[i+1]) # based on the basic info, get extended text details for d in devices.keys(): if not device_type_match(devices[d], devices_type): continue # get additional info and add it to existing data devices[d] = devices[d].copy() # No need to probe lspci devices[d].update(get_pci_device_details(d, False).items()) if devices_type == network_devices: for _if in ssh_if: if _if in devices[d]["Interface"].split(","): devices[d]["Ssh_if"] = True devices[d]["Active"] = "*Active*" break # add igb_uio to list of supporting modules if needed if "Module_str" in devices[d]: for driver in dpdk_drivers: if driver not in devices[d]["Module_str"]: devices[d]["Module_str"] = \ devices[d]["Module_str"] + ",%s" % driver else: devices[d]["Module_str"] = ",".join(dpdk_drivers) # make sure the driver and module strings do not have any duplicates if has_driver(d): modules = devices[d]["Module_str"].split(",") if devices[d]["Driver_str"] in modules: modules.remove(devices[d]["Driver_str"]) devices[d]["Module_str"] = ",".join(modules) def device_type_match(dev, devices_type): for i in range(len(devices_type)): param_count = len( [x for x in devices_type[i].values() if x is not None]) match_count = 0 if dev["Class"][0:2] == devices_type[i]["Class"]: match_count = match_count + 1 for key in devices_type[i].keys(): if key != 'Class' and devices_type[i][key]: value_list = devices_type[i][key].split(',') for value in value_list: if value.strip(' ') == dev[key]: match_count = match_count + 1 # count must be the number of non None parameters to match if match_count == param_count: return True return False def dev_id_from_dev_name(dev_name): '''Take a device "name" - a string passed in by user to identify a NIC device, and determine the device id - i.e. the domain:bus:slot.func - for it, which can then be used to index into the devices array''' # check if it's already a suitable index if dev_name in devices: return dev_name # check if it's an index just missing the domain part elif "0000:" + dev_name in devices: return "0000:" + dev_name else: # check if it's an interface name, e.g. eth1 for d in devices.keys(): if dev_name in devices[d]["Interface"].split(","): return devices[d]["Slot"] # if nothing else matches - error raise ValueError("Unknown device: %s. " "Please specify device in \"bus:slot.func\" format" % dev_name) def unbind_one(dev_id, force): '''Unbind the device identified by "dev_id" from its current driver''' dev = devices[dev_id] if not has_driver(dev_id): print("Notice: %s %s %s is not currently managed by any driver" % (dev["Slot"], dev["Device_str"], dev["Interface"]), file=sys.stderr) return # prevent us disconnecting ourselves if dev["Ssh_if"] and not force: print("Warning: routing table indicates that interface %s is active. " "Skipping unbind" % dev_id, file=sys.stderr) return # write to /sys to unbind filename = "/sys/bus/pci/drivers/%s/unbind" % dev["Driver_str"] try: f = open(filename, "a") except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) f.write(dev_id) f.close() def bind_one(dev_id, driver, force): '''Bind the device given by "dev_id" to the driver "driver". If the device is already bound to a different driver, it will be unbound first''' dev = devices[dev_id] saved_driver = None # used to rollback any unbind in case of failure # prevent disconnection of our ssh session if dev["Ssh_if"] and not force: print("Warning: routing table indicates that interface %s is active. " "Not modifying" % dev_id, file=sys.stderr) return # unbind any existing drivers we don't want if has_driver(dev_id): if dev["Driver_str"] == driver: print("Notice: %s already bound to driver %s, skipping" % (dev_id, driver), file=sys.stderr) return else: saved_driver = dev["Driver_str"] unbind_one(dev_id, force) dev["Driver_str"] = "" # clear driver string # For kernels >= 3.15 driver_override can be used to specify the driver # for a device rather than relying on the driver to provide a positive # match of the device. The existing process of looking up # the vendor and device ID, adding them to the driver new_id, # will erroneously bind other devices too which has the additional burden # of unbinding those devices if driver in dpdk_drivers: filename = "/sys/bus/pci/devices/%s/driver_override" % dev_id if os.path.exists(filename): try: f = open(filename, "w") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) return try: f.write("%s" % driver) f.close() except: print("Error: bind failed for %s - Cannot write driver %s to " "PCI ID " % (dev_id, driver), file=sys.stderr) return # For kernels < 3.15 use new_id to add PCI id's to the driver else: filename = "/sys/bus/pci/drivers/%s/new_id" % driver try: f = open(filename, "w") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) return try: # Convert Device and Vendor Id to int to write to new_id f.write("%04x %04x" % (int(dev["Vendor"],16), int(dev["Device"], 16))) f.close() except: print("Error: bind failed for %s - Cannot write new PCI ID to " "driver %s" % (dev_id, driver), file=sys.stderr) return # do the bind by writing to /sys filename = "/sys/bus/pci/drivers/%s/bind" % driver try: f = open(filename, "a") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) if saved_driver is not None: # restore any previous driver bind_one(dev_id, saved_driver, force) return try: f.write(dev_id) f.close() except: # for some reason, closing dev_id after adding a new PCI ID to new_id # results in IOError. however, if the device was successfully bound, # we don't care for any errors and can safely ignore IOError tmp = get_pci_device_details(dev_id, True) if "Driver_str" in tmp and tmp["Driver_str"] == driver: return print("Error: bind failed for %s - Cannot bind to driver %s" % (dev_id, driver), file=sys.stderr) if saved_driver is not None: # restore any previous driver bind_one(dev_id, saved_driver, force) return # For kernels > 3.15 driver_override is used to bind a device to a driver. # Before unbinding it, overwrite driver_override with empty string so that # the device can be bound to any other driver filename = "/sys/bus/pci/devices/%s/driver_override" % dev_id if os.path.exists(filename): try: f = open(filename, "w") except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) try: f.write("\00") f.close() except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) def unbind_all(dev_list, force=False): """Unbind method, takes a list of device locations""" if dev_list[0] == "dpdk": for d in devices.keys(): if "Driver_str" in devices[d]: if devices[d]["Driver_str"] in dpdk_drivers: unbind_one(devices[d]["Slot"], force) return try: dev_list = map(dev_id_from_dev_name, dev_list) except ValueError as ex: print(ex) sys.exit(1) for d in dev_list: unbind_one(d, force) def bind_all(dev_list, driver, force=False): """Bind method, takes a list of device locations""" global devices # a common user error is to forget to specify the driver the devices need to # be bound to. check if the driver is a valid device, and if it is, show # a meaningful error. try: dev_id_from_dev_name(driver) # if we've made it this far, this means that the "driver" was a valid # device string, so it's probably not a valid driver name. sys.exit("Error: Driver '%s' does not look like a valid driver. " \ "Did you forget to specify the driver to bind devices to?" % driver) except ValueError: # driver generated error - it's not a valid device ID, so all is well pass # check if we're attempting to bind to a driver that isn't loaded if not module_is_loaded(driver): sys.exit("Error: Driver '%s' is not loaded." % driver) try: dev_list = map(dev_id_from_dev_name, dev_list) except ValueError as ex: sys.exit(ex) for d in dev_list: bind_one(d, driver, force) # For kernels < 3.15 when binding devices to a generic driver # (i.e. one that doesn't have a PCI ID table) using new_id, some devices # that are not bound to any other driver could be bound even if no one has # asked them to. hence, we check the list of drivers again, and see if # some of the previously-unbound devices were erroneously bound. if not os.path.exists("/sys/bus/pci/devices/%s/driver_override" % d): for d in devices.keys(): # skip devices that were already bound or that we know should be bound if "Driver_str" in devices[d] or d in dev_list: continue # update information about this device devices[d] = dict(devices[d].items() + get_pci_device_details(d, True).items()) # check if updated information indicates that the device was bound if "Driver_str" in devices[d]: unbind_one(d, force) def display_devices(title, dev_list, extra_params=None): '''Displays to the user the details of a list of devices given in "dev_list". The "extra_params" parameter, if given, should contain a string with %()s fields in it for replacement by the named fields in each device's dictionary.''' strings = [] # this holds the strings to print. We sort before printing print("\n%s" % title) print("="*len(title)) if len(dev_list) == 0: strings.append("<none>") else: for dev in dev_list: if extra_params is not None: strings.append("%s '%s %s' %s" % (dev["Slot"], dev["Device_str"], dev["Device"], extra_params % dev)) else: strings.append("%s '%s'" % (dev["Slot"], dev["Device_str"])) # sort before printing, so that the entries appear in PCI order strings.sort() print("\n".join(strings)) # print one per line def show_device_status(devices_type, device_name): global dpdk_drivers kernel_drv = [] dpdk_drv = [] no_drv = [] # split our list of network devices into the three categories above for d in devices.keys(): if device_type_match(devices[d], devices_type): if not has_driver(d): no_drv.append(devices[d]) continue if devices[d]["Driver_str"] in dpdk_drivers: dpdk_drv.append(devices[d]) else: kernel_drv.append(devices[d]) n_devs = len(dpdk_drv) + len(kernel_drv) + len(no_drv) # don't bother displaying anything if there are no devices if n_devs == 0: msg = "No '%s' devices detected" % device_name print("") print(msg) print("".join('=' * len(msg))) return # print each category separately, so we can clearly see what's used by DPDK if len(dpdk_drv) != 0: display_devices("%s devices using DPDK-compatible driver" % device_name, dpdk_drv, "drv=%(Driver_str)s unused=%(Module_str)s") if len(kernel_drv) != 0: display_devices("%s devices using kernel driver" % device_name, kernel_drv, "if=%(Interface)s drv=%(Driver_str)s " "unused=%(Module_str)s %(Active)s") if len(no_drv) != 0: display_devices("Other %s devices" % device_name, no_drv, "unused=%(Module_str)s") def show_status(): '''Function called when the script is passed the "--status" option. Displays to the user what devices are bound to the igb_uio driver, the kernel driver or to no driver''' if status_dev == "net" or status_dev == "all": show_device_status(network_devices, "Network") if status_dev == "baseband" or status_dev == "all": show_device_status(baseband_devices, "Baseband") if status_dev == "crypto" or status_dev == "all": show_device_status(crypto_devices, "Crypto") if status_dev == "event" or status_dev == "all": show_device_status(eventdev_devices, "Eventdev") if status_dev == "mempool" or status_dev == "all": show_device_status(mempool_devices, "Mempool") if status_dev == "compress" or status_dev == "all": show_device_status(compress_devices , "Compress") if status_dev == "misc" or status_dev == "all": show_device_status(misc_devices, "Misc (rawdev)") def parse_args(): '''Parses the command-line arguments given by the user and takes the appropriate action for each''' global b_flag global status_flag global status_dev global force_flag global args if len(sys.argv) <= 1: usage() sys.exit(0) try: opts, args = getopt.getopt(sys.argv[1:], "b:us", ["help", "usage", "status", "status-dev=", "force", "bind=", "unbind", ]) except getopt.GetoptError as error: print(str(error)) print("Run '%s --usage' for further information" % sys.argv[0]) sys.exit(1) for opt, arg in opts: if opt == "--help" or opt == "--usage": usage() sys.exit(0) if opt == "--status-dev": status_flag = True status_dev = arg if opt == "--status" or opt == "-s": status_flag = True status_dev = "all" if opt == "--force": force_flag = True if opt == "-b" or opt == "-u" or opt == "--bind" or opt == "--unbind": if b_flag is not None: sys.exit("Error: binding and unbinding are mutually exclusive") if opt == "-u" or opt == "--unbind": b_flag = "none" else: b_flag = arg def do_arg_actions(): '''do the actual action requested by the user''' global b_flag global status_flag global force_flag global args if b_flag is None and not status_flag: print("Error: No action specified for devices. " "Please give a -b or -u option", file=sys.stderr) usage() sys.exit(1) if b_flag is not None and len(args) == 0: print("Error: No devices specified.", file=sys.stderr) usage() sys.exit(1) if b_flag == "none" or b_flag == "None": unbind_all(args, force_flag) elif b_flag is not None: bind_all(args, b_flag, force_flag) if status_flag: if b_flag is not None: clear_data() # refresh if we have changed anything get_device_details(network_devices) get_device_details(baseband_devices) get_device_details(crypto_devices) get_device_details(eventdev_devices) get_device_details(mempool_devices) get_device_details(compress_devices) get_device_details(misc_devices) show_status() def main(): '''program main function''' # check if lspci is installed, suppress any output with open(os.devnull, 'w') as devnull: ret = subprocess.call(['which', 'lspci'], stdout=devnull, stderr=devnull) if ret != 0: sys.exit("'lspci' not found - please install 'pciutils'") parse_args() check_modules() clear_data() get_device_details(network_devices) get_device_details(baseband_devices) get_device_details(crypto_devices) get_device_details(eventdev_devices) get_device_details(mempool_devices) get_device_details(compress_devices) get_device_details(misc_devices) do_arg_actions() if __name__ == "__main__": main()
mit
-2,125,751,032,921,621,200
37.063428
113
0.577664
false
gerrit-review/gerrit
tools/download_file.py
1
5139
#!/usr/bin/env python # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from hashlib import sha1 from optparse import OptionParser from os import link, makedirs, path, remove import shutil from subprocess import check_call, CalledProcessError from sys import stderr from util import hash_file, resolve_url from zipfile import ZipFile, BadZipfile, LargeZipFile GERRIT_HOME = path.expanduser('~/.gerritcodereview') # TODO(davido): Rename in bazel-cache CACHE_DIR = path.join(GERRIT_HOME, 'buck-cache', 'downloaded-artifacts') LOCAL_PROPERTIES = 'local.properties' def safe_mkdirs(d): if path.isdir(d): return try: makedirs(d) except OSError as err: if not path.isdir(d): raise err def download_properties(root_dir): """ Get the download properties. First tries to find the properties file in the given root directory, and if not found there, tries in the Gerrit settings folder in the user's home directory. Returns a set of download properties, which may be empty. """ p = {} local_prop = path.join(root_dir, LOCAL_PROPERTIES) if not path.isfile(local_prop): local_prop = path.join(GERRIT_HOME, LOCAL_PROPERTIES) if path.isfile(local_prop): try: with open(local_prop) as fd: for line in fd: if line.startswith('download.'): d = [e.strip() for e in line.split('=', 1)] name, url = d[0], d[1] p[name[len('download.'):]] = url except OSError: pass return p def cache_entry(args): if args.v: h = args.v else: h = sha1(args.u.encode('utf-8')).hexdigest() name = '%s-%s' % (path.basename(args.o), h) return path.join(CACHE_DIR, name) opts = OptionParser() opts.add_option('-o', help='local output file') opts.add_option('-u', help='URL to download') opts.add_option('-v', help='expected content SHA-1') opts.add_option('-x', action='append', help='file to delete from ZIP') opts.add_option('--exclude_java_sources', action='store_true') opts.add_option('--unsign', action='store_true') args, _ = opts.parse_args() root_dir = args.o while root_dir and path.dirname(root_dir) != root_dir: root_dir, n = path.split(root_dir) if n == 'WORKSPACE': break redirects = download_properties(root_dir) cache_ent = cache_entry(args) src_url = resolve_url(args.u, redirects) if not path.exists(cache_ent): try: safe_mkdirs(path.dirname(cache_ent)) except OSError as err: print('error creating directory %s: %s' % (path.dirname(cache_ent), err), file=stderr) exit(1) print('Download %s' % src_url, file=stderr) try: check_call(['curl', '--proxy-anyauth', '-ksSfLo', cache_ent, src_url]) except OSError as err: print('could not invoke curl: %s\nis curl installed?' % err, file=stderr) exit(1) except CalledProcessError as err: print('error using curl: %s' % err, file=stderr) exit(1) if args.v: have = hash_file(sha1(), cache_ent).hexdigest() if args.v != have: print(( '%s:\n' + 'expected %s\n' + 'received %s\n') % (src_url, args.v, have), file=stderr) try: remove(cache_ent) except OSError as err: if path.exists(cache_ent): print('error removing %s: %s' % (cache_ent, err), file=stderr) exit(1) exclude = [] if args.x: exclude += args.x if args.exclude_java_sources: try: with ZipFile(cache_ent, 'r') as zf: for n in zf.namelist(): if n.endswith('.java'): exclude.append(n) except (BadZipfile, LargeZipFile) as err: print('error opening %s: %s' % (cache_ent, err), file=stderr) exit(1) if args.unsign: try: with ZipFile(cache_ent, 'r') as zf: for n in zf.namelist(): if (n.endswith('.RSA') or n.endswith('.SF') or n.endswith('.LIST')): exclude.append(n) except (BadZipfile, LargeZipFile) as err: print('error opening %s: %s' % (cache_ent, err), file=stderr) exit(1) safe_mkdirs(path.dirname(args.o)) if exclude: try: shutil.copyfile(cache_ent, args.o) except (shutil.Error, IOError) as err: print('error copying to %s: %s' % (args.o, err), file=stderr) exit(1) try: check_call(['zip', '-d', args.o] + exclude) except CalledProcessError as err: print('error removing files from zip: %s' % err, file=stderr) exit(1) else: try: link(cache_ent, args.o) except OSError as err: try: shutil.copyfile(cache_ent, args.o) except (shutil.Error, IOError) as err: print('error copying to %s: %s' % (args.o, err), file=stderr) exit(1)
apache-2.0
-685,302,445,222,360,700
28.534483
77
0.654602
false
MalloyPower/parsing-python
front-end/testsuite-python-lib/Python-2.5/Lib/re.py
1
12232
# # Secret Labs' Regular Expression Engine # # re-compatible interface for the sre matching engine # # Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved. # # This version of the SRE library can be redistributed under CNRI's # Python 1.6 license. For any other use, please contact Secret Labs # AB ([email protected]). # # Portions of this engine have been developed in cooperation with # CNRI. Hewlett-Packard provided funding for 1.6 integration and # other compatibility work. # r"""Support for regular expressions (RE). This module provides regular expression matching operations similar to those found in Perl. It supports both 8-bit and Unicode strings; both the pattern and the strings being processed can contain null bytes and characters outside the US ASCII range. Regular expressions can contain both special and ordinary characters. Most ordinary characters, like "A", "a", or "0", are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so last matches the string 'last'. The special characters are: "." Matches any character except a newline. "^" Matches the start of the string. "$" Matches the end of the string. "*" Matches 0 or more (greedy) repetitions of the preceding RE. Greedy means that it will match as many repetitions as possible. "+" Matches 1 or more (greedy) repetitions of the preceding RE. "?" Matches 0 or 1 (greedy) of the preceding RE. *?,+?,?? Non-greedy versions of the previous three special characters. {m,n} Matches from m to n repetitions of the preceding RE. {m,n}? Non-greedy version of the above. "\\" Either escapes special characters or signals a special sequence. [] Indicates a set of characters. A "^" as the first character indicates a complementing set. "|" A|B, creates an RE that will match either A or B. (...) Matches the RE inside the parentheses. The contents can be retrieved or matched later in the string. (?iLmsux) Set the I, L, M, S, U, or X flag for the RE (see below). (?:...) Non-grouping version of regular parentheses. (?P<name>...) The substring matched by the group is accessible by name. (?P=name) Matches the text matched earlier by the group named name. (?#...) A comment; ignored. (?=...) Matches if ... matches next, but doesn't consume the string. (?!...) Matches if ... doesn't match next. The special sequences consist of "\\" and a character from the list below. If the ordinary character is not on the list, then the resulting RE will match the second character. \number Matches the contents of the group of the same number. \A Matches only at the start of the string. \Z Matches only at the end of the string. \b Matches the empty string, but only at the start or end of a word. \B Matches the empty string, but not at the start or end of a word. \d Matches any decimal digit; equivalent to the set [0-9]. \D Matches any non-digit character; equivalent to the set [^0-9]. \s Matches any whitespace character; equivalent to [ \t\n\r\f\v]. \S Matches any non-whitespace character; equiv. to [^ \t\n\r\f\v]. \w Matches any alphanumeric character; equivalent to [a-zA-Z0-9_]. With LOCALE, it will match the set [0-9_] plus characters defined as letters for the current locale. \W Matches the complement of \w. \\ Matches a literal backslash. This module exports the following functions: match Match a regular expression pattern to the beginning of a string. search Search a string for the presence of a pattern. sub Substitute occurrences of a pattern found in a string. subn Same as sub, but also return the number of substitutions made. split Split a string by the occurrences of a pattern. findall Find all occurrences of a pattern in a string. compile Compile a pattern into a RegexObject. purge Clear the regular expression cache. escape Backslash all non-alphanumerics in a string. Some of the functions in this module takes flags as optional parameters: I IGNORECASE Perform case-insensitive matching. L LOCALE Make \w, \W, \b, \B, dependent on the current locale. M MULTILINE "^" matches the beginning of lines as well as the string. "$" matches the end of lines as well as the string. S DOTALL "." matches any character at all, including the newline. X VERBOSE Ignore whitespace and comments for nicer looking RE's. U UNICODE Make \w, \W, \b, \B, dependent on the Unicode locale. This module also defines an exception 'error'. """ import sys import sre_compile import sre_parse # public symbols __all__ = [ "match", "search", "sub", "subn", "split", "findall", "compile", "purge", "template", "escape", "I", "L", "M", "S", "X", "U", "IGNORECASE", "LOCALE", "MULTILINE", "DOTALL", "VERBOSE", "UNICODE", "error" ] __version__ = "2.2.1" # flags I = IGNORECASE = sre_compile.SRE_FLAG_IGNORECASE # ignore case L = LOCALE = sre_compile.SRE_FLAG_LOCALE # assume current 8-bit locale U = UNICODE = sre_compile.SRE_FLAG_UNICODE # assume unicode locale M = MULTILINE = sre_compile.SRE_FLAG_MULTILINE # make anchors look for newline S = DOTALL = sre_compile.SRE_FLAG_DOTALL # make dot match newline X = VERBOSE = sre_compile.SRE_FLAG_VERBOSE # ignore whitespace and comments # sre extensions (experimental, don't rely on these) T = TEMPLATE = sre_compile.SRE_FLAG_TEMPLATE # disable backtracking DEBUG = sre_compile.SRE_FLAG_DEBUG # dump pattern after compilation # sre exception error = sre_compile.error # -------------------------------------------------------------------- # public interface def match(pattern, string, flags=0): """Try to apply the pattern at the start of the string, returning a match object, or None if no match was found.""" return _compile(pattern, flags).match(string) def search(pattern, string, flags=0): """Scan through string looking for a match to the pattern, returning a match object, or None if no match was found.""" return _compile(pattern, flags).search(string) def sub(pattern, repl, string, count=0): """Return the string obtained by replacing the leftmost non-overlapping occurrences of the pattern in string by the replacement repl. repl can be either a string or a callable; if a callable, it's passed the match object and must return a replacement string to be used.""" return _compile(pattern, 0).sub(repl, string, count) def subn(pattern, repl, string, count=0): """Return a 2-tuple containing (new_string, number). new_string is the string obtained by replacing the leftmost non-overlapping occurrences of the pattern in the source string by the replacement repl. number is the number of substitutions that were made. repl can be either a string or a callable; if a callable, it's passed the match object and must return a replacement string to be used.""" return _compile(pattern, 0).subn(repl, string, count) def split(pattern, string, maxsplit=0): """Split the source string by the occurrences of the pattern, returning a list containing the resulting substrings.""" return _compile(pattern, 0).split(string, maxsplit) def findall(pattern, string, flags=0): """Return a list of all non-overlapping matches in the string. If one or more groups are present in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the result.""" return _compile(pattern, flags).findall(string) if sys.hexversion >= 0x02020000: __all__.append("finditer") def finditer(pattern, string, flags=0): """Return an iterator over all non-overlapping matches in the string. For each match, the iterator returns a match object. Empty matches are included in the result.""" return _compile(pattern, flags).finditer(string) def compile(pattern, flags=0): "Compile a regular expression pattern, returning a pattern object." return _compile(pattern, flags) def purge(): "Clear the regular expression cache" _cache.clear() _cache_repl.clear() def template(pattern, flags=0): "Compile a template pattern, returning a pattern object" return _compile(pattern, flags|T) _alphanum = {} for c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890': _alphanum[c] = 1 del c def escape(pattern): "Escape all non-alphanumeric characters in pattern." s = list(pattern) alphanum = _alphanum for i in range(len(pattern)): c = pattern[i] if c not in alphanum: if c == "\000": s[i] = "\\000" else: s[i] = "\\" + c return pattern[:0].join(s) # -------------------------------------------------------------------- # internals _cache = {} _cache_repl = {} _pattern_type = type(sre_compile.compile("", 0)) _MAXCACHE = 100 def _compile(*key): # internal: compile pattern cachekey = (type(key[0]),) + key p = _cache.get(cachekey) if p is not None: return p pattern, flags = key if isinstance(pattern, _pattern_type): return pattern if not sre_compile.isstring(pattern): raise TypeError, "first argument must be string or compiled pattern" try: p = sre_compile.compile(pattern, flags) except error, v: raise error, v # invalid expression if len(_cache) >= _MAXCACHE: _cache.clear() _cache[cachekey] = p return p def _compile_repl(*key): # internal: compile replacement pattern p = _cache_repl.get(key) if p is not None: return p repl, pattern = key try: p = sre_parse.parse_template(repl, pattern) except error, v: raise error, v # invalid expression if len(_cache_repl) >= _MAXCACHE: _cache_repl.clear() _cache_repl[key] = p return p def _expand(pattern, match, template): # internal: match.expand implementation hook template = sre_parse.parse_template(template, pattern) return sre_parse.expand_template(template, match) def _subx(pattern, template): # internal: pattern.sub/subn implementation helper template = _compile_repl(template, pattern) if not template[0] and len(template[1]) == 1: # literal replacement return template[1][0] def filter(match, template=template): return sre_parse.expand_template(template, match) return filter # register myself for pickling import copy_reg def _pickle(p): return _compile, (p.pattern, p.flags) copy_reg.pickle(_pattern_type, _pickle, _compile) # -------------------------------------------------------------------- # experimental stuff (see python-dev discussions for details) class Scanner: def __init__(self, lexicon, flags=0): from sre_constants import BRANCH, SUBPATTERN self.lexicon = lexicon # combine phrases into a compound pattern p = [] s = sre_parse.Pattern() s.flags = flags for phrase, action in lexicon: p.append(sre_parse.SubPattern(s, [ (SUBPATTERN, (len(p)+1, sre_parse.parse(phrase, flags))), ])) p = sre_parse.SubPattern(s, [(BRANCH, (None, p))]) s.groups = len(p) self.scanner = sre_compile.compile(p) def scan(self, string): result = [] append = result.append match = self.scanner.scanner(string).match i = 0 while 1: m = match() if not m: break j = m.end() if i == j: break action = self.lexicon[m.lastindex-1][1] if callable(action): self.match = m action = action(self, m.group()) if action is not None: append(action) i = j return result, string[i:]
mit
3,808,175,959,281,925,000
37.831746
78
0.649035
false
sgtnasty/python
list/list.py
1
1958
#!/usr/bin/env python # https://pymotw.com/3/os.path/ import os import os.path import time import argparse APPNAME='lister' __version__ = '0.0.1' def config_args(): """ Configure command line arguments """ parser = argparse.ArgumentParser(description=APPNAME, epilog=("Version {}".format(__version__))) #parser.add_argument('-c', metavar='CONFIGFILE', required=False, help='path to config file', # default=DESTINY_CONFIG_FILE) #parser.add_argument('--log', metavar='LOGFILE', required=False, help='path to log file', # default=DESTINY_LOGFILE) parser.add_argument('files', metavar='F', nargs='+', help='file or directory to evaluate') parser.add_argument('--version', action='version', version=('%(prog)s ' + __version__)) parser.add_argument('--debug', required=False, help='Enable debugging of this script', action="store_true") args = parser.parse_args() return args def ftime(filepath): print('File : {}'.format(filepath)) print('Access time :', time.ctime(os.path.getatime(filepath))) print('Modified time:', time.ctime(os.path.getmtime(filepath))) print('Change time :', time.ctime(os.path.getctime(filepath))) print('Size :', os.path.getsize(filepath)) def finfo(filepath): print('File : {!r}'.format(filepath)) print('Absolute :', os.path.isabs(filepath)) print('Is file? :', os.path.isfile(filepath)) print('Is Dir? :', os.path.isdir(filepath)) print('Is Link? :', os.path.islink(filepath)) print('Mountpoint? :', os.path.ismount(filepath)) print('Exists? :', os.path.exists(filepath)) print('Link Exists?:', os.path.lexists(filepath)) if __name__ == '__main__': args = config_args() for filepath in args.files: #print(type(filepath)) #print(repr(filepath)) fp = os.path.abspath(filepath) ftime(fp) finfo(fp)
gpl-3.0
822,235,792,198,670,000
32.186441
111
0.621042
false
sahutd/youtube-dl
youtube_dl/extractor/__init__.py
1
20425
from __future__ import unicode_literals from .abc import ABCIE from .abc7news import Abc7NewsIE from .academicearth import AcademicEarthCourseIE from .addanime import AddAnimeIE from .adobetv import AdobeTVIE from .adultswim import AdultSwimIE from .aftenposten import AftenpostenIE from .aftonbladet import AftonbladetIE from .airmozilla import AirMozillaIE from .aljazeera import AlJazeeraIE from .alphaporno import AlphaPornoIE from .anitube import AnitubeIE from .anysex import AnySexIE from .aol import AolIE from .allocine import AllocineIE from .aparat import AparatIE from .appletrailers import AppleTrailersIE from .archiveorg import ArchiveOrgIE from .ard import ARDIE, ARDMediathekIE from .arte import ( ArteTvIE, ArteTVPlus7IE, ArteTVCreativeIE, ArteTVConcertIE, ArteTVFutureIE, ArteTVDDCIE, ArteTVEmbedIE, ) from .atresplayer import AtresPlayerIE from .atttechchannel import ATTTechChannelIE from .audiomack import AudiomackIE, AudiomackAlbumIE from .azubu import AzubuIE from .baidu import BaiduVideoIE from .bambuser import BambuserIE, BambuserChannelIE from .bandcamp import BandcampIE, BandcampAlbumIE from .bbccouk import BBCCoUkIE from .beeg import BeegIE from .behindkink import BehindKinkIE from .beatportpro import BeatportProIE from .bet import BetIE from .bild import BildIE from .bilibili import BiliBiliIE from .blinkx import BlinkxIE from .bliptv import BlipTVIE, BlipTVUserIE from .bloomberg import BloombergIE from .bpb import BpbIE from .br import BRIE from .breakcom import BreakIE from .brightcove import BrightcoveIE from .buzzfeed import BuzzFeedIE from .byutv import BYUtvIE from .c56 import C56IE from .camdemy import ( CamdemyIE, CamdemyFolderIE ) from .canal13cl import Canal13clIE from .canalplus import CanalplusIE from .canalc2 import Canalc2IE from .cbs import CBSIE from .cbsnews import CBSNewsIE from .cbssports import CBSSportsIE from .ccc import CCCIE from .ceskatelevize import CeskaTelevizeIE from .channel9 import Channel9IE from .chilloutzone import ChilloutzoneIE from .chirbit import ( ChirbitIE, ChirbitProfileIE, ) from .cinchcast import CinchcastIE from .cinemassacre import CinemassacreIE from .clipfish import ClipfishIE from .cliphunter import CliphunterIE from .clipsyndicate import ClipsyndicateIE from .cloudy import CloudyIE from .clubic import ClubicIE from .cmt import CMTIE from .cnet import CNETIE from .cnn import ( CNNIE, CNNBlogsIE, CNNArticleIE, ) from .collegehumor import CollegeHumorIE from .collegerama import CollegeRamaIE from .comedycentral import ComedyCentralIE, ComedyCentralShowsIE from .comcarcoff import ComCarCoffIE from .commonmistakes import CommonMistakesIE, UnicodeBOMIE from .condenast import CondeNastIE from .cracked import CrackedIE from .criterion import CriterionIE from .crooksandliars import CrooksAndLiarsIE from .crunchyroll import ( CrunchyrollIE, CrunchyrollShowPlaylistIE ) from .cspan import CSpanIE from .ctsnews import CtsNewsIE from .dailymotion import ( DailymotionIE, DailymotionPlaylistIE, DailymotionUserIE, ) from .daum import DaumIE from .dbtv import DBTVIE from .dctp import DctpTvIE from .deezer import DeezerPlaylistIE from .dfb import DFBIE from .dhm import DHMIE from .dotsub import DotsubIE from .douyutv import DouyuTVIE from .dreisat import DreiSatIE from .drbonanza import DRBonanzaIE from .drtuber import DrTuberIE from .drtv import DRTVIE from .dvtv import DVTVIE from .dump import DumpIE from .dumpert import DumpertIE from .defense import DefenseGouvFrIE from .discovery import DiscoveryIE from .divxstage import DivxStageIE from .dropbox import DropboxIE from .eagleplatform import EaglePlatformIE from .ebaumsworld import EbaumsWorldIE from .echomsk import EchoMskIE from .ehow import EHowIE from .eighttracks import EightTracksIE from .einthusan import EinthusanIE from .eitb import EitbIE from .ellentv import ( EllenTVIE, EllenTVClipsIE, ) from .elpais import ElPaisIE from .embedly import EmbedlyIE from .empflix import EMPFlixIE from .engadget import EngadgetIE from .eporner import EpornerIE from .eroprofile import EroProfileIE from .escapist import EscapistIE from .espn import ESPNIE from .everyonesmixtape import EveryonesMixtapeIE from .exfm import ExfmIE from .expotv import ExpoTVIE from .extremetube import ExtremeTubeIE from .facebook import FacebookIE from .faz import FazIE from .fc2 import FC2IE from .firstpost import FirstpostIE from .firsttv import FirstTVIE from .fivemin import FiveMinIE from .fivetv import FiveTVIE from .fktv import ( FKTVIE, FKTVPosteckeIE, ) from .flickr import FlickrIE from .folketinget import FolketingetIE from .footyroom import FootyRoomIE from .fourtube import FourTubeIE from .foxgay import FoxgayIE from .foxnews import FoxNewsIE from .foxsports import FoxSportsIE from .franceculture import FranceCultureIE from .franceinter import FranceInterIE from .francetv import ( PluzzIE, FranceTvInfoIE, FranceTVIE, GenerationQuoiIE, CultureboxIE, ) from .freesound import FreesoundIE from .freespeech import FreespeechIE from .freevideo import FreeVideoIE from .funnyordie import FunnyOrDieIE from .gamekings import GamekingsIE from .gameone import ( GameOneIE, GameOnePlaylistIE, ) from .gamersyde import GamersydeIE from .gamespot import GameSpotIE from .gamestar import GameStarIE from .gametrailers import GametrailersIE from .gazeta import GazetaIE from .gdcvault import GDCVaultIE from .generic import GenericIE from .gfycat import GfycatIE from .giantbomb import GiantBombIE from .giga import GigaIE from .glide import GlideIE from .globo import GloboIE from .godtube import GodTubeIE from .goldenmoustache import GoldenMoustacheIE from .golem import GolemIE from .googleplus import GooglePlusIE from .googlesearch import GoogleSearchIE from .gorillavid import GorillaVidIE from .goshgay import GoshgayIE from .groupon import GrouponIE from .hark import HarkIE from .hearthisat import HearThisAtIE from .heise import HeiseIE from .hellporno import HellPornoIE from .helsinki import HelsinkiIE from .hentaistigma import HentaiStigmaIE from .historicfilms import HistoricFilmsIE from .history import HistoryIE from .hitbox import HitboxIE, HitboxLiveIE from .hornbunny import HornBunnyIE from .hostingbulk import HostingBulkIE from .hotnewhiphop import HotNewHipHopIE from .howcast import HowcastIE from .howstuffworks import HowStuffWorksIE from .huffpost import HuffPostIE from .hypem import HypemIE from .iconosquare import IconosquareIE from .ign import IGNIE, OneUPIE from .imdb import ( ImdbIE, ImdbListIE ) from .imgur import ImgurIE from .ina import InaIE from .infoq import InfoQIE from .instagram import InstagramIE, InstagramUserIE from .internetvideoarchive import InternetVideoArchiveIE from .iprima import IPrimaIE from .iqiyi import IqiyiIE from .ivi import ( IviIE, IviCompilationIE ) from .izlesene import IzleseneIE from .jadorecettepub import JadoreCettePubIE from .jeuxvideo import JeuxVideoIE from .jove import JoveIE from .jukebox import JukeboxIE from .jpopsukitv import JpopsukiIE from .kaltura import KalturaIE from .kanalplay import KanalPlayIE from .kankan import KankanIE from .karaoketv import KaraoketvIE from .karrierevideos import KarriereVideosIE from .keezmovies import KeezMoviesIE from .khanacademy import KhanAcademyIE from .kickstarter import KickStarterIE from .keek import KeekIE from .kontrtube import KontrTubeIE from .krasview import KrasViewIE from .ku6 import Ku6IE from .la7 import LA7IE from .laola1tv import Laola1TvIE from .letv import ( LetvIE, LetvTvIE, LetvPlaylistIE ) from .libsyn import LibsynIE from .lifenews import ( LifeNewsIE, LifeEmbedIE, ) from .liveleak import LiveLeakIE from .livestream import ( LivestreamIE, LivestreamOriginalIE, LivestreamShortenerIE, ) from .lnkgo import LnkGoIE from .lrt import LRTIE from .lynda import ( LyndaIE, LyndaCourseIE ) from .m6 import M6IE from .macgamestore import MacGameStoreIE from .mailru import MailRuIE from .malemotion import MalemotionIE from .mdr import MDRIE from .megavideoz import MegaVideozIE from .metacafe import MetacafeIE from .metacritic import MetacriticIE from .mgoon import MgoonIE from .minhateca import MinhatecaIE from .ministrygrid import MinistryGridIE from .miomio import MioMioIE from .mit import TechTVMITIE, MITIE, OCWMITIE from .mitele import MiTeleIE from .mixcloud import MixcloudIE from .mlb import MLBIE from .mpora import MporaIE from .moevideo import MoeVideoIE from .mofosex import MofosexIE from .mojvideo import MojvideoIE from .moniker import MonikerIE from .mooshare import MooshareIE from .morningstar import MorningstarIE from .motherless import MotherlessIE from .motorsport import MotorsportIE from .movieclips import MovieClipsIE from .moviezine import MoviezineIE from .movshare import MovShareIE from .mtv import ( MTVIE, MTVServicesEmbeddedIE, MTVIggyIE, ) from .muenchentv import MuenchenTVIE from .musicplayon import MusicPlayOnIE from .musicvault import MusicVaultIE from .muzu import MuzuTVIE from .myspace import MySpaceIE, MySpaceAlbumIE from .myspass import MySpassIE from .myvideo import MyVideoIE from .myvidster import MyVidsterIE from .nationalgeographic import NationalGeographicIE from .naver import NaverIE from .nba import NBAIE from .nbc import ( NBCIE, NBCNewsIE, NBCSportsIE, NBCSportsVPlayerIE, ) from .ndr import ( NDRIE, NJoyIE, ) from .ndtv import NDTVIE from .netzkino import NetzkinoIE from .nerdcubed import NerdCubedFeedIE from .nerdist import NerdistIE from .newgrounds import NewgroundsIE from .newstube import NewstubeIE from .nextmedia import ( NextMediaIE, NextMediaActionNewsIE, AppleDailyIE, ) from .nfb import NFBIE from .nfl import NFLIE from .nhl import ( NHLIE, NHLNewsIE, NHLVideocenterIE, ) from .niconico import NiconicoIE, NiconicoPlaylistIE from .ninegag import NineGagIE from .noco import NocoIE from .normalboots import NormalbootsIE from .nosvideo import NosVideoIE from .nova import NovaIE from .novamov import NovaMovIE from .nowness import NownessIE from .nowtv import NowTVIE from .nowvideo import NowVideoIE from .npo import ( NPOIE, NPOLiveIE, NPORadioIE, NPORadioFragmentIE, TegenlichtVproIE, ) from .nrk import ( NRKIE, NRKPlaylistIE, NRKTVIE, ) from .ntvde import NTVDeIE from .ntvru import NTVRuIE from .nytimes import ( NYTimesIE, NYTimesArticleIE, ) from .nuvid import NuvidIE from .odnoklassniki import OdnoklassnikiIE from .oktoberfesttv import OktoberfestTVIE from .ooyala import ( OoyalaIE, OoyalaExternalIE, ) from .openfilm import OpenFilmIE from .orf import ( ORFTVthekIE, ORFOE1IE, ORFFM4IE, ORFIPTVIE, ) from .parliamentliveuk import ParliamentLiveUKIE from .patreon import PatreonIE from .pbs import PBSIE from .philharmoniedeparis import PhilharmonieDeParisIE from .phoenix import PhoenixIE from .photobucket import PhotobucketIE from .planetaplay import PlanetaPlayIE from .pladform import PladformIE from .played import PlayedIE from .playfm import PlayFMIE from .playvid import PlayvidIE from .playwire import PlaywireIE from .podomatic import PodomaticIE from .porn91 import Porn91IE from .pornhd import PornHdIE from .pornhub import ( PornHubIE, PornHubPlaylistIE, ) from .pornotube import PornotubeIE from .pornovoisines import PornoVoisinesIE from .pornoxo import PornoXOIE from .primesharetv import PrimeShareTVIE from .promptfile import PromptFileIE from .prosiebensat1 import ProSiebenSat1IE from .puls4 import Puls4IE from .pyvideo import PyvideoIE from .qqmusic import ( QQMusicIE, QQMusicSingerIE, QQMusicAlbumIE, QQMusicToplistIE, ) from .quickvid import QuickVidIE from .r7 import R7IE from .radiode import RadioDeIE from .radiojavan import RadioJavanIE from .radiobremen import RadioBremenIE from .radiofrance import RadioFranceIE from .rai import RaiIE from .rbmaradio import RBMARadioIE from .redtube import RedTubeIE from .restudy import RestudyIE from .reverbnation import ReverbNationIE from .ringtv import RingTVIE from .ro220 import Ro220IE from .rottentomatoes import RottenTomatoesIE from .roxwel import RoxwelIE from .rtbf import RTBFIE from .rte import RteIE from .rtlnl import RtlNlIE from .rtl2 import RTL2IE from .rtp import RTPIE from .rts import RTSIE from .rtve import RTVEALaCartaIE, RTVELiveIE, RTVEInfantilIE from .ruhd import RUHDIE from .rutube import ( RutubeIE, RutubeChannelIE, RutubeEmbedIE, RutubeMovieIE, RutubePersonIE, ) from .rutv import RUTVIE from .ruutu import RuutuIE from .sandia import SandiaIE from .safari import ( SafariIE, SafariCourseIE, ) from .sapo import SapoIE from .savefrom import SaveFromIE from .sbs import SBSIE from .scivee import SciVeeIE from .screencast import ScreencastIE from .screencastomatic import ScreencastOMaticIE from .screenwavemedia import ScreenwaveMediaIE, TeamFourIE from .senateisvp import SenateISVPIE from .servingsys import ServingSysIE from .sexu import SexuIE from .sexykarma import SexyKarmaIE from .shared import SharedIE from .sharesix import ShareSixIE from .sina import SinaIE from .slideshare import SlideshareIE from .slutload import SlutloadIE from .smotri import ( SmotriIE, SmotriCommunityIE, SmotriUserIE, SmotriBroadcastIE, ) from .snotr import SnotrIE from .sohu import SohuIE from .soompi import ( SoompiIE, SoompiShowIE, ) from .soundcloud import ( SoundcloudIE, SoundcloudSetIE, SoundcloudUserIE, SoundcloudPlaylistIE ) from .soundgasm import ( SoundgasmIE, SoundgasmProfileIE ) from .southpark import ( SouthParkIE, SouthParkDeIE, SouthParkDkIE, SouthParkEsIE, SouthParkNlIE ) from .space import SpaceIE from .spankbang import SpankBangIE from .spankwire import SpankwireIE from .spiegel import SpiegelIE, SpiegelArticleIE from .spiegeltv import SpiegeltvIE from .spike import SpikeIE from .sport5 import Sport5IE from .sportbox import ( SportBoxIE, SportBoxEmbedIE, ) from .sportdeutschland import SportDeutschlandIE from .srf import SrfIE from .srmediathek import SRMediathekIE from .ssa import SSAIE from .stanfordoc import StanfordOpenClassroomIE from .steam import SteamIE from .streamcloud import StreamcloudIE from .streamcz import StreamCZIE from .streetvoice import StreetVoiceIE from .sunporno import SunPornoIE from .svt import ( SVTIE, SVTPlayIE, ) from .swrmediathek import SWRMediathekIE from .syfy import SyfyIE from .sztvhu import SztvHuIE from .tagesschau import TagesschauIE from .tapely import TapelyIE from .tass import TassIE from .teachertube import ( TeacherTubeIE, TeacherTubeUserIE, ) from .teachingchannel import TeachingChannelIE from .teamcoco import TeamcocoIE from .techtalks import TechTalksIE from .ted import TEDIE from .telebruxelles import TeleBruxellesIE from .telecinco import TelecincoIE from .telemb import TeleMBIE from .teletask import TeleTaskIE from .tenplay import TenPlayIE from .testurl import TestURLIE from .testtube import TestTubeIE from .tf1 import TF1IE from .theonion import TheOnionIE from .theplatform import ThePlatformIE from .thesixtyone import TheSixtyOneIE from .thisav import ThisAVIE from .tinypic import TinyPicIE from .tlc import TlcIE, TlcDeIE from .tmz import ( TMZIE, TMZArticleIE, ) from .tnaflix import TNAFlixIE from .thvideo import ( THVideoIE, THVideoPlaylistIE ) from .toutv import TouTvIE from .toypics import ToypicsUserIE, ToypicsIE from .traileraddict import TrailerAddictIE from .trilulilu import TriluliluIE from .trutube import TruTubeIE from .tube8 import Tube8IE from .tubitv import TubiTvIE from .tudou import TudouIE from .tumblr import TumblrIE from .tunein import TuneInIE from .turbo import TurboIE from .tutv import TutvIE from .tv2 import ( TV2IE, TV2ArticleIE, ) from .tv4 import TV4IE from .tvc import ( TVCIE, TVCArticleIE, ) from .tvigle import TvigleIE from .tvp import TvpIE, TvpSeriesIE from .tvplay import TVPlayIE from .tweakers import TweakersIE from .twentyfourvideo import TwentyFourVideoIE from .twentytwotracks import ( TwentyTwoTracksIE, TwentyTwoTracksGenreIE ) from .twitch import ( TwitchVideoIE, TwitchChapterIE, TwitchVodIE, TwitchProfileIE, TwitchPastBroadcastsIE, TwitchBookmarksIE, TwitchStreamIE, ) from .ubu import UbuIE from .udemy import ( UdemyIE, UdemyCourseIE ) from .udn import UDNEmbedIE from .ultimedia import UltimediaIE from .unistra import UnistraIE from .urort import UrortIE from .ustream import UstreamIE, UstreamChannelIE from .varzesh3 import Varzesh3IE from .vbox7 import Vbox7IE from .veehd import VeeHDIE from .veoh import VeohIE from .vessel import VesselIE from .vesti import VestiIE from .vevo import VevoIE from .vgtv import ( BTArticleIE, BTVestlendingenIE, VGTVIE, ) from .vh1 import VH1IE from .vice import ViceIE from .viddler import ViddlerIE from .videobam import VideoBamIE from .videodetective import VideoDetectiveIE from .videolecturesnet import VideoLecturesNetIE from .videofyme import VideofyMeIE from .videomega import VideoMegaIE from .videopremium import VideoPremiumIE from .videott import VideoTtIE from .videoweed import VideoWeedIE from .vidme import VidmeIE from .vidzi import VidziIE from .vier import VierIE, VierVideosIE from .viewster import ViewsterIE from .vimeo import ( VimeoIE, VimeoAlbumIE, VimeoChannelIE, VimeoGroupsIE, VimeoLikesIE, VimeoReviewIE, VimeoUserIE, VimeoWatchLaterIE, ) from .vimple import VimpleIE from .vine import ( VineIE, VineUserIE, ) from .viki import ( VikiIE, VikiChannelIE, ) from .vk import ( VKIE, VKUserVideosIE, ) from .vodlocker import VodlockerIE from .voicerepublic import VoiceRepublicIE from .vporn import VpornIE from .vrt import VRTIE from .vube import VubeIE from .vuclip import VuClipIE from .vulture import VultureIE from .walla import WallaIE from .washingtonpost import WashingtonPostIE from .wat import WatIE from .wayofthemaster import WayOfTheMasterIE from .wdr import ( WDRIE, WDRMobileIE, WDRMausIE, ) from .webofstories import WebOfStoriesIE from .weibo import WeiboIE from .wimp import WimpIE from .wistia import WistiaIE from .worldstarhiphop import WorldStarHipHopIE from .wrzuta import WrzutaIE from .wsj import WSJIE from .xbef import XBefIE from .xboxclips import XboxClipsIE from .xhamster import XHamsterIE from .xminus import XMinusIE from .xnxx import XNXXIE from .xstream import XstreamIE from .xtube import XTubeUserIE, XTubeIE from .xuite import XuiteIE from .xvideos import XVideosIE from .xxxymovies import XXXYMoviesIE from .yahoo import ( YahooIE, YahooSearchIE, ) from .yam import YamIE from .yandexmusic import ( YandexMusicTrackIE, YandexMusicAlbumIE, YandexMusicPlaylistIE, ) from .yesjapan import YesJapanIE from .ynet import YnetIE from .youjizz import YouJizzIE from .youku import YoukuIE from .youporn import YouPornIE from .yourupload import YourUploadIE from .youtube import ( YoutubeIE, YoutubeChannelIE, YoutubeFavouritesIE, YoutubeHistoryIE, YoutubePlaylistIE, YoutubeRecommendedIE, YoutubeSearchDateIE, YoutubeSearchIE, YoutubeSearchURLIE, YoutubeShowIE, YoutubeSubscriptionsIE, YoutubeTruncatedIDIE, YoutubeTruncatedURLIE, YoutubeUserIE, YoutubeWatchLaterIE, ) from .zapiks import ZapiksIE from .zdf import ZDFIE, ZDFChannelIE from .zingmp3 import ( ZingMp3SongIE, ZingMp3AlbumIE, ) _ALL_CLASSES = [ klass for name, klass in globals().items() if name.endswith('IE') and name != 'GenericIE' ] _ALL_CLASSES.append(GenericIE) def gen_extractors(): """ Return a list of an instance of every supported extractor. The order does matter; the first extractor matched is the one handling the URL. """ return [klass() for klass in _ALL_CLASSES] def list_extractors(age_limit): """ Return a list of extractors that are suitable for the given age, sorted by extractor ID. """ return sorted( filter(lambda ie: ie.is_suitable(age_limit), gen_extractors()), key=lambda ie: ie.IE_NAME.lower()) def get_info_extractor(ie_name): """Returns the info extractor class with the given ie_name""" return globals()[ie_name + 'IE']
unlicense
-7,653,186,010,566,997,000
25.491569
83
0.800245
false
jck/myhdl
myhdl/test/core/test_traceSignals.py
1
5535
# This file is part of the myhdl library, a Python package for using # Python as a Hardware Description Language. # # Copyright (C) 2003-2008 Jan Decaluwe # # The myhdl library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation; either version 2.1 of the # License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ Run the unit tests for traceSignals """ import os import random import pytest from myhdl import block, Signal, Simulation, _simulator, delay, instance, intbv from myhdl._traceSignals import TraceSignalsError, _error, traceSignals from helpers import raises_kind random.seed(1) # random, but deterministic path = os.path QUIET=1 @block def gen(clk): @instance def logic(): while 1: yield delay(10) clk.next = not clk return logic @block def fun(): clk = Signal(bool(0)) inst = gen(clk) return inst @block def dummy(): clk = Signal(bool(0)) inst = gen(clk) return 1 @block def top(): inst = traceSignals(fun()) return inst @block def top2(): inst = [{} for i in range(4)] j = 3 inst[j-2]['key'] = traceSignals(fun()) return inst @block def top3(): inst_1 = traceSignals(fun()) inst_2 = traceSignals(fun()) return inst_1, inst_2 @block def genTristate(clk, x, y, z): xd = x.driver() yd = y.driver() zd = z.driver() @instance def ckgen(): while 1: yield delay(10) clk.next = not clk @instance def logic(): for v in [True, False, None, 0, True, None, None, 1]: yield clk.posedge xd.next = v if v is None: yd.next = zd.next = None elif v: yd.next = zd.next = 11 else: yd.next = zd.next = 0 return ckgen,logic @block def tristate(): from myhdl import TristateSignal clk = Signal(bool(0)) x = TristateSignal(True) # single bit y = TristateSignal(intbv(0)) # intbv with undefined width z = TristateSignal(intbv(0)[8:]) # intbv with fixed width inst = genTristate(clk, x, y, z) return inst @block def topTristate(): inst = traceSignals(tristate()) return inst @pytest.yield_fixture def vcd_dir(tmpdir): with tmpdir.as_cwd(): yield tmpdir if _simulator._tracing: _simulator._tf.close() _simulator._tracing = 0 class TestTraceSigs: # TODO: multiple trace handling is different now has the # calls go bottom-up. To be revisited. # def testMultipleTraces(self, vcd_dir): # with raises_kind(TraceSignalsError, _error.MultipleTraces): # dut = top3() def testArgType1(self, vcd_dir): with raises_kind(TraceSignalsError, _error.ArgType): dut = traceSignals([1, 2]) # this test is no longer relevant # def testReturnVal(self, vcd_dir): # from myhdl import ExtractHierarchyError # from myhdl._extractHierarchy import _error # kind = _error.InconsistentToplevel % (2, "dummy") # with raises_kind(ExtractHierarchyError, kind): # dut = traceSignals(dummy()) def testHierarchicalTrace1(self, vcd_dir): p = "%s.vcd" % fun.__name__ top() assert path.exists(p) def testHierarchicalTrace2(self, vcd_dir): pdut = "%s.vcd" % top.__name__ psub = "%s.vcd" % fun.__name__ dut = traceSignals(top()) assert path.exists(pdut) assert not path.exists(psub) def testTristateTrace(self, vcd_dir): sim = Simulation(topTristate()) sim.run(100, quiet=QUIET) sim.quit() def testBackupOutputFile(self, vcd_dir): p = "%s.vcd" % fun.__name__ dut = traceSignals(fun()) sim = Simulation(dut) sim.run(1000, quiet=QUIET) sim.quit() _simulator._tf.close() _simulator._tracing = 0 size = path.getsize(p) pbak = p[:-4] + '.' + str(path.getmtime(p)) + '.vcd' assert not path.exists(pbak) dut = traceSignals(fun()) _simulator._tf.close() _simulator._tracing = 0 assert path.exists(p) assert path.exists(pbak) assert path.getsize(pbak) == size assert path.getsize(p) < size def testSetDirectory(self, vcd_dir): traceSignals.directory = 'some_vcd_dir' os.mkdir(path.join(str(vcd_dir), traceSignals.directory)) pdut = "%s.vcd" % top.__name__ psub = "%s.vcd" % fun.__name__ pdutd = path.join(traceSignals.directory, "%s.vcd" % top.__name__) psubd = path.join(traceSignals.directory, "%s.vcd" % fun.__name__) dut = traceSignals(top()) _simulator._tf.close() _simulator._tracing = 0 traceSignals.directory = None assert not path.exists(pdut) assert not path.exists(psub) assert path.exists(pdutd) assert not path.exists(psubd)
lgpl-2.1
-461,648,004,307,917,760
26.954545
79
0.609214
false
schenkd/webdev-project
app/main/views.py
1
7169
# ~*~ encoding: utf-8 ~*~ from app.main import main from flask import render_template, request, flash, redirect, url_for from app.main.forms import EngpassForm, ContactForm, ClassifyForm, classified from app.models import Engpass, User, Drug, Producer, Contact, Log from flask_login import login_required, current_user from app.decorators import admin_required from datetime import datetime @main.route('/', methods=['GET', 'POST']) def index(): engpaesse = Engpass.objects() # update last seen if current_user.is_authenticated: current_user.update_last_seen() return render_template('main/index.html', engpaesse=engpaesse) @main.route('/search/<query>', methods=['GET', 'POST']) def search_query(query): pass @main.route('/klassifizierung', methods=['GET', 'POST']) def classify(): form = ClassifyForm() # update last seen if current_user.is_authenticated: current_user.update_last_seen() if request.method == 'POST': enr = int(request.form['enr']) classify = int(request.form['classify']) try: # Arzneimittel klassifizierung aktualisieren drug = Drug.get_by_enr(enr) drug.update_class(classify) # Integer in einen String transformieren # als Text in der Message und im Log classify_name = [pair[1] for pair in classified if classify in pair] flash('{} wurde als {} klassifiziert'.format(drug['drug_title'], classify_name[0])) # save in log user = User.objects.get(email=current_user.email) Log(user=user, category='classify', text='{} wurde als {} klassifiziert'.format(enr, classify)).save() except: flash('ENR {} konnte keinem Arzneimittel zugewiesen werden'.format(enr)) # query Arzneimittel entsprechend der Klassifizierung relevants = Drug.objects(classify=1) dangers = Drug.objects(classify=2) return render_template('intern/classify/form.html', form=form, relevants=relevants, dangers=dangers) @main.route('/_getFilter', methods=['POST']) def getFilter(): msg = request.get_json(force=True) if msg == 'RELEVANT': # query alle versorgungsrelevanten Engpaesse drugs = [doc.id for doc in Drug.objects(classify=1)] engpaesse = Engpass.objects(__raw__={'drug': {'$in': drugs}}) elif msg == 'DANGER': # query alle versorgungsgefährdende Engpaesse drugs = [doc.id for doc in Drug.objects(classify=2)] engpaesse = Engpass.objects(__raw__={'drug': {'$in': drugs}}) else: # query alle Engpaesse engpaesse = Engpass.objects() return render_template('main/table.html', engpaesse=engpaesse) @main.route('/contact', methods=['GET', 'POST']) def contact(): form = ContactForm() # update last seen if current_user.is_authenticated: current_user.update_last_seen() if request.method == 'POST' and form.validate_on_submit(): # Erstellen eines Contact Dokument Contact(firstname=request.form['firstname'], lastname=request.form['lastname'], telephone=request.form['telephone'], message=request.form['message'], email=request.form['email'] ).save() # save in log user = User.objects.get(email=current_user.email) Log(user=user, category='contact', text='Hat eine Kontaktanfrage gesendet.').save() flash('Ihre Nachricht wurde erfolgreich übermittelt.') return render_template('main/contact.html', form=form) @main.route('/engpass', methods=['GET', 'POST']) @login_required def engpass(): form = EngpassForm() if request.method == 'POST': # Erststellung eines Engpass Document Engpass( producer=Producer.get_by_employee(current_user.email), drug=Drug.get_by_enr(int(request.form['enr'])), alternative=request.form['alternative'], inform_expert_group=request.form['inform_expert_group'], telephone=request.form['telephone'], email=request.form['email'] if request.form['email'] is None else current_user.email, end=datetime(int(request.form['year']), int(request.form['month']), int(request.form['day'])), reason=request.form['reason'], other_reasons=request.form['other_reasons'] ).save() # save in log user = User.objects.get(email=current_user.email) Log(user=user, category='engpass', text='Hat einen Erstmeldung für einen Engpass gemeldet.').save() flash('Engpass wurde gemeldet.') return redirect(url_for('main.index')) return render_template('hersteller/engpass_form.html', form=form) @main.route('/verwaltung', methods=['GET', 'POST']) @login_required @admin_required def verwaltung(): # update last seen if current_user.is_authenticated: current_user.update_last_seen() # query aller nicht autorisierten User unauthorized_users = User.objects(authorized=False) # query letzten Zehn Log Documents logs = Log.objects[:10] return render_template('intern/admin/verwaltung.html', unauthorized_users=unauthorized_users, logs=logs) @main.route('/edit_engpass/<int:enr>', methods=['GET', 'POST']) @login_required def edit_engpass(enr): form = EngpassForm() # Ausgewählte Engpass Document laden engpass = Engpass.get_by_enr(enr) if request.method == 'POST': # Bearbeitung des Engpass Document engpass['drug'] = Drug.objects.get(enr=int(request.form['enr'])) print(request.form['alternative']) engpass['alternative'] = True if request.form['alternative'] == 'Ja' else False engpass['inform_expert_group'] = True if request.form['inform_expert_group'] == 'Ja' else False engpass['end'] = datetime(int(request.form['year']), int(request.form['month']), int(request.form['day'])) engpass['reason'] = request.form['reason'] engpass['other_reasons'] = request.form['other_reasons'] engpass['telephone'] = request.form['telephone'] engpass['email'] = request.form['email'] engpass.update_last_report() # save in log user = User.objects.get(email=current_user.email) Log(user=user, category='engpass', text='Hat eine Zwischenmeldung für den Engpass von Arzneimittel ENR {} abgegeben.'.format(request.form['enr'])).save() return redirect(url_for('main.index')) # Zuweisung der Values aus dem Engpass Document form.enr.data = engpass.drug['enr'] form.pzn.data = engpass.drug['pzn'] form.alternative.default = engpass['alternative'] form.inform_expert_group.default = engpass['inform_expert_group'] form.day.default = engpass['end'].day form.month.default = engpass['end'].month form.year.default = engpass['end'].year form.reason.default = engpass['reason'] form.other_reasons.data = engpass['other_reasons'] form.telephone.data = engpass['telephone'] form.email.data = engpass['email'] return render_template('hersteller/engpass_form.html', form=form)
mit
-664,967,691,219,463,400
36.3125
130
0.650056
false
sniperganso/python-manilaclient
manilaclient/tests/functional/test_shares_listing.py
1
8081
# Copyright 2015 Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ddt from tempest_lib.common.utils import data_utils from tempest_lib import exceptions import testtools from manilaclient import config from manilaclient.tests.functional import base CONF = config.CONF @ddt.ddt class SharesListReadOnlyTest(base.BaseTestCase): @ddt.data('admin', 'user') def test_shares_list(self, role): self.clients[role].manila('list') @ddt.data('admin', 'user') def test_list_with_debug_flag(self, role): self.clients[role].manila('list', flags='--debug') @ddt.data('admin', 'user') def test_shares_list_all_tenants(self, role): self.clients[role].manila('list', params='--all-tenants') @ddt.data('admin', 'user') def test_shares_list_filter_by_name(self, role): self.clients[role].manila('list', params='--name name') @ddt.data('admin', 'user') def test_shares_list_filter_by_status(self, role): self.clients[role].manila('list', params='--status status') def test_shares_list_filter_by_share_server_as_admin(self): self.clients['admin'].manila('list', params='--share-server fake') def test_shares_list_filter_by_share_server_as_user(self): self.assertRaises( exceptions.CommandFailed, self.clients['user'].manila, 'list', params='--share-server fake') @ddt.data('admin', 'user') def test_shares_list_filter_by_project_id(self, role): self.clients[role].manila('list', params='--project-id fake') @ddt.data('admin', 'user') def test_shares_list_filter_by_host(self, role): self.clients[role].manila('list', params='--host fake') @ddt.data('admin', 'user') def test_shares_list_with_limit_and_offset(self, role): self.clients[role].manila('list', params='--limit 1 --offset 1') @ddt.data( {'role': 'admin', 'direction': 'asc'}, {'role': 'admin', 'direction': 'desc'}, {'role': 'user', 'direction': 'asc'}, {'role': 'user', 'direction': 'desc'}) @ddt.unpack def test_shares_list_with_sorting(self, role, direction): self.clients[role].manila( 'list', params='--sort-key host --sort-dir ' + direction) @ddt.data('admin', 'user') def test_snapshot_list(self, role): self.clients[role].manila('snapshot-list') @ddt.data('admin', 'user') def test_snapshot_list_all_tenants(self, role): self.clients[role].manila('snapshot-list', params='--all-tenants') @ddt.data('admin', 'user') def test_snapshot_list_filter_by_name(self, role): self.clients[role].manila('snapshot-list', params='--name name') @ddt.data('admin', 'user') def test_snapshot_list_filter_by_status(self, role): self.clients[role].manila('snapshot-list', params='--status status') @ddt.ddt class SharesListReadWriteTest(base.BaseTestCase): @classmethod def setUpClass(cls): super(SharesListReadWriteTest, cls).setUpClass() cls.private_name = data_utils.rand_name('autotest_share_name') cls.private_description = data_utils.rand_name( 'autotest_share_description') cls.public_name = data_utils.rand_name('autotest_public_share_name') cls.public_description = data_utils.rand_name( 'autotest_public_share_description') cls.private_share = cls.create_share( name=cls.private_name, description=cls.private_description, public=False, cleanup_in_class=True, client=cls.get_user_client(), wait_for_creation=False) cls.public_share = cls.create_share( name=cls.public_name, description=cls.public_description, public=True, client=cls.get_user_client(), cleanup_in_class=True) for share_id in (cls.private_share['id'], cls.public_share['id']): cls.get_admin_client().wait_for_share_status(share_id, 'available') def _list_shares(self, filters=None): filters = filters or dict() shares = self.user_client.list_shares(filters=filters) self.assertTrue(len(shares) > 1) for s_id in (self.private_share['id'], self.public_share['id']): self.assertTrue(any(s_id == s['ID'] for s in shares)) if filters: for share in shares: try: get = self.user_client.get_share(share['ID']) except exceptions.NotFound: # NOTE(vponomaryov): Case when some share was deleted # between our 'list' and 'get' requests. Skip such case. # It occurs with concurrently running tests. continue for k, v in filters.items(): if k in ('share_network', 'share-network'): k = 'share_network_id' if v != 'deleting' and get[k] == 'deleting': continue self.assertEqual(v, get[k]) def test_list_shares(self): self._list_shares() def test_list_shares_for_all_tenants(self): shares = self.user_client.list_shares(True) self.assertTrue(len(shares) > 1) for s_id in (self.private_share['id'], self.public_share['id']): self.assertTrue(any(s_id == s['ID'] for s in shares)) def test_list_shares_by_name(self): shares = self.user_client.list_shares( filters={'name': self.private_name}) self.assertEqual(1, len(shares)) self.assertTrue( any(self.private_share['id'] == s['ID'] for s in shares)) for share in shares: get = self.user_client.get_share(share['ID']) self.assertEqual(self.private_name, get['name']) def test_list_shares_by_share_type(self): share_type_id = self.user_client.get_share_type( self.private_share['share_type'])['ID'] # NOTE(vponomaryov): this is API 2.6+ specific self._list_shares({'share_type': share_type_id}) def test_list_shares_by_status(self): self._list_shares({'status': 'available'}) def test_list_shares_by_project_id(self): project_id = self.admin_client.get_project_id( self.admin_client.tenant_name) self._list_shares({'project_id': project_id}) @testtools.skipUnless( CONF.share_network, "Usage of Share networks is disabled") def test_list_shares_by_share_network(self): share_network_id = self.user_client.get_share_network( CONF.share_network)['id'] self._list_shares({'share_network': share_network_id}) def test_list_shares_by_host(self): get = self.user_client.get_share(self.private_share['id']) self._list_shares({'host': get['host']}) @ddt.data( {'limit': 1}, {'limit': 2}, {'limit': 1, 'offset': 1}, {'limit': 2, 'offset': 0}, ) def test_list_shares_with_limit(self, filters): shares = self.user_client.list_shares(filters=filters) self.assertEqual(filters['limit'], len(shares)) def test_list_share_select_column(self): shares = self.user_client.list_shares(columns="Name,Size") self.assertTrue(any(s['Name'] is not None for s in shares)) self.assertTrue(any(s['Size'] is not None for s in shares)) self.assertTrue(all('Description' not in s for s in shares))
apache-2.0
-5,230,246,703,347,627,000
37.117925
79
0.610073
false
minorg/yomeka
test/yomeka_test/classic/omeka_classic_rest_api_client_test.py
1
1984
import unittest from .test_credentials import TEST_API_KEY, TEST_COLLECTION_ID, TEST_ENDPOINT_URL, TEST_ITEM_ID from yomeka.classic.no_such_omeka_classic_collection_exception import NoSuchOmekaClassicCollectionException from yomeka.classic.no_such_omeka_classic_item_exception import NoSuchOmekaClassicItemException from yomeka.classic.omeka_classic_collection import OmekaClassicCollection from yomeka.classic.omeka_classic_file import OmekaClassicFile from yomeka.classic.omeka_classic_item import OmekaClassicItem from yomeka.classic.omeka_classic_rest_api_client import OmekaClassicRestApiClient class OmekaClassicRestApiClientTest(unittest.TestCase): def setUp(self): self.__client = OmekaClassicRestApiClient(api_key=TEST_API_KEY, endpoint_url=TEST_ENDPOINT_URL) def test_get_collection(self): self.__client.get_collection(id=TEST_COLLECTION_ID) try: self.__client.get_collection(id=42) self.fail() except NoSuchOmekaClassicCollectionException: pass def test_get_collections(self): collections = self.__client.get_collections(page=1, per_page=2) self.assertEquals(2, len(collections)) for collection in collections: self.assertTrue(isinstance(collection, OmekaClassicCollection)) def test_get_files(self): files = self.__client.get_files(page=1, per_page=10) self.assertEquals(10, len(files)) for file_ in files: self.assertTrue(isinstance(file_, OmekaClassicFile)) def test_get_item(self): self.__client.get_item(id=TEST_ITEM_ID) try: self.__client.get_item(id=4242424) self.fail() except NoSuchOmekaClassicItemException: pass def test_get_items(self): items = self.__client.get_items(page=1, per_page=2) self.assertEquals(2, len(items)) for item in items: self.assertTrue(isinstance(item, OmekaClassicItem))
bsd-2-clause
-7,684,260,334,593,606,000
40.333333
107
0.705645
false
johnowhitaker/bobibabber
sklearn/hmm.py
1
48255
# Hidden Markov Models # # Author: Ron Weiss <[email protected]> # and Shiqiao Du <[email protected]> # API changes: Jaques Grobler <[email protected]> """ The :mod:`sklearn.hmm` module implements hidden Markov models. **Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known numerical stability issues. This module will be removed in version 0.17. """ import string import numpy as np from .utils import check_random_state, deprecated from .utils.extmath import logsumexp from .base import BaseEstimator from .mixture import ( GMM, log_multivariate_normal_density, sample_gaussian, distribute_covar_matrix_to_match_covariance_type, _validate_covars) from . import cluster from . import _hmmc __all__ = ['GMMHMM', 'GaussianHMM', 'MultinomialHMM', 'decoder_algorithms', 'normalize'] ZEROLOGPROB = -1e200 EPS = np.finfo(float).eps NEGINF = -np.inf decoder_algorithms = ("viterbi", "map") @deprecated("WARNING: The HMM module and its functions will be removed in 0.17" "as it no longer falls within the project's scope and API.") def normalize(A, axis=None): """ Normalize the input array so that it sums to 1. WARNING: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- A: array, shape (n_samples, n_features) Non-normalized input data axis: int dimension along which normalization is performed Returns ------- normalized_A: array, shape (n_samples, n_features) A with values normalized (summing to 1) along the prescribed axis WARNING: Modifies inplace the array """ A += EPS Asum = A.sum(axis) if axis and A.ndim > 1: # Make sure we don't divide by zero. Asum[Asum == 0] = 1 shape = list(A.shape) shape[axis] = 1 Asum.shape = shape return A / Asum @deprecated("WARNING: The HMM module and its function will be removed in 0.17" "as it no longer falls within the project's scope and API.") class _BaseHMM(BaseEstimator): """Hidden Markov Model base class. Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. See the instance documentation for details specific to a particular object. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. transmat_prior : array, shape (`n_components`, `n_components`) Matrix of prior transition probabilities between states. startprob_prior : array, shape ('n_components`,) Initial state occupation prior distribution. algorithm : string, one of the decoder_algorithms decoder algorithm random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. See Also -------- GMM : Gaussian mixture model """ # This class implements the public interface to all HMMs that # derive from it, including all of the machinery for the # forward-backward and Viterbi algorithms. Subclasses need only # implement _generate_sample_from_state(), _compute_log_likelihood(), # _init(), _initialize_sufficient_statistics(), # _accumulate_sufficient_statistics(), and _do_mstep(), all of # which depend on the specific emission distribution. # # Subclasses will probably also want to implement properties for # the emission distribution parameters to expose them publicly. def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): self.n_components = n_components self.n_iter = n_iter self.thresh = thresh self.params = params self.init_params = init_params self.startprob_ = startprob self.startprob_prior = startprob_prior self.transmat_ = transmat self.transmat_prior = transmat_prior self._algorithm = algorithm self.random_state = random_state def eval(self, X): return self.score_samples(X) def score_samples(self, obs): """Compute the log probability under the model and compute posteriors. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- logprob : float Log likelihood of the sequence ``obs``. posteriors : array_like, shape (n, n_components) Posterior probabilities of each state for each observation See Also -------- score : Compute the log probability under the model decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice # gamma is guaranteed to be correctly normalized by logprob at # all frames, unless we do approximate inference using pruning. # So, we will normalize each frame explicitly in case we # pruned too aggressively. posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T posteriors += np.finfo(np.float32).eps posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1)) return logprob, posteriors def score(self, obs): """Compute the log probability under the model. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : float Log likelihood of the ``obs``. See Also -------- score_samples : Compute the log probability under the model and posteriors decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, _ = self._do_forward_pass(framelogprob) return logprob def _decode_viterbi(self, obs): """Find most likely state sequence corresponding to ``obs``. Uses the Viterbi algorithm. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- viterbi_logprob : float Log probability of the maximum likelihood path through the HMM. state_sequence : array_like, shape (n,) Index of the most likely states for each observation. See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob) return viterbi_logprob, state_sequence def _decode_map(self, obs): """Find most likely state sequence corresponding to `obs`. Uses the maximum a posteriori estimation. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- map_logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ _, posteriors = self.score_samples(obs) state_sequence = np.argmax(posteriors, axis=1) map_logprob = np.max(posteriors, axis=1).sum() return map_logprob, state_sequence def decode(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to ``obs``. Uses the selected algorithm for decoding. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. algorithm : string, one of the `decoder_algorithms` decoder algorithm to be used Returns ------- logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ if self._algorithm in decoder_algorithms: algorithm = self._algorithm elif algorithm in decoder_algorithms: algorithm = algorithm decoder = {"viterbi": self._decode_viterbi, "map": self._decode_map} logprob, state_sequence = decoder[algorithm](obs) return logprob, state_sequence def predict(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to `obs`. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- state_sequence : array_like, shape (n,) Index of the most likely states for each observation """ _, state_sequence = self.decode(obs, algorithm) return state_sequence def predict_proba(self, obs): """Compute the posterior probability for each state in the model Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- T : array-like, shape (n, n_components) Returns the probability of the sample for each state in the model. """ _, posteriors = self.score_samples(obs) return posteriors def sample(self, n=1, random_state=None): """Generate random samples from the model. Parameters ---------- n : int Number of samples to generate. random_state: RandomState or an int seed (0 by default) A random number generator instance. If None is given, the object's random_state is used Returns ------- (obs, hidden_states) obs : array_like, length `n` List of samples hidden_states : array_like, length `n` List of hidden states """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) startprob_pdf = self.startprob_ startprob_cdf = np.cumsum(startprob_pdf) transmat_pdf = self.transmat_ transmat_cdf = np.cumsum(transmat_pdf, 1) # Initial state. rand = random_state.rand() currstate = (startprob_cdf > rand).argmax() hidden_states = [currstate] obs = [self._generate_sample_from_state( currstate, random_state=random_state)] for _ in range(n - 1): rand = random_state.rand() currstate = (transmat_cdf[currstate] > rand).argmax() hidden_states.append(currstate) obs.append(self._generate_sample_from_state( currstate, random_state=random_state)) return np.array(obs), np.array(hidden_states, dtype=int) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting more training data, or strengthening the appropriate subclass-specific regularization parameter. """ if self.algorithm not in decoder_algorithms: self._algorithm = "viterbi" self._init(obs, self.init_params) logprob = [] for i in range(self.n_iter): # Expectation step stats = self._initialize_sufficient_statistics() curr_logprob = 0 for seq in obs: framelogprob = self._compute_log_likelihood(seq) lpr, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T curr_logprob += lpr self._accumulate_sufficient_statistics( stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, self.params) logprob.append(curr_logprob) # Check for convergence. if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh: break # Maximization step self._do_mstep(stats, self.params) return self def _get_algorithm(self): "decoder algorithm" return self._algorithm def _set_algorithm(self, algorithm): if algorithm not in decoder_algorithms: raise ValueError("algorithm must be one of the decoder_algorithms") self._algorithm = algorithm algorithm = property(_get_algorithm, _set_algorithm) def _get_startprob(self): """Mixing startprob for each state.""" return np.exp(self._log_startprob) def _set_startprob(self, startprob): if startprob is None: startprob = np.tile(1.0 / self.n_components, self.n_components) else: startprob = np.asarray(startprob, dtype=np.float) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(startprob): normalize(startprob) if len(startprob) != self.n_components: raise ValueError('startprob must have length n_components') if not np.allclose(np.sum(startprob), 1.0): raise ValueError('startprob must sum to 1.0') self._log_startprob = np.log(np.asarray(startprob).copy()) startprob_ = property(_get_startprob, _set_startprob) def _get_transmat(self): """Matrix of transition probabilities.""" return np.exp(self._log_transmat) def _set_transmat(self, transmat): if transmat is None: transmat = np.tile(1.0 / self.n_components, (self.n_components, self.n_components)) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(transmat): normalize(transmat, axis=1) if (np.asarray(transmat).shape != (self.n_components, self.n_components)): raise ValueError('transmat must have shape ' '(n_components, n_components)') if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)): raise ValueError('Rows of transmat must sum to 1.0') self._log_transmat = np.log(np.asarray(transmat).copy()) underflow_idx = np.isnan(self._log_transmat) self._log_transmat[underflow_idx] = NEGINF transmat_ = property(_get_transmat, _set_transmat) def _do_viterbi_pass(self, framelogprob): n_observations, n_components = framelogprob.shape state_sequence, logprob = _hmmc._viterbi( n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob) return logprob, state_sequence def _do_forward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape fwdlattice = np.zeros((n_observations, n_components)) _hmmc._forward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, fwdlattice) fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF return logsumexp(fwdlattice[-1]), fwdlattice def _do_backward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape bwdlattice = np.zeros((n_observations, n_components)) _hmmc._backward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, bwdlattice) bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF return bwdlattice def _compute_log_likelihood(self, obs): pass def _generate_sample_from_state(self, state, random_state=None): pass def _init(self, obs, params): if 's' in params: self.startprob_.fill(1.0 / self.n_components) if 't' in params: self.transmat_.fill(1.0 / self.n_components) # Methods used by self.fit() def _initialize_sufficient_statistics(self): stats = {'nobs': 0, 'start': np.zeros(self.n_components), 'trans': np.zeros((self.n_components, self.n_components))} return stats def _accumulate_sufficient_statistics(self, stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, params): stats['nobs'] += 1 if 's' in params: stats['start'] += posteriors[0] if 't' in params: n_observations, n_components = framelogprob.shape # when the sample is of length 1, it contains no transitions # so there is no reason to update our trans. matrix estimate if n_observations > 1: lneta = np.zeros((n_observations - 1, n_components, n_components)) lnP = logsumexp(fwdlattice[-1]) _hmmc._compute_lneta(n_observations, n_components, fwdlattice, self._log_transmat, bwdlattice, framelogprob, lnP, lneta) stats["trans"] += np.exp(logsumexp(lneta, 0)) def _do_mstep(self, stats, params): # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 if self.startprob_prior is None: self.startprob_prior = 1.0 if self.transmat_prior is None: self.transmat_prior = 1.0 if 's' in params: self.startprob_ = normalize( np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20)) if 't' in params: transmat_ = normalize( np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20), axis=1) self.transmat_ = transmat_ class GaussianHMM(_BaseHMM): """Hidden Markov Model with Gaussian emissions Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- n_components : int Number of states. ``_covariance_type`` : string String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Attributes ---------- ``_covariance_type`` : string String describing the type of covariance parameters used by the model. Must be one of 'spherical', 'tied', 'diag', 'full'. n_features : int Dimensionality of the Gaussian emissions. n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. means : array, shape (`n_components`, `n_features`) Mean parameters for each state. covars : array Covariance parameters for each state. The shape depends on ``_covariance_type``:: (`n_components`,) if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_components`, `n_features`) if 'diag', (`n_components`, `n_features`, `n_features`) if 'full' random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import GaussianHMM >>> GaussianHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE GaussianHMM(algorithm='viterbi',... See Also -------- GMM : Gaussian mixture model """ def __init__(self, n_components=1, covariance_type='diag', startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", means_prior=None, means_weight=0, covars_prior=1e-2, covars_weight=1, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) self._covariance_type = covariance_type if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError('bad covariance_type') self.means_prior = means_prior self.means_weight = means_weight self.covars_prior = covars_prior self.covars_weight = covars_weight @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _get_means(self): """Mean parameters for each state.""" return self._means_ def _set_means(self, means): means = np.asarray(means) if (hasattr(self, 'n_features') and means.shape != (self.n_components, self.n_features)): raise ValueError('means must have shape ' '(n_components, n_features)') self._means_ = means.copy() self.n_features = self._means_.shape[1] means_ = property(_get_means, _set_means) def _get_covars(self): """Return covars as a full matrix.""" if self._covariance_type == 'full': return self._covars_ elif self._covariance_type == 'diag': return [np.diag(cov) for cov in self._covars_] elif self._covariance_type == 'tied': return [self._covars_] * self.n_components elif self._covariance_type == 'spherical': return [np.eye(self.n_features) * f for f in self._covars_] def _set_covars(self, covars): covars = np.asarray(covars) _validate_covars(covars, self._covariance_type, self.n_components) self._covars_ = covars.copy() covars_ = property(_get_covars, _set_covars) def _compute_log_likelihood(self, obs): return log_multivariate_normal_density( obs, self._means_, self._covars_, self._covariance_type) def _generate_sample_from_state(self, state, random_state=None): if self._covariance_type == 'tied': cv = self._covars_ else: cv = self._covars_[state] return sample_gaussian(self._means_[state], cv, self._covariance_type, random_state=random_state) def _init(self, obs, params='stmc'): super(GaussianHMM, self)._init(obs, params=params) if (hasattr(self, 'n_features') and self.n_features != obs[0].shape[1]): raise ValueError('Unexpected number of dimensions, got %s but ' 'expected %s' % (obs[0].shape[1], self.n_features)) self.n_features = obs[0].shape[1] if 'm' in params: self._means_ = cluster.KMeans( n_clusters=self.n_components).fit(obs[0]).cluster_centers_ if 'c' in params: cv = np.cov(obs[0].T) if not cv.shape: cv.shape = (1, 1) self._covars_ = distribute_covar_matrix_to_match_covariance_type( cv, self._covariance_type, self.n_components) self._covars_[self._covars_==0] = 1e-5 def _initialize_sufficient_statistics(self): stats = super(GaussianHMM, self)._initialize_sufficient_statistics() stats['post'] = np.zeros(self.n_components) stats['obs'] = np.zeros((self.n_components, self.n_features)) stats['obs**2'] = np.zeros((self.n_components, self.n_features)) stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features, self.n_features)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GaussianHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'm' in params or 'c' in params: stats['post'] += posteriors.sum(axis=0) stats['obs'] += np.dot(posteriors.T, obs) if 'c' in params: if self._covariance_type in ('spherical', 'diag'): stats['obs**2'] += np.dot(posteriors.T, obs ** 2) elif self._covariance_type in ('tied', 'full'): for t, o in enumerate(obs): obsobsT = np.outer(o, o) for c in range(self.n_components): stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT def _do_mstep(self, stats, params): super(GaussianHMM, self)._do_mstep(stats, params) # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 denom = stats['post'][:, np.newaxis] if 'm' in params: prior = self.means_prior weight = self.means_weight if prior is None: weight = 0 prior = 0 self._means_ = (weight * prior + stats['obs']) / (weight + denom) if 'c' in params: covars_prior = self.covars_prior covars_weight = self.covars_weight if covars_prior is None: covars_weight = 0 covars_prior = 0 means_prior = self.means_prior means_weight = self.means_weight if means_prior is None: means_weight = 0 means_prior = 0 meandiff = self._means_ - means_prior if self._covariance_type in ('spherical', 'diag'): cv_num = (means_weight * (meandiff) ** 2 + stats['obs**2'] - 2 * self._means_ * stats['obs'] + self._means_ ** 2 * denom) cv_den = max(covars_weight - 1, 0) + denom self._covars_ = (covars_prior + cv_num) / np.maximum(cv_den, 1e-5) if self._covariance_type == 'spherical': self._covars_ = np.tile( self._covars_.mean(1)[:, np.newaxis], (1, self._covars_.shape[1])) elif self._covariance_type in ('tied', 'full'): cvnum = np.empty((self.n_components, self.n_features, self.n_features)) for c in range(self.n_components): obsmean = np.outer(stats['obs'][c], self._means_[c]) cvnum[c] = (means_weight * np.outer(meandiff[c], meandiff[c]) + stats['obs*obs.T'][c] - obsmean - obsmean.T + np.outer(self._means_[c], self._means_[c]) * stats['post'][c]) cvweight = max(covars_weight - self.n_features, 0) if self._covariance_type == 'tied': self._covars_ = ((covars_prior + cvnum.sum(axis=0)) / (cvweight + stats['post'].sum())) elif self._covariance_type == 'full': self._covars_ = ((covars_prior + cvnum) / (cvweight + stats['post'][:, None, None])) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. the covariance parameter on one or more components becomminging too small). You can fix this by getting more training data, or increasing covars_prior. """ return super(GaussianHMM, self).fit(obs) class MultinomialHMM(_BaseHMM): """Hidden Markov Model with multinomial (discrete) emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. n_symbols : int Number of possible symbols emitted by the model (in the observations). transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. emissionprob : array, shape ('n_components`, 'n_symbols`) Probability of emitting a given symbol when in each state. random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import MultinomialHMM >>> MultinomialHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE MultinomialHMM(algorithm='viterbi',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with multinomial emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) def _get_emissionprob(self): """Emission probability distribution for each state.""" return np.exp(self._log_emissionprob) def _set_emissionprob(self, emissionprob): emissionprob = np.asarray(emissionprob) if hasattr(self, 'n_symbols') and \ emissionprob.shape != (self.n_components, self.n_symbols): raise ValueError('emissionprob must have shape ' '(n_components, n_symbols)') # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(emissionprob): normalize(emissionprob) self._log_emissionprob = np.log(emissionprob) underflow_idx = np.isnan(self._log_emissionprob) self._log_emissionprob[underflow_idx] = NEGINF self.n_symbols = self._log_emissionprob.shape[1] emissionprob_ = property(_get_emissionprob, _set_emissionprob) def _compute_log_likelihood(self, obs): return self._log_emissionprob[:, obs].T def _generate_sample_from_state(self, state, random_state=None): cdf = np.cumsum(self.emissionprob_[state, :]) random_state = check_random_state(random_state) rand = random_state.rand() symbol = (cdf > rand).argmax() return symbol def _init(self, obs, params='ste'): super(MultinomialHMM, self)._init(obs, params=params) self.random_state = check_random_state(self.random_state) if 'e' in params: if not hasattr(self, 'n_symbols'): symbols = set() for o in obs: symbols = symbols.union(set(o)) self.n_symbols = len(symbols) emissionprob = normalize(self.random_state.rand(self.n_components, self.n_symbols), 1) self.emissionprob_ = emissionprob def _initialize_sufficient_statistics(self): stats = super(MultinomialHMM, self)._initialize_sufficient_statistics() stats['obs'] = np.zeros((self.n_components, self.n_symbols)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(MultinomialHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'e' in params: for t, symbol in enumerate(obs): stats['obs'][:, symbol] += posteriors[t] def _do_mstep(self, stats, params): super(MultinomialHMM, self)._do_mstep(stats, params) if 'e' in params: self.emissionprob_ = (stats['obs'] / stats['obs'].sum(1)[:, np.newaxis]) def _check_input_symbols(self, obs): """check if input can be used for Multinomial.fit input must be both positive integer array and every element must be continuous. e.g. x = [0, 0, 2, 1, 3, 1, 1] is OK and y = [0, 0, 3, 5, 10] not """ symbols = np.asarray(obs).flatten() if symbols.dtype.kind != 'i': # input symbols must be integer return False if len(symbols) == 1: # input too short return False if np.any(symbols < 0): # input contains negative intiger return False symbols.sort() if np.any(np.diff(symbols) > 1): # input is discontinous return False return True def fit(self, obs, **kwargs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. """ err_msg = ("Input must be both positive integer array and " "every element must be continuous, but %s was given.") if not self._check_input_symbols(obs): raise ValueError(err_msg % obs) return _BaseHMM.fit(self, obs, **kwargs) class GMMHMM(_BaseHMM): """Hidden Markov Model with Gaussin mixture emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. gmms : array of GMM objects, length `n_components` GMM emission distributions for each state. random_state : RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. Examples -------- >>> from sklearn.hmm import GMMHMM >>> GMMHMM(n_components=2, n_mix=10, covariance_type='diag') ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE GMMHMM(algorithm='viterbi', covariance_type='diag',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", gmms=None, covariance_type='diag', covars_prior=1e-2, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with GMM emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) # XXX: Hotfit for n_mix that is incompatible with the scikit's # BaseEstimator API self.n_mix = n_mix self._covariance_type = covariance_type self.covars_prior = covars_prior self.gmms = gmms if gmms is None: gmms = [] for x in range(self.n_components): if covariance_type is None: g = GMM(n_mix) else: g = GMM(n_mix, covariance_type=covariance_type) gmms.append(g) self.gmms_ = gmms # Read-only properties. @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _compute_log_likelihood(self, obs): return np.array([g.score(obs) for g in self.gmms_]).T def _generate_sample_from_state(self, state, random_state=None): return self.gmms_[state].sample(1, random_state=random_state).flatten() def _init(self, obs, params='stwmc'): super(GMMHMM, self)._init(obs, params=params) allobs = np.concatenate(obs, 0) for g in self.gmms_: g.set_params(init_params=params, n_iter=0) g.fit(allobs) def _initialize_sufficient_statistics(self): stats = super(GMMHMM, self)._initialize_sufficient_statistics() stats['norm'] = [np.zeros(g.weights_.shape) for g in self.gmms_] stats['means'] = [np.zeros(np.shape(g.means_)) for g in self.gmms_] stats['covars'] = [np.zeros(np.shape(g.covars_)) for g in self.gmms_] return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GMMHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) for state, g in enumerate(self.gmms_): _, lgmm_posteriors = g.score_samples(obs) lgmm_posteriors += np.log(posteriors[:, state][:, np.newaxis] + np.finfo(np.float).eps) gmm_posteriors = np.exp(lgmm_posteriors) tmp_gmm = GMM(g.n_components, covariance_type=g.covariance_type) n_features = g.means_.shape[1] tmp_gmm._set_covars( distribute_covar_matrix_to_match_covariance_type( np.eye(n_features), g.covariance_type, g.n_components)) norm = tmp_gmm._do_mstep(obs, gmm_posteriors, params) if np.any(np.isnan(tmp_gmm.covars_)): raise ValueError stats['norm'][state] += norm if 'm' in params: stats['means'][state] += tmp_gmm.means_ * norm[:, np.newaxis] if 'c' in params: if tmp_gmm.covariance_type == 'tied': stats['covars'][state] += tmp_gmm.covars_ * norm.sum() else: cvnorm = np.copy(norm) shape = np.ones(tmp_gmm.covars_.ndim) shape[0] = np.shape(tmp_gmm.covars_)[0] cvnorm.shape = shape stats['covars'][state] += tmp_gmm.covars_ * cvnorm def _do_mstep(self, stats, params): super(GMMHMM, self)._do_mstep(stats, params) # All that is left to do is to apply covars_prior to the # parameters updated in _accumulate_sufficient_statistics. for state, g in enumerate(self.gmms_): n_features = g.means_.shape[1] norm = stats['norm'][state] if 'w' in params: g.weights_ = normalize(norm) if 'm' in params: g.means_ = stats['means'][state] / norm[:, np.newaxis] if 'c' in params: if g.covariance_type == 'tied': g.covars_ = ((stats['covars'][state] + self.covars_prior * np.eye(n_features)) / norm.sum()) else: cvnorm = np.copy(norm) shape = np.ones(g.covars_.ndim) shape[0] = np.shape(g.covars_)[0] cvnorm.shape = shape if (g.covariance_type in ['spherical', 'diag']): g.covars_ = (stats['covars'][state] + self.covars_prior) / cvnorm elif g.covariance_type == 'full': eye = np.eye(n_features) g.covars_ = ((stats['covars'][state] + self.covars_prior * eye[np.newaxis]) / cvnorm)
mit
8,186,882,143,462,571,000
36.435997
82
0.575505
false
Vivaq/g2p
g2p_project/g2p_project/settings.py
1
1969
import os SETTINGS_DIR = os.path.dirname(__file__) PROJECT_PATH = os.path.join(SETTINGS_DIR, os.pardir) PROJECT_ROOT = os.path.abspath(PROJECT_PATH) TEMPLATE_DIRS = ( os.path.join(PROJECT_ROOT, 'templates'), ) BASE_DIR = os.path.dirname(os.path.dirname(__file__)) LOGIN_URL = '/login/' LOGOUT_URL = '/logout/' SECRET_KEY = 'u)vhj6nj*)(i(8zg2f0!j=xwg+309om2v@o$-sn0l9a5u0=%+7' DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'g2p', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'g2p.middleware.RequireLoginMiddleware', ) LOGIN_REQUIRED_URLS = ( r'/(.*)$', # TODO interpret this regex. r'/downloadData(.*)$' ) LOGIN_REQUIRED_URLS_EXCEPTIONS = ( r'/login(.*)$', r'/logout(.*)$', r'/staff(.*)$', ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.request', ) ROOT_URLCONF = 'g2p_project.urls' WSGI_APPLICATION = 'g2p_project.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'database.sqlite3'), 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), )
bsd-2-clause
4,745,019,941,371,833,000
20.637363
65
0.653123
false
lopiola/integracja_wypadki
scripts/db_api/person.py
1
3215
#!/usr/bin/python # -*- coding: utf-8 -*- """ Manipulates the person table """ from psycopg2 import connect import common constraints = { 'sex': ['MALE', 'FEMALE', 'UNKNOWN'], 'injury_level': ['FATAL', 'SERIOUS', 'SLIGHT', 'NONE', 'UNKNOWN'], 'type': ['DRIVER', 'PASSENGER', 'PEDESTRIAN', 'UNKNOWN'], 'seatbelt': ['NOT_APPLICABLE', 'WORN_CONFIRMED', 'WORN_NOT_CONFIRMED', 'NOT_WORN', 'UNKNOWN'], 'seated_pos': ['DRIVER', 'PASSENGER', 'BACK', 'NONE', 'UNKNOWN'] } def new(id, acc_id, veh_id, sex, age, injury_level, type='UNKNOWN', seatbelt='UNKNOWN', seated_pos='UNKNOWN'): person = { 'id': id, 'acc_id': acc_id, 'veh_id': veh_id, 'sex': sex, 'age': age, 'injury_level': injury_level, 'type': type, 'seatbelt': seatbelt, 'seated_pos': seated_pos, } common.check_key_constraints(person, constraints) return person def new_from_dict(person_data): person = { 'type': 'UNKNOWN', 'seatbelt': 'UNKNOWN', 'seated_pos': 'UNKNOWN', } person.update(person_data) # TODO: Check obligatory fields common.check_key_constraints(person, constraints) return person def insert(person_list): if not isinstance(person_list, list): person_list = [person_list] user = common.get_user() database = common.get_db_name() con = connect(user=user, database=database) cur = con.cursor() for person in person_list: cur.execute(insert_command(person)) cur.close() con.commit() con.close() def delete(id_list): if not isinstance(id_list, list): id_list = [id_list] user = common.get_user() database = common.get_db_name() con = connect(user=user, database=database) cur = con.cursor() for person_id in id_list: cur.execute(delete_command(person_id)) cur.close() con.commit() con.close() def create_table_command(): return ''' CREATE TABLE person( id BIGINT PRIMARY KEY NOT NULL, acc_id BIGINT NOT NULL, veh_id BIGINT NULL, sex TEXT NOT NULL, age INT NOT NULL, type TEXT NOT NULL, injury_level TEXT NOT NULL, seatbelt TEXT NOT NULL, seated_pos TEXT NOT NULL ); ''' def insert_command(person): command = ''' INSERT INTO person VALUES ( {id}, {acc_id}, {veh_id}, '{sex}', {age}, '{type}', '{injury_level}', '{seatbelt}', '{seated_pos}' ); ''' command = command.format( id=person['id'], acc_id=person['acc_id'], veh_id=person['veh_id'], sex=person['sex'], age=person['age'], type=person['type'], injury_level=person['injury_level'], seatbelt=person['seatbelt'], seated_pos=person['seated_pos'], ) return command def delete_command(person_id): command = '''DELETE FROM person WHERE id = {id}''' return command.format(id=person_id)
mit
430,964,396,947,975,200
22.136691
98
0.536236
false
betterlife/flask-psi
psi/app/views/inventory_transaction.py
2
6267
from datetime import datetime from flask_admin.contrib.sqla.ajax import QueryAjaxModelLoader from flask_admin.model.fields import AjaxSelectField from psi.app.models import Product from psi.app import service from psi.app.models import InventoryTransactionLine, InventoryTransaction from psi.app.utils import security_util from flask_admin.contrib.sqla.filters import FloatGreaterFilter, FloatSmallerFilter from flask_admin.model import InlineFormAdmin from flask_babelex import lazy_gettext from .formatter import receivings_formatter, shipping_formatter, \ default_date_formatter, type_field, date_field, product_field, price_field, \ quantity_field, total_amount_field, remark_field, saleable_quantity_field, \ line_formatter from psi.app.views.base import ModelViewWithAccess, ModelWithLineFormatter class InventoryTransactionLineInlineAdmin(InlineFormAdmin): form_args = dict( id=dict(label=lazy_gettext('id')), product=dict(label=lazy_gettext('Product')), price=dict(label=lazy_gettext('Inventory Transaction Price'), description=lazy_gettext('For sales, it should be sell price, ' 'for item lost or broken, should be purchase price plus logistic expend')), in_transit_quantity=dict(label=lazy_gettext('In Transit Quantity'), description=lazy_gettext('Quantity of product ordered but still on the way')), quantity=dict(label=lazy_gettext('Actual Quantity Change'), description=lazy_gettext('This quantity should be a negative number ' 'for sales, item lost or item broken')), remark=dict(label=lazy_gettext('Remark')), ) def postprocess_form(self, form): from psi.app.views.components import DisabledStringField form.total_amount = DisabledStringField(label=lazy_gettext('Total Amount')) form.saleable_quantity = DisabledStringField(label=lazy_gettext('Saleable Quantity')), ajaxLoader = QueryAjaxModelLoader(name='product', session=service.Info.get_db().session, model=Product, fields=['name']) form.product = AjaxSelectField(ajaxLoader, label=lazy_gettext('Product(Can be searched by first letter)')) form.itl_receiving_line = None form.remark = None form.itl_shipping_line = None form.in_transit_quantity = None return form class InventoryTransactionAdmin(ModelViewWithAccess, ModelWithLineFormatter): can_delete = False column_list = ('id', 'type', 'date', 'total_amount', 'it_receiving', 'it_shipping', 'remark') column_sortable_list = ('id', ('type', 'type.display'), 'total_amount', 'date',) form_columns = ('type', 'date', 'total_amount', 'remark', 'lines') form_create_rules = ('type', 'date', 'remark', 'lines',) form_edit_rules = ('type', 'date', 'remark', 'lines',) column_editable_list = ('remark',) column_filters = ('date', FloatGreaterFilter(InventoryTransaction.total_amount, lazy_gettext('Total Amount')), FloatSmallerFilter(InventoryTransaction.total_amount, lazy_gettext('Total Amount')),) column_searchable_list = ('type.display', 'remark') column_details_list = ('id', 'type', 'date', 'total_amount', 'remark', 'lines', 'it_receiving', 'it_shipping',) column_labels = { 'id': lazy_gettext('id'), 'type': lazy_gettext('Inventory Transaction Type'), 'date': lazy_gettext('Date'), 'total_amount': lazy_gettext('Total Amount'), 'remark': lazy_gettext('Remark'), 'lines': lazy_gettext('Lines'), 'it_receiving': lazy_gettext('Related Receiving'), 'it_shipping': lazy_gettext('Related Shipping'), } form_excluded_columns = ('it_shipping', 'it_receiving') form_args = dict( type=dict(query_factory=InventoryTransaction.manual_type_filter), date=dict(default=datetime.now()), ) from psi.app.views.components import DisabledStringField form_extra_fields = { 'total_amount': DisabledStringField(label=lazy_gettext('Total Amount')), } form_ajax_refs = { 'product': QueryAjaxModelLoader(name='product', session=service.Info.get_db().session, model=Product, # --> Still need to filter the products by organization. # --> Line 209 is commented out, need to bring it back. fields=['name', 'mnemonic']) } column_formatters = { 'it_receiving': receivings_formatter, 'it_shipping': shipping_formatter, 'date': default_date_formatter, 'lines': line_formatter, } inline_models = (InventoryTransactionLineInlineAdmin(InventoryTransactionLine),) def get_list_columns(self): """ This method is called instantly in list.html List of columns is decided runtime during render of the table Not decided during flask-admin blueprint startup. """ columns = super(InventoryTransactionAdmin, self).get_list_columns() cols = ['total_amount'] columns = security_util.filter_columns_by_role( columns, cols, 'purchase_price_view' ) return columns def get_details_columns(self): cols = ['total_amount'] columns = super(InventoryTransactionAdmin, self).get_details_columns() columns = security_util.filter_columns_by_role( columns, cols, 'purchase_price_view' ) return columns @property def line_fields(self): if not security_util.user_has_role('purchase_price_view'): return [type_field, date_field, product_field, quantity_field, saleable_quantity_field, remark_field] return [type_field, date_field, product_field, price_field, quantity_field, total_amount_field, saleable_quantity_field, remark_field]
mit
1,161,510,000,624,890,400
43.133803
119
0.62502
false
unicefuganda/edtrac
edtrac_project/rapidsms_contact/contact/migrations/0002_auto__add_field_flag_words__add_field_flag_rule__add_field_flag_rule_r.py
1
13099
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Flag.words' db.add_column('contact_flag', 'words', self.gf('django.db.models.fields.CharField')(max_length=200, null=True), keep_default=False) # Adding field 'Flag.rule' db.add_column('contact_flag', 'rule', self.gf('django.db.models.fields.IntegerField')(max_length=10, null=True), keep_default=False) # Adding field 'Flag.rule_regex' db.add_column('contact_flag', 'rule_regex', self.gf('django.db.models.fields.CharField')(max_length=200, null=True), keep_default=False) def backwards(self, orm): # Deleting field 'Flag.words' db.delete_column('contact_flag', 'words') # Deleting field 'Flag.rule' db.delete_column('contact_flag', 'rule') # Deleting field 'Flag.rule_regex' db.delete_column('contact_flag', 'rule_regex') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contact.flag': { 'Meta': {'object_name': 'Flag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}), 'rule': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True'}), 'rule_regex': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'words': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}) }, 'contact.masstext': { 'Meta': {'object_name': 'MassText'}, 'contacts': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'masstexts'", 'symmetrical': 'False', 'to': "orm['rapidsms.Contact']"}), 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sites.Site']", 'symmetrical': 'False'}), 'text': ('django.db.models.fields.TextField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'contact.messageflag': { 'Meta': {'object_name': 'MessageFlag'}, 'flag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'messages'", 'null': 'True', 'to': "orm['contact.Flag']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'flags'", 'to': "orm['rapidsms_httprouter.Message']"}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'locations.location': { 'Meta': {'object_name': 'Location'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'parent_id': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'parent_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'point': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['locations.Point']", 'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['locations.Location']"}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'locations'", 'null': 'True', 'to': "orm['locations.LocationType']"}) }, 'locations.locationtype': { 'Meta': {'object_name': 'LocationType'}, 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'primary_key': 'True', 'db_index': 'True'}) }, 'locations.point': { 'Meta': {'object_name': 'Point'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '13', 'decimal_places': '10'}), 'longitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '13', 'decimal_places': '10'}) }, 'rapidsms.backend': { 'Meta': {'object_name': 'Backend'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '20'}) }, 'rapidsms.connection': { 'Meta': {'unique_together': "(('backend', 'identity'),)", 'object_name': 'Connection'}, 'backend': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['rapidsms.Backend']"}), 'contact': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['rapidsms.Contact']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identity': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'rapidsms.contact': { 'Meta': {'object_name': 'Contact'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'birthdate': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['auth.Group']", 'null': 'True', 'blank': 'True'}), 'health_facility': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '6', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'reporting_location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['locations.Location']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'contact'", 'unique': 'True', 'null': 'True', 'to': "orm['auth.User']"}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'village': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'villagers'", 'null': 'True', 'to': "orm['locations.Location']"}), 'village_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}) }, 'rapidsms_httprouter.message': { 'Meta': {'object_name': 'Message'}, 'application': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'batch': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'messages'", 'null': 'True', 'to': "orm['rapidsms_httprouter.MessageBatch']"}), 'connection': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'messages'", 'to': "orm['rapidsms.Connection']"}), 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'direction': ('django.db.models.fields.CharField', [], {'max_length': '1', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_response_to': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'responses'", 'null': 'True', 'to': "orm['rapidsms_httprouter.Message']"}), 'priority': ('django.db.models.fields.IntegerField', [], {'default': '10', 'db_index': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '1', 'db_index': 'True'}), 'text': ('django.db.models.fields.TextField', [], {'db_index': 'True'}) }, 'rapidsms_httprouter.messagebatch': { 'Meta': {'object_name': 'MessageBatch'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['contact']
bsd-3-clause
8,817,603,443,012,260,000
73.851429
182
0.551187
false
codelv/enaml-native
src/enamlnative/android/android_bottom_sheet_dialog.py
1
1316
""" Copyright (c) 2017, Jairus Martin. Distributed under the terms of the MIT License. The full license is in the file LICENSE, distributed with this software. Created on Jan 29, 2018 @author: jrm """ from atom.api import Typed, set_default from enamlnative.widgets.bottom_sheet_dialog import ProxyBottomSheetDialog from .android_dialog import Dialog, AndroidDialog class BottomSheetDialog(Dialog): package = 'com.google.android.material.bottomsheet' #: Simply uses a different class __nativeclass__ = set_default('%s.BottomSheetDialog' % package) class AndroidBottomSheetDialog(AndroidDialog, ProxyBottomSheetDialog): """ An Android implementation of an Enaml ProxyBottomSheetDialog. """ #: A reference to the widget created by the proxy. dialog = Typed(BottomSheetDialog) # ------------------------------------------------------------------------- # Initialization API # ------------------------------------------------------------------------- def create_widget(self): """ Create the underlying widget. A dialog is not a subclass of view, hence we don't set name as widget or children will try to use it as their parent. """ d = self.declaration self.dialog = BottomSheetDialog(self.get_context(), d.style)
mit
1,975,408,620,800,349,200
29.604651
79
0.631459
false
jcarbaugh/django-blogdor
blogdor/templatetags/blog.py
1
3930
from blogdor import utils from blogdor.models import Post from django import template from django.conf import settings from django.db.models import Count from django.template.loader import render_to_string from django.contrib.contenttypes.models import ContentType from tagging.models import Tag register = template.Library() class PostsNode(template.Node): def __init__(self, queryset, count, offset, varname): self.posts = queryset[offset:count+offset] self.varname = varname def render(self, context): context[self.varname] = self.posts return '' class UserPostsNode(template.Node): def __init__(self, user, count, offset, varname): self.user = template.Variable(user) self.count = count self.offset = offset self.varname = varname def render(self, context): user = self.user.resolve(context) posts = Post.objects.published().filter(author=user).select_related() context[self.varname] = posts[self.offset:self.count+self.offset] return '' class TagListNode(template.Node): def __init__(self, tags, varname): self.tags = tags self.varname = varname def render(self, context): context[self.varname] = self.tags return '' def _simple_get_posts(token, queryset): pieces = token.contents.split() as_index = pieces.index('as') if as_index == -1 or as_index > 3 or len(pieces) != as_index+2: raise template.TemplateSyntaxError('%r tag must be in format {%% %r [count [offset]] as varname %%}' % pieces[0]) # count & offset count = 5 offset = 0 if as_index > 1: count = int(pieces[1]) if as_index > 2: count = int(pieces[2]) varname = pieces[as_index+1] return PostsNode(queryset, count, offset, varname) @register.tag def get_recent_posts(parser, token): return _simple_get_posts(token, Post.objects.published().select_related()) @register.tag def get_favorite_posts(parser, token): return _simple_get_posts(token, Post.objects.published().filter(is_favorite=True).select_related()) @register.tag def get_user_posts(parser, token): pieces = token.contents.split() as_index = pieces.index('as') if as_index < 2 or as_index > 4 or len(pieces) != as_index+2: raise template.TemplateSyntaxError('%r tag must be in format {%% %r user [count [offset]] as varname %%}' % pieces[0]) # count & offset count = 5 offset = 0 if as_index > 2: count = int(pieces[2]) if as_index > 3: count = int(pieces[3]) user = pieces[1] varname = pieces[as_index+1] return UserPostsNode(user, count, offset, varname) @register.tag def get_tag_counts(parser, token): pieces = token.contents.split() if len(pieces) != 4: raise template.TemplateSyntaxError('%r tag must be in format {%% %r comma,separated,tags as varname %%}' % pieces[0]) tags = pieces[1].split(',') post_ct = ContentType.objects.get_for_model(Post).id tags = Tag.objects.filter(items__content_type=post_ct, name__in=tags).annotate(count=Count('id')) varname = pieces[-1] return TagListNode(tags, varname) @register.tag def get_popular_tags(parser, token): pieces = token.contents.split() if len(pieces) != 4: raise template.TemplateSyntaxError('%r tag must be in format {%% %r num as varname %%}' % pieces[0]) num_tags = int(pieces[1]) post_ct = ContentType.objects.get_for_model(Post).id tags = Tag.objects.filter(items__content_type=post_ct).annotate(count=Count('id')).order_by('-count').filter(count__gt=5)[:num_tags] varname = pieces[-1] return TagListNode(tags, varname) @register.simple_tag def gravatar(email): return render_to_string("blogdor/gravatar_img.html", {"url": utils.gravatar(email)})
bsd-3-clause
1,578,761,664,994,745,000
32.02521
136
0.643511
false
markmc/oslo.messaging
tests/test_notifier.py
1
7858
# Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import sys import uuid import fixtures import testscenarios from oslo import messaging from oslo.messaging.notify import _impl_messaging from oslo.messaging.notify import _impl_test from oslo.messaging.notify import notifier as msg_notifier from oslo.messaging.openstack.common import jsonutils from oslo.messaging.openstack.common import timeutils from oslo.messaging import serializer as msg_serializer from tests import utils as test_utils load_tests = testscenarios.load_tests_apply_scenarios class _FakeTransport(object): def __init__(self, conf): self.conf = conf def _send(self, target, ctxt, message, wait_for_reply=None, timeout=None, envelope=False): pass class _ReRaiseLoggedExceptionsFixture(fixtures.Fixture): """Record logged exceptions and re-raise in cleanup. The notifier just logs notification send errors so, for the sake of debugging test failures, we record any exceptions logged and re-raise them during cleanup. """ class FakeLogger(object): def __init__(self): self.exceptions = [] def exception(self, msg, *args, **kwargs): self.exceptions.append(sys.exc_info()[1]) def setUp(self): super(_ReRaiseLoggedExceptionsFixture, self).setUp() self.logger = self.FakeLogger() def reraise_exceptions(): for ex in self.logger.exceptions: raise ex self.addCleanup(reraise_exceptions) class TestMessagingNotifier(test_utils.BaseTestCase): _v1 = [ ('v1', dict(v1=True)), ('not_v1', dict(v1=False)), ] _v2 = [ ('v2', dict(v2=True)), ('not_v2', dict(v2=False)), ] _topics = [ ('no_topics', dict(topics=[])), ('single_topic', dict(topics=['notifications'])), ('multiple_topic2', dict(topics=['foo', 'bar'])), ] _priority = [ ('debug', dict(priority='debug')), ('info', dict(priority='info')), ('warn', dict(priority='warn')), ('error', dict(priority='error')), ('critical', dict(priority='critical')), ] _payload = [ ('payload', dict(payload={'foo': 'bar'})), ] _context = [ ('ctxt', dict(ctxt={'user': 'bob'})), ] @classmethod def generate_scenarios(cls): cls.scenarios = testscenarios.multiply_scenarios(cls._v1, cls._v2, cls._topics, cls._priority, cls._payload, cls._context) def setUp(self): super(TestMessagingNotifier, self).setUp() self.conf.register_opts(msg_notifier._notifier_opts) self.addCleanup(timeutils.clear_time_override) self.logger = self.useFixture(_ReRaiseLoggedExceptionsFixture()).logger self.stubs.Set(_impl_messaging, 'LOG', self.logger) self.stubs.Set(msg_notifier, '_LOG', self.logger) def test_notifier(self): drivers = [] if self.v1: drivers.append('messaging') if self.v2: drivers.append('messagingv2') self.config(notification_driver=drivers) self.config(notification_topics=self.topics) transport = _FakeTransport(self.conf) notifier = messaging.Notifier(transport, 'test.localhost') self.mox.StubOutWithMock(transport, '_send') message_id = uuid.uuid4() self.mox.StubOutWithMock(uuid, 'uuid4') uuid.uuid4().AndReturn(message_id) timeutils.set_time_override() message = { 'message_id': str(message_id), 'publisher_id': 'test.localhost', 'event_type': 'test.notify', 'priority': self.priority.upper(), 'payload': self.payload, 'timestamp': str(timeutils.utcnow.override_time), } sends = [] if self.v1: sends.append(dict(envelope=False)) if self.v2: sends.append(dict(envelope=True)) for send_kwargs in sends: for topic in self.topics: target = messaging.Target(topic='%s.%s' % (topic, self.priority)) transport._send(target, self.ctxt, message, **send_kwargs) self.mox.ReplayAll() method = getattr(notifier, self.priority) method(self.ctxt, 'test.notify', self.payload) TestMessagingNotifier.generate_scenarios() class TestSerializer(test_utils.BaseTestCase): def setUp(self): super(TestSerializer, self).setUp() self.addCleanup(_impl_test.reset) self.addCleanup(timeutils.clear_time_override) def test_serializer(self): transport = _FakeTransport(self.conf) serializer = msg_serializer.NoOpSerializer() notifier = messaging.Notifier(transport, 'test.localhost', driver='test', topic='test', serializer=serializer) message_id = uuid.uuid4() self.mox.StubOutWithMock(uuid, 'uuid4') uuid.uuid4().AndReturn(message_id) timeutils.set_time_override() self.mox.StubOutWithMock(serializer, 'serialize_entity') serializer.serialize_entity({}, 'bar').AndReturn('sbar') self.mox.ReplayAll() notifier.info({}, 'test.notify', 'bar') message = { 'message_id': str(message_id), 'publisher_id': 'test.localhost', 'event_type': 'test.notify', 'priority': 'INFO', 'payload': 'sbar', 'timestamp': str(timeutils.utcnow.override_time), } self.assertEquals(_impl_test.NOTIFICATIONS, [({}, message, 'INFO')]) class TestLogNotifier(test_utils.BaseTestCase): def setUp(self): super(TestLogNotifier, self).setUp() self.conf.register_opts(msg_notifier._notifier_opts) self.addCleanup(timeutils.clear_time_override) def test_notifier(self): self.config(notification_driver=['log']) transport = _FakeTransport(self.conf) notifier = messaging.Notifier(transport, 'test.localhost') message_id = uuid.uuid4() self.mox.StubOutWithMock(uuid, 'uuid4') uuid.uuid4().AndReturn(message_id) timeutils.set_time_override() message = { 'message_id': str(message_id), 'publisher_id': 'test.localhost', 'event_type': 'test.notify', 'priority': 'INFO', 'payload': 'bar', 'timestamp': str(timeutils.utcnow.override_time), } logger = self.mox.CreateMockAnything() self.mox.StubOutWithMock(logging, 'getLogger') logging.getLogger('oslo.messaging.notification.test.notify').\ AndReturn(logger) logger.info(jsonutils.dumps(message)) self.mox.ReplayAll() notifier.info({}, 'test.notify', 'bar')
apache-2.0
3,101,194,088,723,180,000
28.992366
79
0.580937
false
d120/pyTUID
pyTUID/models.py
1
1337
import ast from django.db import models from django.utils.translation import ugettext as _ class TUIDUser(models.Model): """Represents a TUID user with various properties returned from CAS""" class Meta: verbose_name = _('TUID User') verbose_name_plural = _('TUID Users') uid = models.CharField(max_length=50, unique=True, verbose_name=_('TUID')) surname = models.CharField(max_length=50, verbose_name=_('surname')) given_name = models.CharField(max_length=50, verbose_name=_('given name')) email = models.EmailField(blank=True, null=True, verbose_name=_('email')) groups = models.TextField(verbose_name=_('cas groups')) def group_list(self): """Returns all the groups as list of strings""" if self.groups and len(self.groups) > 0: return ast.literal_eval(self.groups) if self.groups[0] == '[' and self.groups[-1] == ']' else [self.groups] else: return [] def in_group(self, group_string): """Checks wether this user is in the specified group""" return group_string in self.group_list() def name(self): """Returns the users full name""" return self.given_name + ' ' + self.surname name.short_description = _('name') def __str__(self): return self.name() + ' (' + self.uid + ')'
mit
-224,083,952,602,156,320
37.2
119
0.628272
false
IntegratedAlarmSystem-Group/ias-webserver
alarms/tests/tests_core_consumer.py
1
3914
import datetime import pytest from channels.testing import WebsocketCommunicator from alarms.collections import AlarmCollection from ias_webserver.routing import application as ias_app from ias_webserver.settings import PROCESS_CONNECTION_PASS class TestCoreConsumer: """This class defines the test suite for the CoreConsumer""" def setup_method(self): """TestCase setup, executed before each test of the TestCase""" # Arrange: self.iasio_alarm = { 'id': "AlarmType-ID", 'shortDesc': "Test iasio", 'iasType': "alarm", 'docUrl': 'www.dummy-url.com' } self.iasio_double = { 'id': "DoubleType-ID", 'shortDesc': "Test iasio", 'iasType': "double", 'docUrl': 'www.dummy-url.com' } self.iasios = [self.iasio_alarm, self.iasio_double] self.ws_url = '/core/?password={}'.format(PROCESS_CONNECTION_PASS) @pytest.mark.asyncio @pytest.mark.django_db async def test_receive_json(self): """ Test if the core consumer receives the list of iasios and passes it to the AlarmCollection """ AlarmCollection.reset(self.iasios) old_alarms_count = len(AlarmCollection.get_all_as_list()) # Connect: communicator = WebsocketCommunicator(ias_app, self.ws_url) connected, subprotocol = await communicator.connect() assert connected, 'The communicator was not connected' # Arrange: current_time = datetime.datetime.now() formatted_current_time = current_time.strftime('%Y-%m-%dT%H:%M:%S.%f') core_ids = [ 'AlarmType-ID1', 'AlarmType-ID2', 'AlarmType-ID3' ] msg = [ { "value": "SET_MEDIUM", "productionTStamp": formatted_current_time, "sentToBsdbTStamp": formatted_current_time, "mode": "OPERATIONAL", # 5: OPERATIONAL "iasValidity": "RELIABLE", "fullRunningId": "(Monitored-System-ID:MONITORED_SOFTWARE_SYSTEM)" + \ "@(plugin-ID:PLUGIN)@(Converter-ID:CONVERTER)@(AlarmType-ID1:IASIO)", "valueType": "ALARM" }, { "value": "SET_HIGH", "productionTStamp": formatted_current_time, "sentToBsdbTStamp": formatted_current_time, "mode": "OPERATIONAL", # 5: OPERATIONAL "iasValidity": "RELIABLE", "fullRunningId": "(Monitored-System-ID:MONITORED_SOFTWARE_SYSTEM)" + \ "@(plugin-ID:PLUGIN)@(Converter-ID:CONVERTER)@(AlarmType-ID2:IASIO)", "valueType": "ALARM" }, { "value": "SET_MEDIUM", "productionTStamp": formatted_current_time, "sentToBsdbTStamp": formatted_current_time, "mode": "OPERATIONAL", # 5: OPERATIONAL "iasValidity": "RELIABLE", "fullRunningId": "(Monitored-System-ID:MONITORED_SOFTWARE_SYSTEM)" + \ "@(plugin-ID:PLUGIN)@(Converter-ID:CONVERTER)@(AlarmType-ID3:IASIO)", "valueType": "ALARM" }, ] # Act: await communicator.send_json_to(msg) response = await communicator.receive_from() # Assert: all_alarms_list = [a.core_id for a in AlarmCollection.get_all_as_list()] new_alarms_count = len(all_alarms_list) assert response == 'Received 3 IASIOS', 'The alarms were not received' assert old_alarms_count + 3 == new_alarms_count, 'The Iasios shoul have been added to the AlarmCollection' for core_id in core_ids: assert core_id in all_alarms_list, 'The alarm {} is not in the collection'.format(core_id) # Close: await communicator.disconnect()
lgpl-3.0
-7,944,325,527,755,995,000
42.010989
114
0.572305
false
lsp84ch83/PyText
Appium/appium-framwork/script/test_Anewnotest1.py
1
2759
