repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
no13bus/suited4you
settings.py
1
1454
#!/usr/bin/env python #coding=utf8 import os settings = { 'gzip': True, 'autoescape': 'xhtml_escape', 'static_path':os.path.join(os.path.dirname(__file__), 'static'), 'template_path':os.path.join(os.path.dirname(__file__), 'templates'), "xsrf_cookies": True, "cookie_secret": "61oETzKXQAGaYdkL5gEmGeJJFuYh7EQnp2XdTP1o/Vo=", "login_url": "/login", 'debug': True, } # DB_CONNECT_STRING = 'mysql+mysqldb://root:root@localhost/v2exfriends?charset=utf8' import redis pool = redis.ConnectionPool(host='localhost', port=6379, db=1) RD = redis.Redis(connection_pool=pool) #### libs settings from libs.github import * from libs.reddit import * from libs.stackoverflow import * GITHUB_TOKEN = '05aa6e1541ecdb53f473b8e32f2a4e45b1ea0a27' gh = GitHub(GITHUB_TOKEN) reddit = Reddit() sof = Sof() #celery settings CELERYD_POOL_RESTARTS = True CELERYD_FORCE_EXECV = True CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' from datetime import timedelta CELERYBEAT_SCHEDULE = { 'users_chain_3600': { 'task': 'tasks.users_chain', 'schedule': timedelta(seconds=3620), }, } ####dev enviriment or deploy enviriment import socket if socket.gethostname() == 'jqh-virtual-machine' or socket.gethostname() == 'no13busdeMacBook-Air.local' or socket.gethostname() == 'localhost': try: from settings_dev import * except ImportError: pass
mit
-1,263,488,909,710,361,000
24.086207
144
0.691197
false
SGenheden/Scripts
Projects/Gpcr/gpcr_anal_lifetimes.py
1
5680
# Author: Samuel Genheden [email protected] """ Program to analyse state files in order to compute lifetimes of molecules or other states The state series can be files on disc or logical combinations of already open state series. It will analyse group of files, each group with a number of repeats. Median and maximum lifetime will be written out standard output, as well as average and standerd error in case of multiple repeats Examples -------- gpcr_anal_lifetimes.py -f r1_md3_en_fit_chol.mstate.6.dat r1_md3_en_fit_chol.mid.dat 1a2 r1_md3_en_fit_chol.resstate.6.dat -l chol/mol chol/bur chol-on/bur chol/hlx --helical 4 --mol b2 will read cholesterol in contact and buried cholesterol, and combine it to also analyse buried cholesterols in contact. The fourth file exemplifies the helical lifetime analysis. """ import os import sys import argparse import numpy as np import pycontacts import gpcr_lib SEP = "\n"+" "*18 def _make_helical(state,mol) : """ Convert a residual state matrix to a helical state matrix by looking at the residues in the helices. Parameters ---------- state : nxR Numpy array the state matrix, n is the number of snapshots R is the number of residues mol : string the identifier of the molecule Returns ------- nxH Numpy array the helical state matrix, H is the number of helices """ helices = gpcr_lib.load_template(mol).rhelices hstate = np.zeros([state.shape[0],len(helices)],dtype=np.uint8) for i,h in enumerate(helices) : hstate[:,i] = np.any(state[:,h[0]-1:h[1]],axis=1) return hstate def _anal_lifetimes(files,labels,helical,mol,time) : """ Main work routine to analyse life times Parameters ---------- files : list of string the state files to analyse labels : list of string a label for each state file helical : list of integers indicator to do helical transformation for some files mol : string identifier of molecule time : float the total simulation time Returns ------- list of Numpy arrays the results """ # Read in each state file or do a logical transformation states = [] for filename,label in zip(files,labels) : if os.path.isfile(filename) : states.append(gpcr_lib.read_statefile(filename)) else : states.append(gpcr_lib.logical_expr(filename.replace(" ",""),*states)) # Conversion factor from snapshot lifetime to ns lifetime ns_per_snapshot = time / float(states[0].shape[0]) # Perform helical transformation if helical is not None : for h in helical : states[h-1] = _make_helical(states[h-1],mol) # Concatenate all state matrices and do lifetime analysis all_states = np.concatenate(states,axis=1) life_av,life_max = pycontacts.lifetime(all_states) # Write out statistics print "%15s\t%8s\t%8s"%("","Median","Max") nused = 0 results = [] for i,(state,label) in enumerate(zip(states,labels),1) : life_av_s = life_av[nused:nused+state.shape[1]]*ns_per_snapshot life_max_s = life_max[nused:nused+state.shape[1]]*ns_per_snapshot nused = nused+state.shape[1] if helical is not None and i in helical : print "%-18s%s"%(label,SEP.join("\t%8.3f\t%8.3f"%(a,m) for (a,m) in zip(life_av_s,life_max_s))) results.append(np.concatenate([life_av_s,life_max_s])) else : print "%-18s\t%8.3f\t%8.3f"%(label,np.median(life_av_s),life_max_s.mean()) results.append(np.array([np.median(life_av_s),life_max_s.mean()])) return results if __name__ == '__main__' : # Setup a parser of the command-line arguments parser = argparse.ArgumentParser(description="Analysing lifetimes from state files") parser.add_argument('-f','--files',nargs='+',help="a list of input files.",default=[]) parser.add_argument('-l','--labels',nargs='+',help="a label for each state.",default=[]) parser.add_argument('--helical',nargs='+',type=int,help="flag to perform helical transformation for a state file") parser.add_argument('--mol',choices=["b2","a2a","b2_a","a2a_a"],help="the protein molecules, should be either 'b2' or 'a2a'",default="b2") parser.add_argument('--time',type=float,help="total simulation time in ns",default=50000) parser.add_argument('--repeats',nargs="+",help="replacement pattern for multiple repeats",default=["r1_","r2_","r3_","r4_","r5_"]) args = parser.parse_args() res0 = _anal_lifetimes(args.files,args.labels,args.helical,args.mol,args.time) if args.repeats is not None : # Allocate arrays for total statistics results = [] for r0 in res0 : results.append(np.zeros([r0.shape[0],len(args.repeats)])) results[-1][:,0] = r0 for ri,r in enumerate(args.repeats[1:],1) : files2 = [f.replace(args.repeats[0],r) for f in args.files] print "" res = _anal_lifetimes(files2,args.labels,args.helical,args.mol,args.time) # Accumulate to the total statistics for i,r in enumerate(res) : results[i][:,ri] = r # Write out statistics over repeats print "\n%15s\t%8s\t%8s"%("","Tot-Med.","Tot-Max") for i,(label,r) in enumerate(zip(args.labels,results),1) : rav = r.mean(axis=1) rstd = r.std(axis=1)/np.sqrt(r.shape[1]) if args.helical is not None and i in args.helical : l2 = rav.shape[0] / 2 print "%-18s%s"%(label,SEP.join("\t%8.3f\t%8.3f\t%8.3f\t%8.3f"%(a,au,m,mu) for (a,m,au,mu) in zip(rav[:l2],rav[l2:],rstd[:l2],rstd[l2:]))) else : print "%-18s\t%8.3f\t%8.3f\t%8.3f\t%8.3f"%(label,rav[0],rstd[0],rav[1],rstd[1])
mit
6,737,768,644,979,249,000
34.72956
147
0.654401
false
xeBuz/Ordbogen
app/models/base.py
1
1276
from abc import abstractmethod from app import db class BaseModel(db.Model): __abstract__ = True def __init__(self, **kwargs): """ Initialize the BaseModel. This method will receive a unknown list with key=value elements From that list, will use just the key matching with a column name in the table. :param kwargs: """ columns = [m.key for m in self.__table__.columns] for key in kwargs.keys(): if key in columns: self.__setattr__(key, kwargs[key]) @abstractmethod def __repr__(self): return @staticmethod def required_fields(): """ Required fields :return: """ return None @staticmethod def model_fields(): """ Usable field list from the model, because not all the fields should be modified :return: """ return None def save(self): """ Add the object to the transaction and commit the session """ db.session.add(self) db.session.commit() def delete(self): """ Remove the object from the transaction and commit the session """ db.session.delete(self) db.session.commit()
mpl-2.0
-1,038,764,262,403,710,300
22.2
97
0.558777
false
phoebusliang/parallel-lettuce
tests/functional/test_runner.py
1
74405
# -*- coding: utf-8 -*- # <Lettuce - Behaviour Driven Development for python> # Copyright (C) <2010-2012> Gabriel Falcão <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import random import lettuce from mock import Mock, patch from sure import expect from StringIO import StringIO from os.path import dirname, join, abspath from nose.tools import assert_equals, with_setup, assert_raises from lettuce.fs import FeatureLoader from lettuce.core import Feature, fs, StepDefinition from lettuce.terrain import world from lettuce import Runner from tests.asserts import assert_lines from tests.asserts import prepare_stderr from tests.asserts import prepare_stdout from tests.asserts import assert_stderr_lines from tests.asserts import assert_stdout_lines from tests.asserts import assert_stderr_lines_with_traceback from tests.asserts import assert_stdout_lines_with_traceback current_dir = abspath(dirname(__file__)) lettuce_dir = abspath(dirname(lettuce.__file__)) ojoin = lambda *x: join(current_dir, 'output_features', *x) sjoin = lambda *x: join(current_dir, 'syntax_features', *x) tjoin = lambda *x: join(current_dir, 'tag_features', *x) bjoin = lambda *x: join(current_dir, 'bg_features', *x) lettuce_path = lambda *x: fs.relpath(join(lettuce_dir, *x)) call_line = StepDefinition.__call__.im_func.func_code.co_firstlineno + 5 def joiner(callback, name): return callback(name, "%s.feature" % name) feature_name = lambda name: joiner(ojoin, name) syntax_feature_name = lambda name: joiner(sjoin, name) tag_feature_name = lambda name: joiner(tjoin, name) bg_feature_name = lambda name: joiner(bjoin, name) @with_setup(prepare_stderr) def test_try_to_import_terrain(): "Runner tries to import terrain, but has a nice output when it fail" sandbox_path = ojoin('..', 'sandbox') original_path = abspath(".") os.chdir(sandbox_path) try: import lettuce reload(lettuce) raise AssertionError('The runner should raise ImportError !') except SystemExit: assert_stderr_lines_with_traceback( 'Lettuce has tried to load the conventional environment module ' '"terrain"\nbut it has errors, check its contents and ' 'try to run lettuce again.\n\nOriginal traceback below:\n\n' "Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line 44, in <module>\n' ' terrain = fs.FileSystem._import("terrain")\n' ' File "%(lettuce_fs_file)s", line 63, in _import\n' ' module = imp.load_module(name, fp, pathname, description)\n' ' File "%(terrain_file)s", line 18\n' ' it is here just to cause a syntax error\n' " ^\n" 'SyntaxError: invalid syntax\n' % { 'lettuce_core_file': abspath(join(lettuce_dir, '__init__.py')), 'lettuce_fs_file': abspath(join(lettuce_dir, 'fs.py')), 'terrain_file': abspath(lettuce_path('..', 'tests', 'functional', 'sandbox', 'terrain.py')), } ) finally: os.chdir(original_path) def test_feature_representation_without_colors(): "Feature represented without colors" feature_file = ojoin('..', 'simple_features', '1st_feature_dir', 'some.feature') feature = Feature.from_file(feature_file) assert_lines( feature.represented(), "Feature: Addition # tests/functional/simple_features/1st_feature_dir/some.feature:5\n" " In order to avoid silly mistakes # tests/functional/simple_features/1st_feature_dir/some.feature:6\n" " As a math idiot # tests/functional/simple_features/1st_feature_dir/some.feature:7\n" " I want to be told the sum of two numbers # tests/functional/simple_features/1st_feature_dir/some.feature:8\n" ) def test_scenario_outline_representation_without_colors(): "Scenario Outline represented without colors" feature_file = ojoin('..', 'simple_features', '1st_feature_dir', 'some.feature') feature = Feature.from_file(feature_file) assert_equals( feature.scenarios[0].represented(), " Scenario Outline: Add two numbers # tests/functional/simple_features/1st_feature_dir/some.feature:10\n" ) def test_scenario_representation_without_colors(): "Scenario represented without colors" feature_file = ojoin('runner_features', 'first.feature') feature = Feature.from_file(feature_file) assert_equals( feature.scenarios[0].represented(), " Scenario: Do nothing # tests/functional/output_features/runner_features/first.feature:6\n" ) def test_undefined_step_represent_string(): "Undefined step represented without colors" feature_file = ojoin('runner_features', 'first.feature') feature = Feature.from_file(feature_file) step = feature.scenarios[0].steps[0] assert_equals( step.represent_string(step.sentence), " Given I do nothing # tests/functional/output_features/runner_features/first.feature:7\n" ) assert_equals( step.represent_string("foo bar"), " foo bar # tests/functional/output_features/runner_features/first.feature:7\n" ) def test_defined_step_represent_string(): "Defined step represented without colors" feature_file = ojoin('runner_features', 'first.feature') feature_dir = ojoin('runner_features') loader = FeatureLoader(feature_dir) world._output = StringIO() world._is_colored = False loader.find_and_load_step_definitions() feature = Feature.from_file(feature_file) step = feature.scenarios[0].steps[0] step.run(True) assert_equals( step.represent_string(step.sentence), " Given I do nothing # tests/functional/output_features/runner_features/dumb_steps.py:6\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorless2(): "Testing the colorless output of a successful feature" runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'runner_features'), verbosity=3) runner.run() assert_stdout_lines( "\n" "Feature: Dumb feature # tests/functional/output_features/runner_features/first.feature:1\n" " In order to test success # tests/functional/output_features/runner_features/first.feature:2\n" " As a programmer # tests/functional/output_features/runner_features/first.feature:3\n" " I want to see that the output is green # tests/functional/output_features/runner_features/first.feature:4\n" "\n" " Scenario: Do nothing # tests/functional/output_features/runner_features/first.feature:6\n" " Given I do nothing # tests/functional/output_features/runner_features/dumb_steps.py:6\n" "\n" "1 feature (1 passed)\n" "1 scenario (1 passed)\n" "1 step (1 passed)\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorless(): "A feature with two scenarios should separate the two scenarios with a new line (in colorless mode)." runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_scenarios'), verbosity=3) runner.run() assert_stdout_lines( "\n" "Feature: Dumb feature # tests/functional/output_features/many_successful_scenarios/first.feature:1\n" " In order to test success # tests/functional/output_features/many_successful_scenarios/first.feature:2\n" " As a programmer # tests/functional/output_features/many_successful_scenarios/first.feature:3\n" " I want to see that the output is green # tests/functional/output_features/many_successful_scenarios/first.feature:4\n" "\n" " Scenario: Do nothing # tests/functional/output_features/many_successful_scenarios/first.feature:6\n" " Given I do nothing # tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\n" "\n" " Scenario: Do nothing (again) # tests/functional/output_features/many_successful_scenarios/first.feature:9\n" " Given I do nothing (again) # tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\n" "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "2 steps (2 passed)\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorful(): "Testing the output of a successful feature" runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'runner_features'), verbosity=4) runner.run() assert_stdout_lines( "\n" "\033[1;37mFeature: Dumb feature \033[1;30m# tests/functional/output_features/runner_features/first.feature:1\033[0m\n" "\033[1;37m In order to test success \033[1;30m# tests/functional/output_features/runner_features/first.feature:2\033[0m\n" "\033[1;37m As a programmer \033[1;30m# tests/functional/output_features/runner_features/first.feature:3\033[0m\n" "\033[1;37m I want to see that the output is green \033[1;30m# tests/functional/output_features/runner_features/first.feature:4\033[0m\n" "\n" "\033[1;37m Scenario: Do nothing \033[1;30m# tests/functional/output_features/runner_features/first.feature:6\033[0m\n" "\033[1;30m Given I do nothing \033[1;30m# tests/functional/output_features/runner_features/dumb_steps.py:6\033[0m\n" "\033[A\033[1;32m Given I do nothing \033[1;30m# tests/functional/output_features/runner_features/dumb_steps.py:6\033[0m\n" "\n" "\033[1;37m1 feature (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m1 scenario (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m1 step (\033[1;32m1 passed\033[1;37m)\033[0m\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorful_newline(): "A feature with two scenarios should separate the two scenarios with a new line (in color mode)." runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_scenarios'), verbosity=4) runner.run() assert_stdout_lines( "\n" "\033[1;37mFeature: Dumb feature \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:1\033[0m\n" "\033[1;37m In order to test success \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:2\033[0m\n" "\033[1;37m As a programmer \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:3\033[0m\n" "\033[1;37m I want to see that the output is green \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:4\033[0m\n" "\n" "\033[1;37m Scenario: Do nothing \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:6\033[0m\n" "\033[1;30m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\033[0m\n" "\033[A\033[1;32m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\033[0m\n" "\n" "\033[1;37m Scenario: Do nothing (again) \033[1;30m# tests/functional/output_features/many_successful_scenarios/first.feature:9\033[0m\n" "\033[1;30m Given I do nothing (again) \033[1;30m# tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\033[0m\n" "\033[A\033[1;32m Given I do nothing (again) \033[1;30m# tests/functional/output_features/many_successful_scenarios/dumb_steps.py:6\033[0m\n" "\n" "\033[1;37m1 feature (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m2 scenarios (\033[1;32m2 passed\033[1;37m)\033[0m\n" "\033[1;37m2 steps (\033[1;32m2 passed\033[1;37m)\033[0m\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorless_many_features(): "Testing the output of many successful features" runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_features'), verbosity=3) runner.run() assert_stdout_lines( "\n" "Feature: First feature, of many # tests/functional/output_features/many_successful_features/one.feature:1\n" " In order to make lettuce more robust # tests/functional/output_features/many_successful_features/one.feature:2\n" " As a programmer # tests/functional/output_features/many_successful_features/one.feature:3\n" " I want to test its output on many features # tests/functional/output_features/many_successful_features/one.feature:4\n" "\n" " Scenario: Do nothing # tests/functional/output_features/many_successful_features/one.feature:6\n" " Given I do nothing # tests/functional/output_features/many_successful_features/dumb_steps.py:6\n" " Then I see that the test passes # tests/functional/output_features/many_successful_features/dumb_steps.py:8\n" "\n" "Feature: Second feature, of many # tests/functional/output_features/many_successful_features/two.feature:1\n" " I just want to see it green :) # tests/functional/output_features/many_successful_features/two.feature:2\n" "\n" " Scenario: Do nothing # tests/functional/output_features/many_successful_features/two.feature:4\n" " Given I do nothing # tests/functional/output_features/many_successful_features/dumb_steps.py:6\n" " Then I see that the test passes # tests/functional/output_features/many_successful_features/dumb_steps.py:8\n" "\n" "2 features (2 passed)\n" "2 scenarios (2 passed)\n" "4 steps (4 passed)\n" ) @with_setup(prepare_stdout) def test_output_with_success_colorful_many_features(): "Testing the colorful output of many successful features" runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_features'), verbosity=4) runner.run() assert_stdout_lines( "\n" "\033[1;37mFeature: First feature, of many \033[1;30m# tests/functional/output_features/many_successful_features/one.feature:1\033[0m\n" "\033[1;37m In order to make lettuce more robust \033[1;30m# tests/functional/output_features/many_successful_features/one.feature:2\033[0m\n" "\033[1;37m As a programmer \033[1;30m# tests/functional/output_features/many_successful_features/one.feature:3\033[0m\n" "\033[1;37m I want to test its output on many features \033[1;30m# tests/functional/output_features/many_successful_features/one.feature:4\033[0m\n" "\n" "\033[1;37m Scenario: Do nothing \033[1;30m# tests/functional/output_features/many_successful_features/one.feature:6\033[0m\n" "\033[1;30m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:6\033[0m\n" "\033[A\033[1;32m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:6\033[0m\n" "\033[1;30m Then I see that the test passes \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:8\033[0m\n" "\033[A\033[1;32m Then I see that the test passes \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:8\033[0m\n" "\n" "\033[1;37mFeature: Second feature, of many \033[1;30m# tests/functional/output_features/many_successful_features/two.feature:1\033[0m\n" "\033[1;37m I just want to see it green :) \033[1;30m# tests/functional/output_features/many_successful_features/two.feature:2\033[0m\n" "\n" "\033[1;37m Scenario: Do nothing \033[1;30m# tests/functional/output_features/many_successful_features/two.feature:4\033[0m\n" "\033[1;30m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:6\033[0m\n" "\033[A\033[1;32m Given I do nothing \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:6\033[0m\n" "\033[1;30m Then I see that the test passes \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:8\033[0m\n" "\033[A\033[1;32m Then I see that the test passes \033[1;30m# tests/functional/output_features/many_successful_features/dumb_steps.py:8\033[0m\n" "\n" "\033[1;37m2 features (\033[1;32m2 passed\033[1;37m)\033[0m\n" "\033[1;37m2 scenarios (\033[1;32m2 passed\033[1;37m)\033[0m\n" "\033[1;37m4 steps (\033[1;32m4 passed\033[1;37m)\033[0m\n" ) @with_setup(prepare_stdout) def test_output_when_could_not_find_features(): "Testing the colorful output of many successful features" path = fs.relpath(join(abspath(dirname(__file__)), 'no_features', 'unexistent-folder')) runner = Runner(path, verbosity=4) runner.run() assert_stdout_lines( '\033[1;31mOops!\033[0m\n' '\033[1;37mcould not find features at \033[1;33m./%s\033[0m\n' % path ) @with_setup(prepare_stdout) def test_output_when_could_not_find_features_colorless(): "Testing the colorful output of many successful features colorless" path = fs.relpath(join(abspath(dirname(__file__)), 'no_features', 'unexistent-folder')) runner = Runner(path, verbosity=3) runner.run() assert_stdout_lines( 'Oops!\n' 'could not find features at ./%s\n' % path ) @with_setup(prepare_stdout) def test_output_when_could_not_find_features_verbosity_level_2(): "Testing the colorful output of many successful features colorless" path = fs.relpath(join(abspath(dirname(__file__)), 'no_features', 'unexistent-folder')) runner = Runner(path, verbosity=2) runner.run() assert_stdout_lines( 'Oops!\n' 'could not find features at ./%s\n' % path ) @with_setup(prepare_stdout) def test_output_with_success_colorless_with_table(): "Testing the colorless output of success with table" runner = Runner(feature_name('success_table'), verbosity=3) runner.run() assert_stdout_lines( '\n' 'Feature: Table Success # tests/functional/output_features/success_table/success_table.feature:1\n' '\n' ' Scenario: Add two numbers ♥ # tests/functional/output_features/success_table/success_table.feature:2\n' ' Given I have 0 bucks # tests/functional/output_features/success_table/success_table_steps.py:28\n' ' And that I have these items: # tests/functional/output_features/success_table/success_table_steps.py:32\n' ' | name | price |\n' ' | Porsche | 200000 |\n' ' | Ferrari | 400000 |\n' ' When I sell the "Ferrari" # tests/functional/output_features/success_table/success_table_steps.py:42\n' ' Then I have 400000 bucks # tests/functional/output_features/success_table/success_table_steps.py:28\n' ' And my garage contains: # tests/functional/output_features/success_table/success_table_steps.py:47\n' ' | name | price |\n' ' | Porsche | 200000 |\n' '\n' '1 feature (1 passed)\n' '1 scenario (1 passed)\n' '5 steps (5 passed)\n' ) @with_setup(prepare_stdout) def test_output_with_success_colorful_with_table(): "Testing the colorful output of success with table" runner = Runner(feature_name('success_table'), verbosity=4) runner.run() assert_stdout_lines( '\n' '\033[1;37mFeature: Table Success \033[1;30m# tests/functional/output_features/success_table/success_table.feature:1\033[0m\n' '\n' '\033[1;37m Scenario: Add two numbers ♥ \033[1;30m# tests/functional/output_features/success_table/success_table.feature:2\033[0m\n' '\033[1;30m Given I have 0 bucks \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:28\033[0m\n' '\033[A\033[1;32m Given I have 0 bucks \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:28\033[0m\n' '\033[1;30m And that I have these items: \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:32\033[0m\n' '\033[1;30m \033[1;37m |\033[1;30m name \033[1;37m |\033[1;30m price \033[1;37m |\033[1;30m\033[0m\n' '\033[1;30m \033[1;37m |\033[1;30m Porsche\033[1;37m |\033[1;30m 200000\033[1;37m |\033[1;30m\033[0m\n' '\033[1;30m \033[1;37m |\033[1;30m Ferrari\033[1;37m |\033[1;30m 400000\033[1;37m |\033[1;30m\033[0m\n' '\033[A\033[A\033[A\033[A\033[1;32m And that I have these items: \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:32\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m name \033[1;37m |\033[1;32m price \033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m Porsche\033[1;37m |\033[1;32m 200000\033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m Ferrari\033[1;37m |\033[1;32m 400000\033[1;37m |\033[1;32m\033[0m\n' '\033[1;30m When I sell the "Ferrari" \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:42\033[0m\n' '\033[A\033[1;32m When I sell the "Ferrari" \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:42\033[0m\n' '\033[1;30m Then I have 400000 bucks \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:28\033[0m\n' '\033[A\033[1;32m Then I have 400000 bucks \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:28\033[0m\n' '\033[1;30m And my garage contains: \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:47\033[0m\n' '\033[1;30m \033[1;37m |\033[1;30m name \033[1;37m |\033[1;30m price \033[1;37m |\033[1;30m\033[0m\n' '\033[1;30m \033[1;37m |\033[1;30m Porsche\033[1;37m |\033[1;30m 200000\033[1;37m |\033[1;30m\033[0m\n' '\033[A\033[A\033[A\033[1;32m And my garage contains: \033[1;30m# tests/functional/output_features/success_table/success_table_steps.py:47\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m name \033[1;37m |\033[1;32m price \033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m Porsche\033[1;37m |\033[1;32m 200000\033[1;37m |\033[1;32m\033[0m\n' '\n' "\033[1;37m1 feature (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m1 scenario (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m5 steps (\033[1;32m5 passed\033[1;37m)\033[0m\n" ) @with_setup(prepare_stdout) def test_output_with_failed_colorless_with_table(): "Testing the colorless output of failed with table" runner = Runner(feature_name('failed_table'), verbosity=3) runner.run() assert_stdout_lines_with_traceback( ("\n" "Feature: Table Fail # tests/functional/output_features/failed_table/failed_table.feature:1\n" "\n" " Scenario: See it fail # tests/functional/output_features/failed_table/failed_table.feature:2\n" u" Given I have a dumb step that passes ♥ # tests/functional/output_features/failed_table/failed_table_steps.py:20\n" " And this one fails # tests/functional/output_features/failed_table/failed_table_steps.py:24\n" " Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 25, in tof\n' " assert False\n" " AssertionError\n" " Then this one will be skipped # tests/functional/output_features/failed_table/failed_table_steps.py:28\n" " And this one will be skipped # tests/functional/output_features/failed_table/failed_table_steps.py:28\n" " And this one does not even has definition # tests/functional/output_features/failed_table/failed_table.feature:12 (undefined)\n" "\n" "1 feature (0 passed)\n" "1 scenario (0 passed)\n" "5 steps (1 failed, 2 skipped, 1 undefined, 1 passed)\n" "\n" "You can implement step definitions for undefined steps with these snippets:\n" "\n" "# -*- coding: utf-8 -*-\n" "from lettuce import step\n" "\n" "@step(u'And this one does not even has definition')\n" "def and_this_one_does_not_even_has_definition(step):\n" " assert False, 'This step must be implemented'\n" "\n" "List of failed scenarios:\n" " Scenario: See it fail # tests/functional/output_features/failed_table/failed_table.feature:2\n" "\n") % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'failed_table', 'failed_table_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_with_failed_colorful_with_table(): "Testing the colorful output of failed with table" runner = Runner(feature_name('failed_table'), verbosity=4) runner.run() assert_stdout_lines_with_traceback( "\n" "\033[1;37mFeature: Table Fail \033[1;30m# tests/functional/output_features/failed_table/failed_table.feature:1\033[0m\n" "\n" "\033[1;37m Scenario: See it fail \033[1;30m# tests/functional/output_features/failed_table/failed_table.feature:2\033[0m\n" u"\033[1;30m Given I have a dumb step that passes ♥ \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:20\033[0m\n" u"\033[A\033[1;32m Given I have a dumb step that passes ♥ \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:20\033[0m\n" "\033[1;30m And this one fails \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:24\033[0m\n" "\033[A\033[0;31m And this one fails \033[1;41;33m# tests/functional/output_features/failed_table/failed_table_steps.py:24\033[0m\n" "\033[1;31m Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 25, in tof\n' " assert False\n" " AssertionError\033[0m\n" "\033[1;30m Then this one will be skipped \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:28\033[0m\n" "\033[A\033[0;36m Then this one will be skipped \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:28\033[0m\n" "\033[1;30m And this one will be skipped \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:28\033[0m\n" "\033[A\033[0;36m And this one will be skipped \033[1;30m# tests/functional/output_features/failed_table/failed_table_steps.py:28\033[0m\n" "\033[0;33m And this one does not even has definition \033[1;30m# tests/functional/output_features/failed_table/failed_table.feature:12\033[0m\n" "\n" "\033[1;37m1 feature (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m1 scenario (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m5 steps (\033[0;31m1 failed\033[1;37m, \033[0;36m2 skipped\033[1;37m, \033[0;33m1 undefined\033[1;37m, \033[1;32m1 passed\033[1;37m)\033[0m\n" "\n" "\033[0;33mYou can implement step definitions for undefined steps with these snippets:\n" "\n" "# -*- coding: utf-8 -*-\n" "from lettuce import step\n" "\n" "@step(u'And this one does not even has definition')\n" "def and_this_one_does_not_even_has_definition(step):\n" " assert False, 'This step must be implemented'\033[0m" "\n" "\n" "\033[1;31mList of failed scenarios:\n" "\033[0;31m Scenario: See it fail # tests/functional/output_features/failed_table/failed_table.feature:2\n" "\033[0m\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'failed_table', 'failed_table_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_with_successful_outline_colorless(): "With colorless output, a successful outline scenario should print beautifully." runner = Runner(feature_name('success_outline'), verbosity=3) runner.run() assert_stdout_lines( '\n' 'Feature: Successful Scenario Outline # tests/functional/output_features/success_outline/success_outline.feature:1\n' ' As lettuce author # tests/functional/output_features/success_outline/success_outline.feature:2\n' ' In order to finish the first release # tests/functional/output_features/success_outline/success_outline.feature:3\n' u' I want to make scenario outlines work ♥ # tests/functional/output_features/success_outline/success_outline.feature:4\n' '\n' ' Scenario Outline: fill a web form # tests/functional/output_features/success_outline/success_outline.feature:6\n' ' Given I open browser at "http://www.my-website.com/" # tests/functional/output_features/success_outline/success_outline_steps.py:21\n' ' And click on "sign-up" # tests/functional/output_features/success_outline/success_outline_steps.py:25\n' ' When I fill the field "username" with "<username>" # tests/functional/output_features/success_outline/success_outline_steps.py:29\n' ' And I fill the field "password" with "<password>" # tests/functional/output_features/success_outline/success_outline_steps.py:29\n' ' And I fill the field "password-confirm" with "<password>" # tests/functional/output_features/success_outline/success_outline_steps.py:29\n' ' And I fill the field "email" with "<email>" # tests/functional/output_features/success_outline/success_outline_steps.py:29\n' ' And