#!/usr/bin/env python # _*_ coding: utf-8 _*_ # @Time : 2018/4/1 16:24 # @Author : Soner # @version : 1.0.0 # @license : Copyright(C), Your Company from appium import webdriver from selenium.webdriver.common.by import By from time import sleep import unittest import xlutils,xlrd,xlwt class Anewnotest1(unittest.TestCase): # setUp 初始化 def setUp(self): # 获取手机的信息 desired_caps = { 'platformName': 'Android', # 平台 'platformVersion': '4.4', # 版本号 'deviceName': '192.168.103.101:5555', # 设备名称 'appPackage': 'com.youdao.note', # 应用包名 'appActivity': '.activity2.SplashActivity', # Activity名 'unicodeKeyboard': 'True', # 防止键盘中文不能输入 'resetKeyboard': 'True' # 重置设置生效 } # 启动appium self.driver = webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_caps) sleep(3) def test_newnote(self): driver = self.driver # 读取excel wb = xlrd.open_workbook(r'f:\PyText\Appium\appium-framwork\data\data.xls') sh = wb.sheet_by_name('note') r_num = sh.nrows # 循环读取 for i in range(1, r_num): id - sh.cell_value(i, 0) title = sh.cell_value(i, 1) content = sh.cell_value(i, 2) result = sh.cell_value(i, 3) sleep(3) # 新建笔记 driver.find_element(By.ID, 'com.youdao.note:id/add_note_floater_open').click() # 选择新建笔记 driver.find_element(By.NAME, '新建笔记').click() # 输入笔记名称 driver.find_element(By.ID, 'com.youdao.note:id/note_title').send_keys(title) # 输入笔记内容 driver.find_element(By.XPATH, '//android.widget.LinearLayout[@resource-id=\"com.youdao.note:id/note_content\"]/android.widget.EditText[1]').send_keys( content) # 保存笔记 driver.find_element(By.NAME, '完成').click() # 验证 if title == '': res1 = driver.find_element(By.ID, 'com.youdao.note:id/title').text res2 = driver.find_element(By.ID, 'com.youdao.note:id/summary').text if res1 == res2: print('success') else: print('fail') elif result == 'ok': if driver.find_element(By.NAME, title) and driver.find_element(By.NAME, content): print("success") else: print("fail") def tearDown(self): self.driver.quit()
gpl-3.0
7,042,348,827,297,111,000
32.714286
152
0.524855
false
tboyce021/home-assistant
tests/components/airly/test_init.py
1
4179
"""Test init of Airly integration.""" from datetime import timedelta from homeassistant.components.airly.const import DOMAIN from homeassistant.config_entries import ( ENTRY_STATE_LOADED, ENTRY_STATE_NOT_LOADED, ENTRY_STATE_SETUP_RETRY, ) from homeassistant.const import STATE_UNAVAILABLE from . import API_POINT_URL from tests.common import MockConfigEntry, load_fixture from tests.components.airly import init_integration async def test_async_setup_entry(hass, aioclient_mock): """Test a successful setup entry.""" await init_integration(hass, aioclient_mock) state = hass.states.get("air_quality.home") assert state is not None assert state.state != STATE_UNAVAILABLE assert state.state == "14" async def test_config_not_ready(hass, aioclient_mock): """Test for setup failure if connection to Airly is missing.""" entry = MockConfigEntry( domain=DOMAIN, title="Home", unique_id="123-456", data={ "api_key": "foo", "latitude": 123, "longitude": 456, "name": "Home", }, ) aioclient_mock.get(API_POINT_URL, exc=ConnectionError()) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) assert entry.state == ENTRY_STATE_SETUP_RETRY async def test_config_without_unique_id(hass, aioclient_mock): """Test for setup entry without unique_id.""" entry = MockConfigEntry( domain=DOMAIN, title="Home", data={ "api_key": "foo", "latitude": 123, "longitude": 456, "name": "Home", }, ) aioclient_mock.get(API_POINT_URL, text=load_fixture("airly_valid_station.json")) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) assert entry.state == ENTRY_STATE_LOADED assert entry.unique_id == "123-456" async def test_config_with_turned_off_station(hass, aioclient_mock): """Test for setup entry for a turned off measuring station.""" entry = MockConfigEntry( domain=DOMAIN, title="Home", unique_id="123-456", data={ "api_key": "foo", "latitude": 123, "longitude": 456, "name": "Home", }, ) aioclient_mock.get(API_POINT_URL, text=load_fixture("airly_no_station.json")) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) assert entry.state == ENTRY_STATE_SETUP_RETRY async def test_update_interval(hass, aioclient_mock): """Test correct update interval when the number of configured instances changes.""" entry = await init_integration(hass, aioclient_mock) assert len(hass.config_entries.async_entries(DOMAIN)) == 1 assert entry.state == ENTRY_STATE_LOADED for instance in hass.data[DOMAIN].values(): assert instance.update_interval == timedelta(minutes=15) entry = MockConfigEntry( domain=DOMAIN, title="Work", unique_id="66.66-111.11", data={ "api_key": "foo", "latitude": 66.66, "longitude": 111.11, "name": "Work", }, ) aioclient_mock.get( "https://airapi.airly.eu/v2/measurements/point?lat=66.660000&lng=111.110000", text=load_fixture("airly_valid_station.json"), ) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() assert len(hass.config_entries.async_entries(DOMAIN)) == 2 assert entry.state == ENTRY_STATE_LOADED for instance in hass.data[DOMAIN].values(): assert instance.update_interval == timedelta(minutes=30) async def test_unload_entry(hass, aioclient_mock): """Test successful unload of entry.""" entry = await init_integration(hass, aioclient_mock) assert len(hass.config_entries.async_entries(DOMAIN)) == 1 assert entry.state == ENTRY_STATE_LOADED assert await hass.config_entries.async_unload(entry.entry_id) await hass.async_block_till_done() assert entry.state == ENTRY_STATE_NOT_LOADED assert not hass.data.get(DOMAIN)
apache-2.0
8,017,846,302,526,744,000
30.186567
87
0.643934
false
cnamejj/PyProc
regentest/self_maps.py
1
1217
#!/usr/bin/env python """Handle records from /proc/self/maps data files""" import regentest as RG import ProcHandlers as PH PFC = PH.ProcFieldConstants # --- def re_self_maps(inprecs): """Iterate through parsed records and re-generate data file""" __leadtemp = "{st:08x}-{en:08x} {fl:4s} {offset:08x} \ {major:02x}:{minor:02x} {inode:d} " __ptr_size = 8 __preflen = (__ptr_size * 6) + 25 __preftemp = "{{pref:<{plen:d}s}}".format(plen=__preflen) __template = "{pref:s}{path:s}" for __hilit in inprecs: __ff = inprecs.field #...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 __lead = __leadtemp.format(st=__ff[PFC.F_START], en=__ff[PFC.F_END], fl=__ff[PFC.F_FLAGS], offset=__ff[PFC.F_PAGE_OFFSET], major=__ff[PFC.F_MAJOR_DEV], minor=__ff[PFC.F_MINOR_DEV], inode=__ff[PFC.F_INODE] ) __path = __ff[PFC.F_PATH] if __path == "": print __lead else: __pref = __preftemp.format(pref=__lead) print __template.format(pref=__pref, path=__ff[PFC.F_PATH]) RG.RECREATOR[PH.GET_HANDLER("/proc/self/maps")] = re_self_maps
gpl-2.0
-2,877,985,667,914,708,000
27.97619
80
0.518488
false
robwebset/script.videoextras
resources/lib/CacheCleanup.py
1
1858
# -*- coding: utf-8 -*- import re import traceback import xbmc import xbmcvfs import xbmcaddon # Import the common settings from settings import Settings from settings import log from settings import os_path_join ADDON = xbmcaddon.Addon(id='script.videoextras') PROFILE_DIR = xbmc.translatePath(ADDON.getAddonInfo('profile')).decode("utf-8") ################################# # Class to tidy up any ################################# class CacheCleanup(): # Cleans out all the cached files @staticmethod def removeAllCachedFiles(): CacheCleanup.removeCacheFile(Settings.MOVIES, True) CacheCleanup.removeCacheFile(Settings.TVSHOWS, True) CacheCleanup.removeCacheFile(Settings.MUSICVIDEOS, True) CacheCleanup.removeCacheFile('overlay_image_used.txt') # Removes the cache file for a given type @staticmethod def removeCacheFile(target, isDir=False): try: fullFilename = os_path_join(PROFILE_DIR, target) log("VideoExtrasCleanup: Checking cache file %s" % fullFilename) # If the file already exists, delete it if xbmcvfs.exists(fullFilename): if isDir: # Remove the png files in the directory first dirs, files = xbmcvfs.listdir(fullFilename) for aFile in files: m = re.search("[0-9]+[a-zA-Z_]*.png", aFile, re.IGNORECASE) if m: pngFile = os_path_join(fullFilename, aFile) xbmcvfs.delete(pngFile) # Now remove the actual directory xbmcvfs.rmdir(fullFilename) else: xbmcvfs.delete(fullFilename) except: log("CacheCleanup: %s" % traceback.format_exc(), xbmc.LOGERROR)
gpl-2.0
8,544,385,020,276,670,000
33.407407
83
0.588267
false
AragurDEV/yowsup
yowsup/layers/protocol_notifications/layer.py
1
1890
from yowsup.layers import YowLayer, YowLayerEvent, YowProtocolLayer from .protocolentities import * from yowsup.layers.protocol_acks.protocolentities import OutgoingAckProtocolEntity class YowNotificationsProtocolLayer(YowProtocolLayer): def __init__(self): handleMap = { "notification": (self.recvNotification, self.sendNotification) } super(YowNotificationsProtocolLayer, self).__init__(handleMap) def __str__(self): return "notification Ib Layer" def sendNotification(self, entity): if entity.getTag() == "notification": self.toLower(entity.toProtocolTreeNode()) def recvNotification(self, node): if node["type"] == "picture": if node.getChild("set"): self.toUpper(SetPictureNotificationProtocolEntity.fromProtocolTreeNode(node)) elif node.getChild("delete"): self.toUpper(DeletePictureNotificationProtocolEntity.fromProtocolTreeNode(node)) else: self.raiseErrorForNode(node) elif node["type"] == "status": self.toUpper(StatusNotificationProtocolEntity.fromProtocolTreeNode(node)) elif node["type"] in ["contacts", "subject", "w:gp2"]: # Implemented in respectively the protocol_contacts and protocol_groups layer pass elif node["type"] in ["features", "contacts", "web", "location"]: # implement individually at some point # but keep this pass block so system doesn't crash on these types pass elif node["type"] in ["business"]: print("unhandled business notification") pass else: self.raiseErrorForNode(node) ack = OutgoingAckProtocolEntity(node["id"], "notification", node["type"], node["from"]) self.toLower(ack.toProtocolTreeNode())
gpl-3.0
-6,190,608,310,758,386,000
42.953488
96
0.642328
false
zaina/nova
nova/virt/vmwareapi/vmops.py
1
87594
# Copyright (c) 2013 Hewlett-Packard Development Company, L.P. # Copyright (c) 2012 VMware, Inc. # Copyright (c) 2011 Citrix Systems, Inc. # Copyright 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Class for VM tasks like spawn, snapshot, suspend, resume etc. """ import collections import os import time import decorator from oslo_concurrency import lockutils from oslo_config import cfg from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import excutils from oslo_utils import strutils from oslo_utils import units from oslo_utils import uuidutils from oslo_vmware import exceptions as vexc from oslo_vmware.objects import datastore as ds_obj from oslo_vmware import vim_util as vutil from nova.api.metadata import base as instance_metadata from nova import compute from nova.compute import power_state from nova.compute import task_states from nova.console import type as ctype from nova import context as nova_context from nova import exception from nova.i18n import _, _LE, _LI, _LW from nova import utils from nova import version from nova.virt import configdrive from nova.virt import diagnostics from nova.virt import driver from nova.virt import hardware from nova.virt.vmwareapi import constants from nova.virt.vmwareapi import ds_util from nova.virt.vmwareapi import error_util from nova.virt.vmwareapi import imagecache from nova.virt.vmwareapi import images from nova.virt.vmwareapi import vif as vmwarevif from nova.virt.vmwareapi import vim_util from nova.virt.vmwareapi import vm_util vmops_opts = [ cfg.StrOpt('cache_prefix', help='The prefix for where cached images are stored. This is ' 'NOT the full path - just a folder prefix. ' 'This should only be used when a datastore cache should ' 'be shared between compute nodes. Note: this should only ' 'be used when the compute nodes have a shared file ' 'system.'), ] CONF = cfg.CONF CONF.register_opts(vmops_opts, 'vmware') CONF.import_opt('image_cache_subdirectory_name', 'nova.virt.imagecache') CONF.import_opt('remove_unused_base_images', 'nova.virt.imagecache') CONF.import_opt('enabled', 'nova.vnc', group='vnc') CONF.import_opt('my_ip', 'nova.netconf') LOG = logging.getLogger(__name__) VMWARE_POWER_STATES = { 'poweredOff': power_state.SHUTDOWN, 'poweredOn': power_state.RUNNING, 'suspended': power_state.SUSPENDED} RESIZE_TOTAL_STEPS = 6 DcInfo = collections.namedtuple('DcInfo', ['ref', 'name', 'vmFolder']) class VirtualMachineInstanceConfigInfo(object): """Parameters needed to create and configure a new instance.""" def __init__(self, instance, image_info, datastore, dc_info, image_cache): # Some methods called during spawn take the instance parameter purely # for logging purposes. # TODO(vui) Clean them up, so we no longer need to keep this variable self.instance = instance self.ii = image_info self.root_gb = instance.root_gb self.datastore = datastore self.dc_info = dc_info self._image_cache = image_cache @property def cache_image_folder(self): if self.ii.image_id is None: return return self._image_cache.get_image_cache_folder( self.datastore, self.ii.image_id) @property def cache_image_path(self): if self.ii.image_id is None: return cached_image_file_name = "%s.%s" % (self.ii.image_id, self.ii.file_type) return self.cache_image_folder.join(cached_image_file_name) # Note(vui): See https://bugs.launchpad.net/nova/+bug/1363349 # for cases where mocking time.sleep() can have unintended effects on code # not under test. For now, unblock the affected test cases by providing # a wrapper function to work around needing to mock time.sleep() def _time_sleep_wrapper(delay): time.sleep(delay) @decorator.decorator def retry_if_task_in_progress(f, *args, **kwargs): retries = max(CONF.vmware.api_retry_count, 1) delay = 1 for attempt in range(1, retries + 1): if attempt != 1: _time_sleep_wrapper(delay) delay = min(2 * delay, 60) try: f(*args, **kwargs) return except vexc.TaskInProgress: pass class VMwareVMOps(object): """Management class for VM-related tasks.""" def __init__(self, session, virtapi, volumeops, cluster=None, datastore_regex=None): """Initializer.""" self.compute_api = compute.API() self._session = session self._virtapi = virtapi self._volumeops = volumeops self._cluster = cluster self._root_resource_pool = vm_util.get_res_pool_ref(self._session, self._cluster) self._datastore_regex = datastore_regex self._base_folder = self._get_base_folder() self._tmp_folder = 'vmware_temp' self._datastore_dc_mapping = {} self._datastore_browser_mapping = {} self._imagecache = imagecache.ImageCacheManager(self._session, self._base_folder) def _get_base_folder(self): # Enable more than one compute node to run on the same host if CONF.vmware.cache_prefix: base_folder = '%s%s' % (CONF.vmware.cache_prefix, CONF.image_cache_subdirectory_name) # Ensure that the base folder is unique per compute node elif CONF.remove_unused_base_images: base_folder = '%s%s' % (CONF.my_ip, CONF.image_cache_subdirectory_name) else: # Aging disable ensures backward compatibility base_folder = CONF.image_cache_subdirectory_name return base_folder def _extend_virtual_disk(self, instance, requested_size, name, dc_ref): service_content = self._session.vim.service_content LOG.debug("Extending root virtual disk to %s", requested_size, instance=instance) vmdk_extend_task = self._session._call_method( self._session.vim, "ExtendVirtualDisk_Task", service_content.virtualDiskManager, name=name, datacenter=dc_ref, newCapacityKb=requested_size, eagerZero=False) try: self._session._wait_for_task(vmdk_extend_task) except Exception as e: with excutils.save_and_reraise_exception(): LOG.error(_LE('Extending virtual disk failed with error: %s'), e, instance=instance) # Clean up files created during the extend operation files = [name.replace(".vmdk", "-flat.vmdk"), name] for file in files: ds_path = ds_obj.DatastorePath.parse(file) self._delete_datastore_file(ds_path, dc_ref) LOG.debug("Extended root virtual disk", instance=instance) def _delete_datastore_file(self, datastore_path, dc_ref): try: ds_util.file_delete(self._session, datastore_path, dc_ref) except (vexc.CannotDeleteFileException, vexc.FileFaultException, vexc.FileLockedException, vexc.FileNotFoundException): LOG.debug("Unable to delete %(ds)s. There may be more than " "one process or thread trying to delete the file", {'ds': datastore_path}, exc_info=True) def _extend_if_required(self, dc_info, image_info, instance, root_vmdk_path): """Increase the size of the root vmdk if necessary.""" if instance.root_gb * units.Gi > image_info.file_size: size_in_kb = instance.root_gb * units.Mi self._extend_virtual_disk(instance, size_in_kb, root_vmdk_path, dc_info.ref) def _configure_config_drive(self, instance, vm_ref, dc_info, datastore, injected_files, admin_password): session_vim = self._session.vim cookies = session_vim.client.options.transport.cookiejar uploaded_iso_path = self._create_config_drive(instance, injected_files, admin_password, datastore.name, dc_info.name, instance.uuid, cookies) uploaded_iso_path = datastore.build_path(uploaded_iso_path) self._attach_cdrom_to_vm( vm_ref, instance, datastore.ref, str(uploaded_iso_path)) def _get_instance_metadata(self, context, instance): flavor = instance.flavor return ('name:%s\n' 'userid:%s\n' 'username:%s\n' 'projectid:%s\n' 'projectname:%s\n' 'flavor:name:%s\n' 'flavor:memory_mb:%s\n' 'flavor:vcpus:%s\n' 'flavor:ephemeral_gb:%s\n' 'flavor:root_gb:%s\n' 'flavor:swap:%s\n' 'imageid:%s\n' 'package:%s\n') % (instance.display_name, context.user_id, context.user_name, context.project_id, context.project_name, flavor.name, flavor.memory_mb, flavor.vcpus, flavor.ephemeral_gb, flavor.root_gb, flavor.swap, instance.image_ref, version.version_string_with_package()) def build_virtual_machine(self, instance, image_info, dc_info, datastore, network_info, extra_specs, metadata): vif_infos = vmwarevif.get_vif_info(self._session, self._cluster, utils.is_neutron(), image_info.vif_model, network_info) if extra_specs.storage_policy: profile_spec = vm_util.get_storage_profile_spec( self._session, extra_specs.storage_policy) else: profile_spec = None # Get the create vm config spec client_factory = self._session.vim.client.factory config_spec = vm_util.get_vm_create_spec(client_factory, instance, datastore.name, vif_infos, extra_specs, image_info.os_type, profile_spec=profile_spec, metadata=metadata) # Create the VM vm_ref = vm_util.create_vm(self._session, instance, dc_info.vmFolder, config_spec, self._root_resource_pool) return vm_ref def _get_extra_specs(self, flavor): extra_specs = vm_util.ExtraSpecs() for (key, type) in (('cpu_limit', int), ('cpu_reservation', int), ('cpu_shares_level', str), ('cpu_shares_share', int)): value = flavor.extra_specs.get('quota:' + key) if value: setattr(extra_specs.cpu_limits, key, type(value)) extra_specs.cpu_limits.validate() hw_version = flavor.extra_specs.get('vmware:hw_version') extra_specs.hw_version = hw_version if CONF.vmware.pbm_enabled: storage_policy = flavor.extra_specs.get('vmware:storage_policy', CONF.vmware.pbm_default_policy) extra_specs.storage_policy = storage_policy return extra_specs def _fetch_image_as_file(self, context, vi, image_ds_loc): """Download image as an individual file to host via HTTP PUT.""" session = self._session session_vim = session.vim cookies = session_vim.client.options.transport.cookiejar LOG.debug("Downloading image file data %(image_id)s to " "%(file_path)s on the data store " "%(datastore_name)s", {'image_id': vi.ii.image_id, 'file_path': image_ds_loc, 'datastore_name': vi.datastore.name}, instance=vi.instance) images.fetch_image( context, vi.instance, session._host, session._port, vi.dc_info.name, vi.datastore.name, image_ds_loc.rel_path, cookies=cookies) def _fetch_image_as_vapp(self, context, vi, image_ds_loc): """Download stream optimized image to host as a vApp.""" # The directory of the imported disk is the unique name # of the VM use to import it with. vm_name = image_ds_loc.parent.basename LOG.debug("Downloading stream optimized image %(image_id)s to " "%(file_path)s on the data store " "%(datastore_name)s as vApp", {'image_id': vi.ii.image_id, 'file_path': image_ds_loc, 'datastore_name': vi.datastore.name}, instance=vi.instance) images.fetch_image_stream_optimized( context, vi.instance, self._session, vm_name, vi.datastore.name, vi.dc_info.vmFolder, self._root_resource_pool) def _fetch_image_as_ova(self, context, vi, image_ds_loc): """Download root disk of an OVA image as streamOptimized.""" # The directory of the imported disk is the unique name # of the VM use to import it with. vm_name = image_ds_loc.parent.basename images.fetch_image_ova(context, vi.instance, self._session, vm_name, vi.datastore.name, vi.dc_info.vmFolder, self._root_resource_pool) def _prepare_sparse_image(self, vi): tmp_dir_loc = vi.datastore.build_path( self._tmp_folder, uuidutils.generate_uuid()) tmp_image_ds_loc = tmp_dir_loc.join( vi.ii.image_id, "tmp-sparse.vmdk") return tmp_dir_loc, tmp_image_ds_loc def _prepare_flat_image(self, vi): tmp_dir_loc = vi.datastore.build_path( self._tmp_folder, uuidutils.generate_uuid()) tmp_image_ds_loc = tmp_dir_loc.join( vi.ii.image_id, vi.cache_image_path.basename) ds_util.mkdir(self._session, tmp_image_ds_loc.parent, vi.dc_info.ref) vm_util.create_virtual_disk( self._session, vi.dc_info.ref, vi.ii.adapter_type, vi.ii.disk_type, str(tmp_image_ds_loc), vi.ii.file_size_in_kb) flat_vmdk_name = vi.cache_image_path.basename.replace('.vmdk', '-flat.vmdk') flat_vmdk_ds_loc = tmp_dir_loc.join(vi.ii.image_id, flat_vmdk_name) self._delete_datastore_file(str(flat_vmdk_ds_loc), vi.dc_info.ref) return tmp_dir_loc, flat_vmdk_ds_loc def _prepare_stream_optimized_image(self, vi): vm_name = "%s_%s" % (constants.IMAGE_VM_PREFIX, uuidutils.generate_uuid()) tmp_dir_loc = vi.datastore.build_path(vm_name) tmp_image_ds_loc = tmp_dir_loc.join("%s.vmdk" % tmp_dir_loc.basename) return tmp_dir_loc, tmp_image_ds_loc def _prepare_iso_image(self, vi): tmp_dir_loc = vi.datastore.build_path( self._tmp_folder, uuidutils.generate_uuid()) tmp_image_ds_loc = tmp_dir_loc.join( vi.ii.image_id, vi.cache_image_path.basename) return tmp_dir_loc, tmp_image_ds_loc def _move_to_cache(self, dc_ref, src_folder_ds_path, dst_folder_ds_path): try: ds_util.file_move(self._session, dc_ref, src_folder_ds_path, dst_folder_ds_path) except vexc.FileAlreadyExistsException: # Folder move has failed. This may be due to the fact that a # process or thread has already completed the operation. # Since image caching is synchronized, this can only happen # due to action external to the process. # In the event of a FileAlreadyExists we continue, # all other exceptions will be raised. LOG.warning(_LW("Destination %s already exists! Concurrent moves " "can lead to unexpected results."), dst_folder_ds_path) def _cache_sparse_image(self, vi, tmp_image_ds_loc): tmp_dir_loc = tmp_image_ds_loc.parent.parent converted_image_ds_loc = tmp_dir_loc.join( vi.ii.image_id, vi.cache_image_path.basename) # converts fetched image to preallocated disk vm_util.copy_virtual_disk( self._session, vi.dc_info.ref, str(tmp_image_ds_loc), str(converted_image_ds_loc)) self._delete_datastore_file(str(tmp_image_ds_loc), vi.dc_info.ref) self._move_to_cache(vi.dc_info.ref, tmp_image_ds_loc.parent, vi.cache_image_folder) def _cache_flat_image(self, vi, tmp_image_ds_loc): self._move_to_cache(vi.dc_info.ref, tmp_image_ds_loc.parent, vi.cache_image_folder) def _cache_stream_optimized_image(self, vi, tmp_image_ds_loc): dst_path = vi.cache_image_folder.join("%s.vmdk" % vi.ii.image_id) ds_util.mkdir(self._session, vi.cache_image_folder, vi.dc_info.ref) try: ds_util.disk_move(self._session, vi.dc_info.ref, tmp_image_ds_loc, dst_path) except vexc.FileAlreadyExistsException: pass def _cache_iso_image(self, vi, tmp_image_ds_loc): self._move_to_cache(vi.dc_info.ref, tmp_image_ds_loc.parent, vi.cache_image_folder) def _get_vm_config_info(self, instance, image_info, storage_policy=None): """Captures all relevant information from the spawn parameters.""" if (instance.root_gb != 0 and image_info.file_size > instance.root_gb * units.Gi): reason = _("Image disk size greater than requested disk size") raise exception.InstanceUnacceptable(instance_id=instance.uuid, reason=reason) allowed_ds_types = ds_util.get_allowed_datastore_types( image_info.disk_type) datastore = ds_util.get_datastore(self._session, self._cluster, self._datastore_regex, storage_policy, allowed_ds_types) dc_info = self.get_datacenter_ref_and_name(datastore.ref) return VirtualMachineInstanceConfigInfo(instance, image_info, datastore, dc_info, self._imagecache) def _get_image_callbacks(self, vi): disk_type = vi.ii.disk_type if vi.ii.is_ova: image_fetch = self._fetch_image_as_ova elif disk_type == constants.DISK_TYPE_STREAM_OPTIMIZED: image_fetch = self._fetch_image_as_vapp else: image_fetch = self._fetch_image_as_file if vi.ii.is_iso: image_prepare = self._prepare_iso_image image_cache = self._cache_iso_image elif disk_type == constants.DISK_TYPE_SPARSE: image_prepare = self._prepare_sparse_image image_cache = self._cache_sparse_image elif disk_type == constants.DISK_TYPE_STREAM_OPTIMIZED: image_prepare = self._prepare_stream_optimized_image image_cache = self._cache_stream_optimized_image elif disk_type in constants.SUPPORTED_FLAT_VARIANTS: image_prepare = self._prepare_flat_image image_cache = self._cache_flat_image else: reason = _("disk type '%s' not supported") % disk_type raise exception.InvalidDiskInfo(reason=reason) return image_prepare, image_fetch, image_cache def _fetch_image_if_missing(self, context, vi): image_prepare, image_fetch, image_cache = self._get_image_callbacks(vi) LOG.debug("Processing image %s", vi.ii.image_id, instance=vi.instance) with lockutils.lock(str(vi.cache_image_path), lock_file_prefix='nova-vmware-fetch_image'): self.check_cache_folder(vi.datastore.name, vi.datastore.ref) ds_browser = self._get_ds_browser(vi.datastore.ref) if not ds_util.file_exists(self._session, ds_browser, vi.cache_image_folder, vi.cache_image_path.basename): LOG.debug("Preparing fetch location", instance=vi.instance) tmp_dir_loc, tmp_image_ds_loc = image_prepare(vi) LOG.debug("Fetch image to %s", tmp_image_ds_loc, instance=vi.instance) image_fetch(context, vi, tmp_image_ds_loc) LOG.debug("Caching image", instance=vi.instance) image_cache(vi, tmp_image_ds_loc) LOG.debug("Cleaning up location %s", str(tmp_dir_loc), instance=vi.instance) self._delete_datastore_file(str(tmp_dir_loc), vi.dc_info.ref) def _create_and_attach_ephemeral_disk(self, instance, vm_ref, dc_info, size, adapter_type, path): disk_type = constants.DISK_TYPE_THIN vm_util.create_virtual_disk( self._session, dc_info.ref, adapter_type, disk_type, path, size) self._volumeops.attach_disk_to_vm( vm_ref, instance, adapter_type, disk_type, path, size, False) def _create_ephemeral(self, bdi, instance, vm_ref, dc_info, datastore, folder, adapter_type): ephemerals = None if bdi is not None: ephemerals = driver.block_device_info_get_ephemerals(bdi) for idx, eph in enumerate(ephemerals): size = eph['size'] * units.Mi at = eph.get('disk_bus') or adapter_type filename = vm_util.get_ephemeral_name(idx) path = str(ds_obj.DatastorePath(datastore.name, folder, filename)) self._create_and_attach_ephemeral_disk(instance, vm_ref, dc_info, size, at, path) # There may be block devices defined but no ephemerals. In this case # we need to allocate a ephemeral disk if required if not ephemerals and instance.ephemeral_gb: size = instance.ephemeral_gb * units.Mi filename = vm_util.get_ephemeral_name(0) path = str(ds_obj.DatastorePath(datastore.name, folder, filename)) self._create_and_attach_ephemeral_disk(instance, vm_ref, dc_info, size, adapter_type, path) def spawn(self, context, instance, image_meta, injected_files, admin_password, network_info, block_device_info=None): client_factory = self._session.vim.client.factory image_info = images.VMwareImage.from_image(instance.image_ref, image_meta) extra_specs = self._get_extra_specs(instance.flavor) vi = self._get_vm_config_info(instance, image_info, extra_specs.storage_policy) metadata = self._get_instance_metadata(context, instance) # Creates the virtual machine. The virtual machine reference returned # is unique within Virtual Center. vm_ref = self.build_virtual_machine(instance, image_info, vi.dc_info, vi.datastore, network_info, extra_specs, metadata) # Cache the vm_ref. This saves a remote call to the VC. This uses the # instance uuid. vm_util.vm_ref_cache_update(instance.uuid, vm_ref) # Set the machine.id parameter of the instance to inject # the NIC configuration inside the VM if CONF.flat_injected: self._set_machine_id(client_factory, instance, network_info, vm_ref=vm_ref) # Set the vnc configuration of the instance, vnc port starts from 5900 if CONF.vnc.enabled: self._get_and_set_vnc_config(client_factory, instance, vm_ref) block_device_mapping = [] if block_device_info is not None: block_device_mapping = driver.block_device_info_get_mapping( block_device_info) if instance.image_ref: self._imagecache.enlist_image( image_info.image_id, vi.datastore, vi.dc_info.ref) self._fetch_image_if_missing(context, vi) if image_info.is_iso: self._use_iso_image(vm_ref, vi) elif image_info.linked_clone: self._use_disk_image_as_linked_clone(vm_ref, vi) else: self._use_disk_image_as_full_clone(vm_ref, vi) if len(block_device_mapping) > 0: msg = "Block device information present: %s" % block_device_info # NOTE(mriedem): block_device_info can contain an auth_password # so we have to scrub the message before logging it. LOG.debug(strutils.mask_password(msg), instance=instance) # Before attempting to attach any volume, make sure the # block_device_mapping (i.e. disk_bus) is valid self._is_bdm_valid(block_device_mapping) for disk in block_device_mapping: connection_info = disk['connection_info'] adapter_type = disk.get('disk_bus') or vi.ii.adapter_type # TODO(hartsocks): instance is unnecessary, remove it # we still use instance in many locations for no other purpose # than logging, can we simplify this? if disk.get('boot_index') == 0: self._volumeops.attach_root_volume(connection_info, instance, vi.datastore.ref, adapter_type) else: self._volumeops.attach_volume(connection_info, instance, adapter_type) # Create ephemeral disks self._create_ephemeral(block_device_info, instance, vm_ref, vi.dc_info, vi.datastore, instance.uuid, vi.ii.adapter_type) if configdrive.required_by(instance): self._configure_config_drive( instance, vm_ref, vi.dc_info, vi.datastore, injected_files, admin_password) vm_util.power_on_instance(self._session, instance, vm_ref=vm_ref) def _is_bdm_valid(self, block_device_mapping): """Checks if the block device mapping is valid.""" valid_bus = (constants.DEFAULT_ADAPTER_TYPE, constants.ADAPTER_TYPE_BUSLOGIC, constants.ADAPTER_TYPE_IDE, constants.ADAPTER_TYPE_LSILOGICSAS, constants.ADAPTER_TYPE_PARAVIRTUAL) for disk in block_device_mapping: adapter_type = disk.get('disk_bus') if (adapter_type is not None and adapter_type not in valid_bus): raise exception.UnsupportedHardware(model=adapter_type, virt="vmware") def _create_config_drive(self, instance, injected_files, admin_password, data_store_name, dc_name, upload_folder, cookies): if CONF.config_drive_format != 'iso9660': reason = (_('Invalid config_drive_format "%s"') % CONF.config_drive_format) raise exception.InstancePowerOnFailure(reason=reason) LOG.info(_LI('Using config drive for instance'), instance=instance) extra_md = {} if admin_password: extra_md['admin_pass'] = admin_password inst_md = instance_metadata.InstanceMetadata(instance, content=injected_files, extra_md=extra_md) try: with configdrive.ConfigDriveBuilder(instance_md=inst_md) as cdb: with utils.tempdir() as tmp_path: tmp_file = os.path.join(tmp_path, 'configdrive.iso') cdb.make_drive(tmp_file) upload_iso_path = "%s/configdrive.iso" % ( upload_folder) images.upload_iso_to_datastore( tmp_file, instance, host=self._session._host, port=self._session._port, data_center_name=dc_name, datastore_name=data_store_name, cookies=cookies, file_path=upload_iso_path) return upload_iso_path except Exception as e: with excutils.save_and_reraise_exception(): LOG.error(_LE('Creating config drive failed with error: %s'), e, instance=instance) def _attach_cdrom_to_vm(self, vm_ref, instance, datastore, file_path): """Attach cdrom to VM by reconfiguration.""" client_factory = self._session.vim.client.factory devices = self._session._call_method(vim_util, "get_dynamic_property", vm_ref, "VirtualMachine", "config.hardware.device") (controller_key, unit_number, controller_spec) = vm_util.allocate_controller_key_and_unit_number( client_factory, devices, constants.ADAPTER_TYPE_IDE) cdrom_attach_config_spec = vm_util.get_cdrom_attach_config_spec( client_factory, datastore, file_path, controller_key, unit_number) if controller_spec: cdrom_attach_config_spec.deviceChange.append(controller_spec) LOG.debug("Reconfiguring VM instance to attach cdrom %s", file_path, instance=instance) vm_util.reconfigure_vm(self._session, vm_ref, cdrom_attach_config_spec) LOG.debug("Reconfigured VM instance to attach cdrom %s", file_path, instance=instance) def _create_vm_snapshot(self, instance, vm_ref): LOG.debug("Creating Snapshot of the VM instance", instance=instance) snapshot_task = self._session._call_method( self._session.vim, "CreateSnapshot_Task", vm_ref, name="%s-snapshot" % instance.uuid, description="Taking Snapshot of the VM", memory=False, quiesce=True) self._session._wait_for_task(snapshot_task) LOG.debug("Created Snapshot of the VM instance", instance=instance) task_info = self._session._call_method(vim_util, "get_dynamic_property", snapshot_task, "Task", "info") snapshot = task_info.result return snapshot @retry_if_task_in_progress def _delete_vm_snapshot(self, instance, vm_ref, snapshot): LOG.debug("Deleting Snapshot of the VM instance", instance=instance) delete_snapshot_task = self._session._call_method( self._session.vim, "RemoveSnapshot_Task", snapshot, removeChildren=False, consolidate=True) self._session._wait_for_task(delete_snapshot_task) LOG.debug("Deleted Snapshot of the VM instance", instance=instance) def _create_linked_clone_from_snapshot(self, instance, vm_ref, snapshot_ref, dc_info): """Create linked clone VM to be deployed to same ds as source VM """ client_factory = self._session.vim.client.factory rel_spec = vm_util.relocate_vm_spec( client_factory, datastore=None, host=None, disk_move_type="createNewChildDiskBacking") clone_spec = vm_util.clone_vm_spec(client_factory, rel_spec, power_on=False, snapshot=snapshot_ref, template=True) vm_name = "%s_%s" % (constants.SNAPSHOT_VM_PREFIX, uuidutils.generate_uuid()) LOG.debug("Creating linked-clone VM from snapshot", instance=instance) vm_clone_task = self._session._call_method( self._session.vim, "CloneVM_Task", vm_ref, folder=dc_info.vmFolder, name=vm_name, spec=clone_spec) self._session._wait_for_task(vm_clone_task) LOG.info(_LI("Created linked-clone VM from snapshot"), instance=instance) task_info = self._session._call_method(vim_util, "get_dynamic_property", vm_clone_task, "Task", "info") return task_info.result def snapshot(self, context, instance, image_id, update_task_state): """Create snapshot from a running VM instance. Steps followed are: 1. Get the name of the vmdk file which the VM points to right now. Can be a chain of snapshots, so we need to know the last in the chain. 2. Create the snapshot. A new vmdk is created which the VM points to now. The earlier vmdk becomes read-only. 3. Creates a linked clone VM from the snapshot 4. Exports the disk in the link clone VM as a streamOptimized disk. 5. Delete the linked clone VM 6. Deletes the snapshot in original instance. """ vm_ref = vm_util.get_vm_ref(self._session, instance) def _get_vm_and_vmdk_attribs(): # Get the vmdk info that the VM is pointing to vmdk = vm_util.get_vmdk_info(self._session, vm_ref, instance.uuid) if not vmdk.path: LOG.debug("No root disk defined. Unable to snapshot.", instance=instance) raise error_util.NoRootDiskDefined() lst_properties = ["datastore", "summary.config.guestId"] props = self._session._call_method(vim_util, "get_object_properties", None, vm_ref, "VirtualMachine", lst_properties) query = vm_util.get_values_from_object_properties(self._session, props) os_type = query['summary.config.guestId'] datastores = query['datastore'] return (vmdk, datastores, os_type) vmdk, datastores, os_type = _get_vm_and_vmdk_attribs() ds_ref = datastores.ManagedObjectReference[0] dc_info = self.get_datacenter_ref_and_name(ds_ref) update_task_state(task_state=task_states.IMAGE_PENDING_UPLOAD) # TODO(vui): convert to creating plain vm clone and uploading from it # instead of using live vm snapshot. snapshot_ref = self._create_vm_snapshot(instance, vm_ref) update_task_state(task_state=task_states.IMAGE_UPLOADING, expected_state=task_states.IMAGE_PENDING_UPLOAD) snapshot_vm_ref = None try: # Create a temporary VM (linked clone from snapshot), then export # the VM's root disk to glance via HttpNfc API snapshot_vm_ref = self._create_linked_clone_from_snapshot( instance, vm_ref, snapshot_ref, dc_info) images.upload_image_stream_optimized( context, image_id, instance, self._session, vm=snapshot_vm_ref, vmdk_size=vmdk.capacity_in_bytes) finally: if snapshot_vm_ref: vm_util.destroy_vm(self._session, instance, snapshot_vm_ref) # Deleting the snapshot after destroying the temporary VM created # based on it allows the instance vm's disks to be consolidated. # TODO(vui) Add handling for when vmdk volume is attached. self._delete_vm_snapshot(instance, vm_ref, snapshot_ref) def reboot(self, instance, network_info, reboot_type="SOFT"): """Reboot a VM instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) lst_properties = ["summary.guest.toolsStatus", "runtime.powerState", "summary.guest.toolsRunningStatus"] props = self._session._call_method(vim_util, "get_object_properties", None, vm_ref, "VirtualMachine", lst_properties) query = vm_util.get_values_from_object_properties(self._session, props) pwr_state = query['runtime.powerState'] tools_status = query['summary.guest.toolsStatus'] tools_running_status = query['summary.guest.toolsRunningStatus'] # Raise an exception if the VM is not powered On. if pwr_state not in ["poweredOn"]: reason = _("instance is not powered on") raise exception.InstanceRebootFailure(reason=reason) # If latest vmware tools are installed in the VM, and that the tools # are running, then only do a guest reboot. Otherwise do a hard reset. if (tools_status == "toolsOk" and tools_running_status == "guestToolsRunning" and reboot_type == "SOFT"): LOG.debug("Rebooting guest OS of VM", instance=instance) self._session._call_method(self._session.vim, "RebootGuest", vm_ref) LOG.debug("Rebooted guest OS of VM", instance=instance) else: LOG.debug("Doing hard reboot of VM", instance=instance) reset_task = self._session._call_method(self._session.vim, "ResetVM_Task", vm_ref) self._session._wait_for_task(reset_task) LOG.debug("Did hard reboot of VM", instance=instance) def _destroy_instance(self, instance, destroy_disks=True): # Destroy a VM instance try: vm_ref = vm_util.get_vm_ref(self._session, instance) lst_properties = ["config.files.vmPathName", "runtime.powerState", "datastore"] props = self._session._call_method(vim_util, "get_object_properties", None, vm_ref, "VirtualMachine", lst_properties) query = vm_util.get_values_from_object_properties( self._session, props) pwr_state = query['runtime.powerState'] vm_config_pathname = query.get('config.files.vmPathName') vm_ds_path = None if vm_config_pathname is not None: vm_ds_path = ds_obj.DatastorePath.parse( vm_config_pathname) # Power off the VM if it is in PoweredOn state. if pwr_state == "poweredOn": vm_util.power_off_instance(self._session, instance, vm_ref) # Un-register the VM try: LOG.debug("Unregistering the VM", instance=instance) self._session._call_method(self._session.vim, "UnregisterVM", vm_ref) LOG.debug("Unregistered the VM", instance=instance) except Exception as excep: LOG.warning(_LW("In vmwareapi:vmops:_destroy_instance, got " "this exception while un-registering the VM: " "%s"), excep) # Delete the folder holding the VM related content on # the datastore. if destroy_disks and vm_ds_path: try: dir_ds_compliant_path = vm_ds_path.parent LOG.debug("Deleting contents of the VM from " "datastore %(datastore_name)s", {'datastore_name': vm_ds_path.datastore}, instance=instance) ds_ref_ret = query['datastore'] ds_ref = ds_ref_ret.ManagedObjectReference[0] dc_info = self.get_datacenter_ref_and_name(ds_ref) ds_util.file_delete(self._session, dir_ds_compliant_path, dc_info.ref) LOG.debug("Deleted contents of the VM from " "datastore %(datastore_name)s", {'datastore_name': vm_ds_path.datastore}, instance=instance) except Exception: LOG.warning(_LW("In vmwareapi:vmops:_destroy_instance, " "exception while deleting the VM contents " "from the disk"), exc_info=True) except exception.InstanceNotFound: LOG.warning(_LW('Instance does not exist on backend'), instance=instance) except Exception: LOG.exception(_LE('Destroy instance failed'), instance=instance) finally: vm_util.vm_ref_cache_delete(instance.uuid) def destroy(self, instance, destroy_disks=True): """Destroy a VM instance. Steps followed for each VM are: 1. Power off, if it is in poweredOn state. 2. Un-register. 3. Delete the contents of the folder holding the VM related data. """ LOG.debug("Destroying instance", instance=instance) self._destroy_instance(instance, destroy_disks=destroy_disks) LOG.debug("Instance destroyed", instance=instance) def pause(self, instance): msg = _("pause not supported for vmwareapi") raise NotImplementedError(msg) def unpause(self, instance): msg = _("unpause not supported for vmwareapi") raise NotImplementedError(msg) def suspend(self, instance): """Suspend the specified instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) pwr_state = self._session._call_method(vim_util, "get_dynamic_property", vm_ref, "VirtualMachine", "runtime.powerState") # Only PoweredOn VMs can be suspended. if pwr_state == "poweredOn": LOG.debug("Suspending the VM", instance=instance) suspend_task = self._session._call_method(self._session.vim, "SuspendVM_Task", vm_ref) self._session._wait_for_task(suspend_task) LOG.debug("Suspended the VM", instance=instance) # Raise Exception if VM is poweredOff elif pwr_state == "poweredOff": reason = _("instance is powered off and cannot be suspended.") raise exception.InstanceSuspendFailure(reason=reason) else: LOG.debug("VM was already in suspended state. So returning " "without doing anything", instance=instance) def resume(self, instance): """Resume the specified instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) pwr_state = self._session._call_method(vim_util, "get_dynamic_property", vm_ref, "VirtualMachine", "runtime.powerState") if pwr_state.lower() == "suspended": LOG.debug("Resuming the VM", instance=instance) suspend_task = self._session._call_method( self._session.vim, "PowerOnVM_Task", vm_ref) self._session._wait_for_task(suspend_task) LOG.debug("Resumed the VM", instance=instance) else: reason = _("instance is not in a suspended state") raise exception.InstanceResumeFailure(reason=reason) def _get_rescue_device(self, instance, vm_ref): hardware_devices = self._session._call_method(vim_util, "get_dynamic_property", vm_ref, "VirtualMachine", "config.hardware.device") return vm_util.find_rescue_device(hardware_devices, instance) def rescue(self, context, instance, network_info, image_meta): """Rescue the specified instance. Attach the image that the instance was created from and boot from it. """ vm_ref = vm_util.get_vm_ref(self._session, instance) # Get the root disk vmdk object vmdk = vm_util.get_vmdk_info(self._session, vm_ref, uuid=instance.uuid) ds_ref = vmdk.device.backing.datastore datastore = ds_obj.get_datastore_by_ref(self._session, ds_ref) dc_info = self.get_datacenter_ref_and_name(datastore.ref) # Get the image details of the instance image_info = images.VMwareImage.from_image(instance.image_ref, image_meta) vi = VirtualMachineInstanceConfigInfo(instance, image_info, datastore, dc_info, self._imagecache) vm_util.power_off_instance(self._session, instance, vm_ref) # Get the rescue disk path rescue_disk_path = datastore.build_path(instance.uuid, "%s-rescue.%s" % (image_info.image_id, image_info.file_type)) # Copy the cached image to the be the rescue disk. This will be used # as the rescue disk for the instance. ds_util.disk_copy(self._session, dc_info.ref, vi.cache_image_path, rescue_disk_path) # Attach the rescue disk to the instance self._volumeops.attach_disk_to_vm(vm_ref, instance, vmdk.adapter_type, vmdk.disk_type, rescue_disk_path) # Get the rescue device and configure the boot order to # boot from this device rescue_device = self._get_rescue_device(instance, vm_ref) factory = self._session.vim.client.factory boot_spec = vm_util.get_vm_boot_spec(factory, rescue_device) # Update the VM with the new boot order and power on vm_util.reconfigure_vm(self._session, vm_ref, boot_spec) vm_util.power_on_instance(self._session, instance, vm_ref=vm_ref) def unrescue(self, instance, power_on=True): """Unrescue the specified instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) # Get the rescue device and detach it from the instance. try: rescue_device = self._get_rescue_device(instance, vm_ref) except exception.NotFound: with excutils.save_and_reraise_exception(): LOG.error(_LE('Unable to access the rescue disk'), instance=instance) vm_util.power_off_instance(self._session, instance, vm_ref) self._volumeops.detach_disk_from_vm(vm_ref, instance, rescue_device, destroy_disk=True) if power_on: vm_util.power_on_instance(self._session, instance, vm_ref=vm_ref) def power_off(self, instance): """Power off the specified instance. :param instance: nova.objects.instance.Instance """ vm_util.power_off_instance(self._session, instance) def power_on(self, instance): vm_util.power_on_instance(self._session, instance) def _update_instance_progress(self, context, instance, step, total_steps): """Update instance progress percent to reflect current step number """ # Divide the action's workflow into discrete steps and "bump" the # instance's progress field as each step is completed. # # For a first cut this should be fine, however, for large VM images, # the clone disk step begins to dominate the equation. A # better approximation would use the percentage of the VM image that # has been streamed to the destination host. progress = round(float(step) / total_steps * 100) instance_uuid = instance.uuid LOG.debug("Updating instance '%(instance_uuid)s' progress to" " %(progress)d", {'instance_uuid': instance_uuid, 'progress': progress}, instance=instance) instance.progress = progress instance.save() def _resize_vm(self, context, instance, vm_ref, flavor): """Resizes the VM according to the flavor.""" client_factory = self._session.vim.client.factory extra_specs = self._get_extra_specs(flavor) metadata = self._get_instance_metadata(context, instance) vm_resize_spec = vm_util.get_vm_resize_spec(client_factory, int(flavor.vcpus), int(flavor.memory_mb), extra_specs, metadata=metadata) vm_util.reconfigure_vm(self._session, vm_ref, vm_resize_spec) def _resize_disk(self, instance, vm_ref, vmdk, flavor): if (flavor.root_gb > instance.root_gb and flavor.root_gb > vmdk.capacity_in_bytes / units.Gi): root_disk_in_kb = flavor.root_gb * units.Mi ds_ref = vmdk.device.backing.datastore dc_info = self.get_datacenter_ref_and_name(ds_ref) folder = ds_obj.DatastorePath.parse(vmdk.path).dirname datastore = ds_obj.DatastorePath.parse(vmdk.path).datastore resized_disk = str(ds_obj.DatastorePath(datastore, folder, 'resized.vmdk')) ds_util.disk_copy(self._session, dc_info.ref, vmdk.path, str(resized_disk)) self._extend_virtual_disk(instance, root_disk_in_kb, resized_disk, dc_info.ref) self._volumeops.detach_disk_from_vm(vm_ref, instance, vmdk.device) original_disk = str(ds_obj.DatastorePath(datastore, folder, 'original.vmdk')) ds_util.disk_move(self._session, dc_info.ref, vmdk.path, original_disk) ds_util.disk_move(self._session, dc_info.ref, resized_disk, vmdk.path) self._volumeops.attach_disk_to_vm(vm_ref, instance, vmdk.adapter_type, vmdk.disk_type, vmdk.path) def _remove_ephemerals(self, vm_ref): devices = vm_util.get_ephemerals(self._session, vm_ref) if devices: vm_util.detach_devices_from_vm(self._session, vm_ref, devices) def _resize_create_ephemerals(self, vm_ref, instance, block_device_info): vmdk = vm_util.get_vmdk_info(self._session, vm_ref, uuid=instance.uuid) ds_ref = vmdk.device.backing.datastore datastore = ds_obj.get_datastore_by_ref(self._session, ds_ref) dc_info = self.get_datacenter_ref_and_name(ds_ref) folder = ds_obj.DatastorePath.parse(vmdk.path).dirname self._create_ephemeral(block_device_info, instance, vm_ref, dc_info, datastore, folder, vmdk.adapter_type) def migrate_disk_and_power_off(self, context, instance, dest, flavor): """Transfers the disk of a running instance in multiple phases, turning off the instance before the end. """ vm_ref = vm_util.get_vm_ref(self._session, instance) vmdk = vm_util.get_vmdk_info(self._session, vm_ref, uuid=instance.uuid) # Checks if the migration needs a disk resize down. if (flavor.root_gb < instance.root_gb or (flavor.root_gb != 0 and flavor.root_gb < vmdk.capacity_in_bytes / units.Gi)): reason = _("Unable to shrink disk.") raise exception.InstanceFaultRollback( exception.ResizeError(reason=reason)) # TODO(garyk): treat dest parameter. Migration needs to be treated. # 0. Zero out the progress to begin self._update_instance_progress(context, instance, step=0, total_steps=RESIZE_TOTAL_STEPS) # 1. Power off the instance vm_util.power_off_instance(self._session, instance, vm_ref) self._update_instance_progress(context, instance, step=1, total_steps=RESIZE_TOTAL_STEPS) # 2. Reconfigure the VM properties self._resize_vm(context, instance, vm_ref, flavor) self._update_instance_progress(context, instance, step=2, total_steps=RESIZE_TOTAL_STEPS) # 3.Reconfigure the disk properties self._resize_disk(instance, vm_ref, vmdk, flavor) self._update_instance_progress(context, instance, step=3, total_steps=RESIZE_TOTAL_STEPS) # 4. Purge ephemeral disks self._remove_ephemerals(vm_ref) self._update_instance_progress(context, instance, step=4, total_steps=RESIZE_TOTAL_STEPS) def confirm_migration(self, migration, instance, network_info): """Confirms a resize, destroying the source VM.""" vm_ref = vm_util.get_vm_ref(self._session, instance) vmdk = vm_util.get_vmdk_info(self._session, vm_ref, uuid=instance.uuid) ds_ref = vmdk.device.backing.datastore dc_info = self.get_datacenter_ref_and_name(ds_ref) folder = ds_obj.DatastorePath.parse(vmdk.path).dirname datastore = ds_obj.DatastorePath.parse(vmdk.path).datastore original_disk = ds_obj.DatastorePath(datastore, folder, 'original.vmdk') ds_browser = self._get_ds_browser(ds_ref) if ds_util.file_exists(self._session, ds_browser, original_disk.parent, original_disk.basename): ds_util.disk_delete(self._session, dc_info.ref, str(original_disk)) def finish_revert_migration(self, context, instance, network_info, block_device_info, power_on=True): """Finish reverting a resize.""" vm_ref = vm_util.get_vm_ref(self._session, instance) # Ensure that the VM is off vm_util.power_off_instance(self._session, instance, vm_ref) client_factory = self._session.vim.client.factory # Reconfigure the VM properties extra_specs = self._get_extra_specs(instance.flavor) metadata = self._get_instance_metadata(context, instance) vm_resize_spec = vm_util.get_vm_resize_spec(client_factory, int(instance.vcpus), int(instance.memory_mb), extra_specs, metadata=metadata) vm_util.reconfigure_vm(self._session, vm_ref, vm_resize_spec) # Reconfigure the disks if necessary vmdk = vm_util.get_vmdk_info(self._session, vm_ref, uuid=instance.uuid) ds_ref = vmdk.device.backing.datastore dc_info = self.get_datacenter_ref_and_name(ds_ref) folder = ds_obj.DatastorePath.parse(vmdk.path).dirname datastore = ds_obj.DatastorePath.parse(vmdk.path).datastore original_disk = ds_obj.DatastorePath(datastore, folder, 'original.vmdk') ds_browser = self._get_ds_browser(ds_ref) if ds_util.file_exists(self._session, ds_browser, original_disk.parent, original_disk.basename): self._volumeops.detach_disk_from_vm(vm_ref, instance, vmdk.device) ds_util.disk_delete(self._session, dc_info.ref, vmdk.path) ds_util.disk_move(self._session, dc_info.ref, str(original_disk), vmdk.path) self._volumeops.attach_disk_to_vm(vm_ref, instance, vmdk.adapter_type, vmdk.disk_type, vmdk.path) # Reconfigure ephemerals self._remove_ephemerals(vm_ref) self._resize_create_ephemerals(vm_ref, instance, block_device_info) if power_on: vm_util.power_on_instance(self._session, instance) def finish_migration(self, context, migration, instance, disk_info, network_info, image_meta, resize_instance=False, block_device_info=None, power_on=True): """Completes a resize, turning on the migrated instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) # 5. Update ephemerals if necessary self._resize_create_ephemerals(vm_ref, instance, block_device_info) self._update_instance_progress(context, instance, step=5, total_steps=RESIZE_TOTAL_STEPS) # 6. Start VM if power_on: vm_util.power_on_instance(self._session, instance, vm_ref=vm_ref) self._update_instance_progress(context, instance, step=6, total_steps=RESIZE_TOTAL_STEPS) def live_migration(self, context, instance_ref, dest, post_method, recover_method, block_migration=False): """Spawning live_migration operation for distributing high-load.""" vm_ref = vm_util.get_vm_ref(self._session, instance_ref) host_ref = self._get_host_ref_from_name(dest) if host_ref is None: raise exception.HostNotFound(host=dest) LOG.debug("Migrating VM to host %s", dest, instance=instance_ref) try: vm_migrate_task = self._session._call_method( self._session.vim, "MigrateVM_Task", vm_ref, host=host_ref, priority="defaultPriority") self._session._wait_for_task(vm_migrate_task) except Exception: with excutils.save_and_reraise_exception(): recover_method(context, instance_ref, dest, block_migration) post_method(context, instance_ref, dest, block_migration) LOG.debug("Migrated VM to host %s", dest, instance=instance_ref) def poll_rebooting_instances(self, timeout, instances): """Poll for rebooting instances.""" ctxt = nova_context.get_admin_context() instances_info = dict(instance_count=len(instances), timeout=timeout) if instances_info["instance_count"] > 0: LOG.info(_LI("Found %(instance_count)d hung reboots " "older than %(timeout)d seconds"), instances_info) for instance in instances: LOG.info(_LI("Automatically hard rebooting"), instance=instance) self.compute_api.reboot(ctxt, instance, "HARD") def get_info(self, instance): """Return data about the VM instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) lst_properties = ["summary.config.numCpu", "summary.config.memorySizeMB", "runtime.powerState"] vm_props = self._session._call_method(vim_util, "get_object_properties", None, vm_ref, "VirtualMachine", lst_properties) query = vm_util.get_values_from_object_properties( self._session, vm_props) max_mem = int(query.get('summary.config.memorySizeMB', 0)) * 1024 num_cpu = int(query.get('summary.config.numCpu', 0)) return hardware.InstanceInfo( state=VMWARE_POWER_STATES[query['runtime.powerState']], max_mem_kb=max_mem, mem_kb=max_mem, num_cpu=num_cpu) def _get_diagnostics(self, instance): """Return data about VM diagnostics.""" vm_ref = vm_util.get_vm_ref(self._session, instance) lst_properties = ["summary.config", "summary.quickStats", "summary.runtime"] vm_props = self._session._call_method(vim_util, "get_object_properties", None, vm_ref, "VirtualMachine", lst_properties) query = vm_util.get_values_from_object_properties(self._session, vm_props) data = {} # All of values received are objects. Convert them to dictionaries for value in query.values(): prop_dict = vim_util.object_to_dict(value, list_depth=1) data.update(prop_dict) return data def get_diagnostics(self, instance): """Return data about VM diagnostics.""" data = self._get_diagnostics(instance) # Add a namespace to all of the diagnostsics return {'vmware:' + k: v for k, v in data.items()} def get_instance_diagnostics(self, instance): """Return data about VM diagnostics.""" data = self._get_diagnostics(instance) state = data.get('powerState') if state: state = power_state.STATE_MAP[VMWARE_POWER_STATES[state]] uptime = data.get('uptimeSeconds', 0) config_drive = configdrive.required_by(instance) diags = diagnostics.Diagnostics(state=state, driver='vmwareapi', config_drive=config_drive, hypervisor_os='esxi', uptime=uptime) diags.memory_details.maximum = data.get('memorySizeMB', 0) diags.memory_details.used = data.get('guestMemoryUsage', 0) # TODO(garyk): add in cpu, nic and disk stats return diags def _get_vnc_console_connection(self, instance): """Return connection info for a vnc console.""" vm_ref = vm_util.get_vm_ref(self._session, instance) opt_value = self._session._call_method(vim_util, 'get_dynamic_property', vm_ref, 'VirtualMachine', vm_util.VNC_CONFIG_KEY) if opt_value: port = int(opt_value.value) else: raise exception.ConsoleTypeUnavailable(console_type='vnc') return {'port': port, 'internal_access_path': None} @staticmethod def _get_machine_id_str(network_info): machine_id_str = '' for vif in network_info: # TODO(vish): add support for dns2 # TODO(sateesh): add support for injection of ipv6 configuration network = vif['network'] ip_v4 = netmask_v4 = gateway_v4 = broadcast_v4 = dns = None subnets_v4 = [s for s in network['subnets'] if s['version'] == 4] if len(subnets_v4) > 0: if len(subnets_v4[0]['ips']) > 0: ip_v4 = subnets_v4[0]['ips'][0] if len(subnets_v4[0]['dns']) > 0: dns = subnets_v4[0]['dns'][0]['address'] netmask_v4 = str(subnets_v4[0].as_netaddr().netmask) gateway_v4 = subnets_v4[0]['gateway']['address'] broadcast_v4 = str(subnets_v4[0].as_netaddr().broadcast) interface_str = ";".join([vif['address'], ip_v4 and ip_v4['address'] or '', netmask_v4 or '', gateway_v4 or '', broadcast_v4 or '', dns or '']) machine_id_str = machine_id_str + interface_str + '#' return machine_id_str def _set_machine_id(self, client_factory, instance, network_info, vm_ref=None): """Set the machine id of the VM for guest tools to pick up and reconfigure the network interfaces. """ if vm_ref is None: vm_ref = vm_util.get_vm_ref(self._session, instance) machine_id_change_spec = vm_util.get_machine_id_change_spec( client_factory, self._get_machine_id_str(network_info)) LOG.debug("Reconfiguring VM instance to set the machine id", instance=instance) vm_util.reconfigure_vm(self._session, vm_ref, machine_id_change_spec) LOG.debug("Reconfigured VM instance to set the machine id", instance=instance) @utils.synchronized('vmware.get_and_set_vnc_port') def _get_and_set_vnc_config(self, client_factory, instance, vm_ref): """Set the vnc configuration of the VM.""" port = vm_util.get_vnc_port(self._session) vnc_config_spec = vm_util.get_vnc_config_spec( client_factory, port) LOG.debug("Reconfiguring VM instance to enable vnc on " "port - %(port)s", {'port': port}, instance=instance) vm_util.reconfigure_vm(self._session, vm_ref, vnc_config_spec) LOG.debug("Reconfigured VM instance to enable vnc on " "port - %(port)s", {'port': port}, instance=instance) def _get_ds_browser(self, ds_ref): ds_browser = self._datastore_browser_mapping.get(ds_ref.value) if not ds_browser: ds_browser = self._session._call_method( vim_util, "get_dynamic_property", ds_ref, "Datastore", "browser") self._datastore_browser_mapping[ds_ref.value] = ds_browser return ds_browser def _get_host_ref_from_name(self, host_name): """Get reference to the host with the name specified.""" host_objs = self._session._call_method(vim_util, "get_objects", "HostSystem", ["name"]) vm_util._cancel_retrieve_if_necessary(self._session, host_objs) for host in host_objs: if hasattr(host, 'propSet'): if host.propSet[0].val == host_name: return host.obj return None def _create_folder_if_missing(self, ds_name, ds_ref, folder): """Create a folder if it does not exist. Currently there are two folder that are required on the datastore - base folder - the folder to store cached images - temp folder - the folder used for snapshot management and image uploading This method is aimed to be used for the management of those folders to ensure that they are created if they are missing. The ds_util method mkdir will be used to check if the folder exists. If this throws and exception 'FileAlreadyExistsException' then the folder already exists on the datastore. """ path = ds_obj.DatastorePath(ds_name, folder) dc_info = self.get_datacenter_ref_and_name(ds_ref) try: ds_util.mkdir(self._session, path, dc_info.ref) LOG.debug("Folder %s created.", path) except vexc.FileAlreadyExistsException: # NOTE(hartsocks): if the folder already exists, that # just means the folder was prepped by another process. pass def check_cache_folder(self, ds_name, ds_ref): """Check that the cache folder exists.""" self._create_folder_if_missing(ds_name, ds_ref, self._base_folder) def check_temp_folder(self, ds_name, ds_ref): """Check that the temp folder exists.""" self._create_folder_if_missing(ds_name, ds_ref, self._tmp_folder) def inject_network_info(self, instance, network_info): """inject network info for specified instance.""" # Set the machine.id parameter of the instance to inject # the NIC configuration inside the VM client_factory = self._session.vim.client.factory self._set_machine_id(client_factory, instance, network_info) def manage_image_cache(self, context, instances): if not CONF.remove_unused_base_images: LOG.debug("Image aging disabled. Aging will not be done.") return datastores = ds_util.get_available_datastores(self._session, self._cluster, self._datastore_regex) datastores_info = [] for ds in datastores: dc_info = self.get_datacenter_ref_and_name(ds.ref) datastores_info.append((ds, dc_info)) self._imagecache.update(context, instances, datastores_info) def _get_valid_vms_from_retrieve_result(self, retrieve_result): """Returns list of valid vms from RetrieveResult object.""" lst_vm_names = [] while retrieve_result: for vm in retrieve_result.objects: vm_name = None conn_state = None for prop in vm.propSet: if prop.name == "name": vm_name = prop.val elif prop.name == "runtime.connectionState": conn_state = prop.val # Ignoring the orphaned or inaccessible VMs if (conn_state not in ["orphaned", "inaccessible"] and uuidutils.is_uuid_like(vm_name)): lst_vm_names.append(vm_name) retrieve_result = self._session._call_method(vutil, 'continue_retrieval', retrieve_result) return lst_vm_names def instance_exists(self, instance): try: vm_util.get_vm_ref(self._session, instance) return True except exception.InstanceNotFound: return False def attach_interface(self, instance, image_meta, vif): """Attach an interface to the instance.""" vif_model = image_meta.properties.get('hw_vif_model', constants.DEFAULT_VIF_MODEL) vif_model = vm_util.convert_vif_model(vif_model) vif_info = vmwarevif.get_vif_dict(self._session, self._cluster, vif_model, utils.is_neutron(), vif) vm_ref = vm_util.get_vm_ref(self._session, instance) # Ensure that there is not a race with the port index management with lockutils.lock(instance.uuid, lock_file_prefix='nova-vmware-hot-plug'): port_index = vm_util.get_attach_port_index(self._session, vm_ref) client_factory = self._session.vim.client.factory attach_config_spec = vm_util.get_network_attach_config_spec( client_factory, vif_info, port_index) LOG.debug("Reconfiguring VM to attach interface", instance=instance) try: vm_util.reconfigure_vm(self._session, vm_ref, attach_config_spec) except Exception as e: LOG.error(_LE('Attaching network adapter failed. Exception: ' ' %s'), e, instance=instance) raise exception.InterfaceAttachFailed( instance_uuid=instance.uuid) LOG.debug("Reconfigured VM to attach interface", instance=instance) def detach_interface(self, instance, vif): """Detach an interface from the instance.""" vm_ref = vm_util.get_vm_ref(self._session, instance) # Ensure that there is not a race with the port index management with lockutils.lock(instance.uuid, lock_file_prefix='nova-vmware-hot-plug'): port_index = vm_util.get_vm_detach_port_index(self._session, vm_ref, vif['id']) if port_index is None: msg = _("No device with interface-id %s exists on " "VM") % vif['id'] raise exception.NotFound(msg) hardware_devices = self._session._call_method(vim_util, "get_dynamic_property", vm_ref, "VirtualMachine", "config.hardware.device") device = vmwarevif.get_network_device(hardware_devices, vif['address']) if device is None: msg = _("No device with MAC address %s exists on the " "VM") % vif['address'] raise exception.NotFound(msg) client_factory = self._session.vim.client.factory detach_config_spec = vm_util.get_network_detach_config_spec( client_factory, device, port_index) LOG.debug("Reconfiguring VM to detach interface", instance=instance) try: vm_util.reconfigure_vm(self._session, vm_ref, detach_config_spec) except Exception as e: LOG.error(_LE('Detaching network adapter failed. Exception: ' '%s'), e, instance=instance) raise exception.InterfaceDetachFailed( instance_uuid=instance.uuid) LOG.debug("Reconfigured VM to detach interface", instance=instance) def _use_disk_image_as_full_clone(self, vm_ref, vi): """Uses cached image disk by copying it into the VM directory.""" instance_folder = vi.instance.uuid root_disk_name = "%s.vmdk" % vi.instance.uuid root_disk_ds_loc = vi.datastore.build_path(instance_folder, root_disk_name) vm_util.copy_virtual_disk( self._session, vi.dc_info.ref, str(vi.cache_image_path), str(root_disk_ds_loc)) self._extend_if_required( vi.dc_info, vi.ii, vi.instance, str(root_disk_ds_loc)) self._volumeops.attach_disk_to_vm( vm_ref, vi.instance, vi.ii.adapter_type, vi.ii.disk_type, str(root_disk_ds_loc), vi.root_gb * units.Mi, False) def _sized_image_exists(self, sized_disk_ds_loc, ds_ref): ds_browser = self._get_ds_browser(ds_ref) return ds_util.file_exists( self._session, ds_browser, sized_disk_ds_loc.parent, sized_disk_ds_loc.basename) def _use_disk_image_as_linked_clone(self, vm_ref, vi): """Uses cached image as parent of a COW child in the VM directory.""" sized_image_disk_name = "%s.vmdk" % vi.ii.image_id if vi.root_gb > 0: sized_image_disk_name = "%s.%s.vmdk" % (vi.ii.image_id, vi.root_gb) sized_disk_ds_loc = vi.cache_image_folder.join(sized_image_disk_name) # Ensure only a single thread extends the image at once. # We do this by taking a lock on the name of the extended # image. This allows multiple threads to create resized # copies simultaneously, as long as they are different # sizes. Threads attempting to create the same resized copy # will be serialized, with only the first actually creating # the copy. # # Note that the object is in a per-nova cache directory, # so inter-nova locking is not a concern. Consequently we # can safely use simple thread locks. with lockutils.lock(str(sized_disk_ds_loc), lock_file_prefix='nova-vmware-image'): if not self._sized_image_exists(sized_disk_ds_loc, vi.datastore.ref): LOG.debug("Copying root disk of size %sGb", vi.root_gb, instance=vi.instance) try: vm_util.copy_virtual_disk( self._session, vi.dc_info.ref, str(vi.cache_image_path), str(sized_disk_ds_loc)) except Exception as e: LOG.warning(_LW("Root disk file creation " "failed - %s"), e) with excutils.save_and_reraise_exception(): LOG.error(_LE('Failed to copy cached ' 'image %(source)s to ' '%(dest)s for resize: ' '%(error)s'), {'source': vi.cache_image_path, 'dest': sized_disk_ds_loc, 'error': e}) try: ds_util.file_delete(self._session, sized_disk_ds_loc, vi.dc_info.ref) except vexc.FileNotFoundException: # File was never created: cleanup not # required pass # Resize the copy to the appropriate size. No need # for cleanup up here, as _extend_virtual_disk # already does it self._extend_if_required( vi.dc_info, vi.ii, vi.instance, str(sized_disk_ds_loc)) # Associate the sized image disk to the VM by attaching to the VM a # COW child of said disk. self._volumeops.attach_disk_to_vm( vm_ref, vi.instance, vi.ii.adapter_type, vi.ii.disk_type, str(sized_disk_ds_loc), vi.root_gb * units.Mi, vi.ii.linked_clone) def _use_iso_image(self, vm_ref, vi): """Uses cached image as a bootable virtual cdrom.""" self._attach_cdrom_to_vm( vm_ref, vi.instance, vi.datastore.ref, str(vi.cache_image_path)) # Optionally create and attach blank disk if vi.root_gb > 0: instance_folder = vi.instance.uuid root_disk_name = "%s.vmdk" % vi.instance.uuid root_disk_ds_loc = vi.datastore.build_path(instance_folder, root_disk_name) # It is pointless to COW a blank disk linked_clone = False vm_util.create_virtual_disk( self._session, vi.dc_info.ref, vi.ii.adapter_type, vi.ii.disk_type, str(root_disk_ds_loc), vi.root_gb * units.Mi) self._volumeops.attach_disk_to_vm( vm_ref, vi.instance, vi.ii.adapter_type, vi.ii.disk_type, str(root_disk_ds_loc), vi.root_gb * units.Mi, linked_clone) def _update_datacenter_cache_from_objects(self, dcs): """Updates the datastore/datacenter cache.""" while dcs: for dco in dcs.objects: dc_ref = dco.obj ds_refs = [] prop_dict = vm_util.propset_dict(dco.propSet) name = prop_dict.get('name') vmFolder = prop_dict.get('vmFolder') datastore_refs = prop_dict.get('datastore') if datastore_refs: datastore_refs = datastore_refs.ManagedObjectReference for ds in datastore_refs: ds_refs.append(ds.value) else: LOG.debug("Datacenter %s doesn't have any datastore " "associated with it, ignoring it", name) for ds_ref in ds_refs: self._datastore_dc_mapping[ds_ref] = DcInfo(ref=dc_ref, name=name, vmFolder=vmFolder) dcs = self._session._call_method(vutil, 'continue_retrieval', dcs) def get_datacenter_ref_and_name(self, ds_ref): """Get the datacenter name and the reference.""" dc_info = self._datastore_dc_mapping.get(ds_ref.value) if not dc_info: dcs = self._session._call_method(vim_util, "get_objects", "Datacenter", ["name", "datastore", "vmFolder"]) self._update_datacenter_cache_from_objects(dcs) dc_info = self._datastore_dc_mapping.get(ds_ref.value) return dc_info def list_instances(self): """Lists the VM instances that are registered with vCenter cluster.""" properties = ['name', 'runtime.connectionState'] LOG.debug("Getting list of instances from cluster %s", self._cluster) vms = [] if self._root_resource_pool: vms = self._session._call_method( vim_util, 'get_inner_objects', self._root_resource_pool, 'vm', 'VirtualMachine', properties) lst_vm_names = self._get_valid_vms_from_retrieve_result(vms) LOG.debug("Got total of %s instances", str(len(lst_vm_names))) return lst_vm_names def get_vnc_console(self, instance): """Return connection info for a vnc console using vCenter logic.""" # vCenter does not run virtual machines and does not run # a VNC proxy. Instead, you need to tell OpenStack to talk # directly to the ESX host running the VM you are attempting # to connect to via VNC. vnc_console = self._get_vnc_console_connection(instance) host_name = vm_util.get_host_name_for_vm( self._session, instance) vnc_console['host'] = host_name # NOTE: VM can move hosts in some situations. Debug for admins. LOG.debug("VM %(uuid)s is currently on host %(host_name)s", {'uuid': instance.uuid, 'host_name': host_name}, instance=instance) return ctype.ConsoleVNC(**vnc_console) def get_mks_console(self, instance): vm_ref = vm_util.get_vm_ref(self._session, instance) ticket = self._session._call_method(self._session.vim, 'AcquireTicket', vm_ref, ticketType='mks') thumbprint = ticket.sslThumbprint.replace(':', '').lower() mks_auth = {'ticket': ticket.ticket, 'cfgFile': ticket.cfgFile, 'thumbprint': thumbprint} internal_access_path = jsonutils.dumps(mks_auth) return ctype.ConsoleMKS(ticket.host, ticket.port, internal_access_path)
apache-2.0
4,759,720,369,780,155,000
46.017713
79
0.537571
false
albanatita/data-process
ishtarTools.py
1
2664
# -*- coding: utf-8 -*- """ Created on Wed Jun 17 10:49:02 2015 @author: admin """ import os, datetime, time import ConvertFiles import sqlite3 import readHdf5 def massConversion(): path=r"D:"+os.sep+"DATA"+os.sep+"Acquired_data" # listFiles=['00823_Data'] iteration=range(10,46) listeFiles=['01078_Data'] # for i in iteration: # listeFiles.append('010'+str(i)+'_Data') # for file in os.listdir(path): # if file.endswith(".tdms"): # listeFiles.append(file[0:-5]) #conn=sqlite3.connect('ishtar') #curs=conn.cursor() #tblcmd='create table shots (shotnbr int(6),file char(40))' #curs.execute(tblcmd) #conn.commit() for x in listeFiles: print x ConvertFiles.convert_tdms(path,x,False) # # for x in listFiles2: class Environment(): def __init__(self): self.path=r"D:"+os.sep+"DATA"+os.sep+"Acquired_data" def addDate(): path=r"D:"+os.sep+"DATA"+os.sep+"Acquired_data" env=Environment() listeFiles=[] for file in os.listdir(path): if file.endswith(".h5"): listeFiles.append(file[0:-3]) for file in listeFiles: try: timei=time.ctime(os.path.getmtime(path+os.sep+file+'.tdms')) readHdf5.saveAttr(file,'date',timei,env) except: print file+'.tdms not found' def addMagneticField(): path=r"D:"+os.sep+"DATA"+os.sep+"Acquired_data" env=Environment() listeFiles=[] for file in os.listdir(path): if file.endswith(".h5"): listeFiles.append(file[0:-3]) for file in listeFiles: try: readHdf5.saveAttr(file,'date',timei,env) except: print file+'.tdms not found' def addWincc(): path=r"D:"+os.sep+"DATA"+os.sep+"Acquired_data" env=Environment() listeFiles=[] for file in os.listdir(path): #print file[0:2] if file.endswith(".csv") and file[0:2]=='Is': #listeFiles.append(file[0:-3]) inputfile=open(path+os.sep+file) #inputfile.next() print inputfile.readline() #timei=datetime.datetime.strptime(inputfile.readline()[13:-1],'%d.%m.%Y %H:%M:%S') timei=inputfile.readline()[13:-1] print timei h5file='0'+file[7:-4]+'_Data' print h5file readHdf5.saveAttr(h5file,'date',timei,env) if __name__=='__main__': #massConversion() #addMagneticField() #addWincc()
gpl-2.0
3,389,679,518,884,044,300
26.666667
94
0.541291
false
vir-mir/aiovalidator
aiovalidator/middlewares/validator.py
1
1514
import asyncio import itertools import json import sys from functools import wraps from aiovalidator.fields.base import BaseField from aiovalidator.fields.manager import ManagerField PY_35 = sys.version_info >= (3, 5) if PY_35: from json import JSONDecodeError else: JSONDecodeError = ValueError __all__ = ['validator_factory'] def _loads(data): try: return json.loads(data) except JSONDecodeError: return {} def validator_factory(loads=_loads): @asyncio.coroutine def validator(app, handler): if getattr(handler, 'skip_validate', False): return handler cls_field = getattr(handler, 'Field', None) if not cls_field: return handler else: fields = ( (name, getattr(cls_field, name)) for name in dir(cls_field) if isinstance(getattr(cls_field, name), BaseField) ) load = getattr(handler, 'validator_loads', None) or loads @wraps(handler) @asyncio.coroutine def wrapper(request): data = dict(itertools.chain( request.match_info.items(), request.GET.items(), load((yield from request.text())).items())) manager = ManagerField(fields, request, data) yield from manager.init() request['fields'] = manager.manager_dict return (yield from handler(request)) return wrapper return validator
apache-2.0
-7,801,116,108,073,615,000
24.233333
66
0.597754
false
josircg/raizcidadanista
raizcidadanista/financeiro/migrations/0009_auto__chg_field_despesa_valor__chg_field_projeto_orcamento.py
1
18530
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Despesa.valor' db.alter_column('financeiro_despesa', 'valor', self.gf('utils.fields.BRDecimalField')(max_digits=14, decimal_places=2)) # Changing field 'Projeto.orcamento' db.alter_column('financeiro_projeto', 'orcamento', self.gf('utils.fields.BRDecimalField')(max_digits=16, decimal_places=2)) def backwards(self, orm): # Changing field 'Despesa.valor' db.alter_column('financeiro_despesa', 'valor', self.gf('django.db.models.fields.DecimalField')(max_digits=14, decimal_places=2)) # Changing field 'Projeto.orcamento' db.alter_column('financeiro_projeto', 'orcamento', self.gf('django.db.models.fields.DecimalField')(max_digits=16, decimal_places=2)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'cadastro.membro': { 'Meta': {'ordering': "['nome']", 'object_name': 'Membro', '_ormbases': ['cadastro.Pessoa']}, 'aprovador': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'membro_aprovador'", 'null': 'True', 'to': "orm['auth.User']"}), 'assinado': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'atividade_profissional': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'contrib_prox_pgto': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'contrib_tipo': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '1'}), 'contrib_valor': ('utils.fields.BRDecimalField', [], {'default': '0', 'max_digits': '7', 'decimal_places': '2'}), 'cpf': ('django.db.models.fields.CharField', [], {'max_length': '14', 'null': 'True', 'blank': 'True'}), 'dt_prefiliacao': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'dtnascimento': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'endereco': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'endereco_cep': ('django.db.models.fields.CharField', [], {'max_length': '9', 'null': 'True', 'blank': 'True'}), 'endereco_complemento': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'endereco_num': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'estadocivil': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'facebook_access_token': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'facebook_id': ('django.db.models.fields.CharField', [], {'max_length': '120', 'null': 'True', 'blank': 'True'}), 'filiacao_partidaria': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'filiado': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'fundador': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'municipio_eleitoral': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'municipio_naturalidade': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'nome_da_mae': ('django.db.models.fields.CharField', [], {'max_length': '60', 'null': 'True', 'blank': 'True'}), 'pessoa_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cadastro.Pessoa']", 'unique': 'True', 'primary_key': 'True'}), 'rg': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'secao_eleitoral': ('django.db.models.fields.CharField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'titulo_eleitoral': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'twitter_id': ('django.db.models.fields.CharField', [], {'max_length': '120', 'null': 'True', 'blank': 'True'}), 'twitter_oauth_token': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'twitter_oauth_token_secret': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'uf_eleitoral': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['municipios.UF']", 'null': 'True', 'blank': 'True'}), 'uf_naturalidade': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'uf_naturalidade'", 'null': 'True', 'to': "orm['municipios.UF']"}), 'usuario': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'membro'", 'null': 'True', 'to': "orm['auth.User']"}), 'zona_eleitoral': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}) }, 'cadastro.pessoa': { 'Meta': {'ordering': "['nome']", 'object_name': 'Pessoa'}, 'apelido': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'celular': ('django.db.models.fields.CharField', [], {'max_length': '14', 'null': 'True', 'blank': 'True'}), 'dtcadastro': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'municipio': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'nome': ('django.db.models.fields.CharField', [], {'max_length': '150'}), 'residencial': ('django.db.models.fields.CharField', [], {'max_length': '14', 'null': 'True', 'blank': 'True'}), 'sexo': ('django.db.models.fields.CharField', [], {'default': "'O'", 'max_length': '1'}), 'status_email': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '1'}), 'uf': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['municipios.UF']"}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'financeiro.conta': { 'Meta': {'ordering': "('conta',)", 'object_name': 'Conta'}, 'ativa': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'conta': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nota': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "'M'", 'max_length': '1'}) }, 'financeiro.deposito': { 'Meta': {'ordering': "['dt']", 'object_name': 'Deposito', '_ormbases': ['financeiro.Operacao']}, 'operacao_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['financeiro.Operacao']", 'unique': 'True', 'primary_key': 'True'}), 'receita': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Receita']", 'null': 'True', 'blank': 'True'}) }, 'financeiro.despesa': { 'Meta': {'object_name': 'Despesa'}, 'documento': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'dtemissao': ('django.db.models.fields.DateField', [], {}), 'dtvencimento': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'fornecedor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Fornecedor']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'integral': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'observacoes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'tipo_despesa': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.TipoDespesa']", 'null': 'True', 'blank': 'True'}), 'valor': ('utils.fields.BRDecimalField', [], {'max_digits': '14', 'decimal_places': '2'}) }, 'financeiro.fornecedor': { 'Meta': {'ordering': "('nome',)", 'object_name': 'Fornecedor'}, 'ativo': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'dados_financeiros': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identificador': ('django.db.models.fields.CharField', [], {'max_length': '14'}), 'nome': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'servico_padrao': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.TipoDespesa']", 'null': 'True', 'blank': 'True'}) }, 'financeiro.metaarrecadacao': { 'Meta': {'object_name': 'MetaArrecadacao'}, 'data_inicial': ('django.db.models.fields.DateField', [], {}), 'data_limite': ('django.db.models.fields.DateField', [], {}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'valor': ('utils.fields.BRDecimalField', [], {'max_digits': '12', 'decimal_places': '2'}) }, 'financeiro.operacao': { 'Meta': {'ordering': "['dt']", 'object_name': 'Operacao'}, 'conferido': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'conta': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Conta']"}), 'dt': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'obs': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'referencia': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'tipo': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'valor': ('django.db.models.fields.DecimalField', [], {'max_digits': '14', 'decimal_places': '2'}) }, 'financeiro.pagamento': { 'Meta': {'ordering': "['dt']", 'object_name': 'Pagamento', '_ormbases': ['financeiro.Operacao']}, 'despesa': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Despesa']", 'null': 'True', 'blank': 'True'}), 'fornecedor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Fornecedor']"}), 'operacao_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['financeiro.Operacao']", 'unique': 'True', 'primary_key': 'True'}), 'projeto': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Projeto']", 'null': 'True', 'blank': 'True'}), 'tipo_despesa': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.TipoDespesa']", 'null': 'True', 'blank': 'True'}) }, 'financeiro.periodocontabil': { 'Meta': {'ordering': "['ciclo']", 'object_name': 'PeriodoContabil'}, 'ciclo': ('django.db.models.fields.CharField', [], {'max_length': '6'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'publico': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'status': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'financeiro.projeto': { 'Meta': {'object_name': 'Projeto'}, 'ativo': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'descricao': ('django.db.models.fields.TextField', [], {}), 'dtfim': ('django.db.models.fields.DateField', [], {}), 'dtinicio': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nome': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'orcamento': ('utils.fields.BRDecimalField', [], {'max_digits': '16', 'decimal_places': '2'}), 'responsavel': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'financeiro.receita': { 'Meta': {'ordering': "('conta__conta',)", 'object_name': 'Receita'}, 'colaborador': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cadastro.Membro']", 'null': 'True', 'blank': 'True'}), 'conta': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Conta']"}), 'dtaviso': ('django.db.models.fields.DateField', [], {}), 'dtpgto': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nota': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'valor': ('utils.fields.BRDecimalField', [], {'max_digits': '12', 'decimal_places': '2'}) }, 'financeiro.tipodespesa': { 'Meta': {'object_name': 'TipoDespesa'}, 'codigo': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'descricao_breve': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'financeiro.transferencia': { 'Meta': {'ordering': "['dt']", 'object_name': 'Transferencia', '_ormbases': ['financeiro.Operacao']}, 'destino': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Conta']"}), 'operacao_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['financeiro.Operacao']", 'unique': 'True', 'primary_key': 'True'}), 'transf_associada': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['financeiro.Transferencia']", 'null': 'True', 'blank': 'True'}) }, 'municipios.uf': { 'Meta': {'ordering': "(u'nome',)", 'object_name': 'UF'}, 'id_ibge': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'}), 'nome': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'regiao': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'uf': ('django.db.models.fields.CharField', [], {'max_length': '2'}) } } complete_apps = ['financeiro']