I click "done" # tests/functional/output_features/success_outline/success_outline_steps.py:33\n' ' Then I see the title of the page is "<title>" # tests/functional/output_features/success_outline/success_outline_steps.py:37\n' '\n' ' Examples:\n' ' | username | password | email | title |\n' ' | john | doe-1234 | [email protected] | John \| My Website |\n' ' | mary | wee-9876 | [email protected] | Mary \| My Website |\n' ' | foo | foo-bar | [email protected] | Foo \| My Website |\n' '\n' '1 feature (1 passed)\n' '3 scenarios (3 passed)\n' '24 steps (24 passed)\n' ) @with_setup(prepare_stdout) def test_output_with_successful_outline_colorful(): "With colored output, a successful outline scenario should print beautifully." runner = Runner(feature_name('success_outline'), verbosity=4) runner.run() assert_stdout_lines_with_traceback( '\n' '\033[1;37mFeature: Successful Scenario Outline \033[1;30m# tests/functional/output_features/success_outline/success_outline.feature:1\033[0m\n' '\033[1;37m As lettuce author \033[1;30m# tests/functional/output_features/success_outline/success_outline.feature:2\033[0m\n' '\033[1;37m In order to finish the first release \033[1;30m# tests/functional/output_features/success_outline/success_outline.feature:3\033[0m\n' u'\033[1;37m I want to make scenario outlines work ♥ \033[1;30m# tests/functional/output_features/success_outline/success_outline.feature:4\033[0m\n' '\n' '\033[1;37m Scenario Outline: fill a web form \033[1;30m# tests/functional/output_features/success_outline/success_outline.feature:6\033[0m\n' '\033[0;36m Given I open browser at "http://www.my-website.com/" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:21\033[0m\n' '\033[0;36m And click on "sign-up" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:25\033[0m\n' '\033[0;36m When I fill the field "username" with "<username>" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "password" with "<password>" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "password-confirm" with "<password>" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "email" with "<email>" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:29\033[0m\n' '\033[0;36m And I click "done" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:33\033[0m\n' '\033[0;36m Then I see the title of the page is "<title>" \033[1;30m# tests/functional/output_features/success_outline/success_outline_steps.py:37\033[0m\n' '\n' '\033[1;37m Examples:\033[0m\n' '\033[0;36m \033[1;37m |\033[0;36m username\033[1;37m |\033[0;36m password\033[1;37m |\033[0;36m email \033[1;37m |\033[0;36m title \033[1;37m |\033[0;36m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m john \033[1;37m |\033[1;32m doe-1234\033[1;37m |\033[1;32m [email protected]\033[1;37m |\033[1;32m John \| My Website\033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m mary \033[1;37m |\033[1;32m wee-9876\033[1;37m |\033[1;32m [email protected]\033[1;37m |\033[1;32m Mary \| My Website\033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m foo \033[1;37m |\033[1;32m foo-bar \033[1;37m |\033[1;32m [email protected] \033[1;37m |\033[1;32m Foo \| My Website \033[1;37m |\033[1;32m\033[0m\n' '\n' "\033[1;37m1 feature (\033[1;32m1 passed\033[1;37m)\033[0m\n" "\033[1;37m3 scenarios (\033[1;32m3 passed\033[1;37m)\033[0m\n" "\033[1;37m24 steps (\033[1;32m24 passed\033[1;37m)\033[0m\n" ) @with_setup(prepare_stdout) def test_output_with_failful_outline_colorless(): "With colorless output, an unsuccessful outline scenario should print beautifully." runner = Runner(feature_name('fail_outline'), verbosity=3) runner.run() assert_stdout_lines_with_traceback( '\n' 'Feature: Failful Scenario Outline # tests/functional/output_features/fail_outline/fail_outline.feature:1\n' ' As lettuce author # tests/functional/output_features/fail_outline/fail_outline.feature:2\n' ' In order to finish the first release # tests/functional/output_features/fail_outline/fail_outline.feature:3\n' u' I want to make scenario outlines work ♥ # tests/functional/output_features/fail_outline/fail_outline.feature:4\n' '\n' ' Scenario Outline: fill a web form # tests/functional/output_features/fail_outline/fail_outline.feature:6\n' ' Given I open browser at "http://www.my-website.com/" # tests/functional/output_features/fail_outline/fail_outline_steps.py:21\n' ' And click on "sign-up" # tests/functional/output_features/fail_outline/fail_outline_steps.py:25\n' ' When I fill the field "username" with "<username>" # tests/functional/output_features/fail_outline/fail_outline_steps.py:29\n' ' And I fill the field "password" with "<password>" # tests/functional/output_features/fail_outline/fail_outline_steps.py:29\n' ' And I fill the field "password-confirm" with "<password>" # tests/functional/output_features/fail_outline/fail_outline_steps.py:29\n' ' And I fill the field "email" with "<email>" # tests/functional/output_features/fail_outline/fail_outline_steps.py:29\n' ' And I click "done" # tests/functional/output_features/fail_outline/fail_outline_steps.py:33\n' ' Then I see the message "<message>" # tests/functional/output_features/fail_outline/fail_outline_steps.py:37\n' '\n' ' Examples:\n' ' | username | password | email | message |\n' ' | john | doe-1234 | [email protected] | Welcome, John |\n' ' | mary | wee-9876 | [email protected] | Welcome, Mary |\n' " Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 30, in when_i_fill_the_field_x_with_y\n' " if field == 'password' and value == 'wee-9876': assert False\n" " AssertionError\n" ' | foo | foo-bar | [email protected] | Welcome, Foo |\n' '\n' '1 feature (0 passed)\n' '3 scenarios (2 passed)\n' '24 steps (1 failed, 4 skipped, 19 passed)\n' '\n' 'List of failed scenarios:\n' ' Scenario Outline: fill a web form # tests/functional/output_features/fail_outline/fail_outline.feature:6\n' '\n' % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'fail_outline', 'fail_outline_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_with_failful_outline_colorful(): "With colored output, an unsuccessful outline scenario should print beautifully." runner = Runner(feature_name('fail_outline'), verbosity=4) runner.run() assert_stdout_lines_with_traceback( '\n' '\033[1;37mFeature: Failful Scenario Outline \033[1;30m# tests/functional/output_features/fail_outline/fail_outline.feature:1\033[0m\n' '\033[1;37m As lettuce author \033[1;30m# tests/functional/output_features/fail_outline/fail_outline.feature:2\033[0m\n' '\033[1;37m In order to finish the first release \033[1;30m# tests/functional/output_features/fail_outline/fail_outline.feature:3\033[0m\n' u'\033[1;37m I want to make scenario outlines work ♥ \033[1;30m# tests/functional/output_features/fail_outline/fail_outline.feature:4\033[0m\n' '\n' '\033[1;37m Scenario Outline: fill a web form \033[1;30m# tests/functional/output_features/fail_outline/fail_outline.feature:6\033[0m\n' '\033[0;36m Given I open browser at "http://www.my-website.com/" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:21\033[0m\n' '\033[0;36m And click on "sign-up" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:25\033[0m\n' '\033[0;36m When I fill the field "username" with "<username>" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "password" with "<password>" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "password-confirm" with "<password>" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:29\033[0m\n' '\033[0;36m And I fill the field "email" with "<email>" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:29\033[0m\n' '\033[0;36m And I click "done" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:33\033[0m\n' '\033[0;36m Then I see the message "<message>" \033[1;30m# tests/functional/output_features/fail_outline/fail_outline_steps.py:37\033[0m\n' '\n' '\033[1;37m Examples:\033[0m\n' '\033[0;36m \033[1;37m |\033[0;36m username\033[1;37m |\033[0;36m password\033[1;37m |\033[0;36m email \033[1;37m |\033[0;36m message \033[1;37m |\033[0;36m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m john \033[1;37m |\033[1;32m doe-1234\033[1;37m |\033[1;32m [email protected]\033[1;37m |\033[1;32m Welcome, John\033[1;37m |\033[1;32m\033[0m\n' '\033[1;32m \033[1;37m |\033[1;32m mary \033[1;37m |\033[1;32m wee-9876\033[1;37m |\033[1;32m [email protected]\033[1;37m |\033[1;32m Welcome, Mary\033[1;37m |\033[1;32m\033[0m\n' "\033[1;31m Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 30, in when_i_fill_the_field_x_with_y\n' " if field == 'password' and value == 'wee-9876': assert False\n" " AssertionError\033[0m\n" '\033[1;32m \033[1;37m |\033[1;32m foo \033[1;37m |\033[1;32m foo-bar \033[1;37m |\033[1;32m [email protected] \033[1;37m |\033[1;32m Welcome, Foo \033[1;37m |\033[1;32m\033[0m\n' '\n' "\033[1;37m1 feature (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m3 scenarios (\033[1;32m2 passed\033[1;37m)\033[0m\n" "\033[1;37m24 steps (\033[0;31m1 failed\033[1;37m, \033[0;36m4 skipped\033[1;37m, \033[1;32m19 passed\033[1;37m)\033[0m\n" "\n" "\033[1;31mList of failed scenarios:\n" "\033[0;31m Scenario Outline: fill a web form # tests/functional/output_features/fail_outline/fail_outline.feature:6\n" "\033[0m\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'fail_outline', 'fail_outline_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_snippets_with_groups_within_double_quotes_colorless(): "Testing that the proposed snippet is clever enough to identify groups within double quotes. colorless" runner = Runner(feature_name('double-quoted-snippet'), verbosity=3) runner.run() assert_stdout_lines( u'\n' u'Feature: double-quoted snippet proposal # tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:1\n' u'\n' u' Scenario: Propose matched groups # tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:2\n' u' Given I have "stuff here" and "more @#$%ˆ& bizar sutff h3r3" # tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:3 (undefined)\n' u'\n' u'1 feature (0 passed)\n' u'1 scenario (0 passed)\n' u'1 step (1 undefined, 0 passed)\n' u'\n' u'You can implement step definitions for undefined steps with these snippets:\n' u'\n' u"# -*- coding: utf-8 -*-\n" u'from lettuce import step\n' u'\n' u'@step(u\'Given I have "([^\"]*)" and "([^\"]*)"\')\n' u'def given_i_have_group1_and_group2(step, group1, group2):\n' u' assert False, \'This step must be implemented\'\n' ) @with_setup(prepare_stdout) def test_output_snippets_with_groups_within_double_quotes_colorful(): "Testing that the proposed snippet is clever enough to identify groups within double quotes. colorful" runner = Runner(feature_name('double-quoted-snippet'), verbosity=4) runner.run() assert_stdout_lines( u'\n' u'\033[1;37mFeature: double-quoted snippet proposal \033[1;30m# tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:1\033[0m\n' u'\n' u'\033[1;37m Scenario: Propose matched groups \033[1;30m# tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:2\033[0m\n' u'\033[0;33m Given I have "stuff here" and "more @#$%ˆ& bizar sutff h3r3" \033[1;30m# tests/functional/output_features/double-quoted-snippet/double-quoted-snippet.feature:3\033[0m\n' u'\n' "\033[1;37m1 feature (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m1 scenario (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m1 step (\033[0;33m1 undefined\033[1;37m, \033[1;32m0 passed\033[1;37m)\033[0m\n" u'\n' u'\033[0;33mYou can implement step definitions for undefined steps with these snippets:\n' u'\n' u"# -*- coding: utf-8 -*-\n" u'from lettuce import step\n' u'\n' u'@step(u\'Given I have "([^"]*)" and "([^"]*)"\')\n' u'def given_i_have_group1_and_group2(step, group1, group2):\n' u' assert False, \'This step must be implemented\'\033[0m\n' ) @with_setup(prepare_stdout) def test_output_snippets_with_groups_within_single_quotes_colorless(): "Testing that the proposed snippet is clever enough to identify groups within single quotes. colorless" runner = Runner(feature_name('single-quoted-snippet'), verbosity=3) runner.run() assert_stdout_lines( u'\n' u'Feature: single-quoted snippet proposal # tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:1\n' u'\n' u' Scenario: Propose matched groups # tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:2\n' u' Given I have \'stuff here\' and \'more @#$%ˆ& bizar sutff h3r3\' # tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:3 (undefined)\n' u'\n' u'1 feature (0 passed)\n' u'1 scenario (0 passed)\n' u'1 step (1 undefined, 0 passed)\n' u'\n' u'You can implement step definitions for undefined steps with these snippets:\n' u'\n' u"# -*- coding: utf-8 -*-\n" u'from lettuce import step\n' u'\n' u'@step(u\'Given I have \\\'([^\\\']*)\\\' and \\\'([^\\\']*)\\\'\')\n' u'def given_i_have_group1_and_group2(step, group1, group2):\n' u' assert False, \'This step must be implemented\'\n' ) @with_setup(prepare_stdout) def test_output_snippets_with_groups_within_single_quotes_colorful(): "Testing that the proposed snippet is clever enough to identify groups within single quotes. colorful" runner = Runner(feature_name('single-quoted-snippet'), verbosity=4) runner.run() assert_stdout_lines( u'\n' u'\033[1;37mFeature: single-quoted snippet proposal \033[1;30m# tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:1\033[0m\n' u'\n' u'\033[1;37m Scenario: Propose matched groups \033[1;30m# tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:2\033[0m\n' u'\033[0;33m Given I have \'stuff here\' and \'more @#$%ˆ& bizar sutff h3r3\' \033[1;30m# tests/functional/output_features/single-quoted-snippet/single-quoted-snippet.feature:3\033[0m\n' u'\n' "\033[1;37m1 feature (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m1 scenario (\033[0;31m0 passed\033[1;37m)\033[0m\n" "\033[1;37m1 step (\033[0;33m1 undefined\033[1;37m, \033[1;32m0 passed\033[1;37m)\033[0m\n" u'\n' u'\033[0;33mYou can implement step definitions for undefined steps with these snippets:\n' u'\n' u"# -*- coding: utf-8 -*-\n" u'from lettuce import step\n' u'\n' u'@step(u\'Given I have \\\'([^\\\']*)\\\' and \\\'([^\\\']*)\\\'\')\n' u'def given_i_have_group1_and_group2(step, group1, group2):\n' u' assert False, \'This step must be implemented\'\033[0m\n' ) @with_setup(prepare_stdout) def test_output_snippets_with_groups_within_redundant_quotes(): "Testing that the proposed snippet is clever enough to avoid duplicating the same snippet" runner = Runner(feature_name('redundant-steps-quotes'), verbosity=3) runner.run() assert_stdout_lines( u'\n' u'Feature: avoid duplicating same snippet # tests/functional/output_features/redundant-steps-quotes/redundant-steps-quotes.feature:1\n' u'\n' u' Scenario: Propose matched groups # tests/functional/output_features/redundant-steps-quotes/redundant-steps-quotes.feature:2\n' u' Given I have "stuff here" and "more @#$%ˆ& bizar sutff h3r3" # tests/functional/output_features/redundant-steps-quotes/redundant-steps-quotes.feature:3 (undefined)\n' u' Given I have "blablabla" and "12345" # tests/functional/output_features/redundant-steps-quotes/redundant-steps-quotes.feature:4 (undefined)\n' u'\n' u'1 feature (0 passed)\n' u'1 scenario (0 passed)\n' u'2 steps (2 undefined, 0 passed)\n' u'\n' u'You can implement step definitions for undefined steps with these snippets:\n' u'\n' u"# -*- coding: utf-8 -*-\n" u'from lettuce import step\n' u'\n' u'@step(u\'Given I have "([^"]*)" and "([^"]*)"\')\n' u'def given_i_have_group1_and_group2(step, group1, group2):\n' u' assert False, \'This step must be implemented\'\n' ) @with_setup(prepare_stdout) def test_output_snippets_with_normalized_unicode_names(): "Testing that the proposed snippet is clever enough normalize method names even with latin accents" runner = Runner(feature_name('latin-accents'), verbosity=3) runner.run() assert_stdout_lines( u"\n" u"Funcionalidade: melhorar o output de snippets do lettuce # tests/functional/output_features/latin-accents/latin-accents.feature:2\n" u" Como autor do lettuce # tests/functional/output_features/latin-accents/latin-accents.feature:3\n" u" Eu quero ter um output refinado de snippets # tests/functional/output_features/latin-accents/latin-accents.feature:4\n" u" Para melhorar, de uma forma geral, a vida do programador # tests/functional/output_features/latin-accents/latin-accents.feature:5\n" u"\n" u" Cenário: normalizar snippets com unicode # tests/functional/output_features/latin-accents/latin-accents.feature:7\n" u" Dado que eu tenho palavrões e outras situações # tests/functional/output_features/latin-accents/latin-accents.feature:8 (undefined)\n" u" E várias palavras acentuadas são úteis, tais como: \"(é,não,léo,chororó,chácara,epígrafo)\" # tests/functional/output_features/latin-accents/latin-accents.feature:9 (undefined)\n" u" Então eu fico felizão # tests/functional/output_features/latin-accents/latin-accents.feature:10 (undefined)\n" u"\n" u"1 feature (0 passed)\n" u"1 scenario (0 passed)\n" u"3 steps (3 undefined, 0 passed)\n" u"\n" u"You can implement step definitions for undefined steps with these snippets:\n" u"\n" u"# -*- coding: utf-8 -*-\n" u"from lettuce import step\n" u"\n" u"@step(u'Dado que eu tenho palavrões e outras situações')\n" u"def dado_que_eu_tenho_palavroes_e_outras_situacoes(step):\n" u" assert False, 'This step must be implemented'\n" u"@step(u'E várias palavras acentuadas são úteis, tais como: \"([^\"]*)\"')\n" u"def e_varias_palavras_acentuadas_sao_uteis_tais_como_group1(step, group1):\n" u" assert False, 'This step must be implemented'\n" u"@step(u'Então eu fico felizão')\n" u"def entao_eu_fico_felizao(step):\n" u" assert False, 'This step must be implemented'\n" ) @with_setup(prepare_stdout) def test_output_level_2_success(): 'Output with verbosity 2 must show only the scenario names, followed by "... OK" in case of success' runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_scenarios'), verbosity=2) runner.run() assert_stdout_lines( "Do nothing ... OK\n" "Do nothing (again) ... OK\n" "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "2 steps (2 passed)\n" ) @with_setup(prepare_stdout) def test_output_level_2_fail(): 'Output with verbosity 2 must show only the scenario names, followed by "... FAILED" in case of fail' runner = Runner(feature_name('failed_table'), verbosity=2) runner.run() assert_stdout_lines_with_traceback( "See it fail ... FAILED\n" "\n" "\n" "<Step: \"And this one fails\">\n" "Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 25, in tof\n' " assert False\n" "AssertionError\n" "\n" "1 feature (0 passed)\n" "1 scenario (0 passed)\n" "5 steps (1 failed, 2 skipped, 1 undefined, 1 passed)\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'failed_table', 'failed_table_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_level_2_error(): 'Output with verbosity 2 must show only the scenario names, followed by "... ERROR" in case of fail' runner = Runner(feature_name('error_traceback'), verbosity=2) runner.run() assert_stdout_lines_with_traceback( "It should pass ... OK\n" "It should raise an exception different of AssertionError ... ERROR\n" "\n" "\n" "<Step: \"Given my step that blows a exception\">\n" "Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 10, in given_my_step_that_blows_a_exception\n' " raise RuntimeError\n" "RuntimeError\n" "\n" "1 feature (0 passed)\n" "2 scenarios (1 passed)\n" "2 steps (1 failed, 1 passed)\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'error_traceback', 'error_traceback_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_level_1_success(): 'Output with verbosity 2 must show only the scenario names, followed by "... OK" in case of success' runner = Runner(join(abspath(dirname(__file__)), 'output_features', 'many_successful_scenarios'), verbosity=1) runner.run() assert_stdout_lines( ".." "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "2 steps (2 passed)\n" ) @with_setup(prepare_stdout) def test_output_level_1_fail(): 'Output with verbosity 2 must show only the scenario names, followed by "... FAILED" in case of fail' runner = Runner(feature_name('failed_table'), verbosity=1) runner.run() assert_stdout_lines_with_traceback( "F\n" "\n" "<Step: \"And this one fails\">\n" "Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 25, in tof\n' " assert False\n" "AssertionError\n" "\n" "1 feature (0 passed)\n" "1 scenario (0 passed)\n" "5 steps (1 failed, 2 skipped, 1 undefined, 1 passed)\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'failed_table', 'failed_table_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_output_level_1_error(): 'Output with verbosity 2 must show only the scenario names, followed by "... ERROR" in case of fail' runner = Runner(feature_name('error_traceback'), verbosity=1) runner.run() assert_stdout_lines_with_traceback( ".E\n" "\n" "<Step: \"Given my step that blows a exception\">\n" "Traceback (most recent call last):\n" ' File "%(lettuce_core_file)s", line %(call_line)d, in __call__\n' " ret = self.function(self.step, *args, **kw)\n" ' File "%(step_file)s", line 10, in given_my_step_that_blows_a_exception\n' " raise RuntimeError\n" "RuntimeError\n" "\n" "1 feature (0 passed)\n" "2 scenarios (1 passed)\n" "2 steps (1 failed, 1 passed)\n" % { 'lettuce_core_file': lettuce_path('core.py'), 'step_file': abspath(lettuce_path('..', 'tests', 'functional', 'output_features', 'error_traceback', 'error_traceback_steps.py')), 'call_line': call_line, } ) @with_setup(prepare_stdout) def test_commented_scenario(): 'Test one commented scenario' runner = Runner(feature_name('commented_feature'), verbosity=1) runner.run() assert_stdout_lines( "." "\n" "1 feature (1 passed)\n" "1 scenario (1 passed)\n" "1 step (1 passed)\n" ) @with_setup(prepare_stdout) def test_blank_step_hash_value(): "syntax checking: Blank in step hash column = empty string" from lettuce import step @step('ignore step') def ignore_step(step): pass @step('string length calc') def string_lenth_calc(step): for hash in step.hashes: if len(hash["string"]) + len(hash["string2"]) != int(hash["length"]): raise AssertionError("fail") filename = syntax_feature_name('blank_values_in_hash') runner = Runner(filename, verbosity=1) runner.run() assert_stdout_lines( "." "\n" "1 feature (1 passed)\n" "1 scenario (1 passed)\n" "4 steps (4 passed)\n" ) @with_setup(prepare_stdout) def test_run_only_fast_tests(): "Runner can filter by tags" from lettuce import step good_one = Mock() bad_one = Mock() @step('I wait for 0 seconds') def wait_for_0_seconds(step): good_one(step.sentence) @step('the time passed is 0 seconds') def time_passed_0_sec(step): good_one(step.sentence) @step('I wait for 60 seconds') def wait_for_60_seconds(step): bad_one(step.sentence) @step('the time passed is 1 minute') def time_passed_1_min(step): bad_one(step.sentence) filename = tag_feature_name('timebound') runner = Runner(filename, verbosity=1, tags=['fast-ish']) runner.run() assert_stdout_lines( "." "\n" "1 feature (1 passed)\n" "1 scenario (1 passed)\n" "2 steps (2 passed)\n" ) def test_run_random(): "Randomise the feature order" path = fs.relpath(join(abspath(dirname(__file__)), 'no_features', 'unexistent-folder')) runner = Runner(path, random=True) assert_equals(True, runner.random) with patch.object(random, 'shuffle') as pshuffle: runner.run() pshuffle.assert_called_once_with([]) @with_setup(prepare_stdout) def test_background_with_header(): "Running background with header" from lettuce import step, world @step(ur'the variable "(\w+)" holds (\d+)') def set_variable(step, name, value): setattr(world, name, int(value)) @step(ur'the variable "(\w+)" is equal to (\d+)') def check_variable(step, name, expected): expected = int(expected) expect(world).to.have.property(name).being.equal(expected) @step(ur'the variable "(\w+)" times (\d+) is equal to (\d+)') def multiply_and_verify(step, name, times, expected): times = int(times) expected = int(expected) (getattr(world, name) * times).should.equal(expected) filename = bg_feature_name('header') runner = Runner(filename, verbosity=1) runner.run() assert_stdout_lines( ".." "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "7 steps (7 passed)\n" ) @with_setup(prepare_stdout) def test_background_without_header(): "Running background without header" from lettuce import step, world, before, after actions = {} @before.each_background def register_background_before(background): actions['before'] = unicode(background) @after.each_background def register_background_after(background, results): actions['after'] = { 'background': unicode(background), 'results': results, } @step(ur'the variable "(\w+)" holds (\d+)') def set_variable(step, name, value): setattr(world, name, int(value)) @step(ur'the variable "(\w+)" is equal to (\d+)') def check_variable(step, name, expected): expected = int(expected) expect(world).to.have.property(name).being.equal(expected) @step(ur'the variable "(\w+)" times (\d+) is equal to (\d+)') def multiply_and_verify(step, name, times, expected): times = int(times) expected = int(expected) (getattr(world, name) * times).should.equal(expected) filename = bg_feature_name('naked') runner = Runner(filename, verbosity=1) runner.run() assert_stdout_lines( ".." "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "7 steps (7 passed)\n" ) expect(actions).to.equal({ 'after': { 'results': [True], 'background': u'<Background for feature: Without Header>' }, 'before': u'<Background for feature: Without Header>' }) @with_setup(prepare_stdout) def test_output_background_with_success_colorless(): "A feature with background should print it accordingly under verbosity 3" from lettuce import step @step(ur'the variable "(\w+)" holds (\d+)') @step(ur'the variable "(\w+)" is equal to (\d+)') def just_pass(step, *args): pass filename = bg_feature_name('simple') runner = Runner(filename, verbosity=3) runner.run() assert_stdout_lines( '\n' 'Feature: Simple and successful # tests/functional/bg_features/simple/simple.feature:1\n' ' As the Lettuce maintainer # tests/functional/bg_features/simple/simple.feature:2\n' ' In order to make sure the output is pretty # tests/functional/bg_features/simple/simple.feature:3\n' ' I want to automate its test # tests/functional/bg_features/simple/simple.feature:4\n' '\n' ' Background:\n' ' Given the variable "X" holds 2 # tests/functional/test_runner.py:1239\n' '\n' ' Scenario: multiplication changing the value # tests/functional/bg_features/simple/simple.feature:9\n' ' Given the variable "X" is equal to 2 # tests/functional/test_runner.py:1239\n' '\n' '1 feature (1 passed)\n' '1 scenario (1 passed)\n' '1 step (1 passed)\n' ) @with_setup(prepare_stdout) def test_output_background_with_success_colorful(): "A feature with background should print it accordingly under verbosity 4" from lettuce import step @step(ur'the variable "(\w+)" holds (\d+)') @step(ur'the variable "(\w+)" is equal to (\d+)') def just_pass(step, *args): pass filename = bg_feature_name('simple') runner = Runner(filename, verbosity=4) runner.run() assert_stdout_lines( '\n' '\033[1;37mFeature: Simple and successful \033[1;30m# tests/functional/bg_features/simple/simple.feature:1\033[0m\n' '\033[1;37m As the Lettuce maintainer \033[1;30m# tests/functional/bg_features/simple/simple.feature:2\033[0m\n' '\033[1;37m In order to make sure the output is pretty \033[1;30m# tests/functional/bg_features/simple/simple.feature:3\033[0m\n' '\033[1;37m I want to automate its test \033[1;30m# tests/functional/bg_features/simple/simple.feature:4\033[0m\n' '\n' '\033[1;37m Background:\033[0m\n' '\033[1;30m Given the variable "X" holds 2 \033[1;30m# tests/functional/test_runner.py:1274\033[0m\n' '\033[A\033[1;32m Given the variable "X" holds 2 \033[1;30m# tests/functional/test_runner.py:1274\033[0m\n' '\n' '\033[1;37m Scenario: multiplication changing the value \033[1;30m# tests/functional/bg_features/simple/simple.feature:9\033[0m\n' '\033[1;30m Given the variable "X" is equal to 2 \033[1;30m# tests/functional/test_runner.py:1274\033[0m\n' '\033[A\033[1;32m Given the variable "X" is equal to 2 \033[1;30m# tests/functional/test_runner.py:1274\033[0m\n' '\n' '\033[1;37m1 feature (\033[1;32m1 passed\033[1;37m)\033[0m\n' '\033[1;37m1 scenario (\033[1;32m1 passed\033[1;37m)\033[0m\n' '\033[1;37m1 step (\033[1;32m1 passed\033[1;37m)\033[0m\n' ) @with_setup(prepare_stdout) def test_background_with_scenario_before_hook(): "Running background with before_scenario hook" from lettuce import step, world, before @before.each_scenario def reset_variable(scenario): world.X = None @step(ur'the variable "(\w+)" holds (\d+)') def set_variable(step, name, value): setattr(world, name, int(value)) @step(ur'the variable "(\w+)" is equal to (\d+)') def check_variable(step, name, expected): expected = int(expected) expect(world).to.have.property(name).being.equal(expected) @step(ur'the variable "(\w+)" times (\d+) is equal to (\d+)') def multiply_and_verify(step, name, times, expected): times = int(times) expected = int(expected) (getattr(world, name) * times).should.equal(expected) filename = bg_feature_name('header') runner = Runner(filename, verbosity=1) runner.run() assert_stdout_lines( ".." "\n" "1 feature (1 passed)\n" "2 scenarios (2 passed)\n" "7 steps (7 passed)\n" ) @with_setup(prepare_stderr) def test_many_features_a_file(): "syntax checking: Fail if a file has more than one feature" filename = syntax_feature_name('many_features_a_file') runner = Runner(filename) assert_raises(SystemExit, runner.run) assert_stderr_lines( 'Syntax error at: %s\n' 'A feature file must contain ONLY ONE feature!\n' % filename ) @with_setup(prepare_stderr) def test_feature_without_name(): "syntax checking: Fail on features without name" filename = syntax_feature_name('feature_without_name') runner = Runner(filename) assert_raises(SystemExit, runner.run) assert_stderr_lines( 'Syntax error at: %s\n' 'Features must have a name. e.g: "Feature: This is my name"\n' % filename ) @with_setup(prepare_stderr) def test_feature_missing_scenarios(): "syntax checking: Fail on features missing scenarios" filename = syntax_feature_name("feature_missing_scenarios") runner = Runner(filename) assert_raises(SystemExit, runner.run) assert_stderr_lines( u"Syntax error at: %s\n" "Features must have scenarios.\nPlease refer to the documentation " "available at http://lettuce.it for more information.\n" % filename ) @with_setup(prepare_stdout) def test_output_with_undefined_steps_colorful(): "With colored output, an undefined step should be printed in sequence." runner = Runner(feature_name('undefined_steps'), verbosity=4) runner.run() assert_stdout_lines_with_traceback( '\n' '\x1b[1;37mFeature: Test undefined steps are displayed on console \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.feature:1\x1b[0m\n' '\n' '\x1b[1;37m Scenario: Scenario with undefined step \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.feature:3\x1b[0m\n' '\x1b[1;30m Given this test step passes \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.py:4\x1b[0m\n' '\x1b[A\x1b[1;32m Given this test step passes \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.py:4\x1b[0m\n' '\x1b[0;33m When this test step is undefined \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.feature:5\x1b[0m\n' '\n' '\x1b[1;37m Scenario Outline: Outline scenario with general undefined step \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.feature:7\x1b[0m\n' '\x1b[0;36m Given this test step passes \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.py:4\x1b[0m\n' '\x1b[0;33m When this test step is undefined \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.feature:5\x1b[0m\n' '\x1b[0;36m Then <in> squared is <out> \x1b[1;30m# tests/functional/output_features/undefined_steps/undefined_steps.py:8\x1b[0m\n' '\n' '\x1b[1;37m Examples:\x1b[0m\n' '\x1b[0;36m \x1b[1;37m |\x1b[0;36m in\x1b[1;37m |\x1b[0;36m out\x1b[1;37m |\x1b[0;36m\x1b[0m\n' '\x1b[1;32m \x1b[1;37m |\x1b[1;32m 1 \x1b[1;37m |\x1b[1;32m 1 \x1b[1;37m |\x1b[1;32m\x1b[0m\n' '\x1b[1;32m \x1b[1;37m |\x1b[1;32m 2 \x1b[1;37m |\x1b[1;32m 4 \x1b[1;37m |\x1b[1;32m\x1b[0m\n' '\n' '\x1b[1;37m1 feature (\x1b[0;31m0 passed\x1b[1;37m)\x1b[0m\n' '\x1b[1;37m3 scenarios (\x1b[0;31m0 passed\x1b[1;37m)\x1b[0m\n' '\x1b[1;37m8 steps (\x1b[0;36m2 skipped\x1b[1;37m, \x1b[0;33m3 undefined\x1b[1;37m, \x1b[1;32m3 passed\x1b[1;37m)\x1b[0m\n' '\n' '\x1b[0;33mYou can implement step definitions for undefined steps with these snippets:\n' '\n' '# -*- coding: utf-8 -*-\n' 'from lettuce import step\n' '\n' "@step(u'When this test step is undefined')\n" 'def when_this_test_step_is_undefined(step):\n' " assert False, 'This step must be implemented'\x1b[0m\n" )
gpl-3.0
-5,035,576,027,792,273,000
51.14446
197
0.615818
false
Vignesh2208/Awlsim
awlsim/core/systemblocks/systemblocks.py
1
3090