gpl-3.0
4,204,574,867,102,121,500
81.36
184
0.549973
false
OmeGak/indico-plugins
importer_invenio/indico_importer_invenio/zodbimport.py
1
1541
# This file is part of Indico. # Copyright (C) 2002 - 2016 European Organization for Nuclear Research (CERN). # # Indico is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # # Indico is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Indico; if not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals from indico.core.db import db from indico.util.console import cformat from indico_zodbimport import Importer, convert_to_unicode from indico_importer_invenio.plugin import ImporterInvenioPlugin class InvenioImporter(Importer): plugins = {'importer', 'importer_invenio'} def migrate(self): self.migrate_settings() def migrate_settings(self): print cformat('%{white!}migrating settings') ImporterInvenioPlugin.settings.delete_all() opts = self.zodb_root['plugins']['importer']._PluginType__plugins['invenio']._PluginBase__options ImporterInvenioPlugin.settings.set('server_url', convert_to_unicode(opts['location']._PluginOption__value).strip()) db.session.commit()
gpl-3.0
3,441,702,454,702,315,000
39.552632
109
0.722258
false
mazvv/travelcrm
travelcrm/forms/vats.py
1
3033
# -*-coding: utf-8 -*- import colander from . import( Date, SelectInteger, ResourceSchema, BaseForm, BaseSearchForm, BaseAssignForm, ) from ..resources.vats import VatsResource from ..models import DBSession from ..models.vat import Vat from ..models.service import Service from ..models.account import Account from ..models.note import Note from ..models.task import Task from ..lib.qb.vats import VatsQueryBuilder from ..lib.utils.security_utils import get_auth_employee from ..lib.utils.common_utils import translate as _ @colander.deferred def date_validator(node, kw): request = kw.get('request') def validator(node, value): vat = ( DBSession.query(Vat) .filter( Vat.date == value, Vat.account_id == request.params.get('account_id'), Vat.service_id == request.params.get('service_id'), ) .first() ) if ( vat and str(vat.id) != request.params.get('id') ): raise colander.Invalid( node, _(u'Vat for this date exists'), ) return colander.All(validator,) class _VatSchema(ResourceSchema): date = colander.SchemaNode( Date(), validator=date_validator, ) account_id = colander.SchemaNode( SelectInteger(Account), ) service_id = colander.SchemaNode( SelectInteger(Service), ) vat = colander.SchemaNode( colander.Decimal('.01'), validator=colander.Range(min=0, max=100), ) calc_method = colander.SchemaNode( colander.String() ) descr = colander.SchemaNode( colander.String(), validator=colander.Length(max=255), missing=None ) class VatForm(BaseForm): _schema = _VatSchema def submit(self, vat=None): if not vat: vat = Vat( resource=VatsResource.create_resource( get_auth_employee(self.request) ) ) else: vat.resource.notes = [] vat.resource.tasks = [] vat.date = self._controls.get('date') vat.account_id = self._controls.get('account_id') vat.service_id = self._controls.get('service_id') vat.vat = self._controls.get('vat') vat.calc_method = self._controls.get('calc_method') vat.descr = self._controls.get('descr') for id in self._controls.get('note_id'): note = Note.get(id) vat.resource.notes.append(note) for id in self._controls.get('task_id'): task = Task.get(id) vat.resource.tasks.append(task) return vat class VatSearchForm(BaseSearchForm): _qb = VatsQueryBuilder class VatAssignForm(BaseAssignForm): def submit(self, ids): for id in ids: vat = Vat.get(id) vat.resource.maintainer_id = self._controls.get( 'maintainer_id' )
gpl-3.0
-5,373,886,258,973,040,000
25.840708
68
0.572371
false
DaveMDS/epymc
epymc/sdb.py
1
5661
#!/usr/bin/env python # This Python file uses the following encoding: utf-8 # # Copyright (C) 2010-2018 Davide Andreoli <[email protected]> # # This file is part of EpyMC, an EFL based Media Center written in Python. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import absolute_import, print_function import sys import os import shelve import glob from queue import Queue from efl import ecore from epymc import utils from epymc.gui import EmcDialog def DBG(msg): # print('SDB: %s' % msg) pass _queue: Queue _queue_timer: ecore.Timer _instances = [] class EmcDatabase(object): """ TODO doc this """ def __init__(self, name, version=None): self._name = name self._vers = version self._vkey = '__database__version__' self._sync_timer = None # build the db name (different db for py2 and py3) dbname = os.path.join(utils.user_conf_dir, 'db_py%d_%s' % (sys.version_info[0], name)) DBG('Open db: ' + name + ' from file: ' + dbname) # check if the db exist (or is the first time we use it) first_run = False if glob.glob(dbname + '*') else True # open the shelve self._sh = shelve.open(dbname) if (not first_run) and (version is not None) and (self.get_version() != version): # the db is outdated text = _( '<b>The database %s is outdated!</b><br><br>' 'The old file has been renamed with a .backup extension and a new (empty) ' 'one has been created.<br><br>' 'Sorry for the incovenience.') % name EmcDialog(style='warning', title=_('EpyMC Database'), text=text) # close the shelve self._sh.close() # rename db files to .backup for fname in glob.glob(dbname + '*'): os.rename(fname, fname + '.backup') # reopen a new (empty) shelve self._sh = shelve.open(dbname) if version is not None: # store the version inside the db self._sh[self._vkey] = version _instances.append(self) def _close(self): DBG('Closing database %s' % self._name) if self._sync_timer is not None: self._sync_timer.delete() self._sync_timer = None self._sh.close() def __len__(self): if self._vers: return len(self._sh) - 1 else: return len(self._sh) def __contains__(self, key): return key in self._sh def __iter__(self): return self.items() def items(self): for k, v in self._sh.items(): if k != self._vkey: yield k, v def keys(self): if self._vers: return [k for k in self._sh.keys() if k != self._vkey] else: return self._sh.keys() def get_data(self, key): DBG('Get Data for db: %s, key: %s' % (self._name, key)) return self._sh[key] def set_data(self, key, data, thread_safe=False): DBG('Set data for db: %s, id: %s' % (self._name, key)) if thread_safe: # just put in the queue _queue.put((self, key, data)) else: # update the db now self._sh[key] = data self._delayed_sync() def del_data(self, key): if key in self._sh: del self._sh[key] self._delayed_sync() def id_exists(self, key): return key in self._sh def get_version(self): if self._vkey in self._sh: return self._sh[self._vkey] def dump(self): import pprint print('=' * 60) print('DB NAME: "{}" - VERSION: {}'.format(self._name, self._vers)) print('=' * 60) for key in self._sh.keys(): print('\nDB KEY: "{}"'.format(key)) pprint.pprint(self._sh[key]) print('=' * 60) def _delayed_sync(self): if self._sync_timer is None: self._sync_timer = ecore.Timer(5.0, self._sync_timer_cb) else: self._sync_timer.reset() def _sync_timer_cb(self): DBG("Syncing database %s" % self._name) self._sh.sync() self._sync_timer = None return ecore.ECORE_CALLBACK_CANCEL ################## def init(): global _queue global _queue_timer _queue = Queue() _queue_timer = ecore.Timer(0.2, _process_queue) def shutdown(): global _queue global _queue_timer _queue_timer.delete() del _queue for db in _instances: db._close() def _process_queue(): global _queue if _queue.empty(): return True count = 10 # DBG("Queue size: " + str(_queue.qsize())) while not _queue.empty() and count > 0: # DBG('Queue processing...count:%d len:%d' % (count, _queue.qsize())) count -= 1 (db, key, data) = _queue.get_nowait() db._sh[key] = data db._delayed_sync() return ecore.ECORE_CALLBACK_RENEW
gpl-3.0
-2,831,570,294,776,829,400
26.480583
91
0.561208
false
dstenb/pylaunchr-svtplay
format.py
1
1106
import datetime def format_published_at(episode): if not episode.published_at: return "" elif episode.published_today(): format = "Published today %H:%M" return episode.published_at.strftime(format) elif episode.published_yesterday(): format = "Published yesterday %H:%M" return episode.published_at.strftime(format) else: format = "Published %d %B" return episode.published_at.strftime(format) def format_duration(episode): duration = episode.duration if not duration: return "" def seconds(): return "%d sec" % (duration.seconds % 60, ) def minutes(): return "%d min" % ((duration.seconds // 60) % 60, ) def minutes_and_seconds(): if (duration.seconds % 60) == 0: return minutes() else: return minutes() + " " + seconds() if duration < datetime.timedelta(minutes=1): return seconds() elif duration < datetime.timedelta(hours=1): return minutes_and_seconds() else: return "%d h " + minutes_and_seconds()
mit
4,477,413,895,579,498,500
25.97561
59
0.597649
false
deltachat/deltachat-pages
tools/create-local-help.py
1
4317
#!/usr/bin/env python3 # the structure of the help files is: # - ANY_DIR/help/LANG/help.html (files generated by deltachat-pages) # - ANY_DIR/help/help.css (file is should be provided by deltachat-UI, not generated by deltachat-pages) from shutil import copyfile import sys import os import re # list all files that should go to the local help here. # the path should be the path used eg. in the <img> tag. linked_files = ["assets/home/delta-what-optim.png"] def read_file(filename): f = open(filename, 'r') content = f.read() f.close() return content def write_file(filename, content): f = open(filename, 'w') f.write(content) f.close() def generate_file(srcdir, destdir, lang, file, add_top_links): print("generate local help in " + destdir + "/" + lang + "/" + file) content = read_file(srcdir + "/" + lang + "/" + file) content = re.sub(r"^.*<div id=\"content\">.*<h1>.*?</h1>.*?<ul.*?>", "<!DOCTYPE html>\n" + "<html>" + "<head>" + "<meta charset=\"UTF-8\" />" + "<meta name=\"viewport\" content=\"initial-scale=1.0\" />" + "<link rel=\"stylesheet\" href=\"../help.css\" />" + "</head>" + "<body>" + "<ul id=\"top\">", content, flags=re.MULTILINE|re.DOTALL) content = re.sub(r"</div>.*?</body>.*</html>.*$", "</body>" + "</html>", content, flags=re.MULTILINE|re.DOTALL) for linked_file in linked_files: srcfile = "../" + linked_file destfile = "../" + linked_file.split("/")[-1] content = re.sub(srcfile, destfile, content) if add_top_links: top_link = "<p class=\"back\"><a href=\"#top\">^</a></p>" content = re.sub(r"<h([234].*?)>", top_link + "<h\\1>", content, flags=re.MULTILINE|re.DOTALL) + top_link write_file(destdir + "/" + lang + "/" + file, content) def generate_lang(srcdir, destdir, lang, add_top_links): os.makedirs(destdir + "/" + lang, exist_ok=True) generate_file(srcdir, destdir, lang, "help.html", add_top_links) def generate_help(srcdir, destdir, add_top_links=False): generate_lang(srcdir, destdir, "cs", add_top_links) generate_lang(srcdir, destdir, "de", add_top_links) generate_lang(srcdir, destdir, "en", add_top_links) generate_lang(srcdir, destdir, "es", add_top_links) generate_lang(srcdir, destdir, "fr", add_top_links) generate_lang(srcdir, destdir, "id", add_top_links) generate_lang(srcdir, destdir, "it", add_top_links) generate_lang(srcdir, destdir, "pl", add_top_links) generate_lang(srcdir, destdir, "nl", add_top_links) generate_lang(srcdir, destdir, "ru", add_top_links) generate_lang(srcdir, destdir, "sq", add_top_links) generate_lang(srcdir, destdir, "uk", add_top_links) generate_lang(srcdir, destdir, "zh_CN", add_top_links) for linked_file in linked_files: srcfile = srcdir + "/" + linked_file destfile = destdir + "/" + linked_file.split("/")[-1] print("copy " + srcfile + " to " + destfile) copyfile(srcfile, destfile) if __name__ == "__main__": if len(sys.argv) < 3: raise SystemExit("usage: create-local-help.py INPUT_DIR OUTPUT_DIR [--add-top-links]" +"\n eg. create-local-help.py _site ../foobar") srcdir = sys.argv[1] print("using source directory: " + srcdir) destdir = sys.argv[2] print("using destination directory: " + destdir) add_top_links = False if len(sys.argv) == 4 and sys.argv[3] == "--add-top-links": add_top_links = True print("add links back to top of file: yes") else: print("add links back to top of file: no") if not os.path.isdir(srcdir): raise SystemExit("Error: " + srcdir + " is no existent directory.") if not os.path.isdir(destdir): raise SystemExit("Error: " + destdir + " is no existent directory.") generate_help(srcdir, destdir, add_top_links=add_top_links)
gpl-3.0
219,344,217,322,062,800
34.105691
105
0.552235
false
mibofra/olifant
gui.py
1
26152
#!/usr/bin/env python # -*- coding: utf-8 -*- # generated by wxGlade 0.6.3 on Sat Mar 31 15:44:43 2012 import wx import os import sys from olifant import Olifant from olifantException import OlifantException # begin wxGlade: extracode # end wxGlade def showError(label,text): dial = wx.MessageDialog(None, text , label , wx.ICON_ERROR) dial.ShowModal() class DialogUSbSelection(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: DialogUSbSelection.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.UsbSelectionLabel = wx.StaticText(self, -1, "Select Usb Key", style=wx.ALIGN_CENTRE) self.UsbSelectCombobox = wx.ComboBox(self, -1, choices=[], style=wx.CB_DROPDOWN | wx.CB_READONLY) self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: DialogUSbSelection.__set_properties self.SetTitle("UsbSelect") # end wxGlade def __do_layout(self): # begin wxGlade: DialogUSbSelection.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add(self.UsbSelectionLabel, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 5) sizer_1.Add(self.UsbSelectCombobox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 5) self.SetSizer(sizer_1) sizer_1.Fit(self) self.Layout() # end wxGlade # end of class DialogUSbSelection class MyFrame(wx.Frame): olifant = None #olifant def __init__(self, *args, **kwds): # begin wxGlade: MyFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.LogoMainFrame_1 = wx.StaticBitmap(self, -1, wx.Bitmap("images/icon.png", wx.BITMAP_TYPE_ANY), style=wx.SIMPLE_BORDER) self.labelMainFrame_1 = wx.StaticText(self, -1, "Olifant 1.0", style=wx.ALIGN_CENTRE) self.MonitorModSelectionLabel = wx.StaticText(self, -1, "Select monitoring mode:", style=wx.ALIGN_CENTRE) self.MonitorModSelectionBox = wx.ComboBox(self, -1, choices=["Password mode", "USB mode", "Strong mode"], style=wx.CB_DROPDOWN | wx.CB_DROPDOWN | wx.CB_READONLY) self.LockButton = wx.Button(self, -1, "Lock") self.PowerSupplyCheckbox = wx.CheckBox(self, -1, "power supply") self.PowerBCheckbox = wx.CheckBox(self, -1, "power button") self.BatteryModCheckbox = wx.CheckBox(self, -1, "battery mode") self.ClosedlidModCheckbox = wx.CheckBox(self, -1, "closed lid") self.window_1 = wx.HyperlinkCtrl(self, -1, "About Olifant", "https://launchpad.net/olifant") self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: MyFrame.__set_properties self.SetTitle("Olifant") self.SetSize((436, 316)) self.SetFocus() self.LogoMainFrame_1.SetMinSize((64, 64)) self.labelMainFrame_1.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) self.MonitorModSelectionBox.SetSelection(0) # end wxGlade self.MonitorModSelectionBox.SetEditable(False) self.PowerSupplyCheckbox.SetValue(True) self.PowerBCheckbox.SetValue(True) self.BatteryModCheckbox.SetValue(True) self.ClosedlidModCheckbox.SetValue(True) self.Bind(wx.EVT_BUTTON, self.OnLockClick, self.LockButton) def __do_layout(self): # begin wxGlade: MyFrame.__do_layout sizerMainFrame = wx.BoxSizer(wx.VERTICAL) GridMainFrame = wx.GridSizer(1, 4, 0, 0) sizerMainFrame.Add((400, 20), 0, 0, 0) sizerMainFrame.Add(self.LogoMainFrame_1, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) sizerMainFrame.Add(self.labelMainFrame_1, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) sizerMainFrame.Add((400, 20), 0, 0, 0) sizerMainFrame.Add(self.MonitorModSelectionLabel, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 5) sizerMainFrame.Add(self.MonitorModSelectionBox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 10) sizerMainFrame.Add(self.LockButton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) GridMainFrame.Add(self.PowerSupplyCheckbox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridMainFrame.Add(self.PowerBCheckbox, 0, wx.ALL | wx.ALIGN_RIGHT | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridMainFrame.Add(self.BatteryModCheckbox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridMainFrame.Add(self.ClosedlidModCheckbox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) sizerMainFrame.Add(GridMainFrame, 1, wx.EXPAND, 0) sizerMainFrame.Add(self.window_1, 0, wx.EXPAND | wx.ALIGN_RIGHT | wx.ALIGN_CENTER_HORIZONTAL, 0) self.SetSizer(sizerMainFrame) sizerMainFrame.SetSizeHints(self) self.Layout() self.Centre() # end wxGlade def OnLockClick(self, event): alarms = [] if self.PowerSupplyCheckbox.IsChecked(): alarms.append(Olifant.AC_ALARM) if self.PowerBCheckbox.IsChecked(): alarms.append(Olifant.POWER_BUTTON_ALARM) if self.BatteryModCheckbox.IsChecked(): alarms.append(Olifant.BATTERY_ALARM) if self.ClosedlidModCheckbox.IsChecked(): alarms.append(Olifant.LID_OPENED_ALARM) if len(alarms) == 0: showError('Warning','You have all 3 options disabled, are you sure?Olifant will just do nothin') choice = self.MonitorModSelectionBox.GetCurrentSelection() try: if choice == 0: self.olifant = Olifant(Olifant.PASSWD_MODE,alarms) elif choice == 1: self.olifant = Olifant(Olifant.USB_MODE,alarms) elif choice == 2: self.olifant = Olifant(Olifant.STRONG_MODE,alarms) else: showError('Wrong Selection','Olifant option unknown') if choice == 0: passdlg = MyDialog2(self,-1) passdlg.clearAll() #TODO we need this because of a bug passdlg.ShowModal() pwd = passdlg.getPasswd() if pwd == '': showError('Error!','password cannot be empty') else: try: self.olifant.lock(pwd) """ FlagList = ['FULLSCREEN_NOMENUBAR', 'FULLSCREEN_NOTOOLBAR', 'FULLSCREEN_NOSTATUSBAR', 'FULLSCREEN_NOBORDER', 'FULLSCREEN_NOCAPTION', 'FULLSCREEN_ALL'] self.ShowFullScreen(True,FlagList) """ activedlg = MyDialog(self,-1) activedlg.setOlifant(self.olifant) activedlg.setParentFrame(self) activedlg.ShowModal() except OlifantException as ex: showError('Olifant exception',ex.getMessage()) else: showError('Error','Not supported yet') except OlifantException as ex: showError('Olifant exception',ex.getMessage()) # end of class MyFrame """ useless one!! """ class MyDialog2(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: MyDialog2.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.ChoosePswdLabel = wx.StaticText(self, -1, "Choose password", style=wx.ALIGN_CENTRE) self.ChoosePswdBox = wx.TextCtrl(self, -1, "", style=wx.TE_PASSWORD) self.ConfirmPswdLabel = wx.StaticText(self, -1, "Confirm password", style=wx.ALIGN_CENTRE) self.ConfirmPswdBox = wx.TextCtrl(self, -1, "", style=wx.TE_PASSWORD) self.KeypadButton_1 = wx.Button(self, -1, "1") self.KeypadButton_2 = wx.Button(self, -1, "2") self.KeypadButton_3 = wx.Button(self, -1, "3") self.KeypadButton_4 = wx.Button(self, -1, "4") self.KeypadButton_5 = wx.Button(self, -1, "5") self.KeypadButton_6 = wx.Button(self, -1, "6") self.KeypadButton_7 = wx.Button(self, -1, "7") self.KeypadButton_8 = wx.Button(self, -1, "8") self.KeypadButton_9 = wx.Button(self, -1, "9") self.KeypadButton_DEL = wx.Button(self, -1, "DEL") self.KeypadButton_0 = wx.Button(self, -1, "0") self.KeypadButtonButton_Enable = wx.Button(self, -1, "ENABLE") self.__set_properties() self.__do_layout() # end wxGlade self.focus = self.ChoosePswdBox def __set_properties(self): # begin wxGlade: MyDialog2.__set_properties self.SetTitle("dialog_3") self.SetSize((300, 370)) self.ChoosePswdLabel.SetFont(wx.Font(11, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "Ubuntu")) self.ChoosePswdBox.SetMinSize((150, 30)) self.ConfirmPswdLabel.SetFont(wx.Font(11, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "Ubuntu")) self.ConfirmPswdBox.SetMinSize((150, 30)) self.KeypadButton_1.SetMinSize((50, 50)) self.KeypadButton_2.SetMinSize((50, 50)) self.KeypadButton_3.SetMinSize((50, 50)) self.KeypadButton_4.SetMinSize((50, 50)) self.KeypadButton_5.SetMinSize((50, 50)) self.KeypadButton_6.SetMinSize((50, 50)) self.KeypadButton_7.SetMinSize((50, 50)) self.KeypadButton_8.SetMinSize((50, 50)) self.KeypadButton_9.SetMinSize((50, 50)) self.KeypadButton_DEL.SetMinSize((50, 50)) self.KeypadButton_0.SetMinSize((50, 50)) self.KeypadButtonButton_Enable.SetMinSize((50, 50)) self.KeypadButtonButton_Enable.SetFont(wx.Font(7, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) # end wxGlade self.ChoosePswdBox.SetEditable(False) self.KeypadButton_1.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_2.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_3.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_4.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_5.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_6.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_7.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_8.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_9.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_DEL.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButton_0.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.KeypadButtonButton_Enable.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.ChoosePswdBox.Bind(wx.EVT_SET_FOCUS, self.__onPswdBoxFocused) self.ConfirmPswdBox.Bind(wx.EVT_SET_FOCUS, self.__onPswdBoxFocused) #self.choose_pswd.SetEditable(False) def __do_layout(self): # begin wxGlade: MyDialog2.__do_layout sizerPswdDialog = wx.BoxSizer(wx.VERTICAL) GridPswdDialog_4 = wx.GridSizer(2, 3, 0, 0) GridPswdDialog_3 = wx.GridSizer(2, 3, 0, 0) GridPswdDialog_2 = wx.GridSizer(1, 3, 0, 0) GridPswdDialog_1 = wx.GridSizer(1, 3, 0, 0) sizerPswdDialog.Add(self.ChoosePswdLabel, 0, wx.TOP | wx.ALIGN_CENTER_HORIZONTAL, 10) sizerPswdDialog.Add(self.ChoosePswdBox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 6) sizerPswdDialog.Add(self.ConfirmPswdLabel, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) sizerPswdDialog.Add(self.ConfirmPswdBox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 6) GridPswdDialog_1.Add(self.KeypadButton_1, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_1.Add(self.KeypadButton_2, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_1.Add(self.KeypadButton_3, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) sizerPswdDialog.Add(GridPswdDialog_1, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridPswdDialog_2.Add(self.KeypadButton_4, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_2.Add(self.KeypadButton_5, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_2.Add(self.KeypadButton_6, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) sizerPswdDialog.Add(GridPswdDialog_2, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridPswdDialog_3.Add(self.KeypadButton_7, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_3.Add(self.KeypadButton_8, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_3.Add(self.KeypadButton_9, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) sizerPswdDialog.Add(GridPswdDialog_3, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) GridPswdDialog_4.Add(self.KeypadButton_DEL, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_4.Add(self.KeypadButton_0, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) GridPswdDialog_4.Add(self.KeypadButtonButton_Enable, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) sizerPswdDialog.Add(GridPswdDialog_4, 1, wx.BOTTOM | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) self.SetSizer(sizerPswdDialog) self.Layout() # end wxGlade def __onKeyClick(self,evt): button = (evt.GetEventObject()).Label passwd = self.focus.GetValue() if button == 'DEL': if len(passwd) > 0: passwd = passwd[:-1] self.focus.SetValue(passwd) elif button == 'ENABLE': self.Close() else: passwd += button self.focus.SetValue(passwd) def __onPswdBoxFocused(self, evt): self.focus = evt.GetEventObject() def getPasswd(self): if self.ConfirmPswdBox.GetValue() != self.ChoosePswdBox.GetValue(): showError('Error!','Password and confirmation do not match.') else: return self.ChoosePswdBox.GetValue() def clearAll(self): self.ChoosePswdBox.SetValue("") self.ConfirmPswdBox.SetValue("") """ def OnAlarmClick(self, event, ol): passvalue_1 = self.pass1.GetValue() passvalue_2 = self.pass2.GetValue() if passvalue_1 == passvalue_2: try: olifant.lock(passvalue_1) almdlg = MyDialog(self, -1) almdlg.Lock_copy.Bind(EVT_BUTTON, almdlg.OnClick, olifant, passvalue1) almdlg.Destroy() except OlifantException as ex: print ex.getMessage() #TODO far comparire box di errore else: print "Le password sono diverse." #TODO far comparire dialog box di errore """ # end of class MyDialog2 class MyPanel(wx.Panel): def __init__(self, *args, **kwds): # begin wxGlade: MyPanel.__init__ kwds["style"] = wx.TAB_TRAVERSAL wx.Panel.__init__(self, *args, **kwds) self.AboutLogo = wx.StaticBitmap(self, -1, wx.Bitmap("images/icon.png", wx.BITMAP_TYPE_ANY)) self.AboutLabel_1 = wx.StaticText(self, -1, "Olifant 1.0", style=wx.ALIGN_CENTRE) self.AboutLabel_2 = wx.StaticText(self, -1, "https://launchpad.net/olifant", style=wx.ALIGN_CENTRE) self.AboutLabel_3 = wx.StaticText(self, -1, "author") self.AboutLabel_4 = wx.StaticText(self, -1, "kokito\n(jumba@LP)", style=wx.ALIGN_CENTRE) self.AboutLabel_5 = wx.StaticText(self, -1, "Actual developers") self.AboutLabel_6 = wx.StaticText(self, -1, "Cristian_C\nSquall867") self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: MyPanel.__set_properties self.SetSize((312, 312)) self.AboutLogo.SetMinSize((16, 16)) self.AboutLabel_1.SetFont(wx.Font(14, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) self.AboutLabel_2.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) self.AboutLabel_3.SetFont(wx.Font(11, wx.DEFAULT, wx.NORMAL, wx.BOLD, 0, "")) self.AboutLabel_5.SetFont(wx.Font(11, wx.DEFAULT, wx.NORMAL, wx.BOLD, 0, "")) # end wxGlade def __do_layout(self): # begin wxGlade: MyPanel.__do_layout AboutSizer = wx.BoxSizer(wx.VERTICAL) AboutSizer.Add(self.AboutLogo, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 8) AboutSizer.Add(self.AboutLabel_1, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) AboutSizer.Add(self.AboutLabel_2, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) AboutSizer.Add(self.AboutLabel_3, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) AboutSizer.Add(self.AboutLabel_4, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) AboutSizer.Add(self.AboutLabel_5, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) AboutSizer.Add(self.AboutLabel_6, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 4) self.SetSizer(AboutSizer) # end wxGlade # end of class MyPanel class MyDialog(wx.Dialog): olifant = None parentFrame = None def __init__(self,*args, **kwds): # begin wxGlade: MyDialog.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.LogoActivated = wx.StaticBitmap(self, -1, wx.Bitmap("images/icon.png", wx.BITMAP_TYPE_ANY)) self.ActivatedLabel_1 = wx.StaticText(self, -1, "Olifant 1.0", style=wx.ALIGN_CENTRE) self.ActivatedLabel_2 = wx.StaticText(self, -1, "ALARM ACTIVATED", style=wx.ALIGN_CENTRE) self.AlarmActivatedUnlockButton = wx.Button(self, -1, "Unlock") self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: MyDialog.__set_properties self.SetTitle("dialog_1") self.LogoActivated.SetMinSize((16, 16)) self.ActivatedLabel_1.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) self.ActivatedLabel_2.SetForegroundColour(wx.Colour(255, 0, 0)) self.ActivatedLabel_2.SetFont(wx.Font(15, wx.DEFAULT, wx.NORMAL, wx.BOLD, 0, "")) # end wxGlade self.AlarmActivatedUnlockButton.Bind(wx.EVT_BUTTON,self.OnUnlockClick) def __do_layout(self): # begin wxGlade: MyDialog.__do_layout SizerAlarmActivated = wx.BoxSizer(wx.VERTICAL) SizerAlarmActivated.Add((400, 30), 0, 0, 0) SizerAlarmActivated.Add(self.LogoActivated, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) SizerAlarmActivated.Add(self.ActivatedLabel_1, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) SizerAlarmActivated.Add(self.ActivatedLabel_2, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 26) SizerAlarmActivated.Add((400, 30), 0, 0, 0) SizerAlarmActivated.Add(self.AlarmActivatedUnlockButton, 0, wx.ALIGN_CENTER_HORIZONTAL, 0) SizerAlarmActivated.Add((400, 30), 0, 0, 0) self.SetSizer(SizerAlarmActivated) SizerAlarmActivated.Fit(self) self.Layout() # end wxGlade def setOlifant(self,olifant): self.olifant = olifant def setParentFrame(self,frame): self.parentFrame = frame def OnUnlockClick(self,evt): passdlg = MyDialog1(self, -1) passdlg.clearAll() #TODO we need this because of a bug passdlg.ShowModal() try: self.olifant.unlock(passdlg.getPasswd()) self.parentFrame.ShowFullScreen(False) self.Close() except OlifantException as ex: showError('Olifant Exception',ex.getMessage()) # end of class MyDialog class MyDialog1(wx.Dialog): passwd = [] def __init__(self, *args, **kwds): # begin wxGlade: MyDialog1.__init__ kwds["style"] = wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.UnlockPswdLabel = wx.StaticText(self, -1, "Password", style=wx.ALIGN_CENTRE) self.UnlockPswdTextbox = wx.TextCtrl(self, -1, "", style=wx.TE_PASSWORD) self.UnlockKeypadButton_1 = wx.Button(self, -1, "1") self.UnlockKeypadButton_2 = wx.Button(self, -1, "2") self.UnlockKeypadButton_3 = wx.Button(self, -1, "3") self.UnlockKeypadButton_4 = wx.Button(self, -1, "4") self.UnlockKeypadButton_5 = wx.Button(self, -1, "5") self.UnlockKeypadButton_6 = wx.Button(self, -1, "6") self.UnlockKeypadButton_7 = wx.Button(self, -1, "7") self.UnlockKeypadButton_8 = wx.Button(self, -1, "8") self.UnlockKeypadButton_9 = wx.Button(self, -1, "9") self.UnlockKeypadButton_DEL = wx.Button(self, -1, "DEL") self.UnlockKeypadButton_0 = wx.Button(self, -1, "0") self.UnlockKeypadButton_Disable = wx.Button(self, -1, "DISABLE") self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: MyDialog1.__set_properties self.SetTitle("dialog_2") self.SetSize((300, 321)) self.UnlockPswdLabel.SetFont(wx.Font(11, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "Ubuntu")) self.UnlockPswdTextbox.SetMinSize((150, 30)) self.UnlockKeypadButton_1.SetMinSize((50, 50)) self.UnlockKeypadButton_2.SetMinSize((50, 50)) self.UnlockKeypadButton_3.SetMinSize((50, 50)) self.UnlockKeypadButton_4.SetMinSize((50, 50)) self.UnlockKeypadButton_5.SetMinSize((50, 50)) self.UnlockKeypadButton_6.SetMinSize((50, 50)) self.UnlockKeypadButton_7.SetMinSize((50, 50)) self.UnlockKeypadButton_8.SetMinSize((50, 50)) self.UnlockKeypadButton_9.SetMinSize((50, 50)) self.UnlockKeypadButton_DEL.SetMinSize((50, 50)) self.UnlockKeypadButton_0.SetMinSize((50, 50)) self.UnlockKeypadButton_Disable.SetMinSize((50, 50)) self.UnlockKeypadButton_Disable.SetFont(wx.Font(7, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "Ubuntu")) # end wxGlade self.UnlockPswdTextbox.SetEditable(False) self.UnlockKeypadButton_1.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_2.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_3.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_4.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_5.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_6.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_7.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_8.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_9.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_DEL.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_0.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) self.UnlockKeypadButton_Disable.Bind(wx.EVT_BUTTON,self.__onKeyClick)#,self.button_1_u) def __do_layout(self): # begin wxGlade: MyDialog1.__do_layout UnlockSizer = wx.BoxSizer(wx.VERTICAL) UnlockGrid_4 = wx.GridSizer(2, 3, 0, 0) UnlockGrid_3 = wx.GridSizer(2, 3, 0, 0) UnlockGrid_2 = wx.GridSizer(1, 3, 0, 0) UnlockGrid_1 = wx.GridSizer(1, 3, 0, 0) UnlockSizer.Add(self.UnlockPswdLabel, 0, wx.TOP | wx.ALIGN_CENTER_HORIZONTAL, 10) UnlockSizer.Add(self.UnlockPswdTextbox, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL, 6) UnlockGrid_1.Add(self.UnlockKeypadButton_1, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_1.Add(self.UnlockKeypadButton_2, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_1.Add(self.UnlockKeypadButton_3, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockSizer.Add(UnlockGrid_1, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) UnlockGrid_2.Add(self.UnlockKeypadButton_4, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_2.Add(self.UnlockKeypadButton_5, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_2.Add(self.UnlockKeypadButton_6, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockSizer.Add(UnlockGrid_2, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) UnlockGrid_3.Add(self.UnlockKeypadButton_7, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_3.Add(self.UnlockKeypadButton_8, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_3.Add(self.UnlockKeypadButton_9, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockSizer.Add(UnlockGrid_3, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) UnlockGrid_4.Add(self.UnlockKeypadButton_DEL, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_4.Add(self.UnlockKeypadButton_0, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockGrid_4.Add(self.UnlockKeypadButton_Disable, 0, wx.ALL | wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 0) UnlockSizer.Add(UnlockGrid_4, 1, wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL, 10) self.SetSizer(UnlockSizer) self.Layout() # end wxGlade def __onKeyClick(self,evt): button = (evt.GetEventObject()).Label if not ( (button == 'DEL') or (button == 'DISABLE') ): self.passwd.append(button) self.UnlockPswdTextbox.SetValue(''.join(self.passwd)) elif button == 'DEL' and (len(self.passwd)>0): self.passwd.pop() self.UnlockPswdTextbox.SetValue(''.join(self.passwd)) else: self.Close() def getPasswd(self): return ''.join(self.passwd) def clearAll(self): self.passwd = [] """ def OnAlarmClick(self, event, ol, password): passvalue = self.pswd.GetValue() if passvalue == password: try: self.olifant.unlock(passvalue) except OlifantException as ex: print ex.getMessage() #TODO far comparire box di errore else: print "Le password sono diverse." #TODO far comparire dialog box di errore """ # end of class MyDialog1 if __name__ == "__main__": app = wx.PySimpleApp(0) wx.InitAllImageHandlers() Olifant_main = MyFrame(None, -1, "") app.SetTopWindow(Olifant_main) Olifant_main.Show() app.MainLoop()
gpl-3.0
8,529,343,343,583,915,000
45.951526
169
0.66645
false
boldprogressives/django-opendebates
opendebates/opendebates/utils.py
1
2781
import json import random from .models import Voter def get_voter(request): if request.user.is_authenticated(): try: voter = request.user.voter except Voter.DoesNotExist: return {} return {'email': request.user.email, 'zip': voter.zip, } elif 'voter' in request.session: return request.session['voter'] def get_headers_from_request(request): try: headers = {} for key in request.META: if key.startswith("HTTP_"): headers[key] = request.META[key] return json.dumps(headers) except Exception: return None def get_ip_address_from_request(request): PRIVATE_IPS_PREFIX = ('10.', '172.', '192.', '127.') ip_address = '' x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR', '') if x_forwarded_for and ',' not in x_forwarded_for: if not x_forwarded_for.startswith(PRIVATE_IPS_PREFIX): ip_address = x_forwarded_for.strip() else: ips = [ip.strip() for ip in x_forwarded_for.split(',')] for ip in ips: if ip.startswith(PRIVATE_IPS_PREFIX): continue else: ip_address = ip break if not ip_address: x_real_ip = request.META.get('HTTP_X_REAL_IP', '') if x_real_ip: if not x_real_ip.startswith(PRIVATE_IPS_PREFIX): ip_address = x_real_ip.strip() if not ip_address: remote_addr = request.META.get('REMOTE_ADDR', '') if remote_addr: if not remote_addr.startswith(PRIVATE_IPS_PREFIX): ip_address = remote_addr.strip() if remote_addr.startswith(PRIVATE_IPS_PREFIX): ip_address = remote_addr.strip() if not ip_address: ip_address = '127.0.0.1' return ip_address def choose_sort(sort): sort = sort or random.choice(["trending", "trending", "random"]) return sort def sort_list(citations_only, sort, ideas): ideas = ideas.filter( approved=True, duplicate_of__isnull=True ).select_related("voter", "category", "voter__user") if citations_only: ideas = ideas.filter(citation_verified=True) if sort == "editors": ideas = ideas.order_by("-editors_pick") elif sort == "trending": ideas = ideas.order_by("-score") elif sort == "random": ideas = ideas.order_by("-random_id") elif sort == "-date": ideas = ideas.order_by("-created_at") elif sort == "+date": ideas = ideas.order_by("created_at") elif sort == "-votes": ideas = ideas.order_by("-votes") elif sort == "+votes": ideas = ideas.order_by("votes") return ideas
apache-2.0
4,563,523,322,794,240,000
30.247191
68
0.563107
false
timgrossmann/InstaPy
instapy/time_util.py
1
1588
"""Helper module to handle time related stuff""" from time import sleep as original_sleep from datetime import datetime from random import gauss from random import uniform # Amount of variance to be introduced # i.e. random time will be in the range: TIME +/- STDEV % STDEV = 0.5 sleep_percentage = 1 sleep_percentage = sleep_percentage * uniform(0.9, 1.1) def randomize_time(mean): allowed_range = mean * STDEV stdev = allowed_range / 3 # 99.73% chance to be in the allowed range t = 0 while abs(mean - t) > allowed_range: t = gauss(mean, stdev) return t def set_sleep_percentage(percentage): global sleep_percentage sleep_percentage = percentage / 100 sleep_percentage = sleep_percentage * uniform(0.9, 1.1) def sleep(t, custom_percentage=None): if custom_percentage is None: custom_percentage = sleep_percentage time = randomize_time(t) * custom_percentage original_sleep(time) def sleep_actual(t): original_sleep(t) def get_time(labels): """To get a use out of this helpful function catch in the same order of passed parameters""" if not isinstance(labels, list): labels = [labels] results = [] for label in labels: if label == "this_minute": results.append(datetime.now().strftime("%M")) if label == "this_hour": results.append(datetime.now().strftime("%H")) elif label == "today": results.append(datetime.now().strftime("%Y-%m-%d")) results = results if len(results) > 1 else results[0] return results
gpl-3.0
-4,373,231,225,892,659,700
24.612903
73
0.654912
false
PeridotYouClod/gRPC-Makerboards
DaoServer.py
1
2008
import concurrent.futures as futures import grpc import time import ProtoConfig import generated.proto_out.dao_pb2 as dao_pb2 import generated.proto_out.dao_pb2_grpc as dao_grpc from pylibs.Database import Mongo _ONE_DAY_IN_SECONDS = 60 * 60 * 24 class Dao(dao_grpc.DaoServicer): def __init__(self, sensor_db): super().__init__() self.sensor_db = sensor_db def Select(self, request, context): table = request.table limit = request.limit cols = request.cols print('Got request {\n%s}\n' % (request)) colNames = [col.name for col in cols] findResult = self.sensor_db.Find(table=table, columns=colNames, limit=limit) allColValues = {col.name: [] for col in cols} # Col name to list of vals for doc in findResult: for col in cols: # print('%s added to %s' % (doc[col.name], col.name)) allColValues[col.name].append(doc[col.name]) dataColumns = [self._NewDataColumn(colName, vals) for (colName, vals) in allColValues.items()] return dao_pb2.SelectReply(columns=dataColumns) def _NewDataColumn(self, columnName, values): datacolumn = dao_pb2.DataColumn(name=columnName) if not values: print("Warning: No values found.") elif type(values[0]) is int: datacolumn.intValues.extend(values) elif type(values[0]) is str: datacolumn.stringValues.extend(values) else: print("ERROR: Unknown Type!") return datacolumn def serve(): protoConfig = ProtoConfig.getConfig() sensor_db = Mongo() sensor_db.GetClient() # initalize the Db server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) dao_grpc.add_DaoServicer_to_server(Dao(sensor_db), server) port = protoConfig.ports.daoPort server.add_insecure_port('[::]:%s' % port) server.start() print('Started Dao Server on Port %s ' % port) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == '__main__': serve()
mit
6,045,501,900,179,157,000
30.375
80
0.667829
false
tind/invenio-communities
tests/test_utils.py
1
2203
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2016 CERN. # # Invenio is free software; you can redistribute it # and/or modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the # Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307, USA. # # In applying this license, CERN does not # waive the privileges and immunities granted to it by virtue of its status # as an Intergovernmental Organization or submit itself to any jurisdiction. """Utility functions tests.""" from __future__ import absolute_import, print_function from invenio_records.api import Record from invenio_communities.models import InclusionRequest from invenio_communities.utils import render_template_to_string def test_template_formatting_from_string(app): """Test formatting of string-based template to string.""" with app.app_context(): out = render_template_to_string("foobar: {{ baz }}", _from_string=True, **{'baz': 'spam'}) assert out == 'foobar: spam' def test_email_formatting(app, db, communities, user): """Test formatting of the email message with the default template.""" with app.extensions['mail'].record_messages() as outbox: (comm1, comm2, comm3) = communities rec1 = Record.create({ 'title': 'Foobar and Bazbar', 'description': 'On Foobar, Bazbar and <b>more</b>.' }) # Request InclusionRequest.create(community=comm1, record=rec1, user=user) # Check emails being sent assert len(outbox) == 1 sent_msg = outbox[0] assert sent_msg.recipients == [user.email] assert comm1.title in sent_msg.body
gpl-2.0
-8,326,078,723,156,442,000
35.716667
79
0.687245
false
viaregio/django-newsletter
newsletter/admin_utils.py
1
1463