# -*- coding: utf-8 -*- # # AWL simulator - System-blocks # # Copyright 2012-2015 Michael Buesch <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # from __future__ import division, absolute_import, print_function, unicode_literals from awlsim.common.compat import * #from awlsim.core.instructions.insn_generic_call cimport * #@cy from awlsim.core.instructions.insn_generic_call import * #@nocy from awlsim.core.blocks import * from awlsim.core.translator import * from awlsim.core.identifier import * class SystemBlock(StaticCodeBlock): # The block identification. To be overridden by the subclass. # The tuple is: (number, name, short_description) name = (-1, "<unknown>", None) isSystemBlock = True def __init__(self, cpu, interface): insns = [ AwlInsn_GENERIC_CALL(cpu, self.run), ] StaticCodeBlock.__init__(self, insns, self.name[0], interface) self.cpu = cpu def run(self): # Reimplement this method raise NotImplementedError # Fetch the value of a block-interface field. def fetchInterfaceFieldByName(self, name): return self.cpu.fetch(self.__interfaceOpers[name]) # Store a value to a block-interface field. def storeInterfaceFieldByName(self, name, value): return self.cpu.store(self.__interfaceOpers[name], value) # Resolve hard wired symbolic accesses # (i.e. accesses not done in AWL instructions) def resolveSymbols(self): super(SystemBlock, self).resolveSymbols() resolver = AwlSymResolver(self.cpu) self.__interfaceOpers = {} for field in self.interface.fields_IN_OUT_INOUT_STAT: # Create a scratch-operator for the access. offset = AwlOffset(None, None) offset.identChain = AwlDataIdentChain.parseString(field.name) oper = AwlOperator(AwlOperator.NAMED_LOCAL, 0, offset) # Resolve the scratch-operator. oper = resolver.resolveNamedLocal(block=self, insn=None, oper=oper, pointer=False,allowWholeArrayAccess=True) # Store the scratch operator for later use. self.__interfaceOpers[field.name] = oper class SFBInterface(FBInterface): pass class SFB(SystemBlock): isFB = True def __init__(self, cpu): SystemBlock.__init__(self, cpu, SFBInterface()) def __repr__(self): return "SFB %d" % self.index class SFCInterface(FCInterface): pass class SFC(SystemBlock): isFC = True def __init__(self, cpu): SystemBlock.__init__(self, cpu, SFCInterface()) def __repr__(self): return "SFC %d" % self.index
gpl-2.0
-159,100,157,252,867,070
30.212121
82
0.731392
false
dscho/hg
i18n/check-translation.py
1
7912
#!/usr/bin/env python # # check-translation.py - check Mercurial specific translation problems import polib import re scanners = [] checkers = [] def scanner(): def decorator(func): scanners.append(func) return func return decorator def levelchecker(level, msgidpat): def decorator(func): if msgidpat: match = re.compile(msgidpat).search else: match = lambda msgid: True checkers.append((func, level)) func.match = match return func return decorator def match(checker, pe): """Examine whether POEntry "pe" is target of specified checker or not """ if not checker.match(pe.msgid): return # examine suppression by translator comment nochecker = 'no-%s-check' % checker.__name__ for tc in pe.tcomment.split(): if nochecker == tc: return return True #################### def fatalchecker(msgidpat=None): return levelchecker('fatal', msgidpat) @fatalchecker(r'\$\$') def promptchoice(pe): """Check translation of the string given to "ui.promptchoice()" >>> pe = polib.POEntry( ... msgid ='prompt$$missing &sep$$missing &amp$$followed by &none', ... msgstr='prompt missing &sep$$missing amp$$followed by none&') >>> match(promptchoice, pe) True >>> for e in promptchoice(pe): print e number of choices differs between msgid and msgstr msgstr has invalid choice missing '&' msgstr has invalid '&' followed by none """ idchoices = [c.rstrip(' ') for c in pe.msgid.split('$$')[1:]] strchoices = [c.rstrip(' ') for c in pe.msgstr.split('$$')[1:]] if len(idchoices) != len(strchoices): yield "number of choices differs between msgid and msgstr" indices = [(c, c.find('&')) for c in strchoices] if [c for c, i in indices if i == -1]: yield "msgstr has invalid choice missing '&'" if [c for c, i in indices if len(c) == i + 1]: yield "msgstr has invalid '&' followed by none" deprecatedpe = None @scanner() def deprecatedsetup(pofile): pes = [p for p in pofile if p.msgid == '(DEPRECATED)' and p.msgstr] if len(pes): global deprecatedpe deprecatedpe = pes[0] @fatalchecker(r'\(DEPRECATED\)') def deprecated(pe): """Check for DEPRECATED >>> ped = polib.POEntry( ... msgid = '(DEPRECATED)', ... msgstr= '(DETACERPED)') >>> deprecatedsetup([ped]) >>> pe = polib.POEntry( ... msgid = 'Something (DEPRECATED)', ... msgstr= 'something (DEPRECATED)') >>> match(deprecated, pe) True >>> for e in deprecated(pe): print e >>> pe = polib.POEntry( ... msgid = 'Something (DEPRECATED)', ... msgstr= 'something (DETACERPED)') >>> match(deprecated, pe) True >>> for e in deprecated(pe): print e >>> pe = polib.POEntry( ... msgid = 'Something (DEPRECATED)', ... msgstr= 'something') >>> match(deprecated, pe) True >>> for e in deprecated(pe): print e msgstr inconsistently translated (DEPRECATED) >>> pe = polib.POEntry( ... msgid = 'Something (DEPRECATED, foo bar)', ... msgstr= 'something (DETACERPED, foo bar)') >>> match(deprecated, pe) """ if not ('(DEPRECATED)' in pe.msgstr or (deprecatedpe and deprecatedpe.msgstr in pe.msgstr)): yield "msgstr inconsistently translated (DEPRECATED)" #################### def warningchecker(msgidpat=None): return levelchecker('warning', msgidpat) @warningchecker() def taildoublecolons(pe): """Check equality of tail '::'-ness between msgid and msgstr >>> pe = polib.POEntry( ... msgid ='ends with ::', ... msgstr='ends with ::') >>> for e in taildoublecolons(pe): print e >>> pe = polib.POEntry( ... msgid ='ends with ::', ... msgstr='ends without double-colons') >>> for e in taildoublecolons(pe): print e tail '::'-ness differs between msgid and msgstr >>> pe = polib.POEntry( ... msgid ='ends without double-colons', ... msgstr='ends with ::') >>> for e in taildoublecolons(pe): print e tail '::'-ness differs between msgid and msgstr """ if pe.msgid.endswith('::') != pe.msgstr.endswith('::'): yield "tail '::'-ness differs between msgid and msgstr" @warningchecker() def indentation(pe): """Check equality of initial indentation between msgid and msgstr This may report unexpected warning, because this doesn't aware the syntax of rst document and the context of msgstr. >>> pe = polib.POEntry( ... msgid =' indented text', ... msgstr=' narrowed indentation') >>> for e in indentation(pe): print e initial indentation width differs betweeen msgid and msgstr """ idindent = len(pe.msgid) - len(pe.msgid.lstrip()) strindent = len(pe.msgstr) - len(pe.msgstr.lstrip()) if idindent != strindent: yield "initial indentation width differs betweeen msgid and msgstr" #################### def check(pofile, fatal=True, warning=False): targetlevel = { 'fatal': fatal, 'warning': warning } targetcheckers = [(checker, level) for checker, level in checkers if targetlevel[level]] if not targetcheckers: return [] detected = [] for checker in scanners: checker(pofile) for pe in pofile.translated_entries(): errors = [] for checker, level in targetcheckers: if match(checker, pe): errors.extend((level, checker.__name__, error) for error in checker(pe)) if errors: detected.append((pe, errors)) return detected ######################################## if __name__ == "__main__": import sys import optparse optparser = optparse.OptionParser("""%prog [options] pofile ... This checks Mercurial specific translation problems in specified '*.po' files. Each detected problems are shown in the format below:: filename:linenum:type(checker): problem detail ..... "type" is "fatal" or "warning". "checker" is the name of the function detecting corresponded error. Checking by checker "foo" on the specific msgstr can be suppressed by the "translator comment" like below. Multiple "no-xxxx-check" should be separated by whitespaces:: # no-foo-check msgid = "....." msgstr = "....." """) optparser.add_option("", "--warning", help="show also warning level problems", action="store_true") optparser.add_option("", "--doctest", help="run doctest of this tool, instead of check", action="store_true") (options, args) = optparser.parse_args() if options.doctest: import os if 'TERM' in os.environ: del os.environ['TERM'] import doctest failures, tests = doctest.testmod() sys.exit(failures and 1 or 0) # replace polib._POFileParser to show linenum of problematic msgstr class ExtPOFileParser(polib._POFileParser): def process(self, symbol, linenum): super(ExtPOFileParser, self).process(symbol, linenum) if symbol == 'MS': # msgstr self.current_entry.linenum = linenum polib._POFileParser = ExtPOFileParser detected = [] warning = options.warning for f in args: detected.extend((f, pe, errors) for pe, errors in check(polib.pofile(f), warning=warning)) if detected: for f, pe, errors in detected: for level, checker, error in errors: sys.stderr.write('%s:%d:%s(%s): %s\n' % (f, pe.linenum, level, checker, error)) sys.exit(1)
gpl-2.0
8,894,772,293,302,084,000
31.42623
75
0.587715
false
moverlan/LOTlib
LOTlib/Hypotheses/RecursiveLOTHypothesis.py
1
2953
from LOTHypothesis import LOTHypothesis, raise_exception, evaluate_expression from LOTlib.Evaluation.EvaluationException import RecursionDepthException, TooBigException, EvaluationException class RecursiveLOTHypothesis(LOTHypothesis): """ A LOTHypothesis that permits recursive calls to itself via the primitive "recurse" (previously, L). Here, RecursiveLOTHypothesis.__call__ does essentially the same thing as LOTHypothesis.__call__, but it binds the symbol "recurse" to RecursiveLOTHypothesis.recursive_call so that recursion is processed internally. For a Demo, see LOTlib.Examples.Number NOTE: Pre Nov2014, this was computed with some fanciness in evaluate_expression that automatically appended the Y combinator. This change was made to simplify and speed things up. """ def __init__(self, grammar, recurse='recurse_', recurse_bound=25, args=['x'], **kwargs): """ Initializer. recurse gives the name for the recursion operation internally. """ # save recurse symbol self.recurse = recurse self.recursive_depth_bound = recurse_bound # how deep can we recurse? self.recursive_call_depth = 0 # how far down have we recursed? # automatically put 'recurse' onto kwargs['args'] assert recurse not in args # not already specified args = [recurse] + args LOTHypothesis.__init__(self, grammar, args=args, **kwargs) def recursive_call(self, *args): """ This gets called internally on recursive calls. It keeps track of the depth to allow us to escape """ self.recursive_call_depth += 1 if self.recursive_call_depth > self.recursive_depth_bound: raise RecursionDepthException return LOTHypothesis.__call__(self, *args) def __call__(self, *args): """ The main calling function. Resets recursive_call_depth and then calls """ self.recursive_call_depth = 0 return LOTHypothesis.__call__(self, *args) def compile_function(self): """ Called in set_value to make a function. Here, we defaultly wrap in recursive_call as our argument to "recurse" so that recursive_call gets called by the symbol self.recurse """ """Called in set_value to compile into a function.""" if self.value.count_nodes() > self.maxnodes: return (lambda *args: raise_exception(TooBigException)) else: try: # Here, we evaluate it, and then defaultly pass recursive_call as the first "recurse" f = evaluate_expression(str(self)) return lambda *args: f(self.recursive_call, *args) except Exception as e: print "# Warning: failed to execute evaluate_expression on " + str(self) print "# ", e return (lambda *args: raise_exception(EvaluationException) )
gpl-3.0
-8,645,650,876,244,384,000
42.441176
129
0.655266
false
Azure/azure-sdk-for-python
sdk/synapse/azure-synapse-accesscontrol/azure/synapse/accesscontrol/models/__init__.py
1
2298
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import CheckAccessDecision from ._models_py3 import CheckPrincipalAccessRequest from ._models_py3 import CheckPrincipalAccessResponse from ._models_py3 import ErrorContract from ._models_py3 import ErrorDetail from ._models_py3 import ErrorResponse from ._models_py3 import RequiredAction from ._models_py3 import RoleAssignmentDetails from ._models_py3 import RoleAssignmentDetailsList from ._models_py3 import RoleAssignmentRequest from ._models_py3 import SubjectInfo from ._models_py3 import SynapseRbacPermission from ._models_py3 import SynapseRoleDefinition except (SyntaxError, ImportError): from ._models import CheckAccessDecision # type: ignore from ._models import CheckPrincipalAccessRequest # type: ignore from ._models import CheckPrincipalAccessResponse # type: ignore from ._models import ErrorContract # type: ignore from ._models import ErrorDetail # type: ignore from ._models import ErrorResponse # type: ignore from ._models import RequiredAction # type: ignore from ._models import RoleAssignmentDetails # type: ignore from ._models import RoleAssignmentDetailsList # type: ignore from ._models import RoleAssignmentRequest # type: ignore from ._models import SubjectInfo # type: ignore from ._models import SynapseRbacPermission # type: ignore from ._models import SynapseRoleDefinition # type: ignore __all__ = [ 'CheckAccessDecision', 'CheckPrincipalAccessRequest', 'CheckPrincipalAccessResponse', 'ErrorContract', 'ErrorDetail', 'ErrorResponse', 'RequiredAction', 'RoleAssignmentDetails', 'RoleAssignmentDetailsList', 'RoleAssignmentRequest', 'SubjectInfo', 'SynapseRbacPermission', 'SynapseRoleDefinition', ]
mit
1,541,626,679,146,592,500
43.192308
94
0.696258
false
ArcherSys/ArcherSys
Lib/multiprocessing/connection.py
1
91847
<<<<<<< HEAD <<<<<<< HEAD # # A higher level module for using sockets (or Windows named pipes) # # multiprocessing/connection.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # __all__ = [ 'Client', 'Listener', 'Pipe', 'wait' ] import io import os import sys import socket import struct import time import tempfile import itertools import _multiprocessing from . import reduction from . import util from . import AuthenticationError, BufferTooShort from .reduction import ForkingPickler try: import _winapi from _winapi import WAIT_OBJECT_0, WAIT_ABANDONED_0, WAIT_TIMEOUT, INFINITE except ImportError: if sys.platform == 'win32': raise _winapi = None # # # BUFSIZE = 8192 # A very generous timeout when it comes to local connections... CONNECTION_TIMEOUT = 20. _mmap_counter = itertools.count() default_family = 'AF_INET' families = ['AF_INET'] if hasattr(socket, 'AF_UNIX'): default_family = 'AF_UNIX' families += ['AF_UNIX'] if sys.platform == 'win32': default_family = 'AF_PIPE' families += ['AF_PIPE'] def _init_timeout(timeout=CONNECTION_TIMEOUT): return time.time() + timeout def _check_timeout(t): return time.time() > t # # # def arbitrary_address(family): ''' Return an arbitrary free address for the given family ''' if family == 'AF_INET': return ('localhost', 0) elif family == 'AF_UNIX': return tempfile.mktemp(prefix='listener-', dir=util.get_temp_dir()) elif family == 'AF_PIPE': return tempfile.mktemp(prefix=r'\\.\pipe\pyc-%d-%d-' % (os.getpid(), next(_mmap_counter)), dir="") else: raise ValueError('unrecognized family') def _validate_family(family): ''' Checks if the family is valid for the current environment. ''' if sys.platform != 'win32' and family == 'AF_PIPE': raise ValueError('Family %s is not recognized.' % family) if sys.platform == 'win32' and family == 'AF_UNIX': # double check if not hasattr(socket, family): raise ValueError('Family %s is not recognized.' % family) def address_type(address): ''' Return the types of the address This can be 'AF_INET', 'AF_UNIX', or 'AF_PIPE' ''' if type(address) == tuple: return 'AF_INET' elif type(address) is str and address.startswith('\\\\'): return 'AF_PIPE' elif type(address) is str: return 'AF_UNIX' else: raise ValueError('address type of %r unrecognized' % address) # # Connection classes # class _ConnectionBase: _handle = None def __init__(self, handle, readable=True, writable=True): handle = handle.__index__() if handle < 0: raise ValueError("invalid handle") if not readable and not writable: raise ValueError( "at least one of `readable` and `writable` must be True") self._handle = handle self._readable = readable self._writable = writable # XXX should we use util.Finalize instead of a __del__? def __del__(self): if self._handle is not None: self._close() def _check_closed(self): if self._handle is None: raise OSError("handle is closed") def _check_readable(self): if not self._readable: raise OSError("connection is write-only") def _check_writable(self): if not self._writable: raise OSError("connection is read-only") def _bad_message_length(self): if self._writable: self._readable = False else: self.close() raise OSError("bad message length") @property def closed(self): """True if the connection is closed""" return self._handle is None @property def readable(self): """True if the connection is readable""" return self._readable @property def writable(self): """True if the connection is writable""" return self._writable def fileno(self): """File descriptor or handle of the connection""" self._check_closed() return self._handle def close(self): """Close the connection""" if self._handle is not None: try: self._close() finally: self._handle = None def send_bytes(self, buf, offset=0, size=None): """Send the bytes data from a bytes-like object""" self._check_closed() self._check_writable() m = memoryview(buf) # HACK for byte-indexing of non-bytewise buffers (e.g. array.array) if m.itemsize > 1: m = memoryview(bytes(m)) n = len(m) if offset < 0: raise ValueError("offset is negative") if n < offset: raise ValueError("buffer length < offset") if size is None: size = n - offset elif size < 0: raise ValueError("size is negative") elif offset + size > n: raise ValueError("buffer length < offset + size") self._send_bytes(m[offset:offset + size]) def send(self, obj): """Send a (picklable) object""" self._check_closed() self._check_writable() self._send_bytes(ForkingPickler.dumps(obj)) def recv_bytes(self, maxlength=None): """ Receive bytes data as a bytes object. """ self._check_closed() self._check_readable() if maxlength is not None and maxlength < 0: raise ValueError("negative maxlength") buf = self._recv_bytes(maxlength) if buf is None: self._bad_message_length() return buf.getvalue() def recv_bytes_into(self, buf, offset=0): """ Receive bytes data into a writeable bytes-like object. Return the number of bytes read. """ self._check_closed() self._check_readable() with memoryview(buf) as m: # Get bytesize of arbitrary buffer itemsize = m.itemsize bytesize = itemsize * len(m) if offset < 0: raise ValueError("negative offset") elif offset > bytesize: raise ValueError("offset too large") result = self._recv_bytes() size = result.tell() if bytesize < offset + size: raise BufferTooShort(result.getvalue()) # Message can fit in dest result.seek(0) result.readinto(m[offset // itemsize : (offset + size) // itemsize]) return size def recv(self): """Receive a (picklable) object""" self._check_closed() self._check_readable() buf = self._recv_bytes() return ForkingPickler.loads(buf.getbuffer()) def poll(self, timeout=0.0): """Whether there is any input available to be read""" self._check_closed() self._check_readable() return self._poll(timeout) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() if _winapi: class PipeConnection(_ConnectionBase): """ Connection class based on a Windows named pipe. Overlapped I/O is used, so the handles must have been created with FILE_FLAG_OVERLAPPED. """ _got_empty_message = False def _close(self, _CloseHandle=_winapi.CloseHandle): _CloseHandle(self._handle) def _send_bytes(self, buf): ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nwritten, err = ov.GetOverlappedResult(True) assert err == 0 assert nwritten == len(buf) def _recv_bytes(self, maxsize=None): if self._got_empty_message: self._got_empty_message = False return io.BytesIO() else: bsize = 128 if maxsize is None else min(maxsize, 128) try: ov, err = _winapi.ReadFile(self._handle, bsize, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nread, err = ov.GetOverlappedResult(True) if err == 0: f = io.BytesIO() f.write(ov.getbuffer()) return f elif err == _winapi.ERROR_MORE_DATA: return self._get_more_data(ov, maxsize) except OSError as e: if e.winerror == _winapi.ERROR_BROKEN_PIPE: raise EOFError else: raise raise RuntimeError("shouldn't get here; expected KeyboardInterrupt") def _poll(self, timeout): if (self._got_empty_message or _winapi.PeekNamedPipe(self._handle)[0] != 0): return True return bool(wait([self], timeout)) def _get_more_data(self, ov, maxsize): buf = ov.getbuffer() f = io.BytesIO() f.write(buf) left = _winapi.PeekNamedPipe(self._handle)[1] assert left > 0 if maxsize is not None and len(buf) + left > maxsize: self._bad_message_length() ov, err = _winapi.ReadFile(self._handle, left, overlapped=True) rbytes, err = ov.GetOverlappedResult(True) assert err == 0 assert rbytes == left f.write(ov.getbuffer()) return f class Connection(_ConnectionBase): """ Connection class based on an arbitrary file descriptor (Unix only), or a socket handle (Windows). """ if _winapi: def _close(self, _close=_multiprocessing.closesocket): _close(self._handle) _write = _multiprocessing.send _read = _multiprocessing.recv else: def _close(self, _close=os.close): _close(self._handle) _write = os.write _read = os.read def _send(self, buf, write=_write): remaining = len(buf) while True: try: n = write(self._handle, buf) except InterruptedError: continue remaining -= n if remaining == 0: break buf = buf[n:] def _recv(self, size, read=_read): buf = io.BytesIO() handle = self._handle remaining = size while remaining > 0: try: chunk = read(handle, remaining) except InterruptedError: continue n = len(chunk) if n == 0: if remaining == size: raise EOFError else: raise OSError("got end of file during message") buf.write(chunk) remaining -= n return buf def _send_bytes(self, buf): n = len(buf) # For wire compatibility with 3.2 and lower header = struct.pack("!i", n) if n > 16384: # The payload is large so Nagle's algorithm won't be triggered # and we'd better avoid the cost of concatenation. chunks = [header, buf] elif n > 0: # Issue # 20540: concatenate before sending, to avoid delays due # to Nagle's algorithm on a TCP socket. chunks = [header + buf] else: # This code path is necessary to avoid "broken pipe" errors # when sending a 0-length buffer if the other end closed the pipe. chunks = [header] for chunk in chunks: self._send(chunk) def _recv_bytes(self, maxsize=None): buf = self._recv(4) size, = struct.unpack("!i", buf.getvalue()) if maxsize is not None and size > maxsize: return None return self._recv(size) def _poll(self, timeout): r = wait([self], timeout) return bool(r) # # Public functions # class Listener(object): ''' Returns a listener object. This is a wrapper for a bound socket which is 'listening' for connections, or for a Windows named pipe. ''' def __init__(self, address=None, family=None, backlog=1, authkey=None): family = family or (address and address_type(address)) \ or default_family address = address or arbitrary_address(family) _validate_family(family) if family == 'AF_PIPE': self._listener = PipeListener(address, backlog) else: self._listener = SocketListener(address, family, backlog) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') self._authkey = authkey def accept(self): ''' Accept a connection on the bound socket or named pipe of `self`. Returns a `Connection` object. ''' if self._listener is None: raise OSError('listener is closed') c = self._listener.accept() if self._authkey: deliver_challenge(c, self._authkey) answer_challenge(c, self._authkey) return c def close(self): ''' Close the bound socket or named pipe of `self`. ''' if self._listener is not None: self._listener.close() self._listener = None address = property(lambda self: self._listener._address) last_accepted = property(lambda self: self._listener._last_accepted) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def Client(address, family=None, authkey=None): ''' Returns a connection to the address of a `Listener` ''' family = family or address_type(address) _validate_family(family) if family == 'AF_PIPE': c = PipeClient(address) else: c = SocketClient(address) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') if authkey is not None: answer_challenge(c, authkey) deliver_challenge(c, authkey) return c if sys.platform != 'win32': def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' if duplex: s1, s2 = socket.socketpair() s1.setblocking(True) s2.setblocking(True) c1 = Connection(s1.detach()) c2 = Connection(s2.detach()) else: fd1, fd2 = os.pipe() c1 = Connection(fd1, writable=False) c2 = Connection(fd2, readable=False) return c1, c2 else: def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' address = arbitrary_address('AF_PIPE') if duplex: openmode = _winapi.PIPE_ACCESS_DUPLEX access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE obsize, ibsize = BUFSIZE, BUFSIZE else: openmode = _winapi.PIPE_ACCESS_INBOUND access = _winapi.GENERIC_WRITE obsize, ibsize = 0, BUFSIZE h1 = _winapi.CreateNamedPipe( address, openmode | _winapi.FILE_FLAG_OVERLAPPED | _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, 1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER, # default security descriptor: the handle cannot be inherited _winapi.NULL ) h2 = _winapi.CreateFile( address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) _winapi.SetNamedPipeHandleState( h2, _winapi.PIPE_READMODE_MESSAGE, None, None ) overlapped = _winapi.ConnectNamedPipe(h1, overlapped=True) _, err = overlapped.GetOverlappedResult(True) assert err == 0 c1 = PipeConnection(h1, writable=duplex) c2 = PipeConnection(h2, readable=duplex) return c1, c2 # # Definitions for connections based on sockets # class SocketListener(object): ''' Representation of a socket which is bound to an address and listening ''' def __init__(self, address, family, backlog=1): self._socket = socket.socket(getattr(socket, family)) try: # SO_REUSEADDR has different semantics on Windows (issue #2550). if os.name == 'posix': self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._socket.setblocking(True) self._socket.bind(address) self._socket.listen(backlog) self._address = self._socket.getsockname() except OSError: self._socket.close() raise self._family = family self._last_accepted = None if family == 'AF_UNIX': self._unlink = util.Finalize( self, os.unlink, args=(address,), exitpriority=0 ) else: self._unlink = None def accept(self): while True: try: s, self._last_accepted = self._socket.accept() except InterruptedError: pass else: break s.setblocking(True) return Connection(s.detach()) def close(self): self._socket.close() if self._unlink is not None: self._unlink() def SocketClient(address): ''' Return a connection object connected to the socket given by `address` ''' family = address_type(address) with socket.socket( getattr(socket, family) ) as s: s.setblocking(True) s.connect(address) return Connection(s.detach()) # # Definitions for connections based on named pipes # if sys.platform == 'win32': class PipeListener(object): ''' Representation of a named pipe ''' def __init__(self, address, backlog=None): self._address = address self._handle_queue = [self._new_handle(first=True)] self._last_accepted = None util.sub_debug('listener created with address=%r', self._address) self.close = util.Finalize( self, PipeListener._finalize_pipe_listener, args=(self._handle_queue, self._address), exitpriority=0 ) def _new_handle(self, first=False): flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED if first: flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE return _winapi.CreateNamedPipe( self._address, flags, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, _winapi.PIPE_UNLIMITED_INSTANCES, BUFSIZE, BUFSIZE, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL ) def accept(self): self._handle_queue.append(self._new_handle()) handle = self._handle_queue.pop(0) try: ov = _winapi.ConnectNamedPipe(handle, overlapped=True) except OSError as e: if e.winerror != _winapi.ERROR_NO_DATA: raise # ERROR_NO_DATA can occur if a client has already connected, # written data and then disconnected -- see Issue 14725. else: try: res = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) except: ov.cancel() _winapi.CloseHandle(handle) raise finally: _, err = ov.GetOverlappedResult(True) assert err == 0 return PipeConnection(handle) @staticmethod def _finalize_pipe_listener(queue, address): util.sub_debug('closing listener with address=%r', address) for handle in queue: _winapi.CloseHandle(handle) def PipeClient(address): ''' Return a connection object connected to the pipe given by `address` ''' t = _init_timeout() while 1: try: _winapi.WaitNamedPipe(address, 1000) h = _winapi.CreateFile( address, _winapi.GENERIC_READ | _winapi.GENERIC_WRITE, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) except OSError as e: if e.winerror not in (_winapi.ERROR_SEM_TIMEOUT, _winapi.ERROR_PIPE_BUSY) or _check_timeout(t): raise else: break else: raise _winapi.SetNamedPipeHandleState( h, _winapi.PIPE_READMODE_MESSAGE, None, None ) return PipeConnection(h) # # Authentication stuff # MESSAGE_LENGTH = 20 CHALLENGE = b'#CHALLENGE#' WELCOME = b'#WELCOME#' FAILURE = b'#FAILURE#' def deliver_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = os.urandom(MESSAGE_LENGTH) connection.send_bytes(CHALLENGE + message) digest = hmac.new(authkey, message, 'md5').digest() response = connection.recv_bytes(256) # reject large message if response == digest: connection.send_bytes(WELCOME) else: connection.send_bytes(FAILURE) raise AuthenticationError('digest received was wrong') def answer_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = connection.recv_bytes(256) # reject large message assert message[:len(CHALLENGE)] == CHALLENGE, 'message = %r' % message message = message[len(CHALLENGE):] digest = hmac.new(authkey, message, 'md5').digest() connection.send_bytes(digest) response = connection.recv_bytes(256) # reject large message if response != WELCOME: raise AuthenticationError('digest sent was rejected') # # Support for using xmlrpclib for serialization # class ConnectionWrapper(object): def __init__(self, conn, dumps, loads): self._conn = conn self._dumps = dumps self._loads = loads for attr in ('fileno', 'close', 'poll', 'recv_bytes', 'send_bytes'): obj = getattr(conn, attr) setattr(self, attr, obj) def send(self, obj): s = self._dumps(obj) self._conn.send_bytes(s) def recv(self): s = self._conn.recv_bytes() return self._loads(s) def _xml_dumps(obj): return xmlrpclib.dumps((obj,), None, None, None, 1).encode('utf-8') def _xml_loads(s): (obj,), method = xmlrpclib.loads(s.decode('utf-8')) return obj class XmlListener(Listener): def accept(self): global xmlrpclib import xmlrpc.client as xmlrpclib obj = Listener.accept(self) return ConnectionWrapper(obj, _xml_dumps, _xml_loads) def XmlClient(*args, **kwds): global xmlrpclib import xmlrpc.client as xmlrpclib return ConnectionWrapper(Client(*args, **kwds), _xml_dumps, _xml_loads) # # Wait # if sys.platform == 'win32': def _exhaustive_wait(handles, timeout): # Return ALL handles which are currently signalled. (Only # returning the first signalled might create starvation issues.) L = list(handles) ready = [] while L: res = _winapi.WaitForMultipleObjects(L, False, timeout) if res == WAIT_TIMEOUT: break elif WAIT_OBJECT_0 <= res < WAIT_OBJECT_0 + len(L): res -= WAIT_OBJECT_0 elif WAIT_ABANDONED_0 <= res < WAIT_ABANDONED_0 + len(L): res -= WAIT_ABANDONED_0 else: raise RuntimeError('Should not get here') ready.append(L[res]) L = L[res+1:] timeout = 0 return ready _ready_errors = {_winapi.ERROR_BROKEN_PIPE, _winapi.ERROR_NETNAME_DELETED} def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' if timeout is None: timeout = INFINITE elif timeout < 0: timeout = 0 else: timeout = int(timeout * 1000 + 0.5) object_list = list(object_list) waithandle_to_obj = {} ov_list = [] ready_objects = set() ready_handles = set() try: for o in object_list: try: fileno = getattr(o, 'fileno') except AttributeError: waithandle_to_obj[o.__index__()] = o else: # start an overlapped read of length zero try: ov, err = _winapi.ReadFile(fileno(), 0, True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err == _winapi.ERROR_IO_PENDING: ov_list.append(ov) waithandle_to_obj[ov.event] = o else: # If o.fileno() is an overlapped pipe handle and # err == 0 then there is a zero length message # in the pipe, but it HAS NOT been consumed. ready_objects.add(o) timeout = 0 ready_handles = _exhaustive_wait(waithandle_to_obj.keys(), timeout) finally: # request that overlapped reads stop for ov in ov_list: ov.cancel() # wait for all overlapped reads to stop for ov in ov_list: try: _, err = ov.GetOverlappedResult(True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err != _winapi.ERROR_OPERATION_ABORTED: o = waithandle_to_obj[ov.event] ready_objects.add(o) if err == 0: # If o.fileno() is an overlapped pipe handle then # a zero length message HAS been consumed. if hasattr(o, '_got_empty_message'): o._got_empty_message = True ready_objects.update(waithandle_to_obj[h] for h in ready_handles) return [o for o in object_list if o in ready_objects] else: import selectors # poll/select have the advantage of not requiring any extra file # descriptor, contrarily to epoll/kqueue (also, they require a single # syscall). if hasattr(selectors, 'PollSelector'): _WaitSelector = selectors.PollSelector else: _WaitSelector = selectors.SelectSelector def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' with _WaitSelector() as selector: for obj in object_list: selector.register(obj, selectors.EVENT_READ) if timeout is not None: deadline = time.time() + timeout while True: ready = selector.select(timeout) if ready: return [key.fileobj for (key, events) in ready] else: if timeout is not None: timeout = deadline - time.time() if timeout < 0: return ready # # Make connection and socket objects sharable if possible # if sys.platform == 'win32': def reduce_connection(conn): handle = conn.fileno() with socket.fromfd(handle, socket.AF_INET, socket.SOCK_STREAM) as s: from . import resource_sharer ds = resource_sharer.DupSocket(s) return rebuild_connection, (ds, conn.readable, conn.writable) def rebuild_connection(ds, readable, writable): sock = ds.detach() return Connection(sock.detach(), readable, writable) reduction.register(Connection, reduce_connection) def reduce_pipe_connection(conn): access = ((_winapi.FILE_GENERIC_READ if conn.readable else 0) | (_winapi.FILE_GENERIC_WRITE if conn.writable else 0)) dh = reduction.DupHandle(conn.fileno(), access) return rebuild_pipe_connection, (dh, conn.readable, conn.writable) def rebuild_pipe_connection(dh, readable, writable): handle = dh.detach() return PipeConnection(handle, readable, writable) reduction.register(PipeConnection, reduce_pipe_connection) else: def reduce_connection(conn): df = reduction.DupFd(conn.fileno()) return rebuild_connection, (df, conn.readable, conn.writable) def rebuild_connection(df, readable, writable): fd = df.detach() return Connection(fd, readable, writable) reduction.register(Connection, reduce_connection) ======= # # A higher level module for using sockets (or Windows named pipes) # # multiprocessing/connection.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # __all__ = [ 'Client', 'Listener', 'Pipe', 'wait' ] import io import os import sys import socket import struct import time import tempfile import itertools import _multiprocessing from . import reduction from . import util from . import AuthenticationError, BufferTooShort from .reduction import ForkingPickler try: import _winapi from _winapi import WAIT_OBJECT_0, WAIT_ABANDONED_0, WAIT_TIMEOUT, INFINITE except ImportError: if sys.platform == 'win32': raise _winapi = None # # # BUFSIZE = 8192 # A very generous timeout when it comes to local connections... CONNECTION_TIMEOUT = 20. _mmap_counter = itertools.count() default_family = 'AF_INET' families = ['AF_INET'] if hasattr(socket, 'AF_UNIX'): default_family = 'AF_UNIX' families += ['AF_UNIX'] if sys.platform == 'win32': default_family = 'AF_PIPE' families += ['AF_PIPE'] def _init_timeout(timeout=CONNECTION_TIMEOUT): return time.time() + timeout def _check_timeout(t): return time.time() > t # # # def arbitrary_address(family): ''' Return an arbitrary free address for the given family ''' if family == 'AF_INET': return ('localhost', 0) elif family == 'AF_UNIX': return tempfile.mktemp(prefix='listener-', dir=util.get_temp_dir()) elif family == 'AF_PIPE': return tempfile.mktemp(prefix=r'\\.\pipe\pyc-%d-%d-' % (os.getpid(), next(_mmap_counter)), dir="") else: raise ValueError('unrecognized family') def _validate_family(family): ''' Checks if the family is valid for the current environment. ''' if sys.platform != 'win32' and family == 'AF_PIPE': raise ValueError('Family %s is not recognized.' % family) if sys.platform == 'win32' and family == 'AF_UNIX': # double check if not hasattr(socket, family): raise ValueError('Family %s is not recognized.' % family) def address_type(address): ''' Return the types of the address This can be 'AF_INET', 'AF_UNIX', or 'AF_PIPE' ''' if type(address) == tuple: return 'AF_INET' elif type(address) is str and address.startswith('\\\\'): return 'AF_PIPE' elif type(address) is str: return 'AF_UNIX' else: raise ValueError('address type of %r unrecognized' % address) # # Connection classes # class _ConnectionBase: _handle = None def __init__(self, handle, readable=True, writable=True): handle = handle.__index__() if handle < 0: raise ValueError("invalid handle") if not readable and not writable: raise ValueError( "at least one of `readable` and `writable` must be True") self._handle = handle self._readable = readable self._writable = writable # XXX should we use util.Finalize instead of a __del__? def __del__(self): if self._handle is not None: self._close() def _check_closed(self): if self._handle is None: raise OSError("handle is closed") def _check_readable(self): if not self._readable: raise OSError("connection is write-only") def _check_writable(self): if not self._writable: raise OSError("connection is read-only") def _bad_message_length(self): if self._writable: self._readable = False else: self.close() raise OSError("bad message length") @property def closed(self): """True if the connection is closed""" return self._handle is None @property def readable(self): """True if the connection is readable""" return self._readable @property def writable(self): """True if the connection is writable""" return self._writable def fileno(self): """File descriptor or handle of the connection""" self._check_closed() return self._handle def close(self): """Close the connection""" if self._handle is not None: try: self._close() finally: self._handle = None def send_bytes(self, buf, offset=0, size=None): """Send the bytes data from a bytes-like object""" self._check_closed() self._check_writable() m = memoryview(buf) # HACK for byte-indexing of non-bytewise buffers (e.g. array.array) if m.itemsize > 1: m = memoryview(bytes(m)) n = len(m) if offset < 0: raise ValueError("offset is negative") if n < offset: raise ValueError("buffer length < offset") if size is None: size = n - offset elif size < 0: raise ValueError("size is negative") elif offset + size > n: raise ValueError("buffer length < offset + size") self._send_bytes(m[offset:offset + size]) def send(self, obj): """Send a (picklable) object""" self._check_closed() self._check_writable() self._send_bytes(ForkingPickler.dumps(obj)) def recv_bytes(self, maxlength=None): """ Receive bytes data as a bytes object. """ self._check_closed() self._check_readable() if maxlength is not None and maxlength < 0: raise ValueError("negative maxlength") buf = self._recv_bytes(maxlength) if buf is None: self._bad_message_length() return buf.getvalue() def recv_bytes_into(self, buf, offset=0): """ Receive bytes data into a writeable bytes-like object. Return the number of bytes read. """ self._check_closed() self._check_readable() with memoryview(buf) as m: # Get bytesize of arbitrary buffer itemsize = m.itemsize bytesize = itemsize * len(m) if offset < 0: raise ValueError("negative offset") elif offset > bytesize: raise ValueError("offset too large") result = self._recv_bytes() size = result.tell() if bytesize < offset + size: raise BufferTooShort(result.getvalue()) # Message can fit in dest result.seek(0) result.readinto(m[offset // itemsize : (offset + size) // itemsize]) return size def recv(self): """Receive a (picklable) object""" self._check_closed() self._check_readable() buf = self._recv_bytes() return ForkingPickler.loads(buf.getbuffer()) def poll(self, timeout=0.0): """Whether there is any input available to be read""" self._check_closed() self._check_readable() return self._poll(timeout) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() if _winapi: class PipeConnection(_ConnectionBase): """ Connection class based on a Windows named pipe. Overlapped I/O is used, so the handles must have been created with FILE_FLAG_OVERLAPPED. """ _got_empty_message = False def _close(self, _CloseHandle=_winapi.CloseHandle): _CloseHandle(self._handle) def _send_bytes(self, buf): ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nwritten, err = ov.GetOverlappedResult(True) assert err == 0 assert nwritten == len(buf) def _recv_bytes(self, maxsize=None): if self._got_empty_message: self._got_empty_message = False return io.BytesIO() else: bsize = 128 if maxsize is None else min(maxsize, 128) try: ov, err = _winapi.ReadFile(self._handle, bsize, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nread, err = ov.GetOverlappedResult(True) if err == 0: f = io.BytesIO() f.write(ov.getbuffer()) return f elif err == _winapi.ERROR_MORE_DATA: return self._get_more_data(ov, maxsize) except OSError as e: if e.winerror == _winapi.ERROR_BROKEN_PIPE: raise EOFError else: raise raise RuntimeError("shouldn't get here; expected KeyboardInterrupt") def _poll(self, timeout): if (self._got_empty_message or _winapi.PeekNamedPipe(self._handle)[0] != 0): return True return bool(wait([self], timeout)) def _get_more_data(self, ov, maxsize): buf = ov.getbuffer() f = io.BytesIO() f.write(buf) left = _winapi.PeekNamedPipe(self._handle)[1] assert left > 0 if maxsize is not None and len(buf) + left > maxsize: self._bad_message_length() ov, err = _winapi.ReadFile(self._handle, left, overlapped=True) rbytes, err = ov.GetOverlappedResult(True) assert err == 0 assert rbytes == left f.write(ov.getbuffer()) return f class Connection(_ConnectionBase): """ Connection class based on an arbitrary file descriptor (Unix only), or a socket handle (Windows). """ if _winapi: def _close(self, _close=_multiprocessing.closesocket): _close(self._handle) _write = _multiprocessing.send _read = _multiprocessing.recv else: def _close(self, _close=os.close): _close(self._handle) _write = os.write _read = os.read def _send(self, buf, write=_write): remaining = len(buf) while True: try: n = write(self._handle, buf) except InterruptedError: continue remaining -= n if remaining == 0: break buf = buf[n:] def _recv(self, size, read=_read): buf = io.BytesIO() handle = self._handle remaining = size while remaining > 0: try: chunk = read(handle, remaining) except InterruptedError: continue n = len(chunk) if n == 0: if remaining == size: raise EOFError else: raise OSError("got end of file during message") buf.write(chunk) remaining -= n return buf def _send_bytes(self, buf): n = len(buf) # For wire compatibility with 3.2 and lower header = struct.pack("!i", n) if n > 16384: # The payload is large so Nagle's algorithm won't be triggered # and we'd better avoid the cost of concatenation. chunks = [header, buf] elif n > 0: # Issue # 20540: concatenate before sending, to avoid delays due # to Nagle's algorithm on a TCP socket. chunks = [header + buf] else: # This code path is necessary to avoid "broken pipe" errors # when sending a 0-length buffer if the other end closed the pipe. chunks = [header] for chunk in chunks: self._send(chunk) def _recv_bytes(self, maxsize=None): buf = self._recv(4) size, = struct.unpack("!i", buf.getvalue()) if maxsize is not None and size > maxsize: return None return self._recv(size) def _poll(self, timeout): r = wait([self], timeout) return bool(r) # # Public functions # class Listener(object): ''' Returns a listener object. This is a wrapper for a bound socket which is 'listening' for connections, or for a Windows named pipe. ''' def __init__(self, address=None, family=None, backlog=1, authkey=None): family = family or (address and address_type(address)) \ or default_family address = address or arbitrary_address(family) _validate_family(family) if family == 'AF_PIPE': self._listener = PipeListener(address, backlog) else: self._listener = SocketListener(address, family, backlog) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') self._authkey = authkey def accept(self): ''' Accept a connection on the bound socket or named pipe of `self`. Returns a `Connection` object. ''' if self._listener is None: raise OSError('listener is closed') c = self._listener.accept() if self._authkey: deliver_challenge(c, self._authkey) answer_challenge(c, self._authkey) return c def close(self): ''' Close the bound socket or named pipe of `self`. ''' if self._listener is not None: self._listener.close() self._listener = None address = property(lambda self: self._listener._address) last_accepted = property(lambda self: self._listener._last_accepted) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def Client(address, family=None, authkey=None): ''' Returns a connection to the address of a `Listener` ''' family = family or address_type(address) _validate_family(family) if family == 'AF_PIPE': c = PipeClient(address) else: c = SocketClient(address) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') if authkey is not None: answer_challenge(c, authkey) deliver_challenge(c, authkey) return c if sys.platform != 'win32': def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' if duplex: s1, s2 = socket.socketpair() s1.setblocking(True) s2.setblocking(True) c1 = Connection(s1.detach()) c2 = Connection(s2.detach()) else: fd1, fd2 = os.pipe() c1 = Connection(fd1, writable=False) c2 = Connection(fd2, readable=False) return c1, c2 else: def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' address = arbitrary_address('AF_PIPE') if duplex: openmode = _winapi.PIPE_ACCESS_DUPLEX access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE obsize, ibsize = BUFSIZE, BUFSIZE else: openmode = _winapi.PIPE_ACCESS_INBOUND access = _winapi.GENERIC_WRITE obsize, ibsize = 0, BUFSIZE h1 = _winapi.CreateNamedPipe( address, openmode | _winapi.FILE_FLAG_OVERLAPPED | _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, 1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER, # default security descriptor: the handle cannot be inherited _winapi.NULL ) h2 = _winapi.CreateFile( address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) _winapi.SetNamedPipeHandleState( h2, _winapi.PIPE_READMODE_MESSAGE, None, None ) overlapped = _winapi.ConnectNamedPipe(h1, overlapped=True) _, err = overlapped.GetOverlappedResult(True) assert err == 0 c1 = PipeConnection(h1, writable=duplex) c2 = PipeConnection(h2, readable=duplex) return c1, c2 # # Definitions for connections based on sockets # class SocketListener(object): ''' Representation of a socket which is bound to an address and listening ''' def __init__(self, address, family, backlog=1): self._socket = socket.socket(getattr(socket, family)) try: # SO_REUSEADDR has different semantics on Windows (issue #2550). if os.name == 'posix': self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._socket.setblocking(True) self._socket.bind(address) self._socket.listen(backlog) self._address = self._socket.getsockname() except OSError: self._socket.close() raise self._family = family self._last_accepted = None if family == 'AF_UNIX': self._unlink = util.Finalize( self, os.unlink, args=(address,), exitpriority=0 ) else: self._unlink = None def accept(self): while True: try: s, self._last_accepted = self._socket.accept() except InterruptedError: pass else: break s.setblocking(True) return Connection(s.detach()) def close(self): self._socket.close() if self._unlink is not None: self._unlink() def SocketClient(address): ''' Return a connection object connected to the socket given by `address` ''' family = address_type(address) with socket.socket( getattr(socket, family) ) as s: s.setblocking(True) s.connect(address) return Connection(s.detach()) # # Definitions for connections based on named pipes # if sys.platform == 'win32': class PipeListener(object): ''' Representation of a named pipe ''' def __init__(self, address, backlog=None): self._address = address self._handle_queue = [self._new_handle(first=True)] self._last_accepted = None util.sub_debug('listener created with address=%r', self._address) self.close = util.Finalize( self, PipeListener._finalize_pipe_listener, args=(self._handle_queue, self._address), exitpriority=0 ) def _new_handle(self, first=False): flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED if first: flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE return _winapi.CreateNamedPipe( self._address, flags, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, _winapi.PIPE_UNLIMITED_INSTANCES, BUFSIZE, BUFSIZE, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL ) def accept(self): self._handle_queue.append(self._new_handle()) handle = self._handle_queue.pop(0) try: ov = _winapi.ConnectNamedPipe(handle, overlapped=True) except OSError as e: if e.winerror != _winapi.ERROR_NO_DATA: raise # ERROR_NO_DATA can occur if a client has already connected, # written data and then disconnected -- see Issue 14725. else: try: res = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) except: ov.cancel() _winapi.CloseHandle(handle) raise finally: _, err = ov.GetOverlappedResult(True) assert err == 0 return PipeConnection(handle) @staticmethod def _finalize_pipe_listener(queue, address): util.sub_debug('closing listener with address=%r', address) for handle in queue: _winapi.CloseHandle(handle) def PipeClient(address): ''' Return a connection object connected to the pipe given by `address` ''' t = _init_timeout() while 1: try: _winapi.WaitNamedPipe(address, 1000) h = _winapi.CreateFile( address, _winapi.GENERIC_READ | _winapi.GENERIC_WRITE, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) except OSError as e: if e.winerror not in (_winapi.ERROR_SEM_TIMEOUT, _winapi.ERROR_PIPE_BUSY) or _check_timeout(t): raise else: break else: raise _winapi.SetNamedPipeHandleState( h, _winapi.PIPE_READMODE_MESSAGE, None, None ) return PipeConnection(h) # # Authentication stuff # MESSAGE_LENGTH = 20 CHALLENGE = b'#CHALLENGE#' WELCOME = b'#WELCOME#' FAILURE = b'#FAILURE#' def deliver_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = os.urandom(MESSAGE_LENGTH) connection.send_bytes(CHALLENGE + message) digest = hmac.new(authkey, message, 'md5').digest() response = connection.recv_bytes(256) # reject large message if response == digest: connection.send_bytes(WELCOME) else: connection.send_bytes(FAILURE) raise AuthenticationError('digest received was wrong') def answer_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = connection.recv_bytes(256) # reject large message assert message[:len(CHALLENGE)] == CHALLENGE, 'message = %r' % message message = message[len(CHALLENGE):] digest = hmac.new(authkey, message, 'md5').digest() connection.send_bytes(digest) response = connection.recv_bytes(256) # reject large message if response != WELCOME: raise AuthenticationError('digest sent was rejected') # # Support for using xmlrpclib for serialization # class ConnectionWrapper(object): def __init__(self, conn, dumps, loads): self._conn = conn self._dumps = dumps self._loads = loads for attr in ('fileno', 'close', 'poll', 'recv_bytes', 'send_bytes'): obj = getattr(conn, attr) setattr(self, attr, obj) def send(self, obj): s = self._dumps(obj) self._conn.send_bytes(s) def recv(self): s = self._conn.recv_bytes() return self._loads(s) def _xml_dumps(obj): return xmlrpclib.dumps((obj,), None, None, None, 1).encode('utf-8') def _xml_loads(s): (obj,), method = xmlrpclib.loads(s.decode('utf-8')) return obj class XmlListener(Listener): def accept(self): global xmlrpclib import xmlrpc.client as xmlrpclib obj = Listener.accept(self) return ConnectionWrapper(obj, _xml_dumps, _xml_loads) def XmlClient(*args, **kwds): global xmlrpclib import xmlrpc.client as xmlrpclib return ConnectionWrapper(Client(*args, **kwds), _xml_dumps, _xml_loads) # # Wait # if sys.platform == 'win32': def _exhaustive_wait(handles, timeout): # Return ALL handles which are currently signalled. (Only # returning the first signalled might create starvation issues.) L = list(handles) ready = [] while L: res = _winapi.WaitForMultipleObjects(L, False, timeout) if res == WAIT_TIMEOUT: break elif WAIT_OBJECT_0 <= res < WAIT_OBJECT_0 + len(L): res -= WAIT_OBJECT_0 elif WAIT_ABANDONED_0 <= res < WAIT_ABANDONED_0 + len(L): res -= WAIT_ABANDONED_0 else: raise RuntimeError('Should not get here') ready.append(L[res]) L = L[res+1:] timeout = 0 return ready _ready_errors = {_winapi.ERROR_BROKEN_PIPE, _winapi.ERROR_NETNAME_DELETED} def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' if timeout is None: timeout = INFINITE elif timeout < 0: timeout = 0 else: timeout = int(timeout * 1000 + 0.5) object_list = list(object_list) waithandle_to_obj = {} ov_list = [] ready_objects = set() ready_handles = set() try: for o in object_list: try: fileno = getattr(o, 'fileno') except AttributeError: waithandle_to_obj[o.__index__()] = o else: # start an overlapped read of length zero try: ov, err = _winapi.ReadFile(fileno(), 0, True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err == _winapi.ERROR_IO_PENDING: ov_list.append(ov) waithandle_to_obj[ov.event] = o else: # If o.fileno() is an overlapped pipe handle and # err == 0 then there is a zero length message # in the pipe, but it HAS NOT been consumed. ready_objects.add(o) timeout = 0 ready_handles = _exhaustive_wait(waithandle_to_obj.keys(), timeout) finally: # request that overlapped reads stop for ov in ov_list: ov.cancel() # wait for all overlapped reads to stop for ov in ov_list: try: _, err = ov.GetOverlappedResult(True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err != _winapi.ERROR_OPERATION_ABORTED: o = waithandle_to_obj[ov.event] ready_objects.add(o) if err == 0: # If o.fileno() is an overlapped pipe handle then # a zero length message HAS been consumed. if hasattr(o, '_got_empty_message'): o._got_empty_message = True ready_objects.update(waithandle_to_obj[h] for h in ready_handles) return [o for o in object_list if o in ready_objects] else: import selectors # poll/select have the advantage of not requiring any extra file # descriptor, contrarily to epoll/kqueue (also, they require a single # syscall). if hasattr(selectors, 'PollSelector'): _WaitSelector = selectors.PollSelector else: _WaitSelector = selectors.SelectSelector def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' with _WaitSelector() as selector: for obj in object_list: selector.register(obj, selectors.EVENT_READ) if timeout is not None: deadline = time.time() + timeout while True: ready = selector.select(timeout) if ready: return [key.fileobj for (key, events) in ready] else: if timeout is not None: timeout = deadline - time.time() if timeout < 0: return ready # # Make connection and socket objects sharable if possible # if sys.platform == 'win32': def reduce_connection(conn): handle = conn.fileno() with socket.fromfd(handle, socket.AF_INET, socket.SOCK_STREAM) as s: from . import resource_sharer ds = resource_sharer.DupSocket(s) return rebuild_connection, (ds, conn.readable, conn.writable) def rebuild_connection(ds, readable, writable): sock = ds.detach() return Connection(sock.detach(), readable, writable) reduction.register(Connection, reduce_connection) def reduce_pipe_connection(conn): access = ((_winapi.FILE_GENERIC_READ if conn.readable else 0) | (_winapi.FILE_GENERIC_WRITE if conn.writable else 0)) dh = reduction.DupHandle(conn.fileno(), access) return rebuild_pipe_connection, (dh, conn.readable, conn.writable) def rebuild_pipe_connection(dh, readable, writable): handle = dh.detach() return PipeConnection(handle, readable, writable) reduction.register(PipeConnection, reduce_pipe_connection) else: def reduce_connection(conn): df = reduction.DupFd(conn.fileno()) return rebuild_connection, (df, conn.readable, conn.writable) def rebuild_connection(df, readable, writable): fd = df.detach() return Connection(fd, readable, writable) reduction.register(Connection, reduce_connection) >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453 ======= # # A higher level module for using sockets (or Windows named pipes) # # multiprocessing/connection.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # __all__ = [ 'Client', 'Listener', 'Pipe', 'wait' ] import io import os import sys import socket import struct import time import tempfile import itertools import _multiprocessing from . import reduction from . import util from . import AuthenticationError, BufferTooShort from .reduction import ForkingPickler try: import _winapi from _winapi import WAIT_OBJECT_0, WAIT_ABANDONED_0, WAIT_TIMEOUT, INFINITE except ImportError: if sys.platform == 'win32': raise _winapi = None # # # BUFSIZE = 8192 # A very generous timeout when it comes to local connections... CONNECTION_TIMEOUT = 20. _mmap_counter = itertools.count() default_family = 'AF_INET' families = ['AF_INET'] if hasattr(socket, 'AF_UNIX'): default_family = 'AF_UNIX' families += ['AF_UNIX'] if sys.platform == 'win32': default_family = 'AF_PIPE' families += ['AF_PIPE'] def _init_timeout(timeout=CONNECTION_TIMEOUT): return time.time() + timeout def _check_timeout(t): return time.time() > t # # # def arbitrary_address(family): ''' Return an arbitrary free address for the given family ''' if family == 'AF_INET': return ('localhost', 0) elif family == 'AF_UNIX': return tempfile.mktemp(prefix='listener-', dir=util.get_temp_dir()) elif family == 'AF_PIPE': return tempfile.mktemp(prefix=r'\\.\pipe\pyc-%d-%d-' % (os.getpid(), next(_mmap_counter)), dir="") else: raise ValueError('unrecognized family') def _validate_family(family): ''' Checks if the family is valid for the current environment. ''' if sys.platform != 'win32' and family == 'AF_PIPE': raise ValueError('Family %s is not recognized.' % family) if sys.platform == 'win32' and family == 'AF_UNIX': # double check if not hasattr(socket, family): raise ValueError('Family %s is not recognized.' % family) def address_type(address): ''' Return the types of the address This can be 'AF_INET', 'AF_UNIX', or 'AF_PIPE' ''' if type(address) == tuple: return 'AF_INET' elif type(address) is str and address.startswith('\\\\'): return 'AF_PIPE' elif type(address) is str: return 'AF_UNIX' else: raise ValueError('address type of %r unrecognized' % address) # # Connection classes # class _ConnectionBase: _handle = None def __init__(self, handle, readable=True, writable=True): handle = handle.__index__() if handle < 0: raise ValueError("invalid handle") if not readable and not writable: raise ValueError( "at least one of `readable` and `writable` must be True") self._handle = handle self._readable = readable self._writable = writable # XXX should we use util.Finalize instead of a __del__? def __del__(self): if self._handle is not None: self._close() def _check_closed(self): if self._handle is None: raise OSError("handle is closed") def _check_readable(self): if not self._readable: raise OSError("connection is write-only") def _check_writable(self): if not self._writable: raise OSError("connection is read-only") def _bad_message_length(self): if self._writable: self._readable = False else: self.close() raise OSError("bad message length") @property def closed(self): """True if the connection is closed""" return self._handle is None @property def readable(self): """True if the connection is readable""" return self._readable @property def writable(self): """True if the connection is writable""" return self._writable def fileno(self): """File descriptor or handle of the connection""" self._check_closed() return self._handle def close(self): """Close the connection""" if self._handle is not None: try: self._close() finally: self._handle = None def send_bytes(self, buf, offset=0, size=None): """Send the bytes data from a bytes-like object""" self._check_closed() self._check_writable() m = memoryview(buf) # HACK for byte-indexing of non-bytewise buffers (e.g. array.array) if m.itemsize > 1: m = memoryview(bytes(m)) n = len(m) if offset < 0: raise ValueError("offset is negative") if n < offset: raise ValueError("buffer length < offset") if size is None: size = n - offset elif size < 0: raise ValueError("size is negative") elif offset + size > n: raise ValueError("buffer length < offset + size") self._send_bytes(m[offset:offset + size]) def send(self, obj): """Send a (picklable) object""" self._check_closed() self._check_writable() self._send_bytes(ForkingPickler.dumps(obj)) def recv_bytes(self, maxlength=None): """ Receive bytes data as a bytes object. """ self._check_closed() self._check_readable() if maxlength is not None and maxlength < 0: raise ValueError("negative maxlength") buf = self._recv_bytes(maxlength) if buf is None: self._bad_message_length() return buf.getvalue() def recv_bytes_into(self, buf, offset=0): """ Receive bytes data into a writeable bytes-like object. Return the number of bytes read. """ self._check_closed() self._check_readable() with memoryview(buf) as m: # Get bytesize of arbitrary buffer itemsize = m.itemsize bytesize = itemsize * len(m) if offset < 0: raise ValueError("negative offset") elif offset > bytesize: raise ValueError("offset too large") result = self._recv_bytes() size = result.tell() if bytesize < offset + size: raise BufferTooShort(result.getvalue()) # Message can fit in dest result.seek(0) result.readinto(m[offset // itemsize : (offset + size) // itemsize]) return size def recv(self): """Receive a (picklable) object""" self._check_closed() self._check_readable() buf = self._recv_bytes() return ForkingPickler.loads(buf.getbuffer()) def poll(self, timeout=0.0): """Whether there is any input available to be read""" self._check_closed() self._check_readable() return self._poll(timeout) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() if _winapi: class PipeConnection(_ConnectionBase): """ Connection class based on a Windows named pipe. Overlapped I/O is used, so the handles must have been created with FILE_FLAG_OVERLAPPED. """ _got_empty_message = False def _close(self, _CloseHandle=_winapi.CloseHandle): _CloseHandle(self._handle) def _send_bytes(self, buf): ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nwritten, err = ov.GetOverlappedResult(True) assert err == 0 assert nwritten == len(buf) def _recv_bytes(self, maxsize=None): if self._got_empty_message: self._got_empty_message = False return io.BytesIO() else: bsize = 128 if maxsize is None else min(maxsize, 128) try: ov, err = _winapi.ReadFile(self._handle, bsize, overlapped=True) try: if err == _winapi.ERROR_IO_PENDING: waitres = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) assert waitres == WAIT_OBJECT_0 except: ov.cancel() raise finally: nread, err = ov.GetOverlappedResult(True) if err == 0: f = io.BytesIO() f.write(ov.getbuffer()) return f elif err == _winapi.ERROR_MORE_DATA: return self._get_more_data(ov, maxsize) except OSError as e: if e.winerror == _winapi.ERROR_BROKEN_PIPE: raise EOFError else: raise raise RuntimeError("shouldn't get here; expected KeyboardInterrupt") def _poll(self, timeout): if (self._got_empty_message or _winapi.PeekNamedPipe(self._handle)[0] != 0): return True return bool(wait([self], timeout)) def _get_more_data(self, ov, maxsize): buf = ov.getbuffer() f = io.BytesIO() f.write(buf) left = _winapi.PeekNamedPipe(self._handle)[1] assert left > 0 if maxsize is not None and len(buf) + left > maxsize: self._bad_message_length() ov, err = _winapi.ReadFile(self._handle, left, overlapped=True) rbytes, err = ov.GetOverlappedResult(True) assert err == 0 assert rbytes == left f.write(ov.getbuffer()) return f class Connection(_ConnectionBase): """ Connection class based on an arbitrary file descriptor (Unix only), or a socket handle (Windows). """ if _winapi: def _close(self, _close=_multiprocessing.closesocket): _close(self._handle) _write = _multiprocessing.send _read = _multiprocessing.recv else: def _close(self, _close=os.close): _close(self._handle) _write = os.write _read = os.read def _send(self, buf, write=_write): remaining = len(buf) while True: try: n = write(self._handle, buf) except InterruptedError: continue remaining -= n if remaining == 0: break buf = buf[n:] def _recv(self, size, read=_read): buf = io.BytesIO() handle = self._handle remaining = size while remaining > 0: try: chunk = read(handle, remaining) except InterruptedError: continue n = len(chunk) if n == 0: if remaining == size: raise EOFError else: raise OSError("got end of file during message") buf.write(chunk) remaining -= n return buf def _send_bytes(self, buf): n = len(buf) # For wire compatibility with 3.2 and lower header = struct.pack("!i", n) if n > 16384: # The payload is large so Nagle's algorithm won't be triggered # and we'd better avoid the cost of concatenation. chunks = [header, buf] elif n > 0: # Issue # 20540: concatenate before sending, to avoid delays due # to Nagle's algorithm on a TCP socket. chunks = [header + buf] else: # This code path is necessary to avoid "broken pipe" errors # when sending a 0-length buffer if the other end closed the pipe. chunks = [header] for chunk in chunks: self._send(chunk) def _recv_bytes(self, maxsize=None): buf = self._recv(4) size, = struct.unpack("!i", buf.getvalue()) if maxsize is not None and size > maxsize: return None return self._recv(size) def _poll(self, timeout): r = wait([self], timeout) return bool(r) # # Public functions # class Listener(object): ''' Returns a listener object. This is a wrapper for a bound socket which is 'listening' for connections, or for a Windows named pipe. ''' def __init__(self, address=None, family=None, backlog=1, authkey=None): family = family or (address and address_type(address)) \ or default_family address = address or arbitrary_address(family) _validate_family(family) if family == 'AF_PIPE': self._listener = PipeListener(address, backlog) else: self._listener = SocketListener(address, family, backlog) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') self._authkey = authkey def accept(self): ''' Accept a connection on the bound socket or named pipe of `self`. Returns a `Connection` object. ''' if self._listener is None: raise OSError('listener is closed') c = self._listener.accept() if self._authkey: deliver_challenge(c, self._authkey) answer_challenge(c, self._authkey) return c def close(self): ''' Close the bound socket or named pipe of `self`. ''' if self._listener is not None: self._listener.close() self._listener = None address = property(lambda self: self._listener._address) last_accepted = property(lambda self: self._listener._last_accepted) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def Client(address, family=None, authkey=None): ''' Returns a connection to the address of a `Listener` ''' family = family or address_type(address) _validate_family(family) if family == 'AF_PIPE': c = PipeClient(address) else: c = SocketClient(address) if authkey is not None and not isinstance(authkey, bytes): raise TypeError('authkey should be a byte string') if authkey is not None: answer_challenge(c, authkey) deliver_challenge(c, authkey) return c if sys.platform != 'win32': def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' if duplex: s1, s2 = socket.socketpair() s1.setblocking(True) s2.setblocking(True) c1 = Connection(s1.detach()) c2 = Connection(s2.detach()) else: fd1, fd2 = os.pipe() c1 = Connection(fd1, writable=False) c2 = Connection(fd2, readable=False) return c1, c2 else: def Pipe(duplex=True): ''' Returns pair of connection objects at either end of a pipe ''' address = arbitrary_address('AF_PIPE') if duplex: openmode = _winapi.PIPE_ACCESS_DUPLEX access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE obsize, ibsize = BUFSIZE, BUFSIZE else: openmode = _winapi.PIPE_ACCESS_INBOUND access = _winapi.GENERIC_WRITE obsize, ibsize = 0, BUFSIZE h1 = _winapi.CreateNamedPipe( address, openmode | _winapi.FILE_FLAG_OVERLAPPED | _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, 1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER, # default security descriptor: the handle cannot be inherited _winapi.NULL ) h2 = _winapi.CreateFile( address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) _winapi.SetNamedPipeHandleState( h2, _winapi.PIPE_READMODE_MESSAGE, None, None ) overlapped = _winapi.ConnectNamedPipe(h1, overlapped=True) _, err = overlapped.GetOverlappedResult(True) assert err == 0 c1 = PipeConnection(h1, writable=duplex) c2 = PipeConnection(h2, readable=duplex) return c1, c2 # # Definitions for connections based on sockets # class SocketListener(object): ''' Representation of a socket which is bound to an address and listening ''' def __init__(self, address, family, backlog=1): self._socket = socket.socket(getattr(socket, family)) try: # SO_REUSEADDR has different semantics on Windows (issue #2550). if os.name == 'posix': self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._socket.setblocking(True) self._socket.bind(address) self._socket.listen(backlog) self._address = self._socket.getsockname() except OSError: self._socket.close() raise self._family = family self._last_accepted = None if family == 'AF_UNIX': self._unlink = util.Finalize( self, os.unlink, args=(address,), exitpriority=0 ) else: self._unlink = None def accept(self): while True: try: s, self._last_accepted = self._socket.accept() except InterruptedError: pass else: break s.setblocking(True) return Connection(s.detach()) def close(self): self._socket.close() if self._unlink is not None: self._unlink() def SocketClient(address): ''' Return a connection object connected to the socket given by `address` ''' family = address_type(address) with socket.socket( getattr(socket, family) ) as s: s.setblocking(True) s.connect(address) return Connection(s.detach()) # # Definitions for connections based on named pipes # if sys.platform == 'win32': class PipeListener(object): ''' Representation of a named pipe ''' def __init__(self, address, backlog=None): self._address = address self._handle_queue = [self._new_handle(first=True)] self._last_accepted = None util.sub_debug('listener created with address=%r', self._address) self.close = util.Finalize( self, PipeListener._finalize_pipe_listener, args=(self._handle_queue, self._address), exitpriority=0 ) def _new_handle(self, first=False): flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED if first: flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE return _winapi.CreateNamedPipe( self._address, flags, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, _winapi.PIPE_UNLIMITED_INSTANCES, BUFSIZE, BUFSIZE, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL ) def accept(self): self._handle_queue.append(self._new_handle()) handle = self._handle_queue.pop(0) try: ov = _winapi.ConnectNamedPipe(handle, overlapped=True) except OSError as e: if e.winerror != _winapi.ERROR_NO_DATA: raise # ERROR_NO_DATA can occur if a client has already connected, # written data and then disconnected -- see Issue 14725. else: try: res = _winapi.WaitForMultipleObjects( [ov.event], False, INFINITE) except: ov.cancel() _winapi.CloseHandle(handle) raise finally: _, err = ov.GetOverlappedResult(True) assert err == 0 return PipeConnection(handle) @staticmethod def _finalize_pipe_listener(queue, address): util.sub_debug('closing listener with address=%r', address) for handle in queue: _winapi.CloseHandle(handle) def PipeClient(address): ''' Return a connection object connected to the pipe given by `address` ''' t = _init_timeout() while 1: try: _winapi.WaitNamedPipe(address, 1000) h = _winapi.CreateFile( address, _winapi.GENERIC_READ | _winapi.GENERIC_WRITE, 0, _winapi.NULL, _winapi.OPEN_EXISTING, _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL ) except OSError as e: if e.winerror not in (_winapi.ERROR_SEM_TIMEOUT, _winapi.ERROR_PIPE_BUSY) or _check_timeout(t): raise else: break else: raise _winapi.SetNamedPipeHandleState( h, _winapi.PIPE_READMODE_MESSAGE, None, None ) return PipeConnection(h) # # Authentication stuff # MESSAGE_LENGTH = 20 CHALLENGE = b'#CHALLENGE#' WELCOME = b'#WELCOME#' FAILURE = b'#FAILURE#' def deliver_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = os.urandom(MESSAGE_LENGTH) connection.send_bytes(CHALLENGE + message) digest = hmac.new(authkey, message, 'md5').digest() response = connection.recv_bytes(256) # reject large message if response == digest: connection.send_bytes(WELCOME) else: connection.send_bytes(FAILURE) raise AuthenticationError('digest received was wrong') def answer_challenge(connection, authkey): import hmac assert isinstance(authkey, bytes) message = connection.recv_bytes(256) # reject large message assert message[:len(CHALLENGE)] == CHALLENGE, 'message = %r' % message message = message[len(CHALLENGE):] digest = hmac.new(authkey, message, 'md5').digest() connection.send_bytes(digest) response = connection.recv_bytes(256) # reject large message if response != WELCOME: raise AuthenticationError('digest sent was rejected') # # Support for using xmlrpclib for serialization # class ConnectionWrapper(object): def __init__(self, conn, dumps, loads): self._conn = conn self._dumps = dumps self._loads = loads for attr in ('fileno', 'close', 'poll', 'recv_bytes', 'send_bytes'): obj = getattr(conn, attr) setattr(self, attr, obj) def send(self, obj): s = self._dumps(obj) self._conn.send_bytes(s) def recv(self): s = self._conn.recv_bytes() return self._loads(s) def _xml_dumps(obj): return xmlrpclib.dumps((obj,), None, None, None, 1).encode('utf-8') def _xml_loads(s): (obj,), method = xmlrpclib.loads(s.decode('utf-8')) return obj class XmlListener(Listener): def accept(self): global xmlrpclib import xmlrpc.client as xmlrpclib obj = Listener.accept(self) return ConnectionWrapper(obj, _xml_dumps, _xml_loads) def XmlClient(*args, **kwds): global xmlrpclib import xmlrpc.client as xmlrpclib return ConnectionWrapper(Client(*args, **kwds), _xml_dumps, _xml_loads) # # Wait # if sys.platform == 'win32': def _exhaustive_wait(handles, timeout): # Return ALL handles which are currently signalled. (Only # returning the first signalled might create starvation issues.) L = list(handles) ready = [] while L: res = _winapi.WaitForMultipleObjects(L, False, timeout) if res == WAIT_TIMEOUT: break elif WAIT_OBJECT_0 <= res < WAIT_OBJECT_0 + len(L): res -= WAIT_OBJECT_0 elif WAIT_ABANDONED_0 <= res < WAIT_ABANDONED_0 + len(L): res -= WAIT_ABANDONED_0 else: raise RuntimeError('Should not get here') ready.append(L[res]) L = L[res+1:] timeout = 0 return ready _ready_errors = {_winapi.ERROR_BROKEN_PIPE, _winapi.ERROR_NETNAME_DELETED} def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' if timeout is None: timeout = INFINITE elif timeout < 0: timeout = 0 else: timeout = int(timeout * 1000 + 0.5) object_list = list(object_list) waithandle_to_obj = {} ov_list = [] ready_objects = set() ready_handles = set() try: for o in object_list: try: fileno = getattr(o, 'fileno') except AttributeError: waithandle_to_obj[o.__index__()] = o else: # start an overlapped read of length zero try: ov, err = _winapi.ReadFile(fileno(), 0, True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err == _winapi.ERROR_IO_PENDING: ov_list.append(ov) waithandle_to_obj[ov.event] = o else: # If o.fileno() is an overlapped pipe handle and # err == 0 then there is a zero length message # in the pipe, but it HAS NOT been consumed. ready_objects.add(o) timeout = 0 ready_handles = _exhaustive_wait(waithandle_to_obj.keys(), timeout) finally: # request that overlapped reads stop for ov in ov_list: ov.cancel() # wait for all overlapped reads to stop for ov in ov_list: try: _, err = ov.GetOverlappedResult(True) except OSError as e: err = e.winerror if err not in _ready_errors: raise if err != _winapi.ERROR_OPERATION_ABORTED: o = waithandle_to_obj[ov.event] ready_objects.add(o) if err == 0: # If o.fileno() is an overlapped pipe handle then # a zero length message HAS been consumed. if hasattr(o, '_got_empty_message'): o._got_empty_message = True ready_objects.update(waithandle_to_obj[h] for h in ready_handles) return [o for o in object_list if o in ready_objects] else: import selectors # poll/select have the advantage of not requiring any extra file # descriptor, contrarily to epoll/kqueue (also, they require a single # syscall). if hasattr(selectors, 'PollSelector'): _WaitSelector = selectors.PollSelector else: _WaitSelector = selectors.SelectSelector def wait(object_list, timeout=None): ''' Wait till an object in object_list is ready/readable. Returns list of those objects in object_list which are ready/readable. ''' with _WaitSelector() as selector: for obj in object_list: selector.register(obj, selectors.EVENT_READ) if timeout is not None: deadline = time.time() + timeout while True: ready = selector.select(timeout) if ready: return [key.fileobj for (key, events) in ready] else: if timeout is not None: timeout = deadline - time.time() if timeout < 0: return ready # # Make connection and socket objects sharable if possible # if sys.platform == 'win32': def reduce_connection(conn): handle = conn.fileno() with socket.fromfd(handle, socket.AF_INET, socket.SOCK_STREAM) as s: from . import resource_sharer ds = resource_sharer.DupSocket(s) return rebuild_connection, (ds, conn.readable, conn.writable) def rebuild_connection(ds, readable, writable): sock = ds.detach() return Connection(sock.detach(), readable, writable) reduction.register(Connection, reduce_connection) def reduce_pipe_connection(conn): access = ((_winapi.FILE_GENERIC_READ if conn.readable else 0) | (_winapi.FILE_GENERIC_WRITE if conn.writable else 0)) dh = reduction.DupHandle(conn.fileno(), access) return rebuild_pipe_connection, (dh, conn.readable, conn.writable) def rebuild_pipe_connection(dh, readable, writable): handle = dh.detach() return PipeConnection(handle, readable, writable) reduction.register(PipeConnection, reduce_pipe_connection) else: def reduce_connection(conn): df = reduction.DupFd(conn.fileno()) return rebuild_connection, (df, conn.readable, conn.writable) def rebuild_connection(df, readable, writable): fd = df.detach() return Connection(fd, readable, writable) reduction.register(Connection, reduce_connection) >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453
mit
484,566,150,979,678,700
31.022664
84
0.548524
false
supermarkion/Life-Backup
Python/CanIWin.py
1
2531
''' In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins. What if we change the game so that players cannot re-use integers? For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100. Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally. You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300. Link: https://leetcode.com/problems/can-i-win/#/description Example: Input: maxChoosableInteger = 10 desiredTotal = 11 Output: false Explanation: No matter which integer the first player choose, the first player will lose. The first player can choose an integer from 1 up to 10. If the first player choose 1, the second player can only choose integers from 2 up to 10. The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal. Same with other integers chosen by the first player, the second player will always win. Solution: None Source: None ''' class Solution(object): def canIWin(self, maxChoosableInteger, desiredTotal): """ :type maxChoosableInteger: int :type desiredTotal: int :rtype: bool """ # generate a list to save all possible action/movement choosable = tuple(range(1, maxChoosableInteger + 1)) if sum(choosable) < desiredTotal: return False self.cache = {} return self.dfs(choosable, desiredTotal) def dfs(self, choosable, total): # as explanation said, if the last value is large enough, just choose it, and you will wine if choosable[-1] >= total: return True key = choosable if key in self.cache: return self.cache[key] # cache the previous solution to save time for i in range(len(choosable)): # ignore the i index. when i cannot be a solution if not self.dfs(choosable[:i] + choosable[i + 1:], total - choosable[i]): self.cache[key] = True return True self.cache[key] = False return False
mit
4,426,303,549,233,985,000
35.695652
118
0.641644
false
devilry/devilry-django
devilry/devilry_account/migrations/0003_datamigrate-admins-into-permissiongroups.py
1
2619
# -*- coding: utf-8 -*- from django.db import models, migrations def datamigrate_admins_into_permissiongroups(apps, schema_editor): permissiongroup_model = apps.get_model('devilry_account', 'PermissionGroup') permissiongroupuser_model = apps.get_model('devilry_account', 'PermissionGroupUser') subject_model = apps.get_model('core', 'Subject') subjectpermissiongroup_model = apps.get_model('devilry_account', 'SubjectPermissionGroup') period_model = apps.get_model('core', 'Period') periodpermissiongroup_model = apps.get_model('devilry_account', 'PeriodPermissionGroup') permissiongroupusers = [] subjectpermissiongroups = [] periodpermissiongroups = [] for subject in subject_model.objects.prefetch_related('admins'): permissiongroup = permissiongroup_model( name=subject.short_name, is_custom_manageable=True, grouptype='subjectadmin') permissiongroup.save() subjectpermissiongroups.append( subjectpermissiongroup_model( subject=subject, permissiongroup=permissiongroup)) for adminuser in subject.admins.all(): permissiongroupusers.append( permissiongroupuser_model( permissiongroup=permissiongroup, user=adminuser)) for period in period_model.objects\ .select_related('parentnode')\ .prefetch_related('admins'): permissiongroup = permissiongroup_model( name='{}.{}'.format(period.parentnode.short_name, period.short_name), is_custom_manageable=True, grouptype='periodadmin') permissiongroup.save() periodpermissiongroups.append( periodpermissiongroup_model( period=period, permissiongroup=permissiongroup)) for adminuser in period.admins.all(): permissiongroupusers.append( permissiongroupuser_model( permissiongroup=permissiongroup, user=adminuser)) permissiongroupuser_model.objects.bulk_create(permissiongroupusers) subjectpermissiongroup_model.objects.bulk_create(subjectpermissiongroups) periodpermissiongroup_model.objects.bulk_create(periodpermissiongroups) class Migration(migrations.Migration): dependencies = [ ('devilry_account', '0002_auto_20150917_1731'), ('core', '0003_auto_20150917_1537'), ] operations = [ migrations.RunPython(datamigrate_admins_into_permissiongroups) ]
bsd-3-clause
4,552,534,692,730,217,500
36.414286
94
0.649866
false
tejal29/pants
src/python/pants/backend/core/wrapped_globs.py
1
3765
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os from six import string_types from twitter.common.dirutil.fileset import Fileset from pants.base.build_environment import get_buildroot class FilesetRelPathWrapper(object): def __init__(self, parse_context): self.rel_path = parse_context.rel_path def __call__(self, *args, **kwargs): root = os.path.join(get_buildroot(), self.rel_path) excludes = kwargs.pop('exclude', []) if isinstance(excludes, string_types): raise ValueError("Expected exclude parameter to be a list of globs, lists, or strings") for i, exclude in enumerate(excludes): if isinstance(exclude, string_types): # You can't subtract raw strings from globs excludes[i] = [exclude] for glob in args: if(self._is_glob_dir_outside_root(glob, root)): raise ValueError('Invalid glob %s, points outside BUILD file root dir %s' % (glob, root)) result = self.wrapped_fn(root=root, *args, **kwargs) for exclude in excludes: result -= exclude return result def _is_glob_dir_outside_root(self, glob, root): # The assumption is that a correct glob starts with the root, # even after normalizing. glob_path = os.path.normpath(os.path.join(root, glob)) # Check if the glob path has the correct root. return os.path.commonprefix([root, glob_path]) != root class Globs(FilesetRelPathWrapper): """Returns Fileset containing matching files in same directory as this BUILD file. E.g., ``sources = globs('*java'),`` to get .java files in this directory. :param exclude: a list of {,r,z}globs objects, strings, or lists of strings to exclude. E.g. ``globs('*',exclude=[globs('*.java'), 'foo.py'])`` gives all files in this directory except ``.java`` files and ``foo.py``. Deprecated: You might see that old code uses "math" on the return value of ``globs()``. E.g., ``globs('*') - globs('*.java')`` gives all files in this directory *except* ``.java`` files. Please use exclude instead, since pants is moving to make BUILD files easier to parse, and the new grammar will not support arithmetic. :returns Fileset containing matching files in same directory as this BUILD file. :rtype Fileset """ wrapped_fn = Fileset.globs class RGlobs(FilesetRelPathWrapper): """Recursive ``globs``, returns Fileset matching files in this directory and its descendents. E.g., ``bundle().add(rglobs('config/*')),`` to bundle up all files in the config, config/foo, config/foo/bar directories. :param exclude: a list of {,r,z}globs objects, strings, or lists of strings to exclude. E.g. ``rglobs('config/*',exclude=[globs('config/*.java'), 'config/foo.py'])`` gives all files under config except ``.java`` files and ``config/foo.py``. Deprecated: You might see that old code uses "math" on the return value of ``rglobs()``. E.g., ``rglobs('config/*') - rglobs('config/foo/*')`` gives all files under `config` *except* those in ``config/foo``. Please use exclude instead, since pants is moving to make BUILD files easier to parse, and the new grammar will not support arithmetic. :returns Fileset matching files in this directory and its descendents. :rtype Fileset """ wrapped_fn = Fileset.rglobs class ZGlobs(FilesetRelPathWrapper): """Returns a Fileset that matches zsh-style globs, including ``**/`` for recursive globbing. Uses ``BUILD`` file's directory as the "working directory". """ wrapped_fn = Fileset.zglobs
apache-2.0
-2,163,516,751,647,764,200
36.65
97
0.692696
false
UltronAI/Deep-Learning
CS231n/reference/CS231n-master/assignment2/cs231n/layer_utils.py
1
2538
from cs231n.layers import * from cs231n.fast_layers import * def affine_relu_forward(x, w, b): """ Convenience layer that perorms an affine transform followed by a ReLU Inputs: - x: Input to the affine layer - w, b: Weights for the affine layer Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ a, fc_cache = affine_forward(x, w, b) out, relu_cache = relu_forward(a) cache = (fc_cache, relu_cache) return out, cache def affine_relu_backward(dout, cache): """ Backward pass for the affine-relu convenience layer """ fc_cache, relu_cache = cache da = relu_backward(dout, relu_cache) dx, dw, db = affine_backward(da, fc_cache) return dx, dw, db pass def conv_relu_forward(x, w, b, conv_param): """ A convenience layer that performs a convolution followed by a ReLU. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ a, conv_cache = conv_forward_fast(x, w, b, conv_param) out, relu_cache = relu_forward(a) cache = (conv_cache, relu_cache) return out, cache def conv_relu_backward(dout, cache): """ Backward pass for the conv-relu convenience layer. """ conv_cache, relu_cache = cache da = relu_backward(dout, relu_cache) dx, dw, db = conv_backward_fast(da, conv_cache) return dx, dw, db def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ a, conv_cache = conv_forward_fast(x, w, b, conv_param) s, relu_cache = relu_forward(a) out, pool_cache = max_pool_forward_fast(s, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache def conv_relu_pool_backward(dout, cache): """ Backward pass for the conv-relu-pool convenience layer """ conv_cache, relu_cache, pool_cache = cache ds = max_pool_backward_fast(dout, pool_cache) da = relu_backward(ds, relu_cache) dx, dw, db = conv_backward_fast(da, conv_cache) return dx, dw, db
mit
6,864,787,935,838,201,000
25.290323
72
0.657998
false
OpenAT/cu_eura
eura_config/__openerp__.py
1
1681
# -*- coding: utf-8 -*- ############################################################################## # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # ############################################################################## { 'name': 'eura_config', 'summary': """FCOM Customer eura Modifications""", 'description': """ FCOM Customer Modifications =========================== Use this Addon as a Base for all Customer specific Modifications containing: - Default Settings (User Defaults, Accounts, Taxes, Project Stages, ...) - View Modifications - CSS Modifications (sass in scss format) - Translations (i18n, pot, po) """, 'author': 'Michael Karrer ([email protected]), DataDialog', 'version': '1.0', 'website': 'https://www.datadialog.net', 'installable': False, 'depends': [ 'base_config', 'website_sale', 'website_sale_delivery', 'website_sale_donate', 'website_sale_categories', ], 'data': [ 'views/templates.xml', ], }
agpl-3.0
-4,298,214,358,802,706,000
34.020833
78
0.595479
false
ifarup/colourlab
colourlab/space.py
1
67700
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ space: Colour spaces, part of the colourlab package Copyright (C) 2013-2016 Ivar Farup This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import numpy as np from . import misc # ============================================================================= # Colour space classes # # Throughout the code, the name ndata is used for numerical data (numpy # arrays), and data is used for objects of the type Points. # ============================================================================= class Space(object): """ Base class for the colour space classes. """ # White points in XYZ white_A = np.array([1.0985, 1., 0.35585]) white_B = np.array([.990720, 1., .852230]) white_C = np.array([.980740, 1., .82320]) white_D50 = np.array([.964220, 1., .825210]) white_D55 = np.array([.956820, 1., .921490]) white_D65 = np.array([.950470, 1., 1.088830]) white_D75 = np.array([.949720, 1., 1.226380]) white_E = np.array([1., 1., 1.]) white_F2 = np.array([.991860, 1., .673930]) white_F7 = np.array([.950410, 1., 1.087470]) white_F11 = np.array([1.009620, 1., .643500]) def empty_matrix(self, ndata): """ Return list of emtpy (zero) matrixes suitable for jacobians etc. Parameters ---------- ndata : ndarray List of colour data. Returns ------- empty_matrix : ndarray List of empty matrices of dimensions corresponding to ndata. """ return np.zeros((np.shape(ndata)[0], 3, 3)) def jacobian_XYZ(self, data): """ Return the Jacobian to XYZ, dx^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class) by inverting the inverse Jacobian. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to XYZ. """ return np.linalg.inv(self.inv_jacobian_XYZ(data)) def inv_jacobian_XYZ(self, data): """ Return the inverse Jacobian to XYZ, dXYZ^i/dx^j. The inverse Jacobian is calculated at the given data points (of the Points class) by inverting the Jacobian. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians from XYZ. """ return np.linalg.inv(self.jacobian_XYZ(data)) def vectors_to_XYZ(self, points_data, vectors_ndata): """ Convert metric data to the XYZ colour space. Parameters ---------- points_data : Points The colour data points. vectors_ndata : ndarray Array of colour metric tensors in current colour space. Returns ------- xyz_vectors : ndarray Array of colour vectors in XYZ. """ jacobian = self.inv_jacobian_XYZ(points_data) return np.einsum('...ij,...j->...i', jacobian, vectors_ndata) def vectors_from_XYZ(self, points_data, vectors_ndata): """ Convert metric data from the XYZ colour space. Parameters ---------- points_data : Points The colour data points. vectors_ndata : ndarray Array of colour metric tensors in XYZ. Returns ------- vectors : ndarray Array of colour vectors in the current colour space. """ jacobian = self.jacobian_XYZ(points_data) return np.einsum('...ij,...j->...i', jacobian, vectors_ndata) def metrics_to_XYZ(self, points_data, metrics_ndata): """ Convert metric data to the XYZ colour space. Parameters ---------- points_data : Points The colour data points. metrics_ndata : ndarray Array of colour metric tensors in current colour space. Returns ------- xyz_metrics : ndarray Array of colour metric tensors in XYZ. """ jacobian = self.jacobian_XYZ(points_data) return np.einsum('...ij,...ik,...kl->...jl', jacobian, metrics_ndata, jacobian) def metrics_from_XYZ(self, points_data, metrics_ndata): """ Convert metric data from the XYZ colour space. Parameters ---------- points_data : Points The colour data points. metrics_ndata : ndarray Array of colour metric tensors in XYZ. Returns ------- metrics : ndarray Array of colour metric tensors in the current colour space. """ jacobian = self.inv_jacobian_XYZ(points_data) return np.einsum('...ij,...ik,...kl->...jl', jacobian, metrics_ndata, jacobian) class XYZ(Space): """ The XYZ colour space. Assumes that the CIE 1931 XYZ colour matching functions are used. The white point is D65. Serves a special role in the code in that it serves as a common reference point. """ def to_XYZ(self, ndata): """ Convert from current colour space to XYZ. Parameters ---------- ndata : ndarray Colour data in the current colour space. Returns ------- xyz : ndarray Colour data in the XYZ colour space. """ return ndata.copy() # identity transform def from_XYZ(self, ndata): """ Convert from XYZ to current colour space. Parameters ---------- ndata : ndarray Colour data in the XYZ colour space. Returns ------- xyz : ndarray Colour data in the current colour space. """ return ndata.copy() # identity transform def jacobian_XYZ(self, data): """ Return the Jacobian to XYZ, dx^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to XYZ. """ jac = self.empty_matrix(data.flattened_XYZ) jac[:] = np.eye(3) return jac def inv_jacobian_XYZ(self, data): """ Return the inverse Jacobian to XYZ, dXYZ^i/dx^j. The inverse Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians from XYZ. """ ijac = self.empty_matrix(data.flattened_XYZ) ijac[:] = np.eye(3) return ijac class Transform(Space): """ Base class for colour space transforms. Real transforms (children) must implement to_base, from_base and either jacobian_base or inv_jacobian_base. """ def __init__(self, base): """ Construct instance and set base space for transformation. Parameters ---------- base : Space The base for the colour space transform. """ self.base = base def to_XYZ(self, ndata): """ Transform data to XYZ by using the transformation to the base. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- xyz : ndarray Colour data in the XYZ colour space """ return self.base.to_XYZ(self.to_base(ndata)) def from_XYZ(self, ndata): """ Transform data from XYZ using the transformation to the base. Parameters ---------- ndata : ndarray Colour data in the XYZ colour space. Returns ------- xyz : ndarray Colour data in the current colour space. """ return self.from_base(self.base.from_XYZ(ndata)) def jacobian_base(self, data): """ Return the Jacobian to base, dx^i/dbase^j. The Jacobian is calculated at the given data points (of the Points class) by inverting the inverse Jacobian. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ return np.linalg.inv(self.inv_jacobian_base(data)) def inv_jacobian_base(self, data): """ Return the inverse Jacobian to base, dbase^i/dx^j. The inverse Jacobian is calculated at the given data points (of the Points class) by inverting the Jacobian. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians from the base colour space. """ return np.linalg.inv(self.jacobian_base(data)) def jacobian_XYZ(self, data): """ Return the Jacobian to XYZ, dx^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class) using the jacobian to the base and the Jacobian of the base space. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to XYZ. """ dxdbase = self.jacobian_base(data) dbasedXYZ = self.base.jacobian_XYZ(data) return np.einsum('...ij,...jk->...ik', dxdbase, dbasedXYZ) def inv_jacobian_XYZ(self, data): """ Return the inverse Jacobian to XYZ, dXYZ^i/dx^j. The Jacobian is calculated at the given data points (of the Points class) using the inverse jacobian to the base and the inverse Jacobian of the base space. Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians from XYZ. """ dXYZdbase = self.base.inv_jacobian_XYZ(data) dbasedx = self.inv_jacobian_base(data) return np.einsum('...ij,...jk->...ik', dXYZdbase, dbasedx) class TransformxyY(Transform): """ The XYZ to xyY projective transform. """ def __init__(self, base): """ Construct instance. Parameters ---------- base : Space Base colour space. """ super(TransformxyY, self).__init__(base) def to_base(self, ndata): """ Convert from xyY to XYZ. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ xyz = np.zeros(np.shape(ndata)) xyz[:, 0] = ndata[:, 0]*ndata[:, 2] / ndata[:, 1] xyz[:, 1] = ndata[:, 2] xyz[:, 2] = (1 - ndata[:, 0] - ndata[:, 1]) * ndata[:, 2] / ndata[:, 1] return xyz def from_base(self, ndata): """ Convert from XYZ to xyY. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ xyz = ndata xyY = np.zeros(np.shape(xyz)) xyz_sum = np.sum(xyz, axis=1) xyY[:, 0] = xyz[:, 0] / xyz_sum # x xyY[:, 1] = xyz[:, 1] / xyz_sum # y xyY[:, 2] = xyz[:, 1] # Y return xyY def jacobian_base(self, data): """ Return the Jacobian to XYZ, dxyY^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ xyzdata = data.get_flattened(self.base) jac = self.empty_matrix(xyzdata) for i in range(np.shape(jac)[0]): jac[i, 0, 0] = (xyzdata[i, 1] + xyzdata[i, 2]) / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 0, 1] = -xyzdata[i, 0] / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 0, 2] = -xyzdata[i, 0] / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 1, 0] = -xyzdata[i, 1] / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 1, 1] = (xyzdata[i, 0] + xyzdata[i, 2]) / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 1, 2] = -xyzdata[i, 1] / \ (xyzdata[i, 0] + xyzdata[i, 1] + xyzdata[i, 2]) ** 2 jac[i, 2, 1] = 1 return jac def inv_jacobian_base(self, data): """ Return the Jacobian from XYZ, dXYZ^i/dxyY^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ xyYdata = data.get_flattened(self) jac = self.empty_matrix(xyYdata) for i in range(np.shape(jac)[0]): jac[i, 0, 0] = xyYdata[i, 2] / xyYdata[i, 1] jac[i, 0, 1] = - xyYdata[i, 0] * xyYdata[i, 2] / xyYdata[i, 1] ** 2 jac[i, 0, 2] = xyYdata[i, 0] / xyYdata[i, 1] jac[i, 1, 2] = 1 jac[i, 2, 0] = - xyYdata[i, 2] / xyYdata[i, 1] jac[i, 2, 1] = xyYdata[i, 2] * (xyYdata[i, 0] - 1) / \ xyYdata[i, 1] ** 2 jac[i, 2, 2] = (1 - xyYdata[i, 0] - xyYdata[i, 1]) / xyYdata[i, 1] return jac class TransformProjective(Transform): """ General projective transform of the XYZ to xyY type. """ def __init__(self, base, M=np.array([[1, 0, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]])): """ Construct instance. Parameters ---------- base : Space Base colour space. M : ndarray 4 x 3 array with the coefficients of the projective transforms, such that x = (M[0, 0] * X + M[0, 1] * Y + M[0, 2] * Z) / denom y = (M[1, 0] * X + M[1, 1] * Y + M[1, 2] * Z) / denom denom = M[2, 0] * X + M[2, 1] * Y + M[2, 2] * Z Y = M[3, 0] * X + M[3, 1] * Y + M[3, 2] * Z """ self.M = M super(TransformProjective, self).__init__(base) def to_base(self, ndata): """ Convert from xyY to XYZ. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ xyz = np.zeros(np.shape(ndata)) x = ndata[:, 0] y = ndata[:, 1] Y = ndata[:, 2] a = self.M[0, 0] b = self.M[0, 1] c = self.M[0, 2] d = self.M[1, 0] e = self.M[1, 1] f = self.M[1, 2] g = self.M[2, 0] h = self.M[2, 1] i = self.M[2, 2] j = self.M[3, 0] k = self.M[3, 1] ell = self.M[3, 2] for n in range(xyz.shape[0]): A = np.array([[g * x[n] - a, h * x[n] - b, i * x[n] - c], [g * y[n] - d, h * y[n] - e, i * y[n] - f], [j, k, ell]]) B = np.array([0, 0, Y[n]]) XYZ = np.dot(np.linalg.inv(A), B) xyz[n, 0] = XYZ[0] xyz[n, 1] = XYZ[1] xyz[n, 2] = XYZ[2] return xyz def from_base(self, ndata): """ Convert from XYZ to xyY. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ X = ndata[:, 0] Y = ndata[:, 1] Z = ndata[:, 2] denom = self.M[2, 0] * X + self.M[2, 1] * Y + self.M[2, 2] * Z xyY = np.zeros(np.shape(ndata)) xyY[:, 0] = (self.M[0, 0] * X + self.M[0, 1] * Y + self.M[0, 2] * Z) / denom # x xyY[:, 1] = (self.M[1, 0] * X + self.M[1, 1] * Y + self.M[1, 2] * Z) / denom # y xyY[:, 2] = (self.M[3, 0] * X + self.M[3, 1] * Y + self.M[3, 2] * Z) # Y return xyY def jacobian_base(self, data): """ Return the Jacobian to XYZ, dxyY^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ a = self.M[0, 0] b = self.M[0, 1] c = self.M[0, 2] d = self.M[1, 0] e = self.M[1, 1] f = self.M[1, 2] g = self.M[2, 0] h = self.M[2, 1] i = self.M[2, 2] j = self.M[3, 0] k = self.M[3, 1] ell = self.M[3, 2] xyzdata = data.get_flattened(self.base) X = xyzdata[:, 0] Y = xyzdata[:, 1] Z = xyzdata[:, 2] ABC = a * X + b * Y + c * Z DEF = d * X + e * Y + f * Z GHI = g * X + h * Y + i * Z jac = self.empty_matrix(xyzdata) jac[:, 0, 0] = (a * GHI - g * ABC) / GHI**2 jac[:, 0, 1] = (b * GHI - h * ABC) / GHI**2 jac[:, 0, 2] = (c * GHI - i * ABC) / GHI**2 jac[:, 1, 0] = (d * GHI - g * DEF) / GHI**2 jac[:, 1, 1] = (e * GHI - h * DEF) / GHI**2 jac[:, 1, 2] = (f * GHI - i * DEF) / GHI**2 jac[:, 2, 0] = j jac[:, 2, 1] = k jac[:, 2, 2] = ell return jac class TransformCIELAB(Transform): """ The XYZ to CIELAB colour space transform. The white point is a parameter in the transform. """ kappa = 24389. / 27. # standard: 903.3 epsilon = 216. / 24389. # standard: 0.008856 def __init__(self, base, white_point=Space.white_D65): """ Construct instance by setting base space and white point. Parameters ---------- base : Space The base colour space. white_point : ndarray or Points The white point """ super(TransformCIELAB, self).__init__(base) if not isinstance(white_point, np.ndarray): self.white_point = white_point.get(xyz) else: self.white_point = white_point def f(self, ndata): """ Auxiliary function for the conversion. """ fx = (self.kappa * ndata + 16.) / 116. fx[ndata > self.epsilon] = ndata[ndata > self.epsilon] ** (1. / 3) return fx def dfdx(self, ndata): """ Auxiliary function for the Jacobian. Returns the derivative of the function f above. Works for arrays. """ df = self.kappa / 116. * np.ones(np.shape(ndata)) df[ndata > self.epsilon] = \ (ndata[ndata > self.epsilon] ** (-2. / 3)) / 3 return df def to_base(self, ndata): """ Convert from CIELAB to XYZ (base). Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ ndata fy = (ndata[:, 0] + 16.) / 116. fx = ndata[:, 1] / 500. + fy fz = fy - ndata[:, 2] / 200. xr = fx ** 3 xr[xr <= self.epsilon] = ((116 * fx[xr <= self.epsilon] - 16) / self.kappa) yr = fy ** 3 yr[ndata[:, 0] <= self.kappa * self.epsilon] = \ ndata[ndata[:, 0] <= self.kappa * self.epsilon, 0] / self.kappa zr = fz ** 3 zr[zr <= self.epsilon] = ((116 * fz[zr <= self.epsilon] - 16) / self.kappa) xyz = np.zeros(np.shape(ndata)) xyz[:, 0] = xr * self.white_point[0] xyz[:, 1] = yr * self.white_point[1] xyz[:, 2] = zr * self.white_point[2] return xyz def from_base(self, ndata): """ Convert from XYZ (base) to CIELAB. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ lab = np.zeros(np.shape(ndata)) fx = self.f(ndata[:, 0] / self.white_point[0]) fy = self.f(ndata[:, 1] / self.white_point[1]) fz = self.f(ndata[:, 2] / self.white_point[2]) lab[:, 0] = 116. * fy - 16. lab[:, 1] = 500. * (fx - fy) lab[:, 2] = 200. * (fy - fz) return lab def jacobian_base(self, data): """ Return the Jacobian to XYZ (base), dCIELAB^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ d = data.get_flattened(self.base) dr = d.copy() for i in range(3): dr[:, i] = dr[:, i] / self.white_point[i] df = self.dfdx(dr) jac = self.empty_matrix(d) jac[:, 0, 1] = 116 * df[:, 1] / self.white_point[1] # dL/dY jac[:, 1, 0] = 500 * df[:, 0] / self.white_point[0] # da/dX jac[:, 1, 1] = -500 * df[:, 1] / self.white_point[1] # da/dY jac[:, 2, 1] = 200 * df[:, 1] / self.white_point[1] # db/dY jac[:, 2, 2] = -200 * df[:, 2] / self.white_point[2] # db/dZ return jac class TransformCIELUV(Transform): """ The XYZ to CIELUV colour space transform. The white point is a parameter in the transform. """ kappa = 24389. / 27. # standard: 903.3 epsilon = 216. / 24389. # standard: 0.008856 def __init__(self, base, white_point=Space.white_D65): """ Construct instance by setting base space and white point. Parameters ---------- base : Space The base colour space. white_point : ndarray or Points The white point """ super(TransformCIELUV, self).__init__(base) if not isinstance(white_point, np.ndarray): self.white_point = white_point.get(xyz) else: self.white_point = white_point def f(self, ndata): """ Auxiliary function for the conversion. """ fx = (self.kappa * ndata + 16.) / 116. fx[ndata > self.epsilon] = ndata[ndata > self.epsilon] ** (1. / 3) return fx def dfdx(self, ndata): """ Auxiliary function for the Jacobian. Returns the derivative of the function f above. Works for arrays. """ df = self.kappa / 116. * np.ones(np.shape(ndata)) df[ndata > self.epsilon] = \ (ndata[ndata > self.epsilon] ** (-2. / 3)) / 3 return df def to_base(self, ndata): """ Convert from CIELUV to XYZ (base). Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ luv = ndata fy = (luv[:, 0] + 16.) / 116. y = fy ** 3 y[luv[:, 0] <= self.kappa * self.epsilon] = \ luv[luv[:, 0] <= self.kappa * self.epsilon, 0] / self.kappa upr = 4 * self.white_point[0] / (self.white_point[0] + 15*self.white_point[1] + 3*self.white_point[2]) vpr = 9 * self.white_point[1] / (self.white_point[0] + 15*self.white_point[1] + 3*self.white_point[2]) a = (52*luv[:, 0] / (luv[:, 1] + 13*luv[:, 0]*upr) - 1) / 3 b = -5 * y c = -1/3. d = y * (39*luv[:, 0] / (luv[:, 2] + 13*luv[:, 0]*vpr) - 5) x = (d - b) / (a - c) z = x * a + b # Combine into matrix xyz = np.zeros(np.shape(luv)) xyz[:, 0] = x xyz[:, 1] = y xyz[:, 2] = z return xyz def from_base(self, ndata): """ Convert from XYZ (base) to CIELUV. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ d = ndata luv = np.zeros(np.shape(d)) fy = self.f(d[:, 1] / self.white_point[1]) up = 4 * d[:, 0] / (d[:, 0] + 15*d[:, 1] + 3*d[:, 2]) upr = 4 * self.white_point[0] / (self.white_point[0] + 15*self.white_point[1] + 3*self.white_point[2]) vp = 9 * d[:, 1] / (d[:, 0] + 15*d[:, 1] + 3*d[:, 2]) vpr = 9 * self.white_point[1] / (self.white_point[0] + 15*self.white_point[1] + 3*self.white_point[2]) luv[:, 0] = 116. * fy - 16. luv[:, 1] = 13 * luv[:, 0] * (up - upr) luv[:, 2] = 13 * luv[:, 0] * (vp - vpr) return luv def jacobian_base(self, data): """ Return the Jacobian to XYZ (base), dCIELUV^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ xyz_ = data.get_flattened(xyz) luv = data.get_flattened(cieluv) df = self.dfdx(xyz_) jac = self.empty_matrix(xyz_) # dL/dY: jac[:, 0, 1] = 116 * df[:, 1] / self.white_point[1] # du/dX: jac[:, 1, 0] = 13 * luv[:, 0] * \ (60 * xyz_[:, 1] + 12 * xyz_[:, 2]) / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 # du/dY: jac[:, 1, 1] = 13 * luv[:, 0] * \ -60 * xyz_[:, 0] / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 + \ 13 * jac[:, 0, 1] * ( 4 * xyz_[:, 0] / (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) - 4 * self.white_point[0] / (self.white_point[0] + 15 * self.white_point[1] + 3 * self.white_point[2])) # du/dZ: jac[:, 1, 2] = 13 * luv[:, 0] * \ -12 * xyz_[:, 0] / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 # dv/dX: jac[:, 2, 0] = 13 * luv[:, 0] * \ -9 * xyz_[:, 1] / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 # dv/dY: jac[:, 2, 1] = 13 * luv[:, 0] * \ (9 * xyz_[:, 0] + 27 * xyz_[:, 2]) / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 + \ 13 * jac[:, 0, 1] * ( 9 * xyz_[:, 1] / (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) - 9 * self.white_point[1] / (self.white_point[0] + 15 * self.white_point[1] + 3 * self.white_point[2])) # dv/dZ: jac[:, 2, 2] = 13 * luv[:, 0] * \ -27 * xyz_[:, 1] / \ (xyz_[:, 0] + 15 * xyz_[:, 1] + 3 * xyz_[:, 2]) ** 2 return jac class TransformCIEDE00(Transform): """ The CIELAB to CIEDE00 L'a'b' colour space transform. """ def __init__(self, base): """ Construct instance by setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformCIEDE00, self).__init__(base) def to_base(self, ndata): """ Convert from CIEDE00 to CIELAB (base). Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ raise RuntimeError('No conversion of CIEDE00 Lab to CIELAB ' + 'implemented (yet).') def from_base(self, ndata): """ Convert from CIELAB (base) to CIEDE00. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- labp : ndarray Colour data in the CIEDE00 L'a'b' colour space. """ lab = ndata labp = lab.copy() Cab = np.sqrt(lab[:, 1]**2 + lab[:, 2]**2) G = .5 * (1 - np.sqrt(Cab**7 / (Cab**7 + 25**7))) labp[:, 1] = lab[:, 1] * (1 + G) return labp def jacobian_base(self, data): """ Return the Jacobian to CIELAB (base), dCIEDE00^i/dCIELAB^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ lab = data.get_flattened(cielab) lch = data.get_flattened(cielch) a = lab[:, 1] b = lab[:, 2] C = lch[:, 1] G = .5 * (1 - np.sqrt(C**7 / (C**7 + 25**7))) jac = self.empty_matrix(lab) jac[:, 0, 0] = 1 # dLp/dL jac[:, 2, 2] = 1 # dbp/db # jac[:, 1, 1] = 1 + G - misc.safe_div(a**2, C) * \ # (7 * 25**7 * C**(5/2.) / # (4 * (C**7 + 25**7)**(3/2.))) # dap/da jac[:, 1, 1] = 1 + G - misc.safe_div(a**2, C) * \ (7 * 25**7 * C**(5/2.) / (8 * (C**7 + 25**7)**(3/2.))) # dap/da jac[C == 0, 1, 1] = 1 # jac[:, 1, 2] = - a * misc.safe_div(b, C) * \ # (7 * 25**7 * C**(5/2.) / (4 * (C**7 + 25**7)**(3/2.))) jac[:, 1, 2] = - a * misc.safe_div(b, C) * \ (7 * 25**7 * C**(5/2.) / (8 * (C**7 + 25**7)**(3/2.))) jac[C == 0, 1, 2] = 0 return jac class TransformSRGB(Transform): """ Transform linear RGB with sRGB primaries to sRGB. """ def __init__(self, base): """ Construct sRGB space instance, setting the base (linear RGB). Parameters ---------- base : Space The base colour space. """ super(TransformSRGB, self).__init__(base) def to_base(self, ndata): """ Convert from sRGB to linear RGB. Performs gamut clipping if necessary. Parameters ---------- ndata : ndarray Colour data in the sRGB colour space Returns ------- col : ndarray Colour data in the linear RGB colour space """ nd = ndata.copy() nd[nd < 0] = 0 nd[nd > 1] = 1 rgb = ((nd + 0.055) / 1.055)**2.4 rgb[nd <= 0.04045] = nd[nd <= 0.04045] / 12.92 return rgb def jacobian_base(self, data): """ Return the Jacobian to linear RGB (base), dsRGB^i/dRGB^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ rgb = data.get_flattened(self.base) r = rgb[:, 0] g = rgb[:, 1] b = rgb[:, 2] jac = self.empty_matrix(rgb) jac[:, 0, 0] = 1.055 / 2.4 * r**(1 / 2.4 - 1) jac[r < 0.0031308, 0, 0] = 12.92 jac[:, 1, 1] = 1.055 / 2.4 * g**(1 / 2.4 - 1) jac[g < 0.0031308, 1, 1] = 12.92 jac[:, 2, 2] = 1.055 / 2.4 * b**(1 / 2.4 - 1) jac[b < 0.0031308, 2, 2] = 12.92 return jac def from_base(self, ndata): """ Convert from linear RGB to sRGB. Performs gamut clipping if necessary. Parameters ---------- ndata : ndarray Colour data in the linear colour space Returns ------- col : ndarray Colour data in the sRGB colour space """ nd = ndata.copy() nd[nd < 0] = 0 nd[nd > 1] = 1 srgb = 1.055 * nd**(1 / 2.4) - 0.055 srgb[nd <= 0.0031308] = 12.92 * nd[nd <= 0.0031308] return srgb class TransformLinear(Transform): """ General linear transform, transformed = M * base """ def __init__(self, base, M=np.eye(3)): """ Construct instance, setting the matrix of the linear transfrom. Parameters ---------- base : Space The base colour space. """ super(TransformLinear, self).__init__(base) self.M = M.copy() self.M_inv = np.linalg.inv(M) def to_base(self, ndata): """ Convert from linear to the base. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ xyz = np.zeros(np.shape(ndata)) for i in range(np.shape(ndata)[0]): xyz[i] = np.dot(self.M_inv, ndata[i]) return xyz def from_base(self, ndata): """ Convert from the base to linear. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ xyz = ndata lins = np.zeros(np.shape(xyz)) for i in range(np.shape(xyz)[0]): lins[i] = np.dot(self.M, xyz[i]) return lins def jacobian_base(self, data): """ Return the Jacobian to XYZ (base), dlinear^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ xyzdata = data.get_flattened(xyz) jac = self.empty_matrix(xyzdata) jac[:] = self.M return jac def inv_jacobian_base(self, data): """ Return the Jacobian from XYZ (base), dXYZ^i/dlinear^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ xyzdata = data.get_flattened(xyz) jac = self.empty_matrix(xyzdata) jac[:] = self.M_inv return jac class TransformGamma(Transform): """ General gamma transform, transformed = base**gamma Uses absolute value and sign for negative base values: transformed = sign(base) * abs(base)**gamma """ def __init__(self, base, gamma=1): """ Construct instance, setting the gamma of the transfrom. Parameters ---------- base : Space The base colour space. gamma : float The exponent for the gamma transformation from the base. """ super(TransformGamma, self).__init__(base) self.gamma = float(gamma) self.gamma_inv = 1. / gamma def to_base(self, ndata): """ Convert from gamma corrected to XYZ (base). Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ return np.sign(ndata) * np.abs(ndata)**self.gamma_inv def from_base(self, ndata): """ Convert from XYZ to gamma corrected. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ return np.sign(ndata) * np.abs(ndata)**self.gamma def jacobian_base(self, data): """ Return the Jacobian to XYZ (base), dgamma^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ basedata = data.get_flattened(self.base) jac = self.empty_matrix(basedata) for i in range(np.shape(basedata)[0]): jac[i, 0, 0] = self.gamma * \ np.abs(basedata[i, 0])**(self.gamma - 1) jac[i, 1, 1] = self.gamma * \ np.abs(basedata[i, 1])**(self.gamma - 1) jac[i, 2, 2] = self.gamma * \ np.abs(basedata[i, 2])**(self.gamma - 1) return jac class TransformPolar(Transform): """ Transform form Cartesian to polar coordinates in the two last variables. For example CIELAB to CIELCH. """ def __init__(self, base): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformPolar, self).__init__(base) def to_base(self, ndata): """ Convert from polar to Cartesian. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ Lab = np.zeros(np.shape(ndata)) Lab[:, 0] = ndata[:, 0] C = ndata[:, 1] h = ndata[:, 2] Lab[:, 1] = C * np.cos(h) Lab[:, 2] = C * np.sin(h) return Lab def from_base(self, ndata): """ Convert from Cartesian (base) to polar. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ LCh = np.zeros(np.shape(ndata)) LCh[:, 0] = ndata[:, 0] x = ndata[:, 1] y = ndata[:, 2] LCh[:, 1] = np.sqrt(x**2 + y**2) LCh[:, 2] = np.arctan2(y, x) return LCh def inv_jacobian_base(self, data): """ Return the Jacobian from CIELAB (base), dCIELAB^i/dCIELCH^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ LCh = data.get_flattened(self) C = LCh[:, 1] h = LCh[:, 2] jac = self.empty_matrix(LCh) for i in range(np.shape(jac)[0]): jac[i, 0, 0] = 1 # dL/dL jac[i, 1, 1] = np.cos(h[i]) # da/dC jac[i, 1, 2] = -C[i] * np.sin(h[i]) # da/dh jac[i, 2, 1] = np.sin(h[i]) # db/dC jac[i, 2, 2] = C[i] * np.cos(h[i]) # db/dh if C[i] == 0: jac[i, 2, 2] = 1 jac[i, 1, 1] = 1 return jac class TransformCartesian(Transform): """ Transform form polar to Cartesian coordinates in the two last variables. For example CIELCH to CIELAB. """ def __init__(self, base): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformCartesian, self).__init__(base) def from_base(self, ndata): """ Convert from polar to Cartesian. Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ Lab = np.zeros(np.shape(ndata)) Lab[:, 0] = ndata[:, 0] C = ndata[:, 1] h = ndata[:, 2] Lab[:, 1] = C * np.cos(h) Lab[:, 2] = C * np.sin(h) return Lab def to_base(self, ndata): """ Convert from Cartesian (base) to polar. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ LCh = np.zeros(np.shape(ndata)) LCh[:, 0] = ndata[:, 0] x = ndata[:, 1] y = ndata[:, 2] LCh[:, 1] = np.sqrt(x**2 + y**2) LCh[:, 2] = np.arctan2(y, x) return LCh def jacobian_base(self, data): """ Return the Jacobian from CIELCh (base), dCIELAB^i/dCIELCH^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ LCh = data.get_flattened(self.base) C = LCh[:, 1] h = LCh[:, 2] jac = self.empty_matrix(LCh) for i in range(np.shape(jac)[0]): jac[i, 0, 0] = 1 # dL/dL jac[i, 1, 1] = np.cos(h[i]) # da/dC jac[i, 1, 2] = -C[i] * np.sin(h[i]) # da/dh jac[i, 2, 1] = np.sin(h[i]) # db/dC jac[i, 2, 2] = C[i] * np.cos(h[i]) # db/dh return jac class TransformLGJOSA(Transform): """ Transform from XYZ type coordinates to L_osa G J. """ def __init__(self, base): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformLGJOSA, self).__init__(base) self.space_ABC = TransformLinear(self.base, np.array([[0.6597, 0.4492, -0.1089], [-0.3053, 1.2126, 0.0927], [-0.0374, 0.4795, 0.5579]])) self.space_xyY = TransformxyY(self.base) def err_func(self, xyz, lgj): clgj = self.from_base(np.reshape(xyz, (1, 3))) diff = clgj - np.reshape(lgj, (1, 3)) n = np.linalg.norm(diff) return n def to_base(self, ndata): """ Convert from LGJOSA to XYZ (base). Implemented as numerical inversion of the from_base method, since the functions unfortunately are not analytically invertible. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ import scipy.optimize xyz = .5 * np.ones(np.shape(ndata)) for i in range(np.shape(xyz)[0]): xyz_guess = xyz[i].copy() lgj = ndata[i].copy() xyz[i] = scipy.optimize.fmin(self.err_func, xyz_guess, (lgj,)) return xyz def from_base(self, ndata): """ Transform from base to LGJ OSA. Parameters ---------- ndata : ndarray Colour data in the base colour space (XYZ). Returns ------- col : ndarray Colour data in the LGJOSA colour space. """ abc = self.space_ABC.from_base(ndata) A = abc[:, 0] B = abc[:, 1] C = abc[:, 2] xyY = self.space_xyY.from_base(ndata) x = xyY[:, 0] y = xyY[:, 1] Y = xyY[:, 2] Y_0 = 100 * Y * (4.4934 * x**2 + 4.3034 * y**2 - 4.2760 * x * y - 1.3744 * x - 2.5643 * y + 1.8103) L_osa = (5.9 * ((Y_0**(1/3.) - (2/3.)) + 0.0042 * np.sign(Y_0 - 30) * np.abs(Y_0 - 30)**(1/3.)) - 14.4) / np.sqrt(2) G = -2 * (0.764 * L_osa + 9.2521) * ( 0.9482 * (np.log(A) - np.log(0.9366 * B)) - 0.3175 * (np.log(B) - np.log(0.9807 * C))) J = 2 * (0.5735 * L_osa + 7.0892) * ( 0.1792 * (np.log(A) - np.log(0.9366 * B)) + 0.9237 * (np.log(B) - np.log(0.9807 * C))) col = np.zeros(np.shape(ndata)) col[:, 0] = L_osa col[:, 1] = G col[:, 2] = J return col def jacobian_base(self, data): """ Return the Jacobian from XYZ (base), dLGJOSA^i/dXYZ^j. The Jacobian is calculated at the given data points (of the Points class). Like the colour space, a terrible mess... Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ ABC = data.get_flattened(self.space_ABC) xyY = data.get_flattened(self.space_xyY) x = xyY[:, 0] y = xyY[:, 1] Y = xyY[:, 2] A = ABC[:, 0] B = ABC[:, 1] C = ABC[:, 2] dxyY_dXYZ = self.space_xyY.jacobian_base(data) dx_dX = dxyY_dXYZ[:, 0, 0] dx_dY = dxyY_dXYZ[:, 0, 1] dx_dZ = dxyY_dXYZ[:, 0, 2] dy_dX = dxyY_dXYZ[:, 1, 0] dy_dY = dxyY_dXYZ[:, 1, 1] dy_dZ = dxyY_dXYZ[:, 1, 2] dY_dX = dxyY_dXYZ[:, 2, 0] dY_dY = dxyY_dXYZ[:, 2, 1] dY_dZ = dxyY_dXYZ[:, 2, 2] dABC_dXYZ = self.space_ABC.jacobian_base(data) dA_dX = dABC_dXYZ[:, 0, 0] dA_dY = dABC_dXYZ[:, 0, 1] dA_dZ = dABC_dXYZ[:, 0, 2] dB_dX = dABC_dXYZ[:, 1, 0] dB_dY = dABC_dXYZ[:, 1, 1] dB_dZ = dABC_dXYZ[:, 1, 2] dC_dX = dABC_dXYZ[:, 2, 0] dC_dY = dABC_dXYZ[:, 2, 1] dC_dZ = dABC_dXYZ[:, 2, 2] Y_0 = 100 * Y * (4.4934 * x**2 + 4.3034 * y**2 - 4.2760 * x * y - 1.3744 * x - 2.5643 * y + 1.8103) L = (5.9 * ((Y_0**(1/3.) - (2/3.)) + 0.0042 * np.sign(Y_0 - 30) * np.abs(Y_0 - 30)**(1/3.)) - 14.4) / np.sqrt(2) dL_dY0 = 5.9 * (Y_0**(-2./3) + 0.042 * np.sign(Y_0 - 30) * np.abs(Y_0 - 30)**(-2./3) / 3) / np.sqrt(2) dY0_dx = 100 * Y * (4.4934 * 2 * x - 4.2760 * y - 1.3744) dY0_dy = 100 * Y * (4.3034 * 2 * y - 4.2760 * x - 2.5643) dY0_dY = 100 * (4.4934 * x**2 + 4.3034 * y**2 - 4.2760 * x * y - 1.3744 * x - 2.5643 * y + 1.8103) dL_dX = dL_dY0 * (dY0_dx * dx_dX + dY0_dy * dy_dX + dY0_dY * dY_dX) dL_dY = dL_dY0 * (dY0_dx * dx_dY + dY0_dy * dy_dY + dY0_dY * dY_dY) dL_dZ = dL_dY0 * (dY0_dx * dx_dZ + dY0_dy * dy_dZ + dY0_dY * dY_dZ) TG = 0.9482 * (np.log(A) - np.log(0.9366 * B)) - \ 0.3175 * (np.log(B) - np.log(0.9807 * C)) TJ = 0.1792 * (np.log(A) - np.log(0.9366 * B)) + \ 0.9237 * (np.log(B) - np.log(0.9807 * C)) SG = - 2 * (0.764 * L + 9.2521) SJ = 2 * (0.5735 * L + 7.0892) dG_dL = - 2 * 0.764 * TG dJ_dL = 2 * 0.57354 * TJ dG_dA = misc.safe_div(SG * 0.9482, A) dG_dB = misc.safe_div(SG * (-0.9482 - 0.3175), B) dG_dC = misc.safe_div(SG * 0.3175, C) dJ_dA = misc.safe_div(SJ * 0.1792, A) dJ_dB = misc.safe_div(SJ * (-0.1792 + 0.9837), B) dJ_dC = misc.safe_div(SJ * (-0.9837), C) dG_dX = dG_dL * dL_dX + dG_dA * dA_dX + dG_dB * dB_dX + dG_dC * dC_dX dG_dY = dG_dL * dL_dY + dG_dA * dA_dY + dG_dB * dB_dY + dG_dC * dC_dY dG_dZ = dG_dL * dL_dZ + dG_dA * dA_dZ + dG_dB * dB_dZ + dG_dC * dC_dZ dJ_dX = dJ_dL * dL_dX + dJ_dA * dA_dX + dJ_dB * dB_dX + dJ_dC * dC_dX dJ_dY = dJ_dL * dL_dY + dJ_dA * dA_dY + dJ_dB * dB_dY + dJ_dC * dC_dY dJ_dZ = dJ_dL * dL_dZ + dJ_dA * dA_dZ + dJ_dB * dB_dZ + dJ_dC * dC_dZ jac = self.empty_matrix(ABC) jac[:, 0, 0] = dL_dX jac[:, 0, 1] = dL_dY jac[:, 0, 2] = dL_dZ jac[:, 1, 0] = dG_dX jac[:, 1, 1] = dG_dY jac[:, 1, 2] = dG_dZ jac[:, 2, 0] = dJ_dX jac[:, 2, 1] = dJ_dY jac[:, 2, 2] = dJ_dZ return jac class TransformLGJE(Transform): """ Transform from LGJOSA type coordinates to L_E, G_E, J_E. """ def __init__(self, base): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformLGJE, self).__init__(base) self.aL = 2.890 self.bL = 0.015 self.ac = 1.256 self.bc = 0.050 def to_base(self, ndata): """ Convert from LGJE to LGJOSA (base). Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ LE = ndata[:, 0] GE = ndata[:, 1] JE = ndata[:, 2] CE = np.sqrt(GE**2 + JE**2) L = self.aL * (np.exp(self.bL * LE) - 1) / (10 * self.bL) C = self.ac * (np.exp(self.bc * CE) - 1) / (10 * self.bc) scale = misc.safe_div(C, CE) G = - scale * GE J = - scale * JE col = ndata.copy() col[:, 0] = L col[:, 1] = G col[:, 2] = J return col def from_base(self, ndata): """ Transform from LGJOSA (base) to LGJE. Parameters ---------- ndata : ndarray Colour data in the base colour space (LGJOSA). Returns ------- col : ndarray Colour data in the LGJOSA colour space. """ L = ndata[:, 0] G = ndata[:, 1] J = ndata[:, 2] C = np.sqrt(G**2 + J**2) L_E = np.log(1 + 10 * L * self.bL / self.aL) / self.bL C_E = np.log(1 + 10 * C * self.bc / self.ac) / self.bc scale = misc.safe_div(C_E, C) G_E = - scale * G J_E = - scale * J col = ndata.copy() col[:, 0] = L_E col[:, 1] = G_E col[:, 2] = J_E return col def jacobian_base(self, data): """ Return the Jacobian from LGJOSA (base), dLGJE^i/dLGJOSA^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ lgj = data.get_flattened(self.base) L = lgj[:, 0] G = lgj[:, 1] J = lgj[:, 2] C = np.sqrt(G**2 + J**2) lgj_e = data.get_flattened(self) C_E = np.sqrt(lgj_e[:, 1]**2 + lgj_e[:, 2]**2) dLE_dL = 10 / (self.aL + 10 * self.bL * L) dCE_dC = 10 / (self.ac + 10 * self.bc * C) dCEC_dC = misc.safe_div(dCE_dC * C - C_E, C**2) dC_dG = misc.safe_div(G, C) dC_dJ = misc.safe_div(J, C) dCEC_dG = dCEC_dC * dC_dG dCEC_dJ = dCEC_dC * dC_dJ dGE_dG = - misc.safe_div(C_E, C) - G * dCEC_dG dGE_dJ = - G * dCEC_dJ dJE_dG = - J * dCEC_dG dJE_dJ = - misc.safe_div(C_E, C) - J * dCEC_dJ jac = self.empty_matrix(lgj) jac[:, 0, 0] = dLE_dL jac[:, 1, 1] = dGE_dG jac[:, 1, 2] = dGE_dJ jac[:, 2, 1] = dJE_dG jac[:, 2, 2] = dJE_dJ return jac class TransformLogCompressL(Transform): """ Perform parametric logarithmic compression of lightness. As in the DIN99x formulae. """ def __init__(self, base, aL, bL): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformLogCompressL, self).__init__(base) self.aL = aL self.bL = bL def from_base(self, ndata): """ Transform from Lab (base) to L'ab. Parameters ---------- ndata : ndarray Colour data in the base colour space (Lab). Returns ------- col : ndarray Colour data in the La'b' colour space. """ Lpab = ndata.copy() Lpab[:, 0] = self.aL * np.log(1 + self.bL * ndata[:, 0]) return Lpab def to_base(self, ndata): """ Transform from L'ab to Lab (base). Parameters ---------- ndata : ndarray Colour data in L'ab colour space. Returns ------- col : ndarray Colour data in the Lab colour space. """ Lab = ndata.copy() Lab[:, 0] = (np.exp(ndata[:, 0] / self.aL) - 1) / self.bL return Lab def jacobian_base(self, data): """ Return the Jacobian from Lab (base), dL'ab^i/dLab^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ lab = data.get_flattened(self.base) L = lab[:, 0] dLp_dL = self.aL * self.bL / (1 + self.bL * L) jac = self.empty_matrix(lab) jac[:, 0, 0] = dLp_dL jac[:, 1, 1] = 1 jac[:, 2, 2] = 1 return jac class TransformLogCompressC(Transform): """ Perform parametric logarithmic compression of chroma. As in the DIN99x formulae. """ def __init__(self, base, aC, bC): """ Construct instance, setting base space. Parameters ---------- base : Space The base colour space. """ super(TransformLogCompressC, self).__init__(base) self.aC = aC self.bC = bC def from_base(self, ndata): """ Transform from Lab (base) to La'b'. Parameters ---------- ndata : ndarray Colour data in the base colour space (Lab). Returns ------- col : ndarray Colour data in the La'b' colour space. """ Lapbp = ndata.copy() C = np.sqrt(ndata[:, 1]**2 + ndata[:, 2]**2) Cp = self.aC * np.log(1 + self.bC * C) scale = misc.safe_div(Cp, C) ap = scale * ndata[:, 1] bp = scale * ndata[:, 2] Lapbp[:, 1] = ap Lapbp[:, 2] = bp return Lapbp def to_base(self, ndata): """ Transform from La'b' to Lab (base). Parameters ---------- ndata : ndarray Colour data in L'ab colour space. Returns ------- col : ndarray Colour data in the Lab colour space. """ Lab = ndata.copy() ap = ndata[:, 1] bp = ndata[:, 2] Cp = np.sqrt(ap**2 + bp**2) C = (np.exp(Cp / self.aC) - 1) / self.bC scale = misc.safe_div(Cp, C) a = scale * ap b = scale * bp Lab[:, 1] = a Lab[:, 2] = b return Lab def jacobian_base(self, data): """ Return the Jacobian from Lab (base), dLa'b'^i/dLab^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ lab = data.get_flattened(self.base) lapbp = data.get_flattened(self) a = lab[:, 1] b = lab[:, 2] C = np.sqrt(a**2 + b**2) Cp = np.sqrt(lapbp[:, 1]**2 + lapbp[:, 2]**2) dC_da = misc.safe_div(a, C) dC_db = misc.safe_div(b, C) dCp_dC = self.aC * self.bC / (1 + self.bC * C) dCpC_dC = misc.safe_div(dCp_dC * C - Cp, C**2) dap_da = misc.safe_div(Cp, C) + a * (dCpC_dC * dC_da) dbp_db = misc.safe_div(Cp, C) + b * (dCpC_dC * dC_db) dap_db = a * dCpC_dC * dC_db dbp_da = b * dCpC_dC * dC_da jac = self.empty_matrix(lab) jac[:, 0, 0] = 1 jac[:, 1, 1] = dap_da jac[:, 1, 2] = dap_db jac[:, 2, 1] = dbp_da jac[:, 2, 2] = dbp_db return jac class TransformPoincareDisk(Transform): """ Transform from Cartesian coordinates to Poincare disk coordinates. The coordinate transform only changes the radius (chroma, typically), and does so in a way that preserves the radial distance with respect to the Euclidean metric and the Poincare disk metric in the source and target spaces, respectively. """ def __init__(self, base, R=1.): """ Construct instance, setting base space and radius of curvature. Parameters ---------- base : Space The base colour space. R : float The radius of curvature. """ super(TransformPoincareDisk, self).__init__(base) self.R = R def to_base(self, ndata): """ Transform from Poincare disk to base. Parameters ---------- ndata : ndarray Colour data in the current colour space Returns ------- col : ndarray Colour data in the base colour space """ Lab = ndata.copy() Lab[:, 1:] = 0 x = ndata[:, 1] y = ndata[:, 2] r = np.sqrt(x**2 + y**2) for i in range(np.shape(Lab)[0]): if r[i] > 0: Lab[i, 1:] = ndata[i, 1:] * 2 * \ self.R * np.arctanh(r[i]) / r[i] return Lab def from_base(self, ndata): """ Transform from base to Poincare disk Parameters ---------- ndata : ndarray Colour data in the base colour space. Returns ------- col : ndarray Colour data in the current colour space. """ Lxy = ndata.copy() Lxy[:, 1:] = 0 a = ndata[:, 1] b = ndata[:, 2] C = np.sqrt(a**2 + b**2) for i in range(np.shape(Lxy)[0]): if C[i] > 0: Lxy[i, 1:] = ndata[i, 1:] * np.tanh(C[i] / (2 * self.R)) / C[i] return Lxy def jacobian_base(self, data): """ Return the Jacobian from CIELAB (base), dLxy^i/dCIELAB^j. The Jacobian is calculated at the given data points (of the Points class). Parameters ---------- data : Points Colour data points for the jacobians to be computed. Returns ------- jacobian : ndarray The list of Jacobians to the base colour space. """ # TODO: bugfix!!! Lab = data.get_flattened(self.base) a = Lab[:, 1] b = Lab[:, 2] C = np.sqrt(a**2 + b**2) tanhC2R = np.tanh(C / (2. * self.R)) tanhC2C = misc.safe_div(tanhC2R, C) dCda = misc.safe_div(a, C) dCdb = misc.safe_div(b, C) dtanhdC = misc.safe_div(C / (2. * self.R) * (1 - tanhC2R**2) - tanhC2R, C**2) jac = self.empty_matrix(Lab) for i in range(np.shape(jac)[0]): jac[i, 0, 0] = 1 # dL/dL if C[i] == 0: jac[i, 1, 1] = .5 # dx/da jac[i, 2, 2] = .5 # dy/db else: jac[i, 1, 1] = tanhC2C[i] + \ a[i] * dtanhdC[i] * dCda[i] # dx/da jac[i, 1, 2] = a[i] * dtanhdC[i] * dCdb[i] # dx/db jac[i, 2, 1] = b[i] * dtanhdC[i] * dCda[i] # dy/da jac[i, 2, 2] = tanhC2C[i] + \ b[i] * dtanhdC[i] * dCdb[i] # dy/db return jac # ============================================================================= # Colour space instances # ============================================================================= # CIE based xyz = XYZ() xyY = TransformxyY(xyz) cielab = TransformCIELAB(xyz) cielch = TransformPolar(cielab) cieluv = TransformCIELUV(xyz) ciede00lab = TransformCIEDE00(cielab) ciede00lch = TransformPolar(ciede00lab) ciecat02 = TransformLinear(xyz, np.array([[.7328, .4296, -.1624], [-.7036, 1.675, .0061], [.0030, .0136, .9834]])) ciecat16 = TransformLinear(xyz, np.array([[.401288, .650173, -.051461], [-.250268, 1.204414, .045854], [-.002079, .048952, .953127]])) # sRGB _srgb_linear = TransformLinear( xyz, np.array([[3.2404542, -1.5371385, -0.4985314], [-0.9692660, 1.8760108, 0.0415560], [0.0556434, -0.2040259, 1.0572252]])) srgb = TransformSRGB(_srgb_linear) # Adobe RGB _rgb_adobe_linear = TransformLinear( xyz, np.array([[2.0413690, -0.5649464, -0.3446944], [-0.9692660, 1.8760108, 0.0415560], [0.0134474, -0.1183897, 1.0154096]])) rgb_adobe = TransformGamma(_rgb_adobe_linear, 1 / 2.2) # IPT _ipt_lms = TransformLinear( xyz, np.array([[.4002, .7075, -.0807], [-.228, 1.15, .0612], [0, 0, .9184]])) _ipt_lmsp = TransformGamma(_ipt_lms, .43) ipt = TransformLinear( _ipt_lmsp, np.array([[.4, .4, .2], [4.455, -4.850, .3960], [.8056, .3572, -1.1628]])) # OSA-UCS lgj_osa = TransformLGJOSA(xyz) lgj_e = TransformLGJE(lgj_osa) # DIN99 _din99_lpab = TransformLogCompressL(cielab, 105.51, 0.0158) _din99_lef = TransformLinear( _din99_lpab, np.array([[1, 0, 0], [0, np.cos(np.deg2rad(16.)), np.sin(np.deg2rad(16.))], [0, - 0.7 * np.sin(np.deg2rad(16.)), 0.7 * np.cos(np.deg2rad(16.))]])) din99 = TransformLogCompressC(_din99_lef, 1 / 0.045, 0.045) # DIN99b _din99b_lpab = TransformLogCompressL(cielab, 303.67, 0.0039) _din99b_lef = TransformLinear( _din99b_lpab, np.array([[1, 0, 0], [0, np.cos(np.deg2rad(26.)), np.sin(np.deg2rad(26.))], [0, - 0.83 * np.sin(np.deg2rad(26.)), 0.83 * np.cos(np.deg2rad(26.))]])) _din99b_rot = TransformLogCompressC(_din99b_lef, 23.0, 0.075) din99b = TransformLinear( _din99b_rot, np.array([[1, 0, 0], [0, np.cos(np.deg2rad(-26.)), np.sin(np.deg2rad(-26.))], [0, - np.sin(np.deg2rad(-26.)), np.cos(np.deg2rad(-26.))]])) # DIN99c _din99c_xyz = TransformLinear(xyz, np.array([[1.1, 0, -0.1], [0, 1, 0], [0, 0, 1]])) _din99c_white = np.dot(_din99c_xyz.M, _din99c_xyz.white_D65) _din99c_lab = TransformCIELAB(_din99c_xyz, _din99c_white) _din99c_lpab = TransformLogCompressL(_din99c_lab, 317.65, 0.0037) _din99c_lef = TransformLinear(_din99c_lpab, np.array([[1, 0, 0], [0, 1, 0], [0, 0, .94]])) din99c = TransformLogCompressC(_din99c_lef, 23., 0.066) # DIN99d _din99d_xyz = TransformLinear(xyz, np.array([[1.12, 0, -0.12], [0, 1, 0], [0, 0, 1]])) _din99d_white = np.dot(_din99d_xyz.M, _din99d_xyz.white_D65) _din99d_lab = TransformCIELAB(_din99d_xyz, _din99d_white) _din99d_lpab = TransformLogCompressL(_din99c_lab, 325.22, 0.0036) _din99d_lef = TransformLinear( _din99d_lpab, np.array([[1, 0, 0], [0, np.cos(np.deg2rad(50.)), np.sin(np.deg2rad(50.))], [0, - 1.14 * np.sin(np.deg2rad(50.)), 1.14 * np.cos(np.deg2rad(50.))]])) _din99d_rot = TransformLogCompressC(_din99d_lef, 23., 0.066) din99d = TransformLinear( _din99d_rot, np.array([[1, 0, 0], [0, np.cos(np.deg2rad(-50.)), np.sin(np.deg2rad(-50.))], [0, - np.sin(np.deg2rad(-50.)), np.cos(np.deg2rad(-50.))]]))