from django.http import Http404 from django.utils.functional import update_wrapper from django.utils.translation import ugettext_lazy as _ from django.contrib.admin.util import unquote from django.utils.encoding import force_unicode class ExtendibleModelAdminMixin(object): def _getobj(self, request, object_id): opts = self.model._meta try: obj = self.queryset(request).get(pk=unquote(object_id)) except self.model.DoesNotExist: # Don't raise Http404 just yet, because we haven't checked # permissions yet. We don't want an unauthenticated user to # be able to determine whether a given object exists. obj = None if obj is None: raise Http404( _( '%(name)s object with primary key ' '%(key)r does not exist.' ) % { 'name': force_unicode(opts.verbose_name), 'key': unicode(object_id) } ) return obj def _wrap(self, view): def wrapper(*args, **kwargs): return self.admin_site.admin_view(view)(*args, **kwargs) return update_wrapper(wrapper, view) def _view_name(self, name): info = self.model._meta.app_label, self.model._meta.module_name, name return '%s_%s_%s' % info
agpl-3.0
-6,176,417,406,292,895,000
33.023256
77
0.549556
false
datakid/tvet
tafe/migrations/0061_auto__chg_field_course_course_code__add_unique_staffattendance_session.py
1
26055
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Course.course_code' db.alter_column('tafe_course', 'course_code', self.gf('django.db.models.fields.CharField')(max_length=20)) # Adding unique constraint on 'StaffAttendance', fields ['session', 'staff_member'] db.create_unique('tafe_staffattendance', ['session_id', 'staff_member_id']) # Adding unique constraint on 'StudentAttendance', fields ['session', 'student'] db.create_unique('tafe_studentattendance', ['session_id', 'student_id']) def backwards(self, orm): # Removing unique constraint on 'StudentAttendance', fields ['session', 'student'] db.delete_unique('tafe_studentattendance', ['session_id', 'student_id']) # Removing unique constraint on 'StaffAttendance', fields ['session', 'staff_member'] db.delete_unique('tafe_staffattendance', ['session_id', 'staff_member_id']) # Changing field 'Course.course_code' db.alter_column('tafe_course', 'course_code', self.gf('django.db.models.fields.CharField')(max_length=8)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'tafe.applicant': { 'Meta': {'ordering': "['first_name', 'surname']", 'object_name': 'Applicant'}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'applied_for': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'applicants'", 'to': "orm['tafe.Course']"}), 'date_of_application': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_offer_accepted': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_offer_sent': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'disability': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'disability_description': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {}), 'education_level': ('django.db.models.fields.CharField', [], {'max_length': '2', 'blank': 'True'}), 'eligibility': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'experience': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'gender': ('django.db.models.fields.CharField', [], {'default': "'F'", 'max_length': "'1'"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'island': ('django.db.models.fields.CharField', [], {'default': "'Tarawa'", 'max_length': "'10'", 'null': 'True', 'blank': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'applicant_last_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'other_courses': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'applicant_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'phone2': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'ranking': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'short_listed': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '62', 'blank': 'True'}), 'student_details': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tafe.Student']", 'null': 'True', 'blank': 'True'}), 'successful': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'surname': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'test_ap': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'test_eng': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'test_ma': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'tafe.assessment': { 'Meta': {'object_name': 'Assessment'}, 'date_due': ('django.db.models.fields.DateField', [], {}), 'date_given': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'assessments'", 'to': "orm['tafe.Subject']"}) }, 'tafe.course': { 'Meta': {'object_name': 'Course'}, 'aqf_level': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'course_code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '60'}), 'students': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['tafe.Student']", 'null': 'True', 'through': "orm['tafe.Enrolment']", 'blank': 'True'}), 'subjects': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'course'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['tafe.Subject']"}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '4'}) }, 'tafe.credential': { 'Meta': {'object_name': 'Credential'}, 'aqf_level': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'credential_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'institution': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'credential_last_change_by'", 'to': "orm['auth.User']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'credential_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '4'}) }, 'tafe.enrolment': { 'Meta': {'object_name': 'Enrolment'}, 'course': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'enrolments'", 'to': "orm['tafe.Course']"}), 'date_ended': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_started': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 2, 14, 0, 0)'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'enrolment_last_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'mark': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'enrolment_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'semester_1_payment': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '1'}), 'semester_1_payment_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'semester_1_payment_receipt': ('django.db.models.fields.CharField', [], {'max_length': '8', 'null': 'True', 'blank': 'True'}), 'semester_2_payment': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '1'}), 'semester_2_payment_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'semester_2_payment_receipt': ('django.db.models.fields.CharField', [], {'max_length': '8', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '110', 'blank': 'True'}), 'student': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'enrolments'", 'to': "orm['tafe.Student']"}), 'withdrawal_reason': ('django.db.models.fields.CharField', [], {'max_length': '8', 'blank': 'True'}) }, 'tafe.grade': { 'Meta': {'object_name': 'Grade'}, 'date_started': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'grade_last_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'grade_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '200'}), 'student': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'grades'", 'to': "orm['tafe.Student']"}), 'subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'grades'", 'to': "orm['tafe.Subject']"}) }, 'tafe.result': { 'Meta': {'object_name': 'Result'}, 'assessment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'results'", 'to': "orm['tafe.Assessment']"}), 'date_submitted': ('django.db.models.fields.DateField', [], {}), 'grade': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'results'", 'to': "orm['tafe.Grade']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'result_last_change_by'", 'to': "orm['auth.User']"}), 'mark': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'result_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}) }, 'tafe.session': { 'Meta': {'object_name': 'Session'}, 'date': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'room_number': ('django.db.models.fields.CharField', [], {'max_length': '7', 'blank': 'True'}), 'session_number': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '140', 'blank': 'True'}), 'students': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['tafe.Student']", 'null': 'True', 'through': "orm['tafe.StudentAttendance']", 'blank': 'True'}), 'subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sessions'", 'to': "orm['tafe.Subject']"}), 'timetable': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sessions'", 'to': "orm['tafe.Timetable']"}) }, 'tafe.staff': { 'Meta': {'ordering': "['first_name', 'surname']", 'object_name': 'Staff'}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'classification': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'credential': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'credentials'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['tafe.Credential']"}), 'disability': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'disability_description': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'gender': ('django.db.models.fields.CharField', [], {'default': "'F'", 'max_length': "'1'"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'island': ('django.db.models.fields.CharField', [], {'default': "'Tarawa'", 'max_length': "'10'", 'null': 'True', 'blank': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'staff_last_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'staff_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'phone2': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '62', 'blank': 'True'}), 'surname': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'tafe.staffattendance': { 'Meta': {'unique_together': "(('staff_member', 'session'),)", 'object_name': 'StaffAttendance'}, 'absent': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'staffattendance_last_change_by'", 'to': "orm['auth.User']"}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'staffattendance_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'reason': ('django.db.models.fields.CharField', [], {'default': "'P'", 'max_length': '1', 'blank': 'True'}), 'session': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'staffattendance_attendance_records'", 'to': "orm['tafe.Session']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '200', 'blank': 'True'}), 'staff_member': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attendance_records'", 'to': "orm['tafe.Staff']"}) }, 'tafe.staffislpr': { 'Meta': {'object_name': 'StaffISLPR'}, 'date_tested': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'islpr_listening': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_overall': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_reading': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_speaking': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_writing': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'staff_member': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'islpr_record'", 'to': "orm['tafe.Staff']"}) }, 'tafe.student': { 'Meta': {'ordering': "['first_name', 'surname']", 'object_name': 'Student'}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'disability': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'disability_description': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {}), 'education_level': ('django.db.models.fields.CharField', [], {'max_length': '2', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'gender': ('django.db.models.fields.CharField', [], {'default': "'F'", 'max_length': "'1'"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'island': ('django.db.models.fields.CharField', [], {'default': "'Tarawa'", 'max_length': "'10'", 'null': 'True', 'blank': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'student_last_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'student_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'phone2': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '62', 'blank': 'True'}), 'surname': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'tafe.studentattendance': { 'Meta': {'unique_together': "(('student', 'session'),)", 'object_name': 'StudentAttendance'}, 'absent': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_change_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'studentattendance_last_change_by'", 'to': "orm['auth.User']"}), 'penultimate_change_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'studentattendance_penultimate_change_by'", 'null': 'True', 'to': "orm['auth.User']"}), 'reason': ('django.db.models.fields.CharField', [], {'default': "'P'", 'max_length': '1', 'blank': 'True'}), 'session': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'studentattendance_attendance_records'", 'to': "orm['tafe.Session']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '200', 'blank': 'True'}), 'student': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attendance_records'", 'to': "orm['tafe.Student']"}) }, 'tafe.studentislpr': { 'Meta': {'object_name': 'StudentISLPR'}, 'date_tested': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'islpr_listening': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_overall': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_reading': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_speaking': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'islpr_writing': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'student': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'islpr_record'", 'to': "orm['tafe.Student']"}) }, 'tafe.subject': { 'Meta': {'ordering': "['name', 'year']", 'object_name': 'Subject'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '125'}), 'semester': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '135'}), 'staff_member': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tafe.Staff']", 'null': 'True', 'blank': 'True'}), 'students': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['tafe.Student']", 'null': 'True', 'through': "orm['tafe.Grade']", 'blank': 'True'}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '4'}) }, 'tafe.timetable': { 'Meta': {'unique_together': "(('year', 'term'),)", 'object_name': 'Timetable'}, 'end_date': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '12'}), 'start_date': ('django.db.models.fields.DateField', [], {}), 'term': ('django.db.models.fields.IntegerField', [], {}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '4'}) } } complete_apps = ['tafe']
gpl-3.0
6,782,769,871,154,029,000
87.928328
212
0.554097
false
dferens/django-classsettings
classsettings/settings.py
1
2315
import inspect import sys from operator import itemgetter from django.utils import six, importlib def inspect_class(cls): cls._instance = instance = cls() module = importlib.import_module(cls.__module__) public_attributes = [] for attr_name in dir(instance): if not attr_name.startswith('_'): value = getattr(instance, attr_name) value = value() if inspect.ismethod(value) else value public_attributes.append((attr_name, value)) return public_attributes, module class SettingsMeta(type): def __init__(cls, name, bases, attrs): public_attrs, module = inspect_class(cls) for attr_name, value in public_attrs: setattr(module, attr_name, value) class ConfigMeta(type): def __new__(cls, name, bases, attrs): Class = super(ConfigMeta, cls).__new__(cls, name, bases, attrs) if name == 'NewBase': return Class public_attributes, module = inspect_class(Class) result = ConfigResult(public_attributes, Class) setattr(module, name, result) return result class ConfigResult(dict): """ Dict-like object which adds inheritance support. """ def __new__(cls, *args, **kwargs): if len(args) == 2: # Used to create dict object return super(ConfigResult, cls).__new__(cls, *args, **kwargs) else: # Used as superclass name, bases, attrs = args bases = tuple(b.ConfigClass for b in bases if isinstance(b, ConfigResult)) return ConfigMeta(name, bases, attrs) def __init__(self, *args, **kwargs): if len(args) == 2: # Is used as dict instance dict_arg, self._ConfigClass = args super(ConfigResult, self).__init__(dict_arg, **kwargs) else: # Is used as class pass @property def ConfigClass(self): return self._ConfigClass class Settings(six.with_metaclass(SettingsMeta)): """ Calls each public method of class and injects it's value into it's module's scope. """ class Config(six.with_metaclass(ConfigMeta)): """ Calls each public method of class, constructs dictionary with `name-result` pairs and replaces class with it. """
mit
4,555,942,589,989,331,500
27.231707
86
0.606479
false
zhinaonet/sqlmap-z
extra/mssqlsig/update.py
1
5109
#!/usr/bin/env python """ Copyright (c) 2006-2017 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import codecs import os import re import urllib2 import urlparse from xml.dom.minidom import Document # Path to the XML file with signatures MSSQL_XML = os.path.abspath("../../xml/banner/mssql.xml") # Url to update Microsoft SQL Server XML versions file from MSSQL_VERSIONS_URL = "http://www.sqlsecurity.com/FAQs/SQLServerVersionDatabase/tabid/63/Default.aspx" def updateMSSQLXML(): if not os.path.exists(MSSQL_XML): errMsg = "[ERROR] file '%s' does not exist. Please run the script from its parent directory" % MSSQL_XML print errMsg return infoMsg = "[INFO] retrieving data from '%s'" % MSSQL_VERSIONS_URL print infoMsg try: req = urllib2.Request(MSSQL_VERSIONS_URL) f = urllib2.urlopen(req) mssqlVersionsHtmlString = f.read() f.close() except urllib2.URLError: __mssqlPath = urlparse.urlsplit(MSSQL_VERSIONS_URL) __mssqlHostname = __mssqlPath[1] warnMsg = "[WARNING] sqlmap was unable to connect to %s," % __mssqlHostname warnMsg += " check your Internet connection and retry" print warnMsg return releases = re.findall("class=\"BCC_DV_01DarkBlueTitle\">SQL Server\s(.+?)\sBuilds", mssqlVersionsHtmlString, re.I) releasesCount = len(releases) # Create the minidom document doc = Document() # Create the <root> base element root = doc.createElement("root") doc.appendChild(root) for index in xrange(0, releasesCount): release = releases[index] # Skip Microsoft SQL Server 6.5 because the HTML # table is in another format if release == "6.5": continue # Create the <signatures> base element signatures = doc.createElement("signatures") signatures.setAttribute("release", release) root.appendChild(signatures) startIdx = mssqlVersionsHtmlString.index("SQL Server %s Builds" % releases[index]) if index == releasesCount - 1: stopIdx = len(mssqlVersionsHtmlString) else: stopIdx = mssqlVersionsHtmlString.index("SQL Server %s Builds" % releases[index + 1]) mssqlVersionsReleaseString = mssqlVersionsHtmlString[startIdx:stopIdx] servicepackVersion = re.findall("</td><td>(7\.0|2000|2005|2008|2008 R2)*(.*?)</td><td.*?([\d\.]+)</td>[\r]*\n", mssqlVersionsReleaseString, re.I) for servicePack, version in servicepackVersion: if servicePack.startswith(" "): servicePack = servicePack[1:] if "/" in servicePack: servicePack = servicePack[:servicePack.index("/")] if "(" in servicePack: servicePack = servicePack[:servicePack.index("(")] if "-" in servicePack: servicePack = servicePack[:servicePack.index("-")] if "*" in servicePack: servicePack = servicePack[:servicePack.index("*")] if servicePack.startswith("+"): servicePack = "0%s" % servicePack servicePack = servicePack.replace("\t", " ") servicePack = servicePack.replace("No SP", "0") servicePack = servicePack.replace("RTM", "0") servicePack = servicePack.replace("TM", "0") servicePack = servicePack.replace("SP", "") servicePack = servicePack.replace("Service Pack", "") servicePack = servicePack.replace("<a href=\"http:", "") servicePack = servicePack.replace(" ", " ") servicePack = servicePack.replace("+ ", "+") servicePack = servicePack.replace(" +", "+") if servicePack.endswith(" "): servicePack = servicePack[:-1] if servicePack and version: # Create the main <card> element signature = doc.createElement("signature") signatures.appendChild(signature) # Create a <version> element versionElement = doc.createElement("version") signature.appendChild(versionElement) # Give the <version> elemenet some text versionText = doc.createTextNode(version) versionElement.appendChild(versionText) # Create a <servicepack> element servicepackElement = doc.createElement("servicepack") signature.appendChild(servicepackElement) # Give the <servicepack> elemenet some text servicepackText = doc.createTextNode(servicePack) servicepackElement.appendChild(servicepackText) # Save our newly created XML to the signatures file mssqlXml = codecs.open(MSSQL_XML, "w", "utf8") doc.writexml(writer=mssqlXml, addindent=" ", newl="\n") mssqlXml.close() infoMsg = "[INFO] done. retrieved data parsed and saved into '%s'" % MSSQL_XML print infoMsg if __name__ == "__main__": updateMSSQLXML()
gpl-3.0
-4,861,813,990,019,743,000
36.291971
153
0.614014
false
yaybu/callsign
callsign/tests/test_restapi.py
1
6051
#Copyright 2013 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from twisted.trial import unittest from mock import MagicMock from callsign.restapi import ( RootResource, DomainResource, RecordResource, MissingDomainResource, ForbiddenDomainResource, ) import socket class TestRootResource(unittest.TestCase): def setUp(self): self.config = MagicMock() self.dnsserver = MagicMock() self.resource = RootResource(self.config, self.dnsserver) def test_get(self): self.dnsserver.zones = MagicMock(return_value=["foo", "bar"]) rv = self.resource.render_GET(None) self.assertEqual(rv, "\n".join(["foo", "bar"])) def test_getChild_exists(self): self.config.get = MagicMock(return_value="") zone = MagicMock() def get_zone(x): if x == "foo": return zone raise KeyError self.dnsserver.get_zone.side_effect = get_zone rv = self.resource.getChild("foo", None) self.assert_(isinstance(rv, DomainResource)) self.assertEqual(rv.zone, zone) rv = self.resource.getChild("bar", None) self.assert_(isinstance(rv, MissingDomainResource)) self.assertEqual(rv.name, "bar") def test_getChild_exists_with_lockdown(self): self.config.get = MagicMock(return_value="foo bar") zone = MagicMock() def get_zone(x): if x == "foo": return zone raise KeyError self.dnsserver.get_zone.side_effect = get_zone rv = self.resource.getChild("foo", None) self.assert_(isinstance(rv, DomainResource)) self.assertEqual(rv.zone, zone) rv = self.resource.getChild("bar", None) self.assert_(isinstance(rv, MissingDomainResource)) self.assertEqual(rv.name, "bar") rv = self.resource.getChild("baz", None) self.assert_(isinstance(rv, ForbiddenDomainResource)) class TestDomainResource(unittest.TestCase): def setUp(self): self.zone = MagicMock() self.dnsserver = MagicMock() self.resource = DomainResource(self.zone, self.dnsserver) def test_GET(self): data = [ ("A", "www", "192.168.0.1"), ("A", "x", "192.168.0.2"), ] self.zone.a_records = MagicMock(return_value=data) rv = self.resource.render_GET(None) self.assertEqual(rv, "\n".join(["%s %s %s" % (x, y, z) for (x, y, z) in data])) class TestMissingDomainResource(unittest.TestCase): def setUp(self): self.name = "foo" self.dnsserver = MagicMock() self.resource = MissingDomainResource(self.name, self.dnsserver) def test_GET(self): request = MagicMock() self.resource.render_GET(request) request.setResponseCode.assert_called_once_with(404) def test_PUT(self): request = MagicMock() self.resource.render_PUT(request) self.dnsserver.add_zone.assert_called_once_with(self.name) request.setResponseCode.assert_called_once_with(201) def test_HEAD(self): request = MagicMock() self.resource.render_GET(request) request.setResponseCode.assert_called_once_with(404) def test_DELETE(self): request = MagicMock() self.resource.render_GET(request) request.setResponseCode.assert_called_once_with(404) class TestRecordResource(unittest.TestCase): def setUp(self): self.name = "foo" self.zone = MagicMock() self.resource = RecordResource(self.name, self.zone) def test_PUT(self): request = MagicMock() request.content.read.return_value = "A 192.168.0.1" self.resource.render_PUT(request) self.zone.set_record.assert_called_once_with(self.name, "192.168.0.1") request.setResponseCode.assert_called_once_with(201) def test_PUT_invalid_body(self): request = MagicMock() request.content.read.return_value = "wrong" self.resource.render_PUT(request) request.setResponseCode.assert_called_once_with(400, message=self.resource.err_invalid_body) def test_PUT_wrong_record_type(self): request = MagicMock() request.content.read.return_value = "MX 192.168.0.1" self.zone.set_record.return_value = (False, "foo") self.resource.render_PUT(request) request.setResponseCode.assert_called_once_with(400, message=self.resource.err_wrong_record_type) def test_PUT_malformed(self): request = MagicMock() request.content.read.return_value = "A foo" self.zone.set_record.side_effect = socket.error() self.resource.render_PUT(request) request.setResponseCode.assert_called_once_with(400, message=self.resource.err_malformed) def test_DELETE(self): request = MagicMock() self.resource.render_DELETE(request) self.zone.delete_record.assert_called_once_with(self.name) request.setResponseCode.assert_called_once_with(204) def test_DELETE_missing(self): request = MagicMock() self.zone.delete_record.side_effect = KeyError() self.resource.render_DELETE(request) self.zone.delete_record.assert_called_once_with(self.name) request.setResponseCode.assert_called_once_with(404) def test_GET(self): self.zone.get_record.return_value = ("A", "192.168.0.1") rv = self.resource.render_GET(None) self.assertEqual(rv, "A 192.168.0.1")
apache-2.0
-606,286,042,955,971,500
33.976879
105
0.648323
false
ekansa/open-context-py
opencontext_py/libs/binaryfiles.py
1
9846
import os, sys, shutil import codecs import requests from io import BytesIO from time import sleep from internetarchive import get_session, get_item from django.conf import settings from django.utils.http import urlquote, quote_plus, urlquote_plus from opencontext_py.libs.generalapi import GeneralAPI from opencontext_py.apps.ocitems.mediafiles.models import Mediafile, ManageMediafiles from opencontext_py.apps.ocitems.manifest.models import Manifest class BinaryFiles(): """ This class has useful methods for managing binary media files. It is mainly for copying and moving such files form the file system, the localhost, or a remote host over HTTP. For archiving purposes, it is often needed to stage such files locally. """ def __init__(self): self.root_export_dir = settings.STATIC_EXPORTS_ROOT self.cache_file_dir = 'binary-cache' self.full_path_cache_dir = None self.do_http_request_for_cache = True # use an HTTP request to get a file for local caching and saving with a new filename self.delay_before_request = .5 # delay a request by .5 seconds so as not to overwhelm a remote server self.remote_uri_sub = None # substitution for a remote uri self.local_uri_sub = None # local substitution uri prefix, so no retrieval from remote self.local_filesystem_uri_sub = None # substitution to get a path to the local file in the file system self.pref_tiff_archive = False # Prefer to archive a TIFF archive file self.errors = [] def get_cache_full_file(self, json_ld, man_obj): """ gets and caches the fill file, saving temporarily to a local directory """ file_name = None slug = man_obj.slug file_uri = self.get_archive_fileuri(json_ld) if not file_uri: import pdb; pdb.set_trace() print('Cannot find a file_uri in {} [{}]'.format(man_obj.label, man_obj.uuid)) return None # We found a file uri. if isinstance(self.local_uri_sub, str) and isinstance(self.remote_uri_sub, str): # get a local copy of the file, not a remote copy file_uri = file_uri.replace(self.remote_uri_sub, self.local_uri_sub) if 'https://' in self.remote_uri_sub: # so we also replace the https or http version of the remote with a local alt_remote_sub = self.remote_uri_sub.replace('https://', 'http://') file_uri = file_uri.replace(alt_remote_sub, self.local_uri_sub) if '.' in file_uri: file_ex = file_uri.split('.') file_name = slug + '.' + file_ex[-1] else: file_name = slug file_ok = self.get_cache_remote_file_content(file_name, file_uri) if not file_ok: file_name = False error_msg = 'UUID: ' + man_obj.uuid + ' file_uri: ' + file_uri error_msg += ' file caching error.' self.errors.append(error_msg) return file_name def get_full_fileuri(self, json_ld): """ gets the full file uri """ if not 'oc-gen:has-files' in json_ld: return None for f_obj in json_ld['oc-gen:has-files']: if f_obj['type'] == 'oc-gen:fullfile': return f_obj['id'] return None def get_archive_fileuri(self, json_ld): """ gets the full file uri """ if not 'oc-gen:has-files' in json_ld: return None if self.pref_tiff_archive: for f_obj in json_ld['oc-gen:has-files']: if f_obj['type'] == 'oc-gen:archive': return f_obj['id'] # no TIFF archive file found, so use the full-file return self.get_full_fileuri(json_ld) def get_cache_remote_file_content(self, file_name, file_uri, act_dir=None): """ either uses an HTTP request to get a remote file or looks for the file in the file system and copies it within the file system """ if not act_dir: act_dir = self.cache_file_dir if self.do_http_request_for_cache: ok = self.get_cache_remote_file_content_http(file_name, file_uri, act_dir) else: ok = self.get_cache_remote_file_content_filesystem(file_name, file_uri, act_dir) return ok def get_cache_remote_file_content_filesystem(self, file_name, file_uri, act_dir=None): """ use the file system to get the file for caching and saving with a new filename """ ok = False dir_file = self.join_dir_filename(file_name, act_dir) if os.path.exists(dir_file): # the file already exists, no need to download it again print('Already cached: ' + dir_file) ok = True else: print('Cannot find: ' + dir_file) print('Need to copy with file-system: ' + file_uri) if isinstance(self.remote_uri_sub, str) and isinstance(self.local_filesystem_uri_sub, str): original_path = file_uri.replace(self.remote_uri_sub, self.local_filesystem_uri_sub) if os.path.exists(original_path): try: shutil.copy2(original_path, dir_file) ok = True except: print('Problem copying to: ' + dir_file) ok = False else: print('CANNOT FIND ORIGINAL AT: ' + original_path) return ok def get_cache_remote_file_content_http(self, file_name, file_uri, act_dir=None): """ uses HTTP requests to get the content of a remote file, saves it to cache with the filename 'file_name' """ ok = False dir_file = self.join_dir_filename(file_name, act_dir) if os.path.exists(dir_file): # the file already exists, no need to download it again print('Already cached: ' + dir_file) ok = True else: print('Cannot find: ' + dir_file) print('Need to download: ' + file_uri) if not isinstance(self.local_uri_sub, str): # only delay if we're not looking locally for the file sleep(self.delay_before_request) r = requests.get(file_uri, stream=True) if r.status_code == 200: with open(dir_file, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk) f.close() ok = True else: # try with different capitalization if '.JPG' in file_uri: new_file_uri = file_uri.replace('.JPG', '.jpg') elif '.jpg' in file_uri: new_file_uri = file_uri.replace('.jpg', '.JPG') else: new_file_uri = None if new_file_uri is not None: print('Now trying with different capitalization: ' + new_file_uri) if not isinstance(self.local_uri_sub, str): # only delay if we're not looking locally for the file sleep(self.delay_before_request) r = requests.get(new_file_uri, stream=True) if r.status_code == 200: with open(dir_file, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk) f.close() ok = True return ok def join_dir_filename(self, file_name, act_dir): """ outputs a full path WITH filename """ if isinstance(act_dir, str): path = self.set_check_directory(act_dir) elif isinstance(self.full_path_cache_dir, str): path = self.full_path_cache_dir else: path = self.root_export_dir dir_file = os.path.join(path, file_name) return dir_file def check_exists(self, file_name, act_dir): """ checks to see if a file exists """ dir_file = self.join_dir_filename(file_name, act_dir) if os.path.exists(dir_file): output = True else: output = False return output def set_check_directory(self, act_dir): """ Prepares a directory to find import GeoJSON files """ output = False if isinstance(self.full_path_cache_dir, str): full_dir = self.full_path_cache_dir if not os.path.exists(full_dir): os.makedirs(full_dir) else: full_dir = self.root_export_dir if isinstance(act_dir, str): if len(act_dir) > 0: full_dir = self.root_export_dir + '/' + act_dir full_dir = full_dir.replace('//', '/') if not os.path.exists(full_dir): os.makedirs(full_dir) if os.path.exists(full_dir): output = full_dir return output def get_directory_files(self, act_dir): """ Gets a list of files from a directory """ files = False path = self.set_check_directory(act_dir) if os.path.exists(path): for dirpath, dirnames, filenames in os.walk(path): files = sorted(filenames) else: print('Cannot find: ' + path) return files
gpl-3.0
-2,155,670,723,415,455,500
43.355856
131
0.538899
false
joerick/pyinstrument
pyinstrument/renderers/jsonrenderer.py
1
2646
import json from pyinstrument.renderers.base import Renderer from pyinstrument import processors # note: this file is called jsonrenderer to avoid hiding built-in module 'json'. encode_str = json.encoder.encode_basestring def encode_bool(a_bool): return 'true' if a_bool else 'false' class JSONRenderer(Renderer): def __init__(self, **kwargs): super().__init__(**kwargs) def render_frame(self, frame): if frame is None: return u'null' # we don't use the json module because it uses 2x stack frames, so # crashes on deep but valid call stacks property_decls = [] property_decls.append(u'"function": %s' % encode_str(frame.function)) property_decls.append(u'"file_path_short": %s' % encode_str(frame.file_path_short)) property_decls.append(u'"file_path": %s' % encode_str(frame.file_path)) property_decls.append(u'"line_no": %d' % frame.line_no) property_decls.append(u'"time": %f' % frame.time()) property_decls.append(u'"is_application_code": %s' % encode_bool(frame.is_application_code)) # can't use list comprehension here because it uses two stack frames each time. children_jsons = [] for child in frame.children: children_jsons.append(self.render_frame(child)) property_decls.append(u'"children": [%s]' % u','.join(children_jsons)) if frame.group: property_decls.append(u'"group_id": %s' % encode_str(frame.group.id)) return u'{%s}' % u','.join(property_decls) def render(self, session): frame = self.preprocess(session.root_frame()) property_decls = [] property_decls.append(u'"start_time": %f' % session.start_time) property_decls.append(u'"duration": %f' % session.duration) property_decls.append(u'"sample_count": %d' % session.sample_count) property_decls.append(u'"program": %s' % encode_str(session.program)) if session.cpu_time is None: property_decls.append(u'"cpu_time": null') else: property_decls.append(u'"cpu_time": %f' % session.cpu_time) property_decls.append(u'"root_frame": %s' % self.render_frame(frame)) return u'{%s}\n' % u','.join(property_decls) def default_processors(self): return [ processors.remove_importlib, processors.merge_consecutive_self_time, processors.aggregate_repeated_calls, processors.group_library_frames_processor, processors.remove_unnecessary_self_time_nodes, processors.remove_irrelevant_nodes, ]
bsd-3-clause
8,942,332,713,662,596,000
38.492537
100
0.62963
false
B3AU/micropython
PDM.py
1
1141
__author__ = 'beau' import pyb class PDM(): def __init__(self,pout='X11',tim=4,freq=50): """ :param pout: output pin nr :param tim: timer number :param freq: frequency of the bitstream """ self.max = 2**24-1#2**31-1 crashes with larger ints? 24bit resolution is fine enough ;) self.pout = pyb.Pin(pout, pyb.Pin.OUT_PP) self.err = 0 # error accumulator self.output = 0 self.freq = freq self.tim = pyb.Timer(tim) self.tim.init(freq=freq) self.tim.callback(lambda t: self.call_me()) def set_output(self,out): """ :param out: desired output as a value between 0 and 1 """ print ('setting output to '+str(out)) self.tim.deinit() self.output = int(self.max*out) self.tim.init(freq=self.freq) self.tim.callback(lambda t: self.call_me()) def call_me(self): if self.err >= 0: self.pout.low() self.err -= self.output else: self.pout.high() self.err += self.max self.err -= self.output
lgpl-3.0
8,587,209,012,637,136,000
24.954545
95
0.533742
false
oliviertilmans/ipmininet
ipmininet/router/config/openrd.py
1
14773
from .base import RouterDaemon from .utils import ConfigDict class OpenrDaemon(RouterDaemon): """The base class for the OpenR daemon""" NAME = 'openr' @property def STARTUP_LINE_EXTRA(self): # Add options to the standard startup line return '' @property def startup_line(self): return '{name} {cfg} {extra}'\ .format(name=self.NAME, cfg=self._cfg_options(), extra=self.STARTUP_LINE_EXTRA) def build(self): cfg = ConfigDict() return cfg def _defaults(self, **kwargs): """ Default parameters of the OpenR daemon. The template file openr.mako sets the default parameters listed here. See: https://github.com/facebook/openr/blob/master/openr/docs/Runbook.md. :param alloc_prefix_len: Block size of allocated prefix in terms of it's prefix length. In this case '/80' prefix will be elected for a node. e.g. 'face:b00c:0:0:1234::/80'. Default: 128. :param assume_drained: Default: False. :param config_store_filepath: Default: /tmp/aq_persistent_config_store.bin :param decision_debounce_max_ms: Knobs to control how often to run Decision. On receipt of first even debounce is created with MIN time which grows exponentially up to max if there are more events before debounce is executed. This helps us to react to single network failures quickly enough (with min duration) while avoid high CPU utilization under heavy network churn. Default: 250. :param decision_debounce_min_ms: Knobs to control how often to run Decision. On receipt of first even debounce is created with MIN time which grows exponentially up to max if there are more events before debounce is executed. This helps us to react to single network failures quickly enough (with min duration) while avoid high CPU utilization under heavy network churn. Default: 10. :param decision_rep_port: Default: 60004. :param domain: Name of domain this node is part of. OpenR will 'only' form adjacencies to OpenR instances within it's own domain. This option becomes very useful if you want to run OpenR on two nodes adjacent to each other but belonging to different domains, e.g. Data Center and Wide Area Network. Usually it should depict the Network. Default: openr. :param dryrun: OpenR will not try to program routes in it's default configuration. You should explicitly set this option to false to proceed with route programming. Default: False. :param enable_subnet_validation: OpenR supports subnet validation to avoid mis-cabling of v4 addresses on different subnets on each end of the link. Need to enable v4 and this flag at the same time to turn on validation. Default: True. :param enable_fib_sync: Default: False. :param enable_health_checker: OpenR can measure network health internally by pinging other nodes in the network and exports this information as counters or via breeze APIs. By default health checker is disabled. The expectation is that each node must have at least one v6 loopback addressed announced into the network for the reachability check. Default: False. :param enable_legacy_flooding: Default: True. :param enable_lfa: With this option, additional Loop-Free Alternate (LFA) routes can be computed, per RFC 5286, for fast failure recovery. Under the failure of all primary nexthops for a prefix, because of link failure, next best precomputed LFA will be used without need of an SPF run. Default: False. :param enable_netlink_fib_handler: Knob to enable/disable default implementation of 'FibService' that comes along with OpenR for Linux platform. If you want to run your own FIB service then disable this option. Default: True. :param enable_netlink_system_handler: Knob to enable/disable default implementation of 'SystemService' and 'PlatformPublisher' that comes along with OpenR for Linux platform. If you want to run your own SystemService then disable this option. Default: True. :param enable_perf_measurement: Experimental feature to measure convergence performance. Performance information can be viewed via breeze API 'breeze perf fib'. Default: True. :param enable_prefix_alloc: Enable prefix allocator to elect and assign a unique prefix for the node. You will need to specify other configuration parameters below. Default: False. :param enable_rtt_metric: Default mechanism for cost of a link is '1' and hence cost of path is hop count. With this option you can ask OpenR to compute and use RTT of a link as a metric value. You should only use this for networks where links have significant delay, on the order of a couple of milliseconds. Using this for point-to-point links will cause lot of churn in metric updates as measured RTT will fluctuate a lot because of packet processing overhead. RTT is measured at application level and hence the fluctuation for point-to-point links. Default: True. :param enable_secure_thrift_server: Flag to enable TLS for our thrift server. Disable this for plaintext thrift. Default: False. :param enable_segment_routing: Experimental and partially implemented segment routing feature. As of now it only elects node/adjacency labels. In future we will extend it to compute and program FIB routes. Default: False. :param enable_spark: Default: True. :param enable_v4: OpenR supports v4 as well but it needs to be turned on explicitly. It is expected that each interface will have v4 address configured for link local transport and v4/v6 topologies are congruent. Default: False. :param enable_watchdog: Default: True. :param fib_handler_port: TCP port on which 'FibService' will be listening. Default: 60100. :param fib_rep_port: Default: 60009. :param health_checker_ping_interval_s: Configure ping interval of the health checker. The below option configures it to ping all other nodes every 3 seconds. Default: 3. :param health_checker_rep_port: Default: 60012. :param ifname_prefix: Interface prefixes to perform neighbor discovery on. All interfaces whose names start with these are used for neighbor discovery. Default: "" :param iface_regex_exclude: Default:"". :param iface_regex_include: Default: "". :param ip_tos: Set type of service (TOS) value with which every control plane packet from Open/R will be marked with. This marking can be used to prioritize control plane traffic (as compared to data plane) so that congestion in network doesn't affect operations of Open/R. Default: 192 :param key_prefix_filters: This comma separated string is used to set the key prefixes when key prefix filter is enabled (See SET_LEAF_NODE). It is also set when requesting KEY_DUMP from peer to request keys that match one of these prefixes. Default: "". :param kvstore_flood_msg_per_sec: Default: 0. :param kvstore_flood_msg_burst_size: Default: 0. :param kvstore_flood_msg_per_sec: Default: 0. :param kvstore_ttl_decrement_ms: Default: 1. :param kvstore_zmq_hwm: Set buffering size for KvStore socket communication. Updates to neighbor node during flooding can be buffered upto this number. For larger networks where burst of updates can be high having high value makes sense. For smaller networks where burst of updates are low, having low value makes more sense. Default: 65536. :param link_flap_initial_backoff_ms: Default: 1000. :param link_flap_max_backoff_ms: Default: 60000. :param link_monitor_cmd_port: Default: 60006. :param loopback_iface: Indicates loopback address to which auto elected prefix will be assigned if enabled. Default: "lo". :param memory_limit_mb: Enforce upper limit on amount of memory in mega-bytes that open/r process can use. Above this limit watchdog thread will trigger crash. Service can be auto-restarted via system or some kind of service manager. This is very useful to guarantee protocol doesn't cause trouble to other services on device where it runs and takes care of slow memory leak kind of issues. Default: 300. :param minloglevel: Log messages at or above this level. Again, the numbers of severity levels INFO, WARNING, ERROR, and FATAL are 0, 1, 2, and 3, respectively. Default: 0. :param node_name: Name of the OpenR node. Crucial setting if you run multiple nodes. Default: "". :param override_loopback_addr: Whenever new address is elected for a node, before assigning it to interface all previously allocated prefixes or other global prefixes will be overridden with the new one. Use it with care! Default: False. :param prefix_manager_cmd_port: Default: 60011. :param prefixes: Static list of comma separate prefixes to announce from the current node. Can't be changed while running. Default: "". :param redistribute_ifaces: Comma separated list of interface names whose '/32' (for v4) and '/128' (for v6) should be announced. OpenR will monitor address add/remove activity on this interface and announce it to rest of the network. Default: "lo1". :param seed_prefix: In order to elect a prefix for the node a super prefix to elect from is required. This is only applicable when 'ENABLE_PREFIX_ALLOC' is set to true. Default: "". :param set_leaf_node: Sometimes a node maybe a leaf node and have only one path in to network. This node does not require to keep track of the entire topology. In this case, it may be useful to optimize memory by reducing the amount of key/vals tracked by the node. Setting this flag enables key prefix filters defined by KEY_PREFIX_FILTERS. A node only tracks keys in kvstore that matches one of the prefixes in KEY_PREFIX_FILTERS. Default: False. :param set_loopback_address: If set to true along with 'ENABLE_PREFIX_ALLOC' then second valid IP address of the block will be assigned onto 'LOOPBACK_IFACE' interface. e.g. in this case 'face:b00c:0:0:1234::1/80' will be assigned on 'lo' interface. Default: False. :param spark_fastinit_keepalive_time_ms: When interface is detected UP, OpenR can perform fast initial neighbor discovery as opposed to slower keep alive packets. Default value is 100 which means neighbor will be discovered within 200ms on a link. Default: 100. :param spark_hold_time_s: Hold time indicating time in seconds from it's last hello after which neighbor will be declared as down. Default: 30. :param spark_keepalive_time_s: How often to send spark hello messages to neighbors. Default: 3. :param static_prefix_alloc: Default: False. :param tls_acceptable_peers: A comma separated list of strings. Strings are x509 common names to accept SSL connections from. Default: "" :param tls_ecc_curve_name: If we are running an SSL thrift server, this option specifies the eccCurveName for the associated wangle::SSLContextConfig. Default: "prime256v1". :param tls_ticket_seed_path: If we are running an SSL thrift server, this option specifies the TLS ticket seed file path to use for client session resumption. Default: "". :param x509_ca_path: If we are running an SSL thrift server, this option specifies the certificate authority path for verifying peers. Default: "". :param x509_cert_path: If we are running an SSL thrift server, this option specifies the certificate path for the associated wangle::SSLContextConfig. Default: "". :param x509_key_path: If we are running an SSL thrift server, this option specifies the key path for the associated wangle::SSLContextConfig. Default: "". :param logbufsecs: Default: 0 :param log_dir: Directory to store log files at. The folder must exist. Default: /var/log. :param max_log_size: Default: 1. :param v: Show all verbose 'VLOG(m)' messages for m less or equal the value of this flag. Use higher value for more verbose logging. Default: 1. """ defaults = ConfigDict() # Apply daemon-specific defaults self.set_defaults(defaults) # Use user-supplied defaults if present defaults.update(**kwargs) return defaults def set_defaults(self, defaults): super().set_defaults(defaults) def _cfg_options(self): """The OpenR daemon has currently no option to read config from configuration file itself. The run_openr.sh script can be used to read options from environment files. However, we want to run the daemon directly. The default options from the shell script are implemented in the openr.mako template and passed to the daemon as argument.""" cfg = ConfigDict() cfg[self.NAME] = self.build() return self.template_lookup.get_template(self.template_filenames[0])\ .render(node=cfg) @property def dry_run(self): """The OpenR dryrun runs the daemon and does not shutdown the daemon. As a workaround we only show the version of the openr daemon""" # TODO: Replace with a config parser or shutdown the daemon after few # seconds return '{name} --version'\ .format(name=self.NAME)
gpl-2.0
7,937,481,067,980,952,000
58.329317
80
0.658363
false
initbrain/intelwiz
intelwiz/core/flowchart/Node.py
1
26899
# -*- coding: utf-8 -*- from pyqtgraph.Qt import QtCore, QtGui from pyqtgraph.graphicsItems.GraphicsObject import GraphicsObject import pyqtgraph.functions as fn from .Terminal import * from pyqtgraph.pgcollections import OrderedDict from pyqtgraph.debug import * import numpy as np from .eq import * def strDict(d): return dict([(str(k), v) for k, v in d.items()]) class Node(QtCore.QObject): """ Node represents the basic processing unit of a flowchart. A Node subclass implements at least: 1) A list of input / ouptut terminals and their properties 2) a process() function which takes the names of input terminals as keyword arguments and returns a dict with the names of output terminals as keys. A flowchart thus consists of multiple instances of Node subclasses, each of which is connected to other by wires between their terminals. A flowchart is, itself, also a special subclass of Node. This allows Nodes within the flowchart to connect to the input/output nodes of the flowchart itself. Optionally, a node class can implement the ctrlWidget() method, which must return a QWidget (usually containing other widgets) that will be displayed in the flowchart control panel. Some nodes implement fairly complex control widgets, but most nodes follow a simple form-like pattern: a list of parameter names and a single value (represented as spin box, check box, etc..) for each parameter. To make this easier, the CtrlNode subclass allows you to instead define a simple data structure that CtrlNode will use to automatically generate the control widget. """ sigOutputChanged = QtCore.Signal(object) # self sigClosed = QtCore.Signal(object) sigRenamed = QtCore.Signal(object, object) sigTerminalRenamed = QtCore.Signal(object, object) # term, oldName sigTerminalAdded = QtCore.Signal(object, object) # self, term sigTerminalRemoved = QtCore.Signal(object, object) # self, term def __init__(self, name, terminals=None, allowAddInput=False, allowAddOutput=False, allowRemove=True): """ ============== ============================================================ Arguments name The name of this specific node instance. It can be any string, but must be unique within a flowchart. Usually, we simply let the flowchart decide on a name when calling Flowchart.addNode(...) terminals Dict-of-dicts specifying the terminals present on this Node. Terminal specifications look like:: 'inputTerminalName': {'io': 'in'} 'outputTerminalName': {'io': 'out'} There are a number of optional parameters for terminals: multi, pos, renamable, removable, multiable, bypass. See the Terminal class for more information. allowAddInput bool; whether the user is allowed to add inputs by the context menu. allowAddOutput bool; whether the user is allowed to add outputs by the context menu. allowRemove bool; whether the user is allowed to remove this node by the context menu. ============== ============================================================ """ QtCore.QObject.__init__(self) self._name = name self._bypass = False self.bypassButton = None ## this will be set by the flowchart ctrl widget.. self._freeze = False #TODO added self.freezeButton = None ## this will be set by the flowchart ctrl widget.. self._graphicsItem = None self.terminals = OrderedDict() self._inputs = OrderedDict() self._outputs = OrderedDict() self._allowAddInput = allowAddInput ## flags to allow the user to add/remove terminals self._allowAddOutput = allowAddOutput self._allowRemove = allowRemove self.exception = None if terminals is None: return for name, opts in terminals.items(): self.addTerminal(name, **opts) def nextTerminalName(self, name): """Return an unused terminal name""" name2 = name i = 1 while name2 in self.terminals: name2 = "%s.%d" % (name, i) i += 1 return name2 def addInput(self, name="Input", **args): """Add a new input terminal to this Node with the given name. Extra keyword arguments are passed to Terminal.__init__. This is a convenience function that just calls addTerminal(io='in', ...)""" #print "Node.addInput called." return self.addTerminal(name, io='in', **args) def addOutput(self, name="Output", **args): """Add a new output terminal to this Node with the given name. Extra keyword arguments are passed to Terminal.__init__. This is a convenience function that just calls addTerminal(io='out', ...)""" return self.addTerminal(name, io='out', **args) def removeTerminal(self, term): """Remove the specified terminal from this Node. May specify either the terminal's name or the terminal itself. Causes sigTerminalRemoved to be emitted.""" if isinstance(term, Terminal): name = term.name() else: name = term term = self.terminals[name] #print "remove", name #term.disconnectAll() term.close() del self.terminals[name] if name in self._inputs: del self._inputs[name] if name in self._outputs: del self._outputs[name] self.graphicsItem().updateTerminals() self.sigTerminalRemoved.emit(self, term) def terminalRenamed(self, term, oldName): """Called after a terminal has been renamed Causes sigTerminalRenamed to be emitted.""" newName = term.name() for d in [self.terminals, self._inputs, self._outputs]: if oldName not in d: continue d[newName] = d[oldName] del d[oldName] self.graphicsItem().updateTerminals() self.sigTerminalRenamed.emit(term, oldName) def addTerminal(self, name, **opts): """Add a new terminal to this Node with the given name. Extra keyword arguments are passed to Terminal.__init__. Causes sigTerminalAdded to be emitted.""" name = self.nextTerminalName(name) term = Terminal(self, name, **opts) self.terminals[name] = term if term.isInput(): self._inputs[name] = term elif term.isOutput(): self._outputs[name] = term self.graphicsItem().updateTerminals() self.sigTerminalAdded.emit(self, term) return term def inputs(self): """Return dict of all input terminals. Warning: do not modify.""" return self._inputs def outputs(self): """Return dict of all output terminals. Warning: do not modify.""" return self._outputs def process(self, **kargs): """Process data through this node. This method is called any time the flowchart wants the node to process data. It will be called with one keyword argument corresponding to each input terminal, and must return a dict mapping the name of each output terminal to its new value. This method is also called with a 'display' keyword argument, which indicates whether the node should update its display (if it implements any) while processing this data. This is primarily used to disable expensive display operations during batch processing. """ return {} def graphicsItem(self): """Return the GraphicsItem for this node. Subclasses may re-implement this method to customize their appearance in the flowchart.""" if self._graphicsItem is None: self._graphicsItem = NodeGraphicsItem(self) return self._graphicsItem ## this is just bad planning. Causes too many bugs. def __getattr__(self, attr): """Return the terminal with the given name""" if attr not in self.terminals: raise AttributeError(attr) else: import traceback traceback.print_stack() print("Warning: use of node.terminalName is deprecated; use node['terminalName'] instead.") return self.terminals[attr] def __getitem__(self, item): #return getattr(self, item) """Return the terminal with the given name""" if item not in self.terminals: raise KeyError(item) else: return self.terminals[item] def name(self): """Return the name of this node.""" return self._name def rename(self, name): """Rename this node. This will cause sigRenamed to be emitted.""" oldName = self._name self._name = name #self.emit(QtCore.SIGNAL('renamed'), self, oldName) self.sigRenamed.emit(self, oldName) def dependentNodes(self): """Return the list of nodes which provide direct input to this node""" nodes = set() for t in self.inputs().values(): nodes |= set([i.node() for i in t.inputTerminals()]) return nodes #return set([t.inputTerminals().node() for t in self.listInputs().itervalues()]) def __repr__(self): return "<Node %s @%x>" % (self.name(), id(self)) def ctrlWidget(self): """Return this Node's control widget. By default, Nodes have no control widget. Subclasses may reimplement this method to provide a custom widget. This method is called by Flowcharts when they are constructing their Node list.""" return None def bypass(self, byp): """Set whether this node should be bypassed. When bypassed, a Node's process() method is never called. In some cases, data is automatically copied directly from specific input nodes to output nodes instead (see the bypass argument to Terminal.__init__). This is usually called when the user disables a node from the flowchart control panel. """ self._bypass = byp if self.bypassButton is not None: self.bypassButton.setChecked(byp) self.update() def freeze(self, freeze): """Set whether this node should be freezed. When freezed, a Node's process() method is never called. This is usually called when the user freeze a node from the flowchart control panel. """ self._freeze = self.processFreezed() if freeze else False #TODO Added if self.freezeButton is not None: self.freezeButton.setChecked(freeze) self.update() self.recolor() def isBypassed(self): """Return True if this Node is currently bypassed.""" return self._bypass def isFreezed(self): #TODO added """Return True if this Node is currently freezed.""" return True if self._freeze else False def setInput(self, **args): """Set the values on input terminals. For most nodes, this will happen automatically through Terminal.inputChanged. This is normally only used for nodes with no connected inputs.""" changed = False for k, v in args.items(): term = self._inputs[k] oldVal = term.value() if not eq(oldVal, v): changed = True term.setValue(v, process=False) if changed and '_updatesHandled_' not in args: self.update() def inputValues(self): """Return a dict of all input values currently assigned to this node.""" vals = {} for n, t in self.inputs().items(): vals[n] = t.value() return vals def outputValues(self): """Return a dict of all output values currently generated by this node.""" vals = {} for n, t in self.outputs().items(): vals[n] = t.value() return vals def connected(self, localTerm, remoteTerm): """Called whenever one of this node's terminals is connected elsewhere.""" pass def disconnected(self, localTerm, remoteTerm): """Called whenever one of this node's terminals is disconnected from another.""" pass def update(self, signal=True): """Collect all input values, attempt to process new output values, and propagate downstream. Subclasses should call update() whenever thir internal state has changed (such as when the user interacts with the Node's control widget). Update is automatically called when the inputs to the node are changed. """ vals = self.inputValues() #print " inputs:", vals try: if self.isBypassed(): out = self.processBypassed(vals) elif self.isFreezed(): #TODO added out = self.processFreezed() else: out = self.process(**strDict(vals)) #print " output:", out if out is not None: if signal: self.setOutput(**out) else: self.setOutputNoSignal(**out) for n,t in self.inputs().items(): t.setValueAcceptable(True) self.clearException() except: #printExc( "Exception while processing %s:" % self.name()) for n,t in self.outputs().items(): t.setValue(None) self.setException(sys.exc_info()) if signal: #self.emit(QtCore.SIGNAL('outputChanged'), self) ## triggers flowchart to propagate new data self.sigOutputChanged.emit(self) ## triggers flowchart to propagate new data def processBypassed(self, args): """Called when the flowchart would normally call Node.process, but this node is currently bypassed. The default implementation looks for output terminals with a bypass connection and returns the corresponding values. Most Node subclasses will _not_ need to reimplement this method.""" result = {} for term in list(self.outputs().values()): byp = term.bypassValue() if byp is None: result[term.name()] = None else: result[term.name()] = args.get(byp, None) return result def processFreezed(self): #TODO added """Called when the flowchart would normally call Node.process, but this node is currently freezed.""" result = {} for term in list(self.outputs().values()): result[term.name()] = term.value() return result def setOutput(self, **vals): self.setOutputNoSignal(**vals) #self.emit(QtCore.SIGNAL('outputChanged'), self) ## triggers flowchart to propagate new data self.sigOutputChanged.emit(self) ## triggers flowchart to propagate new data def setOutputNoSignal(self, **vals): for k, v in vals.items(): term = self.outputs()[k] term.setValue(v) #targets = term.connections() #for t in targets: ## propagate downstream #if t is term: #continue #t.inputChanged(term) term.setValueAcceptable(True) def setException(self, exc): self.exception = exc self.recolor() def clearException(self): self.setException(None) def recolor(self): if self.exception is None: if self.isFreezed(): #TODO Added self.graphicsItem().setPen(QtGui.QPen(QtGui.QColor(0, 128, 255), 3)) else: self.graphicsItem().setPen(QtGui.QPen(QtGui.QColor(0, 0, 0))) else: self.graphicsItem().setPen(QtGui.QPen(QtGui.QColor(150, 0, 0), 3)) def saveState(self): """Return a dictionary representing the current state of this node (excluding input / output values). This is used for saving/reloading flowcharts. The default implementation returns this Node's position, bypass state, and information about each of its terminals. Subclasses may want to extend this method, adding extra keys to the returned dict.""" pos = self.graphicsItem().pos() state = {'pos': (pos.x(), pos.y()), 'bypass': self.isBypassed(), 'freeze': self._freeze} #TODO Added termsEditable = self._allowAddInput | self._allowAddOutput for term in self._inputs.values() + self._outputs.values(): termsEditable |= term._renamable | term._removable | term._multiable if termsEditable: state['terminals'] = self.saveTerminals() return state def restoreState(self, state): """Restore the state of this node from a structure previously generated by saveState(). """ pos = state.get('pos', (0,0)) freeze = state.get('freeze', False) self._freeze = freeze self.graphicsItem().setPos(*pos) self.bypass(state.get('bypass', False)) self.freeze(True if freeze else False) #TODO Added self._freeze = freeze if freeze: self.setOutput(**freeze) if 'terminals' in state: self.restoreTerminals(state['terminals']) def saveTerminals(self): terms = OrderedDict() for n, t in self.terminals.items(): terms[n] = (t.saveState()) return terms def restoreTerminals(self, state): for name in list(self.terminals.keys()): if name not in state: self.removeTerminal(name) for name, opts in state.items(): if name in self.terminals: term = self[name] term.setOpts(**opts) continue try: opts = strDict(opts) self.addTerminal(name, **opts) except: printExc("Error restoring terminal %s (%s):" % (str(name), str(opts))) def clearTerminals(self): for t in self.terminals.values(): t.close() self.terminals = OrderedDict() self._inputs = OrderedDict() self._outputs = OrderedDict() def close(self): """Cleans up after the node--removes terminals, graphicsItem, widget""" self.disconnectAll() self.clearTerminals() item = self.graphicsItem() if item.scene() is not None: item.scene().removeItem(item) self._graphicsItem = None w = self.ctrlWidget() if w is not None: w.setParent(None) #self.emit(QtCore.SIGNAL('closed'), self) self.sigClosed.emit(self) def disconnectAll(self): for t in self.terminals.values(): t.disconnectAll() #class NodeGraphicsItem(QtGui.QGraphicsItem): class NodeGraphicsItem(GraphicsObject): def __init__(self, node): #QtGui.QGraphicsItem.__init__(self) GraphicsObject.__init__(self) #QObjectWorkaround.__init__(self) #self.shadow = QtGui.QGraphicsDropShadowEffect() #self.shadow.setOffset(5,5) #self.shadow.setBlurRadius(10) #self.setGraphicsEffect(self.shadow) self.pen = fn.mkPen(0,0,0) self.selectPen = fn.mkPen(200,200,200,width=2) self.brush = fn.mkBrush(200, 200, 200, 150) self.hoverBrush = fn.mkBrush(200, 200, 200, 200) self.selectBrush = fn.mkBrush(200, 200, 255, 200) self.hovered = False self.node = node flags = self.ItemIsMovable | self.ItemIsSelectable | self.ItemIsFocusable |self.ItemSendsGeometryChanges #flags = self.ItemIsFocusable |self.ItemSendsGeometryChanges self.setFlags(flags) self.bounds = QtCore.QRectF(0, 0, 100, 100) self.nameItem = QtGui.QGraphicsTextItem(self.node.name(), self) self.nameItem.setDefaultTextColor(QtGui.QColor(50, 50, 50)) self.nameItem.moveBy(self.bounds.width()/2. - self.nameItem.boundingRect().width()/2., 0) self.nameItem.setTextInteractionFlags(QtCore.Qt.TextEditorInteraction) self.updateTerminals() #self.setZValue(10) self.nameItem.focusOutEvent = self.labelFocusOut self.nameItem.keyPressEvent = self.labelKeyPress self.menu = None self.buildMenu() #self.node.sigTerminalRenamed.connect(self.updateActionMenu) #def setZValue(self, z): #for t, item in self.terminals.itervalues(): #item.setZValue(z+1) #GraphicsObject.setZValue(self, z) def labelFocusOut(self, ev): QtGui.QGraphicsTextItem.focusOutEvent(self.nameItem, ev) self.labelChanged() def labelKeyPress(self, ev): if ev.key() == QtCore.Qt.Key_Enter or ev.key() == QtCore.Qt.Key_Return: self.labelChanged() else: QtGui.QGraphicsTextItem.keyPressEvent(self.nameItem, ev) def labelChanged(self): newName = str(self.nameItem.toPlainText()) if newName != self.node.name(): self.node.rename(newName) ### re-center the label bounds = self.boundingRect() self.nameItem.setPos(bounds.width()/2. - self.nameItem.boundingRect().width()/2., 0) def setPen(self, pen): self.pen = pen self.update() def setBrush(self, brush): self.brush = brush self.update() def updateTerminals(self): bounds = self.bounds self.terminals = {} inp = self.node.inputs() dy = bounds.height() / (len(inp)+1) y = dy for i, t in inp.items(): item = t.graphicsItem() item.setParentItem(self) #item.setZValue(self.zValue()+1) br = self.bounds item.setAnchor(0, y) self.terminals[i] = (t, item) y += dy out = self.node.outputs() dy = bounds.height() / (len(out)+1) y = dy for i, t in out.items(): item = t.graphicsItem() item.setParentItem(self) item.setZValue(self.zValue()) br = self.bounds item.setAnchor(bounds.width(), y) self.terminals[i] = (t, item) y += dy #self.buildMenu() def boundingRect(self): return self.bounds.adjusted(-5, -5, 5, 5) def paint(self, p, *args): p.setPen(self.pen) if self.isSelected(): p.setPen(self.selectPen) p.setBrush(self.selectBrush) else: p.setPen(self.pen) if self.hovered: p.setBrush(self.hoverBrush) else: p.setBrush(self.brush) p.drawRect(self.bounds) def mousePressEvent(self, ev): ev.ignore() def mouseClickEvent(self, ev): #print "Node.mouseClickEvent called." if int(ev.button()) == int(QtCore.Qt.LeftButton): ev.accept() #print " ev.button: left" sel = self.isSelected() #ret = QtGui.QGraphicsItem.mousePressEvent(self, ev) self.setSelected(True) if not sel and self.isSelected(): #self.setBrush(QtGui.QBrush(QtGui.QColor(200, 200, 255))) #self.emit(QtCore.SIGNAL('selected')) #self.scene().selectionChanged.emit() ## for some reason this doesn't seem to be happening automatically self.update() #return ret elif int(ev.button()) == int(QtCore.Qt.RightButton): #print " ev.button: right" ev.accept() #pos = ev.screenPos() self.raiseContextMenu(ev) #self.menu.popup(QtCore.QPoint(pos.x(), pos.y())) def mouseDragEvent(self, ev): #print "Node.mouseDrag" if ev.button() == QtCore.Qt.LeftButton: ev.accept() self.setPos(self.pos()+self.mapToParent(ev.pos())-self.mapToParent(ev.lastPos())) def hoverEvent(self, ev): if not ev.isExit() and ev.acceptClicks(QtCore.Qt.LeftButton): ev.acceptDrags(QtCore.Qt.LeftButton) self.hovered = True else: self.hovered = False self.update() def keyPressEvent(self, ev): if ev.key() == QtCore.Qt.Key_Delete or ev.key() == QtCore.Qt.Key_Backspace: ev.accept() if not self.node._allowRemove: return self.node.close() else: ev.ignore() def itemChange(self, change, val): if change == self.ItemPositionHasChanged: for k, t in self.terminals.items(): t[1].nodeMoved() return GraphicsObject.itemChange(self, change, val) def getMenu(self): return self.menu def getContextMenus(self, event): return [self.menu] def raiseContextMenu(self, ev): menu = self.scene().addParentContextMenus(self, self.getMenu(), ev) pos = ev.screenPos() menu.popup(QtCore.QPoint(pos.x(), pos.y())) def buildMenu(self): self.menu = QtGui.QMenu() self.menu.setTitle("Node") a = self.menu.addAction("Add input", self.addInputFromMenu) if not self.node._allowAddInput: a.setEnabled(False) a = self.menu.addAction("Add output", self.addOutputFromMenu) if not self.node._allowAddOutput: a.setEnabled(False) a = self.menu.addAction("Remove node", self.node.close) if not self.node._allowRemove: a.setEnabled(False) def addInputFromMenu(self): ## called when add input is clicked in context menu self.node.addInput(renamable=True, removable=True, multiable=True) def addOutputFromMenu(self): ## called when add output is clicked in context menu self.node.addOutput(renamable=True, removable=True, multiable=False)
mit
7,973,248,571,719,320,000
38.326023
570
0.583479
false
rodo/pyrede
pyrede/provider/utils/distro.py
1
1219
# -*- coding: utf-8 -*- # # Copyright (c) 2013 Rodolphe Quiédeville <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """ Distributions tools """ import logging import requests from celery.task import task @task def check_dispack_link(dispack): """ Check if an url exists """ user_agent = 'Pyrede bot, contact http://pyrede.quiedeville.org/about/' headers = {'User-agent': user_agent} logger.debug('check {}'.format(dispack.link)) req = requests.get(dispack.link, headers=headers) dispack.valid_link = req.ok dispack.save()
gpl-3.0
6,025,037,577,612,015,000
31.918919
75
0.698686
false
scotws/tinkasm
common/test_common.py
1
1174
# Test routines for tinkasm common routines # Scot W. Stevenson <[email protected]> # First version: 07. Feb 2019 # This version: 07. Feb 2019 # From this directory, run "python3 -m unittest" import unittest from common import convert_number class TestHelpers(unittest.TestCase): def test_convert_number(self): self.assertEqual(convert_number('0'), (True, 0)) self.assertEqual(convert_number('100'), (True, 100)) self.assertEqual(convert_number('0x0'), (True, 0)) self.assertEqual(convert_number('0x100'), (True, 256)) self.assertEqual(convert_number('$0'), (True, 0)) self.assertEqual(convert_number('$100'), (True, 256)) self.assertEqual(convert_number('%0'), (True, 0)) self.assertEqual(convert_number('%100'), (True, 4)) self.assertEqual(convert_number('%0000100'), (True, 4)) self.assertEqual(convert_number('&100'), (False, '&100')) self.assertEqual(convert_number('$'), (False, '$')) self.assertEqual(convert_number('%'), (False, '%')) self.assertEqual(convert_number('0x'), (False, '0x')) if __name__ == '__main__': unittest.main()
gpl-3.0
5,169,242,694,813,010,000
30.72973
65
0.631175
false
dhis2/dhis2-python
dhis2_core/src/dhis2/e2b/common.py
1
2145
from datetime import datetime from typing import Union from .models.e2b import AttributeValue, Enrollment, Event, EventDataValue, TrackedEntity def date_format_102(dt: datetime) -> str: return dt.strftime("%Y%m%d") def date_format_204(dt: datetime) -> str: return dt.strftime("%Y%m%d%H%M%S") def get_attribute_value(at: str, te: TrackedEntity, defaultValue = None) -> Union[str, None]: av = te.attributes.get(at, defaultValue) if not av: return defaultValue if "value" in av: return av.value def get_data_value(de: str, te: TrackedEntity, idx: int = 0, defaultValue = None) -> Union[str, None]: en: Enrollment = te.enrollments[idx] ev: Event = en.events["so8YZ9J3MeO"] # AEFI stage if de not in ev.dataValues: return defaultValue dv: EventDataValue = ev.dataValues[de] if dv: return dv.value return defaultValue def get_patient_age(te: TrackedEntity): value = get_attribute_value("BiTsLcJQ95V", te) dt = datetime.fromisoformat(value) now = datetime.now() year = now.year - dt.year if year > 0: return ("801", str(year)) months = now.month - dt.month if months > 0: return ("802", str(months)) return ("804", str(now.day - dt.day)) def get_yes_no(de: str, te: TrackedEntity, idx: int = 0): dv: EventDataValue = get_data_value(de, te, idx) if "true" == dv: return "1" return "2" def get_patient_sex(te: TrackedEntity) -> str: value = get_attribute_value("CklPZdOd6H1", te) if "MALE" == value: return "1" elif "FEMALE" == value: return "0" return "9" def get_reaction_outcome(te: TrackedEntity): value = get_data_value("yRrSDiR5v1M", te) if "Recovered/resolved" == value: return "1" elif "Recovering/resolving" == value: return "2" elif "Not recovered/not resolved" == value: return "3" elif "Recovered/resolved with sequelae" == value: return "4" elif "Died" == value or "Autopsy done" == value: return "5" elif "Unknown" == value: return "6" return value
bsd-3-clause
2,216,280,784,871,009,300
21.819149
102
0.617249
false
phbono/openfisca-web
simulation/views_old.py
1
3992
# -*-coding:Utf-8 -* from django.http import HttpResponse from django.shortcuts import render from simulation.models import IndividualForm from django.forms.formsets import formset_factory, BaseFormSet from datetime import datetime from core.utils import Scenario from simulation.lanceur import Simu class BaseScenarioFormSet(BaseFormSet): def clean(self): """Checks consistency of a formset""" if any(self.errors): # Don't bother validating the formset unless each form is valid on its own return def index(request): return HttpResponse("Hello, world. You're at the poll index.") # form = IndividualForm() # return render_to_response('simulation/menage.html', {'formset': form}) def menage(request): scenario = request.session.get('scenario',default=None) if scenario == None: print 'scenario is None' scenario = Scenario() if request.method == 'POST': if 'reset' in request.POST: del request.session['scenario'] scenario = Scenario() formset = scenario2formset(scenario) request.session['scenario'] = scenario else: ScenarioFormSet = formset_factory(IndividualForm, formset = BaseScenarioFormSet, extra=0) formset = ScenarioFormSet(request.POST) # for form in formset.cleaned_data: # print form if formset.is_valid(): scenario = formset2scenario(formset) if 'add' in request.POST: scenario.addIndiv(scenario.nbIndiv(), datetime(1975,1,1).date(), 'vous', 'chef') if 'remove' in request.POST: scenario.rmvIndiv(scenario.nbIndiv()-1) # print scenario formset = scenario2formset(scenario) request.session['scenario'] = scenario if 'submit' in request.POST: scenario.genNbEnf() ok = True ok = build_simu(scenario) print 'is it ok ? :', ok #return (request, 'simulation/menage.html', {'formset' : formset}) else: formset = scenario2formset(scenario) request.session['scenario'] = scenario return render(request, 'simulation/menage.html', {'formset' : formset}) def build_simu(scenario): simu = Simu(scenario=scenario) simu.set_openfica_root_dir() simu.set_date() msg = simu.scenario.check_consistency() if msg: print 'inconsistent scenario' simu.set_param() x = simu.compute() for child in x.children: for child2 in child.children: print child2.code print child2._vals return True def formset2scenario(formset): scenario = Scenario() for form in formset.cleaned_data: noi, birth, quifoy, quifam = form['noi']-1, form['birth'], form['quifoy'], form['quifam'] scenario.addIndiv(noi, birth, quifoy, quifam) return scenario def scenario2formset(scenario): var_list = ['noi', 'birth', 'idfoy', 'quifoy', 'idfam', 'quifam'] convert = dict(idfoy = "noidec", idfam ="noichef") zero_start = [ "idfoy", "idfam", "noi"] initial = [] for noi, indiv in scenario.indiv.iteritems(): new_form = {} for var in var_list: if var == "noi": new_form[var] = noi elif var in convert.keys(): new_form[var] = indiv[convert[var]] else: new_form[var] = indiv[var] if var in zero_start: new_form[var] += 1 initial.append(new_form) ScenarioFormSet = formset_factory(IndividualForm, formset = BaseScenarioFormSet, extra=0) return ScenarioFormSet(initial=initial) # for indinv in formset['noiindiv']
gpl-3.0
588,075,695,828,365,300
31.463415
101
0.576403
false
ryad-eldajani/dbs_project_pub
scraper_heise.py
1
1689
import bs4 import requests import csv import re import operator def get_page(url): """ Returns a BeautifulSoup object from an URL request :param url: URL :return: BeautifulSoup object """ r = requests.get(url) data = r.text return bs4.BeautifulSoup(data, "lxml") def main(): """ Web-Scraper for heise.de HTTPS topics. """ file_obj = open('heise-data.csv', 'w') csv_writer = csv.writer(file_obj, delimiter=';') words = {} heise_url = "https://www.heise.de/thema/https" link_pages = get_page(heise_url).find_all("span", {"class", "pagination"}) \ [0].find_all("a") # scrape all sub-pages of topic HTTPS for link in link_pages: page = get_page("https://www.heise.de" + link["href"]) headlines = page.find_all("div", {"class": "keywordliste"})[0] \ .find_all("nav")[0].find_all("header") for headline in headlines: # split words in headline, filter some chars like ";" headline_words = re.findall(r'[^\"()\-,;:\s]+', headline.string) # set/update counter in words dictionary for word in headline_words: if word in words: words[word] += 1 else: words[word] = 1 # sort words dictionary by count value sorted_words = sorted(words.items(), key=operator.itemgetter(1), reverse=True) # write result in CSV file for element in sorted_words: csv_writer.writerow(element) file_obj.close() print("Scraping complete, top 3 words: {}".format(sorted_words[:3])) if __name__ == '__main__': main()
mit
-5,539,494,937,456,852,000
26.704918
80
0.569568
false
crimsonknave/juniperncprompt
elementtidy-1.0-20050212/selftest.py
1
2054
# $Id: selftest.py 1758 2004-03-28 17:36:59Z fredrik $ # -*- coding: iso-8859-1 -*- # elementtidy selftest program (in progress) from elementtree import ElementTree def sanity(): """ Make sure everything can be imported. >>> import _elementtidy >>> from elementtidy.TidyHTMLTreeBuilder import * """ HTML1 = "<title>Foo</title><ul><li>Foo!<li>åäö" XML1 = """\ <html:html xmlns:html="http://www.w3.org/1999/xhtml"> <html:head> <html:meta content="TIDY" name="generator" /> <html:title>Foo</html:title> </html:head> <html:body> <html:ul> <html:li>Foo!</html:li> <html:li>&#229;&#228;&#246;</html:li> </html:ul> </html:body> </html:html>""" def check(a, b): import re a = ElementTree.tostring(ElementTree.XML(a)) a = re.sub("HTML Tidy[^\"]+", "TIDY", a) a = re.sub("\r\n", "\n", a) if a != b: print a print "Expected:" print b def testdriver(): """ Check basic driver interface. >>> import _elementtidy >>> xml, errors = _elementtidy.fixup(HTML1) >>> check(xml, XML1) """ def testencoding(): """ Check basic driver interface. >>> import _elementtidy >>> xml, errors = _elementtidy.fixup(HTML1, 'ascii') >>> check(xml, XML1) >>> xml, errors = _elementtidy.fixup(HTML1, 'latin1') >>> check(xml, XML1) """ def xmltoolkit35(): """ @XMLTOOLKIT35 elementtidy crashes on really broken pages. >>> import _elementtidy >>> xml, errors = _elementtidy.fixup("<crash>") >>> tree = ElementTree.XML(xml) """ def xmltoolkit48(): """ @XMLTOOLKIT48 elementtidy gives up on some pages. >>> import _elementtidy >>> html = "<table><form><tr><td>test</td></tr></form></table>" >>> xml, errors = _elementtidy.fixup(html) >>> tree = ElementTree.XML(xml) """ if __name__ == "__main__": import doctest, selftest failed, tested = doctest.testmod(selftest) print tested - failed, "tests ok."
gpl-3.0
-2,044,121,684,195,228,200
21.883721
67
0.568647
false
pulse-project/mss
mss/www/settings.py
1
4685
# -*- coding: UTF-8 -*- # # (c) 2012 Mandriva, http://www.mandriva.com/ # # This file is part of Management Server Setup # # MSS is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # MSS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with MSS; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. import os import sys import logging import logging.handlers logger = logging.getLogger() ADMINS = (('root', 'root@localhost'),) MANAGERS = ADMINS PROJECT_DIR = os.path.dirname(__file__) DEBUG = False TEMPLATE_DEBUG = DEBUG EMAIL_SUBJECT_PREFIX = "[MSS]" SERVER_EMAIL = "[email protected]" LOG_FILENAME = '/var/log/mss/mss-www.log' os.chmod(LOG_FILENAME, 0600) ALLOWED_HOSTS = ['*'] if DEBUG: EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' LOGGING = { 'version': 1, 'handlers': { 'file': { 'level': 'DEBUG', 'class': 'logging.handlers.RotatingFileHandler', 'formatter': 'verbose', 'filename': LOG_FILENAME }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' } }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' } }, 'loggers': { 'mss': { 'handlers': ['file', 'console'], 'level': 'DEBUG', 'propagate': True } } } else: LOGGING = { 'version': 1, 'handlers': { 'file': { 'level': 'ERROR', 'class': 'logging.handlers.RotatingFileHandler', 'formatter': 'verbose', 'filename': LOG_FILENAME }, 'console': { 'level': 'ERROR', 'class': 'logging.StreamHandler', 'formatter': 'verbose' } }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' } }, 'loggers': { 'mss': { 'handlers': ['file', 'console'], 'level': 'ERROR', 'propagate': True } } } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': '/var/lib/mss/mss-www.db' } } TIME_ZONE = 'Europe/Paris' SITE_ID = 1 USE_I18N = True MEDIA_ROOT = os.path.join(PROJECT_DIR, 'media') MEDIA_URL = '/site_media/' LOGIN_URL = "/mss/account/login/" LANGUAGES = ( ('en-us', 'English'), ('fr-fr', 'Français'), ('pt-br', 'Português do Brasil'), ('de-de', 'Deutsch'), ('zh-cn', 'Chinese'), ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.i18n", "django.core.context_processors.debug", "django.core.context_processors.request", "django.core.context_processors.media" ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'mss.www.errors.middleware.CatchExceptions', ) ROOT_URLCONF = 'mss.www.urls' TEMPLATE_DIRS = [ os.path.join(PROJECT_DIR, 'wizard', 'templates'), ] INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'mss.www.wizard', 'mss.www.cpserver', 'mss.www.errors', ] AUTHENTICATION_BACKENDS = ( 'mss.www.backends.MSSBackend', ) SESSION_EXPIRE_AT_BROWSER_CLOSE = True # add local python libs in path if not os.path.abspath(os.path.join(PROJECT_DIR, 'lib')) in sys.path: sys.path.append(os.path.abspath(os.path.join(PROJECT_DIR, 'lib'))) TRACEBACK_API_URL = "https://mbs-reports.mandriva.com/api/mss/traceback/" TEST_RUNNER = 'django.test.runner.DiscoverRunner' try: from local_settings import * except ImportError: pass
gpl-3.0
-7,318,028,767,869,020,000
25.76
99
0.580824
false
tunetosuraj/spectrum
recommenders/document_api.py
1
1706
import nltk, string from sklearn.feature_extraction.text import TfidfVectorizer from items.models import BookProfile from recommenders.models import DocToDocLink class DocumentSimilarity: def __init__(self, doc1=None, doc2=None): self.b1 = doc1 self.b2 = doc2 def calculate_cosine(self): stemmer = nltk.stem.porter.PorterStemmer() clean_punc = dict((ord(char), None) for char in string.punctuation) def stem_tokens(tokens): return [stemmer.stem(item) for item in tokens] #remove punctuation, lowercase, stem def normalize(text): return stem_tokens(nltk.word_tokenize(text.lower().translate(clean_punc))) documents = [self.b1.book.description, self.b2.book.description] tfidf = TfidfVectorizer(tokenizer=normalize, stop_words='english').fit_transform(documents) pairwise_cosine_similarity = (tfidf * tfidf.T).A score = pairwise_cosine_similarity[0][1] return score def _get(self, weight=None): DocToDocLink.objects.create(item1=self.b1, item2=self.b2, raw_weight=weight, calculated_weight=weight, origin='TFIDF Document Similarity') def analyse(self): score = self.calculate_cosine() if score >= 0.5: self._get(weight=score) def migrate_d2d(): books = BookProfile.objects.all() for i in books: for j in books: if i.book.volume_id != j.book.volume_id: if not i.stop_docsim: print('Initiating TF-IDF Document Similarity..') d = DocumentSimilarity(doc1=i,doc2=j) d.analyse() i.stop_docsim = True i.save()
agpl-3.0
-348,521,159,580,769,150
32.45098
146
0.632474
false