gpl-3.0
1,189,778,251,837,604,400
28.771328
79
0.468863
false
openstack/octavia
octavia/tests/unit/controller/worker/v1/flows/test_amphora_flows.py
1
20294
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from unittest import mock from oslo_config import cfg from oslo_config import fixture as oslo_fixture from oslo_utils import uuidutils from taskflow.patterns import linear_flow as flow from octavia.common import constants from octavia.common import data_models from octavia.controller.worker.v1.flows import amphora_flows import octavia.tests.unit.base as base AUTH_VERSION = '2' # NOTE: We patch the get_network_driver for all the calls so we don't # inadvertently make real calls. @mock.patch('octavia.common.utils.get_network_driver') class TestAmphoraFlows(base.TestCase): def setUp(self): super().setUp() self.conf = self.useFixture(oslo_fixture.Config(cfg.CONF)) self.conf.config( group="controller_worker", amphora_driver='amphora_haproxy_rest_driver') self.conf.config(group="nova", enable_anti_affinity=False) self.AmpFlow = amphora_flows.AmphoraFlows() self.amp1 = data_models.Amphora(id=1) self.amp2 = data_models.Amphora(id=2) self.amp3 = data_models.Amphora(id=3, status=constants.DELETED) self.amp4 = data_models.Amphora(id=uuidutils.generate_uuid()) self.lb = data_models.LoadBalancer( id=4, amphorae=[self.amp1, self.amp2, self.amp3]) def test_get_create_amphora_flow(self, mock_get_net_driver): amp_flow = self.AmpFlow.get_create_amphora_flow() self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(4, len(amp_flow.requires)) def test_get_create_amphora_flow_cert(self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow.get_create_amphora_flow() self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(4, len(amp_flow.requires)) def test_get_create_amphora_for_lb_flow(self, mock_get_net_driver): amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_STANDALONE) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) def test_get_cert_create_amphora_for_lb_flow(self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_STANDALONE) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) def test_get_cert_master_create_amphora_for_lb_flow( self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_MASTER) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) def test_get_cert_master_rest_anti_affinity_create_amphora_for_lb_flow( self, mock_get_net_driver): self.conf.config(group="nova", enable_anti_affinity=True) self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_MASTER) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) self.conf.config(group="nova", enable_anti_affinity=False) def test_get_cert_backup_create_amphora_for_lb_flow( self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_BACKUP) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) def test_get_cert_bogus_create_amphora_for_lb_flow( self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', 'BOGUS_ROLE') self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) def test_get_cert_backup_rest_anti_affinity_create_amphora_for_lb_flow( self, mock_get_net_driver): self.conf.config(group="nova", enable_anti_affinity=True) self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_create_amp_for_lb_subflow( 'SOMEPREFIX', constants.ROLE_BACKUP) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertEqual(5, len(amp_flow.provides)) self.assertEqual(5, len(amp_flow.requires)) self.conf.config(group="nova", enable_anti_affinity=False) def test_get_delete_amphora_flow(self, mock_get_net_driver): amp_flow = self.AmpFlow.get_delete_amphora_flow(self.amp4) self.assertIsInstance(amp_flow, flow.Flow) # This flow injects the required data at flow compile time. self.assertEqual(0, len(amp_flow.provides)) self.assertEqual(0, len(amp_flow.requires)) def test_get_failover_flow_act_stdby(self, mock_get_net_driver): failed_amphora = data_models.Amphora( id=uuidutils.generate_uuid(), role=constants.ROLE_MASTER, load_balancer_id=uuidutils.generate_uuid()) amp_flow = self.AmpFlow.get_failover_amphora_flow( failed_amphora, 2) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AVAILABILITY_ZONE, amp_flow.requires) self.assertIn(constants.BUILD_TYPE_PRIORITY, amp_flow.requires) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.LOADBALANCER, amp_flow.requires) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.VIP, amp_flow.requires) self.assertIn(constants.ADDED_PORTS, amp_flow.provides) self.assertIn(constants.AMP_VRRP_INT, amp_flow.provides) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.AMPHORAE, amp_flow.provides) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, amp_flow.provides) self.assertIn(constants.BASE_PORT, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.DELTA, amp_flow.provides) self.assertIn(constants.LOADBALANCER, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertIn(constants.VIP_SG_ID, amp_flow.provides) self.assertEqual(7, len(amp_flow.requires)) self.assertEqual(13, len(amp_flow.provides)) def test_get_failover_flow_standalone(self, mock_get_net_driver): failed_amphora = data_models.Amphora( id=uuidutils.generate_uuid(), role=constants.ROLE_STANDALONE, load_balancer_id=uuidutils.generate_uuid(), vrrp_ip='2001:3b8::32') amp_flow = self.AmpFlow.get_failover_amphora_flow( failed_amphora, 1) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AVAILABILITY_ZONE, amp_flow.requires) self.assertIn(constants.BUILD_TYPE_PRIORITY, amp_flow.requires) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.LOADBALANCER, amp_flow.requires) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.VIP, amp_flow.requires) self.assertIn(constants.ADDED_PORTS, amp_flow.provides) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertIn(constants.AMPHORA_ID, amp_flow.provides) self.assertIn(constants.AMPHORAE, amp_flow.provides) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, amp_flow.provides) self.assertIn(constants.BASE_PORT, amp_flow.provides) self.assertIn(constants.COMPUTE_ID, amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, amp_flow.provides) self.assertIn(constants.DELTA, amp_flow.provides) self.assertIn(constants.LOADBALANCER, amp_flow.provides) self.assertIn(constants.SERVER_PEM, amp_flow.provides) self.assertIn(constants.VIP_SG_ID, amp_flow.provides) self.assertEqual(7, len(amp_flow.requires)) self.assertEqual(12, len(amp_flow.provides)) def test_get_failover_flow_bogus_role(self, mock_get_net_driver): failed_amphora = data_models.Amphora(id=uuidutils.generate_uuid(), role='bogus') amp_flow = self.AmpFlow.get_failover_amphora_flow( failed_amphora, 1) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.LOADBALANCER_ID, amp_flow.requires) self.assertIn(constants.VIP_SG_ID, amp_flow.provides) print(amp_flow.requires) self.assertEqual(1, len(amp_flow.requires)) self.assertEqual(1, len(amp_flow.provides)) def test_cert_rotate_amphora_flow(self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_rotate_flow = self.AmpFlow.cert_rotate_amphora_flow() self.assertIsInstance(amp_rotate_flow, flow.Flow) self.assertIn(constants.SERVER_PEM, amp_rotate_flow.provides) self.assertIn(constants.AMPHORA, amp_rotate_flow.requires) self.assertEqual(1, len(amp_rotate_flow.provides)) self.assertEqual(2, len(amp_rotate_flow.requires)) def test_get_vrrp_subflow(self, mock_get_net_driver): vrrp_subflow = self.AmpFlow.get_vrrp_subflow('123') self.assertIsInstance(vrrp_subflow, flow.Flow) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, vrrp_subflow.provides) self.assertIn(constants.AMP_VRRP_INT, vrrp_subflow.provides) self.assertIn(constants.LOADBALANCER_ID, vrrp_subflow.requires) self.assertIn(constants.AMPHORAE, vrrp_subflow.requires) self.assertEqual(2, len(vrrp_subflow.provides)) self.assertEqual(2, len(vrrp_subflow.requires)) def test_get_vrrp_subflow_dont_create_vrrp_group( self, mock_get_net_driver): vrrp_subflow = self.AmpFlow.get_vrrp_subflow('123', create_vrrp_group=False) self.assertIsInstance(vrrp_subflow, flow.Flow) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, vrrp_subflow.provides) self.assertIn(constants.AMP_VRRP_INT, vrrp_subflow.provides) self.assertIn(constants.LOADBALANCER_ID, vrrp_subflow.requires) self.assertIn(constants.AMPHORAE, vrrp_subflow.requires) self.assertEqual(2, len(vrrp_subflow.provides)) self.assertEqual(2, len(vrrp_subflow.requires)) def test_get_post_map_lb_subflow(self, mock_get_net_driver): self.AmpFlow = amphora_flows.AmphoraFlows() amp_flow = self.AmpFlow._get_post_map_lb_subflow( 'SOMEPREFIX', constants.ROLE_MASTER) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.AMPHORA_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertEqual(1, len(amp_flow.provides)) self.assertEqual(2, len(amp_flow.requires)) amp_flow = self.AmpFlow._get_post_map_lb_subflow( 'SOMEPREFIX', constants.ROLE_BACKUP) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.AMPHORA_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertEqual(1, len(amp_flow.provides)) self.assertEqual(2, len(amp_flow.requires)) amp_flow = self.AmpFlow._get_post_map_lb_subflow( 'SOMEPREFIX', constants.ROLE_STANDALONE) self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.AMPHORA_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertEqual(1, len(amp_flow.provides)) self.assertEqual(2, len(amp_flow.requires)) amp_flow = self.AmpFlow._get_post_map_lb_subflow( 'SOMEPREFIX', 'BOGUS_ROLE') self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertIn(constants.AMPHORA_ID, amp_flow.requires) self.assertIn(constants.AMPHORA, amp_flow.provides) self.assertEqual(1, len(amp_flow.provides)) self.assertEqual(2, len(amp_flow.requires)) def test_update_amphora_config_flow(self, mock_get_net_driver): amp_flow = self.AmpFlow.update_amphora_config_flow() self.assertIsInstance(amp_flow, flow.Flow) self.assertIn(constants.AMPHORA, amp_flow.requires) self.assertIn(constants.FLAVOR, amp_flow.requires) self.assertEqual(2, len(amp_flow.requires)) self.assertEqual(0, len(amp_flow.provides)) def test_get_amphora_for_lb_failover_flow_single(self, mock_get_net_driver): FAILED_PORT_ID = uuidutils.generate_uuid() TEST_PREFIX = 'test_prefix' get_amp_flow = self.AmpFlow.get_amphora_for_lb_failover_subflow( TEST_PREFIX, role=constants.ROLE_STANDALONE, failed_amp_vrrp_port_id=FAILED_PORT_ID, is_vrrp_ipv6=True) self.assertIsInstance(get_amp_flow, flow.Flow) self.assertIn(constants.AVAILABILITY_ZONE, get_amp_flow.requires) self.assertIn(constants.BUILD_TYPE_PRIORITY, get_amp_flow.requires) self.assertIn(constants.FLAVOR, get_amp_flow.requires) self.assertIn(constants.LOADBALANCER, get_amp_flow.requires) self.assertIn(constants.LOADBALANCER_ID, get_amp_flow.requires) self.assertIn(constants.VIP, get_amp_flow.requires) self.assertIn(constants.VIP_SG_ID, get_amp_flow.requires) self.assertIn(constants.ADDED_PORTS, get_amp_flow.provides) self.assertIn(constants.AMPHORA, get_amp_flow.provides) self.assertIn(constants.AMPHORA_ID, get_amp_flow.provides) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, get_amp_flow.provides) self.assertIn(constants.BASE_PORT, get_amp_flow.provides) self.assertIn(constants.COMPUTE_ID, get_amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, get_amp_flow.provides) self.assertIn(constants.DELTA, get_amp_flow.provides) self.assertIn(constants.SERVER_PEM, get_amp_flow.provides) self.assertEqual(8, len(get_amp_flow.requires), get_amp_flow.requires) self.assertEqual(9, len(get_amp_flow.provides), get_amp_flow.provides) def test_get_amphora_for_lb_failover_flow_act_stdby(self, mock_get_net_driver): TEST_PREFIX = 'test_prefix' get_amp_flow = self.AmpFlow.get_amphora_for_lb_failover_subflow( TEST_PREFIX, role=constants.ROLE_MASTER) self.assertIsInstance(get_amp_flow, flow.Flow) self.assertIn(constants.AVAILABILITY_ZONE, get_amp_flow.requires) self.assertIn(constants.BUILD_TYPE_PRIORITY, get_amp_flow.requires) self.assertIn(constants.FLAVOR, get_amp_flow.requires) self.assertIn(constants.LOADBALANCER, get_amp_flow.requires) self.assertIn(constants.LOADBALANCER_ID, get_amp_flow.requires) self.assertIn(constants.VIP, get_amp_flow.requires) self.assertIn(constants.VIP_SG_ID, get_amp_flow.requires) self.assertIn(constants.ADDED_PORTS, get_amp_flow.provides) self.assertIn(constants.AMPHORA, get_amp_flow.provides) self.assertIn(constants.AMPHORA_ID, get_amp_flow.provides) self.assertIn(constants.AMPHORAE_NETWORK_CONFIG, get_amp_flow.provides) self.assertIn(constants.BASE_PORT, get_amp_flow.provides) self.assertIn(constants.COMPUTE_ID, get_amp_flow.provides) self.assertIn(constants.COMPUTE_OBJ, get_amp_flow.provides) self.assertIn(constants.DELTA, get_amp_flow.provides) self.assertIn(constants.SERVER_PEM, get_amp_flow.provides) self.assertEqual(8, len(get_amp_flow.requires), get_amp_flow.requires) self.assertEqual(9, len(get_amp_flow.provides), get_amp_flow.provides)
apache-2.0
-6,779,304,459,603,399,000
41.814346
79
0.685671
false
lizerd123/github
game compalation/jack.py
1
1810
# A map GUI thing # +---------+ # |####|****| # |####|****| # |####|****| # |----+----| # |::::|$$$$| # |::::|$$$$| # |::::|$$$$| # +---------+ print "+-----------+" print "| U = Up |" print "| D = Down |" print "| R = Right |" print "| L = Left |" print "| Q = Quit |" print "+-----------+" mainmap = [] coords = [6,5] # these are for making map def genMap(inarray): for i in range(3): makeLine(inarray, '#', '|', '*') makeLine(inarray, '-', '+', '-') for i in range(3): makeLine(inarray, ':', '|', '$') def makeLine(inarray, a, b, c): inarray.append([]) iter = len(inarray) - 1 for i in range(4): inarray[iter].append(a) inarray[iter].append(b) for i in range(4): inarray[iter].append(c) def resetMap(mainmap): mainmap = [] genMap(mainmap) genMap(mainmap) #shows the map off def showMap(mainmap): print " 123456789 " print "+---------+" iter = 0 for z in range(len(mainmap)): iter += 1 if ((z + 1) == coords[1]): storage = mainmap[coords[1]-1] storage[coords[0]-1] = '@' print (str(iter) + '|' + (''.join(storage)) + '|') else: print (str(iter) + '|' + (''.join(mainmap[z])) + '|') print "+---------+" showMap(mainmap) # give the user reason # dir = x/y (0 = x, 1 = y) # move = direction of movement (move on x is right, move on y is down) def move(coords, dir, move): coords[dir] += move if coords[dir] > 9: coords[dir] = 1 if coords[dir] < 1: coords[dir] = 9 #UI while True: cmd = raw_input(": ").lower() if cmd == 'u': move(coords, 1, -1) showMap(mainmap) resetMap(mainmap) if cmd == 'd': move(coords, 1, 1) showMap(mainmap) resetMap(mainmap) if cmd == 'r': move(coords, 0, 1) showMap(mainmap) resetMap(mainmap) if cmd == 'l': move(coords, 0, -1) showMap(mainmap) resetMap(mainmap) if cmd == 'q': break
mit
-8,454,774,936,096,684,000
17.670103
70
0.523204
false
apporc/cinder
cinder/volume/drivers/emc/emc_cli_fc.py
1
11978
# Copyright (c) 2012 - 2015 EMC Corporation, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Fibre Channel Driver for EMC VNX array based on CLI.""" from oslo_log import log as logging from cinder.volume import driver from cinder.volume.drivers.emc import emc_vnx_cli from cinder.zonemanager import utils as zm_utils LOG = logging.getLogger(__name__) class EMCCLIFCDriver(driver.FibreChannelDriver): """EMC FC Driver for VNX using CLI. Version history: 1.0.0 - Initial driver 2.0.0 - Thick/thin provisioning, robust enhancement 3.0.0 - Array-based Backend Support, FC Basic Support, Target Port Selection for MPIO, Initiator Auto Registration, Storage Group Auto Deletion, Multiple Authentication Type Support, Storage-Assisted Volume Migration, SP Toggle for HA 3.0.1 - Security File Support 4.0.0 - Advance LUN Features (Compression Support, Deduplication Support, FAST VP Support, FAST Cache Support), Storage-assisted Retype, External Volume Management, Read-only Volume, FC Auto Zoning 4.1.0 - Consistency group support 5.0.0 - Performance enhancement, LUN Number Threshold Support, Initiator Auto Deregistration, Force Deleting LUN in Storage Groups, robust enhancement 5.1.0 - iSCSI multipath enhancement 5.2.0 - Pool-aware scheduler support 5.3.0 - Consistency group modification support 6.0.0 - Over subscription support Create consistency group from cgsnapshot support Multiple pools support enhancement Manage/unmanage volume revise White list target ports support Snap copy support Support efficient non-disruptive backup 7.0.0 - Clone consistency group support """ def __init__(self, *args, **kwargs): super(EMCCLIFCDriver, self).__init__(*args, **kwargs) self.cli = emc_vnx_cli.getEMCVnxCli( 'FC', configuration=self.configuration) self.VERSION = self.cli.VERSION def check_for_setup_error(self): pass def create_volume(self, volume): """Creates a volume.""" return self.cli.create_volume(volume) def create_volume_from_snapshot(self, volume, snapshot): """Creates a volume from a snapshot.""" return self.cli.create_volume_from_snapshot(volume, snapshot) def create_cloned_volume(self, volume, src_vref): """Creates a cloned volume.""" return self.cli.create_cloned_volume(volume, src_vref) def extend_volume(self, volume, new_size): """Extend a volume.""" self.cli.extend_volume(volume, new_size) def delete_volume(self, volume): """Deletes a volume.""" self.cli.delete_volume(volume) def migrate_volume(self, ctxt, volume, host): """Migrate volume via EMC migration functionality.""" return self.cli.migrate_volume(ctxt, volume, host) def retype(self, ctxt, volume, new_type, diff, host): """Convert the volume to be of the new type.""" return self.cli.retype(ctxt, volume, new_type, diff, host) def create_snapshot(self, snapshot): """Creates a snapshot.""" self.cli.create_snapshot(snapshot) def delete_snapshot(self, snapshot): """Deletes a snapshot.""" self.cli.delete_snapshot(snapshot) def ensure_export(self, context, volume): """Driver entry point to get the export info for an existing volume.""" pass def create_export(self, context, volume, connector): """Driver entry point to get the export info for a new volume.""" pass def remove_export(self, context, volume): """Driver entry point to remove an export for a volume.""" pass def check_for_export(self, context, volume_id): """Make sure volume is exported.""" pass @zm_utils.AddFCZone def initialize_connection(self, volume, connector): """Initializes the connection and returns connection info. Assign any created volume to a compute node/host so that it can be used from that host. The driver returns a driver_volume_type of 'fibre_channel'. The target_wwn can be a single entry or a list of wwns that correspond to the list of remote wwn(s) that will export the volume. The initiator_target_map is a map that represents the remote wwn(s) and a list of wwns which are visible to the remote wwn(s). Example return values: { 'driver_volume_type': 'fibre_channel' 'data': { 'target_discovered': True, 'target_lun': 1, 'target_wwn': '1234567890123', 'access_mode': 'rw' 'initiator_target_map': { '1122334455667788': ['1234567890123'] } } } or { 'driver_volume_type': 'fibre_channel' 'data': { 'target_discovered': True, 'target_lun': 1, 'target_wwn': ['1234567890123', '0987654321321'], 'access_mode': 'rw' 'initiator_target_map': { '1122334455667788': ['1234567890123', '0987654321321'] } } } """ conn_info = self.cli.initialize_connection(volume, connector) LOG.debug("Exit initialize_connection" " - Returning FC connection info: %(conn_info)s.", {'conn_info': conn_info}) return conn_info @zm_utils.RemoveFCZone def terminate_connection(self, volume, connector, **kwargs): """Disallow connection from connector.""" conn_info = self.cli.terminate_connection(volume, connector) LOG.debug("Exit terminate_connection" " - Returning FC connection info: %(conn_info)s.", {'conn_info': conn_info}) return conn_info def get_volume_stats(self, refresh=False): """Get volume stats. If 'refresh' is True, run update the stats first. """ if refresh: self.update_volume_stats() return self._stats def update_volume_stats(self): """Retrieve stats info from volume group.""" LOG.debug("Updating volume stats.") data = self.cli.update_volume_stats() backend_name = self.configuration.safe_get('volume_backend_name') data['volume_backend_name'] = backend_name or 'EMCCLIFCDriver' data['storage_protocol'] = 'FC' self._stats = data def manage_existing(self, volume, existing_ref): """Manage an existing lun in the array. The lun should be in a manageable pool backend, otherwise error would return. Rename the backend storage object so that it matches the, volume['name'] which is how drivers traditionally map between a cinder volume and the associated backend storage object. manage_existing_ref:{ 'source-id':<lun id in VNX> } or manage_existing_ref:{ 'source-name':<lun name in VNX> } """ return self.cli.manage_existing(volume, existing_ref) def manage_existing_get_size(self, volume, existing_ref): """Return size of volume to be managed by manage_existing.""" return self.cli.manage_existing_get_size(volume, existing_ref) def create_consistencygroup(self, context, group): """Creates a consistencygroup.""" return self.cli.create_consistencygroup(context, group) def delete_consistencygroup(self, context, group, volumes): """Deletes a consistency group.""" return self.cli.delete_consistencygroup( context, group, volumes) def create_cgsnapshot(self, context, cgsnapshot, snapshots): """Creates a cgsnapshot.""" return self.cli.create_cgsnapshot( context, cgsnapshot, snapshots) def delete_cgsnapshot(self, context, cgsnapshot, snapshots): """Deletes a cgsnapshot.""" return self.cli.delete_cgsnapshot( context, cgsnapshot, snapshots) def get_pool(self, volume): """Returns the pool name of a volume.""" return self.cli.get_pool(volume) def update_consistencygroup(self, context, group, add_volumes, remove_volumes): """Updates LUNs in consistency group.""" return self.cli.update_consistencygroup(context, group, add_volumes, remove_volumes) def unmanage(self, volume): """Unmanages a volume.""" return self.cli.unmanage(volume) def create_consistencygroup_from_src(self, context, group, volumes, cgsnapshot=None, snapshots=None, source_cg=None, source_vols=None): """Creates a consistency group from source.""" return self.cli.create_consistencygroup_from_src(context, group, volumes, cgsnapshot, snapshots, source_cg, source_vols) def update_migrated_volume(self, context, volume, new_volume, original_volume_status=None): """Returns model update for migrated volume.""" return self.cli.update_migrated_volume(context, volume, new_volume, original_volume_status) def create_export_snapshot(self, context, snapshot, connector): """Creates a snapshot mount point for snapshot.""" return self.cli.create_export_snapshot(context, snapshot, connector) def remove_export_snapshot(self, context, snapshot): """Removes snapshot mount point for snapshot.""" return self.cli.remove_export_snapshot(context, snapshot) def initialize_connection_snapshot(self, snapshot, connector, **kwargs): """Allows connection to snapshot.""" return self.cli.initialize_connection_snapshot(snapshot, connector, **kwargs) def terminate_connection_snapshot(self, snapshot, connector, **kwargs): """Disallows connection to snapshot.""" return self.cli.terminate_connection_snapshot(snapshot, connector, **kwargs) def backup_use_temp_snapshot(self): return True
apache-2.0
2,333,369,983,232,384,500
38.531353
79
0.570463
false
lmaurits/BEASTling
beastling/configuration.py
1
35756
import itertools import random from pathlib import Path from configparser import ConfigParser import newick from csvw.dsv import reader from appdirs import user_data_dir from beastling.fileio.datareaders import iterlocations import beastling.clocks.random as random_clock import beastling.models.geo as geo from beastling import sections from beastling.util import log from beastling.util import monophyly from beastling.util.misc import retrieve_url import beastling.treepriors.base as treepriors from beastling.treepriors.coalescent import CoalescentTree from beastling.distributions import Calibration _BEAST_MAX_LENGTH = 2147483647 def get_glottolog_data(datatype, release): """ Lookup or download data from Glottolog. :param datatype: 'newick'|'geo' :param release: Glottolog release number >= '2.4' :return: the path of the data file """ path_spec = { 'newick': ('glottolog-{0}.newick', 'tree-glottolog-newick.txt'), 'geo': ('glottolog-{0}-geo.csv', 'languages-and-dialects-geo.csv'), } fname_pattern, fname_source = path_spec[datatype] fname = fname_pattern.format(release) path = Path(__file__).parent / 'data' / fname if not path.exists(): data_dir = Path(user_data_dir('beastling')) if not data_dir.exists(): data_dir.mkdir(parents=True) path = data_dir / fname if not path.exists(): try: retrieve_url( 'https://glottolog.org/static/download/{0}/{1}'.format(release, fname_source), path) except (IOError, ValueError): raise ValueError( 'Could not retrieve %s data for Glottolog %s' % (datatype, release)) return path class Configuration(object): """ A container object for all of the settings which define a BEASTling analysis. Configuration objects are initialised with default values for all options. """ def __init__(self, basename="beastling", configfile=None, stdin_data=False, prior=False, force_glottolog_load=False): """ Set all options to their default values and then, if a configuration file has been provided, override the default values for those options set in the file. """ cli_params = {k: v for k, v in locals().items()} # Options set by the user, with default values """A dictionary whose keys are glottocodes or lowercase Glottolog clade names, and whose values are length-2 tuples of flatoing point dates (lower and upper bounds of 95% credible interval).""" self.calibration_configs = {} """A list of `sections.Clock`s, each of which specifies the configuration for a single clock model.""" self.clocks = [] self.clocks_by_name = {} """An ordered dictionary whose keys are language group names and whose values are language group definitions.""" self.language_groups = {} """A dictionary giving names to arbitrary collections of tip languages.""" """A list of dictionaries, each of which specifies the configuration for a single evolutionary model.""" self.models = [] self.stdin_data = stdin_data """A boolean value, controlling whether or not to read data from stdin as opposed to the file given in the config.""" # Glottolog data self.glottolog_loaded = False self.force_glottolog_load = force_glottolog_load self.classifications = {} self.glotto_macroareas = {} self.locations = {} # Options set from the command line interface self.prior = prior # Stuff we compute ourselves self.processed = False self._files_to_embed = [] # Now read the config ... self.cfg = ConfigParser(interpolation=None) self.cfg.optionxform = str if configfile: if isinstance(configfile, dict): self.cfg.read_dict(configfile) else: if isinstance(configfile, str): configfile = (configfile,) self.cfg.read([str(c) for c in configfile]) # ... and process the sections: # [geography] if 'geography' in self.cfg.sections(): self.geography = sections.Geography.from_config(cli_params, 'geography', self.cfg) else: self.geography = None # [calibration] for clade, calibration in sections.Calibration.from_config( {}, "calibration", self.cfg).options.items(): self.calibration_configs[clade] = calibration # [model ...] and [clock ...] for prefix, cfg_cls in [('clock', sections.Clock), ('model', sections.Model)]: for section in [s for s in self.cfg.sections() if s.lower().startswith(prefix)]: getattr(self, prefix + 's').append( cfg_cls.from_config({}, section, self.cfg)) # Make sure analysis is non-empty if not (self.models or self.geography): raise ValueError("Config file contains no model sections and no geography section.") # [geo_priors] if self.cfg.has_section("geo_priors"): if not self.geography: raise ValueError("Config file contains geo_priors section but no geography section.") for clade, klm in sections.GeoPriors.from_config( {}, 'geo_priors', self.cfg).iterpriors(): if clade not in self.geography.sampling_points: self.geography.sampling_points.append(clade) self.geography.priors[clade] = klm # [admin] self.admin = sections.Admin.from_config(cli_params, 'admin', self.cfg) # [mcmc] self.mcmc = sections.MCMC.from_config( cli_params, 'mcmc' if self.cfg.has_section('mcmc') else 'MCMC', self.cfg) # [languages] self.languages = sections.Languages.from_config(cli_params, 'languages', self.cfg) # [language_groups] self.language_group_configs = sections.LanguageGroups.from_config( {}, 'language_groups', self.cfg).options # If log_every was not explicitly set to some non-zero # value, then set it such that we expect 10,000 log # entries if not self.admin.log_every: # If chainlength < 10000, this results in log_every = zero. # This causes BEAST to die. # So in this case, just log everything. self.admin.log_every = self.mcmc.chainlength // 10000 or 1 if self.geography \ and [p for p in self.geography.sampling_points if p.lower() != "root"] \ and self.languages.sample_topology and not self.languages.monophyly: log.warning( "Geographic sampling and/or prior specified for clades other than root, but tree " "topology is being sampled without monophyly constraints. BEAST may crash.") def process(self): """ Prepares a Configuration object for being passed to the BeastXml constructor. This method checks the values of all options for invalid or ambiguous settings, internal consistency, etc. Information is read from external files as required. If this method returns without raising any exceptions then this should function as a guarantee that a BeastXml object can be instantiated from this Configuration with no problems. """ if self.processed: log.warning('Configuration has already been processed') return # Add dependency notices if required if self.languages.monophyly and not self.languages.starting_tree: log.dependency("ConstrainedRandomTree", "BEASTLabs") if self.mcmc.path_sampling: log.dependency("Path sampling", "MODEL_SELECTION") self.load_glottolog_data() self.load_user_geo() self.instantiate_models() self.build_language_filter() self.process_models() self.build_language_list() self.define_language_groups() self.handle_monophyly() self.instantiate_calibrations() # At this point, we can tell whether or not the tree's length units # can be treated as arbitrary self.arbitrary_tree = self.languages.sample_branch_lengths and not self.calibrations # We also know what kind of tree prior we need to have – # instantiate_calibrations may have changed the type if tip # calibrations exist. self.treeprior = { "uniform": treepriors.UniformTree, "yule": treepriors.YuleTree, "birthdeath": treepriors.BirthDeathTree, "coalescent": CoalescentTree }[self.languages.tree_prior]() # Now we can set the value of the ascertained attribute of each model # Ideally this would happen during process_models, but this is impossible # as set_ascertained() relies upon the value of arbitrary_tree defined above, # which itself depends on process_models(). Ugly... for m in self.models: m.set_ascertained() self.instantiate_clocks() self.link_clocks_to_models() self.processed = True # Decide whether or not to log trees if ( self.languages.starting_tree and not self.languages.sample_topology and not self.languages.sample_branch_lengths and all([c.is_strict for c in self.clocks if c.is_used]) ): self.tree_logging_pointless = True log.info( "Tree logging disabled because starting tree is known and fixed and all clocks " "are strict.") else: self.tree_logging_pointless = False def define_language_groups(self): """Parse the [language_groups] section. Every individual language is a language group of size one. Additional groups can be specified as comma-separated lists of already-defined groups. (This does of course include comma-separated lists of languages, but definitions can be nested.) TODO: In the future, the [languages] section should gain a property such that language groups can be specified using external sources. """ self.language_groups = {language: {language} for language in self.languages.languages} self.language_groups["root"] = set(self.languages.languages) for name, specification in self.language_group_configs.items(): taxa = set() for already_defined in specification: taxa |= set(self.language_group(already_defined.strip())) self.language_groups[name] = taxa def load_glottolog_data(self): """ Loads the Glottolog classification information from the appropriate newick file, parses it and stores the required datastructure in self.classification. """ # Don't load if the analysis doesn't use it if not self.check_glottolog_required(): return # Don't load if we already have - can this really happen? if self.glottolog_loaded: log.warning('Glottolog data has already been loaded') return self.glottolog_loaded = True self.classifications, glottocode2node, label2name = monophyly.classifications_from_newick( str(get_glottolog_data('newick', self.admin.glottolog_release))) # Load geographic metadata dialects = [] for t in reader( get_glottolog_data('geo', self.admin.glottolog_release), dicts=True): identifiers = [t['glottocode']] +t['isocodes'].split() if t['level'] == "dialect": dialects.append((t, identifiers)) if t['macroarea']: for id_ in identifiers: self.glotto_macroareas[id_] = t['macroarea'] if t['latitude'] and t['longitude']: latlon = (float(t['latitude']), float(t['longitude'])) for id_ in identifiers: self.locations[id_] = latlon # Second pass of geographic data to handle dialects, which inherit # their parent language's location for t, identifiers in dialects: failed = False if t['glottocode'] not in glottocode2node: # pragma: no cover # This may only happen for newick downloads of older Glottolog releases, where # possibly isolates may not be included. continue node = glottocode2node[t['glottocode']] ancestor = node.ancestor while label2name[ancestor.name][1] not in self.locations: if not ancestor.ancestor: # We've hit the root without finding an ancestral node # with location data! failed = True break else: ancestor = ancestor.ancestor if failed: continue latlon = self.locations[label2name[ancestor.name][1]] for id_ in identifiers: self.locations[id_] = latlon def check_glottolog_required(self): # We need Glottolog if... return ( # ...we've been given a list of families self.languages.families # ...we've been given a list of macroareas or self.languages.macroareas # ...we're using monophyly constraints or self.languages.monophyly # ...we're using calibrations (well, sometimes) or self.calibration_configs # ...we're using geography or self.geography # ...we've been forced to by greater powers (like the CLI) or self.force_glottolog_load ) def load_user_geo(self): if self.geography: # Read location data from file, patching (rather than replacing) Glottolog for loc_file in self.geography.data: self.locations.update(dict(iterlocations(loc_file))) def build_language_filter(self): """ Examines the values of various options, including self.languages.languages and self.languages.families, and constructs self.lang_filter. self.lang_filter is a Set object containing all ISO and glotto codes which are compatible with the provided settings (e.g. belong to the requested families). This set is later used as a mask with data sets. Datapoints with language identifiers not in this set will not be used in an analysis. """ # Load requirements if len(self.languages.families) == 1: log.warning("value of 'families' has length 1: have you misspelled a filename?") # Enforce minimum data constraint all_langs = set(itertools.chain(*[model.data.keys() for model in self.models])) N = sum([max([len(lang.keys()) for lang in model.data.values()]) for model in self.models]) datapoint_props = {} for lang in all_langs: count = 0 for model in self.models: count += len([x for x in model.data[lang].values() if x]) datapoint_props[lang] = 1.0*count / N self.sparse_languages = [ l for l in all_langs if datapoint_props[l] < self.languages.minimum_data] @property def files_to_embed(self): res = set(fname for fname in self._files_to_embed) for section in [self.admin, self.mcmc, self.languages]: res = res.union(section.files_to_embed) return res def filter_language(self, l): if self.languages.languages and l not in self.languages.languages: return False if self.languages.families and not any( name in self.languages.families or glottocode in self.languages.families for (name, glottocode) in self.classifications.get(l,[])): return False if self.languages.macroareas and self.glotto_macroareas.get(l,None) not in self.languages.macroareas: return False if self.languages.exclusions and l in self.languages.exclusions: return False if l in self.sparse_languages: return False return True def handle_monophyly(self): """ Construct a representation of the Glottolog monophyly constraints for the languages in self.languages.languages. If the constraints are meaningful, create and store a Newick tree representation of them. If the constraints are not meaningful, e.g. all languages are classified identically by Glottolog, then override the monophyly=True setting. """ if (not self.languages.monophyly) or self.languages.monophyly_newick: return if len(self.languages.languages) < 3: # Monophyly constraints are meaningless for so few languages self.languages.monophyly = False log.info( "Disabling Glottolog monophyly constraints because there are only %d languages in " "analysis." % len(self.languages.languages)) return # Build a list-based representation of the Glottolog monophyly constraints # This can be done in either a "top-down" or "bottom-up" way. langs = [l for l in self.languages.languages if l.lower() in self.classifications] if len(langs) != len(self.languages.languages): # Warn the user that some taxa aren't in Glottolog and hence will be # forced into an outgroup. missing_langs = [l for l in self.languages.languages if l not in langs] missing_langs.sort() missing_str = ",".join(missing_langs[0:3]) missing_count = len(missing_langs) if missing_count > 3: missing_str += ",..." log.warning( "%d languages could not be found in Glottolog (%s). Monophyly constraints will " "force them into an outgroup." % (missing_count, missing_str)) if self.languages.monophyly_end_depth is not None: # A power user has explicitly provided start and end depths start = self.languages.monophyly_start_depth end = self.languages.monophyly_end_depth elif self.languages.monophyly_direction == "top_down": # Compute start and end in a top-down fashion start = self.languages.monophyly_start_depth end = start + self.languages.monophyly_levels elif self.languages.monophyly_direction == "bottom_up": # Compute start and end in a bottom-up fashion classifications = [self.classifications[name.lower()] for name in langs] end = max([len(c) for c in classifications]) - self.languages.monophyly_start_depth start = max(0, end - self.languages.monophyly_levels) struct = monophyly.make_structure(self.classifications, langs, depth=start, maxdepth=end) # Make sure this struct is not pointlessly flat if not monophyly.check_structure(struct): self.languages.monophyly = False log.info( "Disabling Glottolog monophyly constraints because all languages in the analysis " "are classified identically.") # At this point everything looks good, so keep monophyly on and serialise the "monophyly structure" into a Newick tree. self.languages.monophyly_newick = monophyly.make_newick(struct) def instantiate_clocks(self): """ Populates self.clocks with a list of BaseClock subclasses, one for each dictionary of settings in self.clock_configs. """ self.clocks = [clock.get_clock(self) for clock in self.clocks] self.clocks_by_name = {clock.name: clock for clock in self.clocks} if "default" not in self.clocks_by_name: clock = sections.Clock(cli_params={}, name='clock default').get_clock(self) self.clocks.append(clock) self.clocks_by_name[clock.name] = clock def instantiate_models(self): """ Populates self.models with a list of BaseModel subclasses, one for each dictionary of settings in self.model_configs. """ # Handle request to read data from stdin if self.stdin_data: for config in self.models: config["data"] = "stdin" self.models = [model.get_model(self) for model in self.models] if self.geography: self.geo_model = geo.GeoModel(self.geography, self) self.all_models = [self.geo_model] + self.models else: self.all_models = self.models def process_models(self): for model in self.models: model.process() def link_clocks_to_models(self): """ Ensures that for each model object in self.models, the attribute "clock" is a reference to one of the clock objects in self.clocks. Also determine which clock to estimate the mean of. """ for model in self.all_models: if model.clock: # User has explicitly specified a clock if model.clock not in self.clocks_by_name: raise ValueError("Unknown clock '%s' for model section '%s'." % (model.clock, model.name)) model.clock = self.clocks_by_name[model.clock] elif model.name in self.clocks_by_name: # Clock is associated by a common name model.clock = self.clocks_by_name[model.name] else: # No clock specification - use default model.clock = self.clocks_by_name["default"] model.clock.is_used = True # Disable pruned trees in models using RLCs for model in self.models: if model.pruned and isinstance(model.clock, random_clock.RandomLocalClock): model.pruned = False log.info( "Disabling pruned trees because associated clock %s is a " "RandomLocalClock. Pruned trees are currently only compatible with " "StrictClocks and RelaxedClocks." % model.clock.name, model=model) # Warn user about unused clock(s) (but not the default clock) for clock in self.clocks: if clock.name != "default" and not clock.is_used: log.info( "Clock %s is not being used. Change its name to \"default\", or explicitly " "associate it with a model." % clock.name) # Remove unused clocks from the master clock list self.clocks = [c for c in self.clocks if c.is_used] # Get a list of model (i.e. non-geo) clocks for which the user has not # indicated a preference on whether the mean should be estimated free_clocks = list(set([m.clock for m in self.models if m.clock.is_used and m.clock.estimate_rate == None])) if free_clocks: # To begin with, estimate all free clocks for clock in free_clocks: clock.estimate_rate = True # But if the tree is arbitrary, then fix one free clock, unless the # user has fixed an un-free clock if self.arbitrary_tree and all( [m.clock.estimate_rate for m in self.models]): free_clocks[0].estimate_rate = False log.info( "Clock \"%s\" has had it's mean rate fixed to 1.0. Tree branch lengths are in " "units of expected substitutions for features in models using this " "clock." % free_clocks[0].name) # Determine whether or not precision-scaling is required if self.geography: self.geo_model.scale_precision = False geo_clock = self.geo_model.clock for m in self.models: if m.clock == geo_clock: log.warning( "Geography model is sharing a clock with one or more data models. This may lead to a bad fit.") self.geo_model.scale_precision = True break # If geo has it's own clock, estimate the mean if not self.geo_model.scale_precision: self.geo_model.clock.estimate_rate = True def build_language_list(self): """ Combines the language sets of each model's data set, according to the value of self.languages.overlap, to construct a final list of all the languages in the analysis. """ if self.models: self.languages.languages = set(self.models[0].data.keys()) else: # There are no models # So this must be a geography-only analysis # Start with all languages in Glottolog, then apply filters self.languages.languages = [l for l in self.classifications if self.filter_language(l)] self.overlap_warning = False for model in self.models: addition = set(model.data.keys()) # If we're about to do a non-trivial union/intersect, alert the # user. if addition != self.languages.languages and not self.overlap_warning: log.info( "Not all data files have equal language sets. BEASTling will use the %s of all " "language sets. Set the \"overlap\" option in [languages] to change " "this." % self.languages.overlap) self.overlap_warning = True self.languages.languages = getattr(set, self.languages.overlap)( self.languages.languages, addition) ## Make sure there's *something* left if not self.languages.languages: raise ValueError("No languages specified!") ## Convert back into a sorted list self.languages.languages = sorted(self.languages.languages) ## Perform subsampling, if requested self.languages.languages = sorted(self.subsample_languages(self.languages.languages)) log.info("{:d} languages included in analysis: {:}".format( len(self.languages.languages), self.languages.languages)) ## SPREAD THE WORD! for m in self.models: m.languages = [l for l in m.languages if l in self.languages.languages] self.languages.sanitise_trees() def subsample_languages(self, languages): """ Return a random subsample of languages with a specified size """ if not self.languages.subsample_size: return languages if self.languages.subsample_size > len(languages): log.info( "Requested subsample size is %d, but only %d languages to work with! Disabling " "subsampling." % (self.languages.subsample_size, len(languages))) return languages # Seed PRNG with sorted language names # Python will convert to an integer hash # This means we always take the same subsample for a particular # initial language set. log.info("Subsampling %d languages down to %d." % ( len(languages), self.languages.subsample_size)) random.seed(",".join(sorted(languages))) return random.sample(languages, self.languages.subsample_size) def language_group(self, clade): """Look up a language group locally or as a glottolog clade.""" if clade not in self.language_groups: self.language_groups[clade] = self.get_languages_by_glottolog_clade(clade) if not self.language_groups[clade]: raise ValueError( "Language group or Glottolog clade {:} not found " "or was empty for the languages given.".format(clade)) return self.language_groups[clade] def instantiate_calibrations(self): self.calibrations = {} """ Calibration distributions for calibrated clades """ self.tip_calibrations = {} """ Starting heights for calibrated tips """ useless_calibrations = [] for clade, cs in self.calibration_configs.items(): orig_clade = clade[:] originate = False is_tip_calibration = False # Parse the clade identifier # First check for originate() if clade.lower().startswith("originate(") and clade.endswith(")"): originate = True clade = clade[10:-1] # The clade is specified as a language_group, either # explicitly defined or the builtin "root" or a Glottolog # identifier langs = self.language_group(clade) if langs == self.language_groups["root"] and originate: raise ValueError("Root has no ancestor, but originate(root) was given a calibration.") # Figure out what kind of calibration this is and whether it's valid if len(langs) > 1: ## Calibrations on multiple taxa are always valid pass elif not langs: # pragma: no cover # Calibrations on zero taxa are never valid, so abort # and skip to the next cal. This should never happen, # because empty calibrations can only be specified by # empty language groups, which should be caught before # this. log.info("Calibration on clade '%s' ignored as no matching languages in analysis." % clade) continue # At this point we know that len(langs) == 1, so that condition is # implicit in the conditions for all the branches below elif originate: ## Originate calibrations on single taxa are always valid pass elif "," not in clade and clade in self.languages.languages: ## This looks like a tip calibration, i.e. the user has specified ## only one identifier, not a comma-separated list, and that ## identifier matches a language, not a Glottolog family that we ## happen to only have one language for log.info("Calibration on '%s' taken as tip age calibration." % clade) is_tip_calibration = True self.languages.tree_prior = "coalescent" else: # pragma: no cover # At this point we have a non-originate calibration on # a single taxa, which is not the result of # specifically asking for only this taxa. Probably the # user did not expect to get here. They might want # this to be an originate cal, or a tip cal, but we # can't tell with what we know and shouldn't # guess. Abort and skip to the next cal. This should # never happen, because empty calibrations can only be # specified by empty language groups, which should be # caught before this. log.info( "Calibration on clade '%s' matches only one language. Ignoring due to " "ambiguity. Use 'originate(%s)' if this was supposed to be an originate " "calibration, or explicitly identify the single language using '%s' if this " "was supposed to be a tip calibration." % (clade, clade, langs[0])) continue # Make sure this calibration point, which will induce a monophyly # constraint, does not conflict with the overall monophyly # constraints from Glottolog or a user-tree if self.languages.monophyly and len(langs) > 1: mono_tree = newick.loads(self.languages.monophyly_newick)[0] cal_clade = set(langs) for node in mono_tree.walk(): mono_clade = set(node.get_leaf_names()) # If the calibration clade is not a subset of this monophyly clade, keep searching if not cal_clade.issubset(mono_clade): continue # At this point, we can take it for granted the cal clade is a subset of the mono_clade # We are happy if the calibration clade is exactly this monophyly clade if mono_clade == cal_clade: break # We are also happy if this mono_clade is a "terminal clade", i.e. has no finer structure # which the calibration clade may violate elif all((child.is_leaf for child in node.descendants)): break # We are also happy if the calibration clade is a union of descendant mono clades elif all(set(child.get_leaf_names()).issubset(cal_clade) or len(set(child.get_leaf_names()).intersection(cal_clade)) == 0 for child in node.descendants): break else: # If we didn't break out of this loop, then the languages # in this calibration do not constitute a clade of the # monophyly tree raise ValueError("Calibration on for clade %s violates a monophyly constraint!" % (clade)) # Next parse the calibration string and build a Calibration object cal_obj = Calibration.from_string( string=cs, context="calibration of clade {:}".format(orig_clade), is_point=is_tip_calibration, langs=langs, originate=originate) # Choose a name if originate: clade_identifier = "%s_originate" % clade elif is_tip_calibration: clade_identifier = "%s_tip" % clade else: clade_identifier = clade # Store the Calibration object under the chosen name if is_tip_calibration: self.tip_calibrations[clade_identifier] = cal_obj else: self.calibrations[clade_identifier] = cal_obj def get_languages_by_glottolog_clade(self, clade): """ Given a comma-separated list of Glottolog ids, return a list of all languages descended from the corresponding Glottolog nodes. """ clades = set(c.strip() for c in clade.split(",")) # First look for clades which are actually language identifiers langs = matched_clades = clades.intersection(self.languages.languages) # Once a clade has matched against a language name, don't let it # subsequently match against anything in Glottolog! clades = clades - matched_clades if clades: # Now search against Glottolog clades = [c.lower() for c in clades] for l in self.languages.languages: # No repeated matching! if l not in langs: for name, glottocode in self.classifications.get(l.lower(), ""): if name.lower() in clades or glottocode in clades: langs.add(l) break return list(langs)
bsd-2-clause
-4,280,757,378,011,558,400
45.074742
201
0.601052
false
3dfxmadscientist/odoo-infrastructure
addons/infrastructure/environment_step.py
1
1539
# -*- coding: utf-8 -*- ############################################################################## # # Infrastructure # Copyright (C) 2014 Ingenieria ADHOC # No email # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import re from openerp import netsvc from openerp.osv import osv, fields class environment_step(osv.osv): """""" _name = 'infrastructure.environment_step' _description = 'environment_step' _columns = { 'name': fields.char(string='Name', required=True), 'environment_version_id': fields.many2one('infrastructure.environment_version', string='Environment Version', ondelete='cascade', required=True), } _defaults = { } _constraints = [ ] environment_step() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
237,234,166,110,134,460
29.176471
154
0.621832
false
girving/tensorflow
tensorflow/python/kernel_tests/rnn_test.py
1
44455
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for rnn module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import timeit import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib import rnn as contrib_rnn from tensorflow.core.protobuf import config_pb2 from tensorflow.python import keras from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops as ops_lib from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.keras import testing_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variables as variables_lib import tensorflow.python.ops.data_flow_grad # pylint: disable=unused-import from tensorflow.python.ops.losses import losses import tensorflow.python.ops.nn_grad # pylint: disable=unused-import import tensorflow.python.ops.sparse_grad # pylint: disable=unused-import import tensorflow.python.ops.tensor_array_grad # pylint: disable=unused-import from tensorflow.python.platform import test from tensorflow.python.training import saver from tensorflow.python.training import training class Plus1RNNCell(rnn_cell_impl.RNNCell): """RNN Cell generating (output, new_state) = (input + 1, state + 1).""" @property def output_size(self): return 5 @property def state_size(self): return 5 def call(self, input_, state, scope=None): return (input_ + 1, state + 1) class ScalarStateRNNCell(rnn_cell_impl.RNNCell): """RNN Cell generating (output, new_state) = (input + 1, state + 1).""" @property def output_size(self): return 1 @property def state_size(self): return tensor_shape.TensorShape([]) def zero_state(self, batch_size, dtype): return array_ops.zeros([], dtype=dtypes.int32) def call(self, input_, state, scope=None): return (input_, state + 1) class UnbalancedOutputRNNCell(rnn_cell_impl.RNNCell): """RNN Cell generating (output, new_state) = (input + 1, state + 1).""" @property def output_size(self): return tensor_shape.TensorShape(1), tensor_shape.TensorShape((2)) @property def state_size(self): return tensor_shape.TensorShape([]) def zero_state(self, batch_size, dtype): return array_ops.zeros([], dtype=dtypes.int32) def call(self, input_, state, scope=None): concatenated = array_ops.concat((input_, input_), axis=-1) return (input_, concatenated), state + 1 class TensorArrayStateRNNCell(rnn_cell_impl.RNNCell): """RNN Cell its state as a TensorArray.""" @property def output_size(self): return 1 @property def state_size(self): return (tensor_shape.TensorShape([]), ()) def zero_state(self, batch_size, dtype): return (array_ops.zeros([], dtype=dtypes.int32), tensor_array_ops.TensorArray( dtype=dtype, size=0, dynamic_size=True)) def call(self, input_, state, scope=None): new_array = state[1].write(state[0], input_) return (input_, (state[0] + 1, new_array)) class RNNTest(test.TestCase): def setUp(self): self._seed = 23489 np.random.seed(self._seed) @test_util.run_in_graph_and_eager_modes def testInvalidSequenceLengthShape(self): cell = Plus1RNNCell() if context.executing_eagerly(): inputs = [constant_op.constant(np.ones((3, 4)))] else: inputs = [array_ops.placeholder(dtypes.float32, shape=(3, 4))] with self.assertRaisesRegexp(ValueError, "must be a vector"): rnn.dynamic_rnn( cell, array_ops.stack(inputs), dtype=dtypes.float32, sequence_length=[[4]]) @test_util.run_in_graph_and_eager_modes def testBatchSizeFromInput(self): cell = Plus1RNNCell() in_eager_mode = context.executing_eagerly() # With static batch size if in_eager_mode: inputs = np.zeros((3, 4, 5), dtype=np.float32) initial_state = np.zeros((3, 5), dtype=np.float32) else: inputs = array_ops.placeholder(dtypes.float32, shape=(3, 4, 5)) initial_state = array_ops.placeholder(dtypes.float32, shape=(3, 5)) # - Without initial_state outputs, state = rnn.dynamic_rnn(cell, inputs, dtype=dtypes.float32) self.assertEqual(3, outputs.shape[0]) self.assertEqual(3, state.shape[0]) # - With initial_state outputs, state = rnn.dynamic_rnn( cell, inputs, initial_state=initial_state) self.assertEqual(3, outputs.shape[0]) self.assertEqual(3, state.shape[0]) # Without static batch size # Tensor shapes are fully determined with eager execution enabled, # so only run this test for graph construction. if not in_eager_mode: inputs = array_ops.placeholder(dtypes.float32, shape=(None, 4, 5)) # - Without initial_state outputs, state = rnn.dynamic_rnn(cell, inputs, dtype=dtypes.float32) self.assertEqual(None, outputs.shape[0].value) self.assertEqual(None, state.shape[0].value) # - With initial_state outputs, state = rnn.dynamic_rnn( cell, inputs, initial_state=array_ops.placeholder(dtypes.float32, shape=(None, 5))) self.assertEqual(None, outputs.shape[0].value) self.assertEqual(None, state.shape[0].value) @test_util.run_in_graph_and_eager_modes def testScalarStateIsAccepted(self): cell = ScalarStateRNNCell() in_eager_mode = context.executing_eagerly() if in_eager_mode: inputs = np.array([[[1], [2], [3], [4]]], dtype=np.float32) else: inputs = array_ops.placeholder(dtypes.float32, shape=(1, 4, 1)) with self.cached_session(use_gpu=True) as sess: outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32, sequence_length=[4]) if not in_eager_mode: outputs, state = sess.run( [outputs, state], feed_dict={inputs: [[[1], [2], [3], [4]]]}) self.assertAllEqual([[[1], [2], [3], [4]]], outputs) self.assertAllEqual(4, state) @test_util.run_in_graph_and_eager_modes def testUnbalancedOutputIsAccepted(self): cell = UnbalancedOutputRNNCell() in_eager_mode = context.executing_eagerly() if in_eager_mode: inputs = np.array([[[1], [2], [3], [4]]], dtype=np.float32) else: inputs = array_ops.placeholder(dtypes.float32, shape=(1, 4, 1)) with self.cached_session(use_gpu=True) as sess: outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32, sequence_length=[4]) if not in_eager_mode: outputs, state = sess.run( [outputs, state], feed_dict={inputs: [[[1], [2], [3], [4]]]}) self.assertIsInstance(outputs, tuple) self.assertAllEqual([[[1], [2], [3], [4]]], outputs[0]) self.assertAllEqual([[[1, 1], [2, 2], [3, 3], [4, 4]]], outputs[1]) self.assertAllEqual(4, state) @test_util.assert_no_new_pyobjects_executing_eagerly def testEagerMemory(self): with context.eager_mode(): cell = TensorArrayStateRNNCell() inputs = np.array([[[1], [2], [3], [4]]], dtype=np.float32) rnn.dynamic_rnn(cell, inputs, dtype=dtypes.float32, sequence_length=[4]) @test_util.run_in_graph_and_eager_modes def testTensorArrayStateIsAccepted(self): cell = TensorArrayStateRNNCell() in_eager_mode = context.executing_eagerly() if in_eager_mode: inputs = np.array([[[1], [2], [3], [4]]], dtype=np.float32) else: inputs = array_ops.placeholder(dtypes.float32, shape=(1, 4, 1)) with self.cached_session(use_gpu=True) as sess: outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32, sequence_length=[4]) state = (state[0], state[1].stack()) if not in_eager_mode: outputs, state = sess.run( [outputs, state], feed_dict={ inputs: [[[1], [2], [3], [4]]] }) self.assertAllEqual([[[1], [2], [3], [4]]], outputs) self.assertAllEqual(4, state[0]) self.assertAllEqual([[[1]], [[2]], [[3]], [[4]]], state[1]) def testCellGetInitialState(self): cell = rnn_cell_impl.BasicRNNCell(5) with self.assertRaisesRegexp( ValueError, "batch_size and dtype cannot be None"): cell.get_initial_state(None, None, None) inputs = array_ops.placeholder(dtypes.float32, shape=(None, 4, 1)) with self.assertRaisesRegexp( ValueError, "batch size from input tensor is different from"): cell.get_initial_state(inputs=inputs, batch_size=50, dtype=None) with self.assertRaisesRegexp( ValueError, "batch size from input tensor is different from"): cell.get_initial_state( inputs=inputs, batch_size=constant_op.constant(50), dtype=None) with self.assertRaisesRegexp( ValueError, "dtype from input tensor is different from"): cell.get_initial_state(inputs=inputs, batch_size=None, dtype=dtypes.int16) initial_state = cell.get_initial_state( inputs=inputs, batch_size=None, dtype=None) self.assertEqual(initial_state.shape.as_list(), [None, 5]) self.assertEqual(initial_state.dtype, inputs.dtype) batch = array_ops.shape(inputs)[0] dtype = inputs.dtype initial_state = cell.get_initial_state(None, batch, dtype) self.assertEqual(initial_state.shape.as_list(), [None, 5]) self.assertEqual(initial_state.dtype, inputs.dtype) def _assert_cell_builds(self, cell_class, dtype, batch_size, in_size, out_size): cell = cell_class(out_size, dtype=dtype) in_shape = tensor_shape.TensorShape((batch_size, in_size)) cell.build(in_shape) state_output = cell.get_initial_state( inputs=None, batch_size=batch_size, dtype=dtype) cell_output, _ = cell(array_ops.zeros(in_shape, dtype), state_output) self.assertAllEqual([batch_size, out_size], cell_output.shape.as_list()) @test_util.run_in_graph_and_eager_modes def testCellsBuild(self): f32 = dtypes.float32 f64 = dtypes.float64 self._assert_cell_builds(rnn_cell_impl.BasicRNNCell, f32, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.BasicRNNCell, f64, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.BasicLSTMCell, f32, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.BasicLSTMCell, f64, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.GRUCell, f32, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.GRUCell, f64, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.LSTMCell, f32, 5, 7, 3) self._assert_cell_builds(rnn_cell_impl.LSTMCell, f64, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndRNNCell, f32, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndRNNCell, f64, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndyGRUCell, f32, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndyGRUCell, f64, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndyLSTMCell, f32, 5, 7, 3) self._assert_cell_builds(contrib_rnn.IndyLSTMCell, f64, 5, 7, 3) def testRNNWithKerasSimpleRNNCell(self): with self.cached_session() as sess: input_shape = 10 output_shape = 5 timestep = 4 batch = 100 (x_train, y_train), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) y_train = keras.utils.to_categorical(y_train) cell = keras.layers.SimpleRNNCell(output_shape) inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) predict = array_ops.placeholder( dtypes.float32, shape=(None, output_shape)) outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape]) self.assertEqual(state.shape.as_list(), [None, output_shape]) loss = losses.softmax_cross_entropy(predict, state) train_op = training.GradientDescentOptimizer(0.001).minimize(loss) sess.run([variables_lib.global_variables_initializer()]) _, outputs, state = sess.run( [train_op, outputs, state], {inputs: x_train, predict: y_train}) self.assertEqual(len(outputs), batch) self.assertEqual(len(state), batch) def testRNNWithKerasGRUCell(self): with self.cached_session() as sess: input_shape = 10 output_shape = 5 timestep = 4 batch = 100 (x_train, y_train), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) y_train = keras.utils.to_categorical(y_train) cell = keras.layers.GRUCell(output_shape) inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) predict = array_ops.placeholder( dtypes.float32, shape=(None, output_shape)) outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape]) self.assertEqual(state.shape.as_list(), [None, output_shape]) loss = losses.softmax_cross_entropy(predict, state) train_op = training.GradientDescentOptimizer(0.001).minimize(loss) sess.run([variables_lib.global_variables_initializer()]) _, outputs, state = sess.run( [train_op, outputs, state], {inputs: x_train, predict: y_train}) self.assertEqual(len(outputs), batch) self.assertEqual(len(state), batch) def testRNNWithKerasLSTMCell(self): with self.cached_session() as sess: input_shape = 10 output_shape = 5 timestep = 4 batch = 100 (x_train, y_train), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) y_train = keras.utils.to_categorical(y_train) cell = keras.layers.LSTMCell(output_shape) inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) predict = array_ops.placeholder( dtypes.float32, shape=(None, output_shape)) outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape]) self.assertEqual(len(state), 2) self.assertEqual(state[0].shape.as_list(), [None, output_shape]) self.assertEqual(state[1].shape.as_list(), [None, output_shape]) loss = losses.softmax_cross_entropy(predict, state[0]) train_op = training.GradientDescentOptimizer(0.001).minimize(loss) sess.run([variables_lib.global_variables_initializer()]) _, outputs, state = sess.run( [train_op, outputs, state], {inputs: x_train, predict: y_train}) self.assertEqual(len(outputs), batch) self.assertEqual(len(state), 2) self.assertEqual(len(state[0]), batch) self.assertEqual(len(state[1]), batch) def testRNNWithStackKerasCell(self): with self.cached_session() as sess: input_shape = 10 output_shape = 5 timestep = 4 batch = 100 (x_train, y_train), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) y_train = keras.utils.to_categorical(y_train) cell = keras.layers.StackedRNNCells( [keras.layers.LSTMCell(2 * output_shape), keras.layers.LSTMCell(output_shape)]) inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) predict = array_ops.placeholder( dtypes.float32, shape=(None, output_shape)) outputs, state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape]) self.assertEqual(len(state), 4) self.assertEqual(state[0].shape.as_list(), [None, 2 * output_shape]) self.assertEqual(state[1].shape.as_list(), [None, 2 * output_shape]) self.assertEqual(state[2].shape.as_list(), [None, output_shape]) self.assertEqual(state[3].shape.as_list(), [None, output_shape]) loss = losses.softmax_cross_entropy(predict, state[2]) train_op = training.GradientDescentOptimizer(0.001).minimize(loss) sess.run([variables_lib.global_variables_initializer()]) _, outputs, state = sess.run( [train_op, outputs, state], {inputs: x_train, predict: y_train}) self.assertEqual(len(outputs), batch) self.assertEqual(len(state), 4) for s in state: self.assertEqual(len(s), batch) def testStaticRNNWithKerasSimpleRNNCell(self): with self.cached_session() as sess: input_shape = 10 output_shape = 5 timestep = 4 batch = 100 (x_train, y_train), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) x_train = np.transpose(x_train, (1, 0, 2)) y_train = keras.utils.to_categorical(y_train) cell = keras.layers.SimpleRNNCell(output_shape) inputs = [array_ops.placeholder( dtypes.float32, shape=(None, input_shape))] * timestep predict = array_ops.placeholder( dtypes.float32, shape=(None, output_shape)) outputs, state = rnn.static_rnn( cell, inputs, dtype=dtypes.float32) self.assertEqual(len(outputs), timestep) self.assertEqual(outputs[0].shape.as_list(), [None, output_shape]) self.assertEqual(state.shape.as_list(), [None, output_shape]) loss = losses.softmax_cross_entropy(predict, state) train_op = training.GradientDescentOptimizer(0.001).minimize(loss) sess.run([variables_lib.global_variables_initializer()]) feed_dict = {i: d for i, d in zip(inputs, x_train)} feed_dict[predict] = y_train _, outputs, state = sess.run( [train_op, outputs, state], feed_dict) self.assertEqual(len(outputs), timestep) self.assertEqual(len(outputs[0]), batch) self.assertEqual(len(state), batch) def testKerasAndTFRNNLayerOutputComparison(self): input_shape = 10 output_shape = 5 timestep = 4 batch = 20 (x_train, _), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) fix_weights_generator = keras.layers.SimpleRNNCell(output_shape) fix_weights_generator.build((None, input_shape)) weights = fix_weights_generator.get_weights() with self.session(graph=ops_lib.Graph()) as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) cell = keras.layers.SimpleRNNCell(output_shape) tf_out, tf_state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) cell.set_weights(weights) [tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train}) with self.session(graph=ops_lib.Graph()) as sess: k_input = keras.Input(shape=(timestep, input_shape), dtype=dtypes.float32) cell = keras.layers.SimpleRNNCell(output_shape) layer = keras.layers.RNN(cell, return_sequences=True, return_state=True) keras_out = layer(k_input) cell.set_weights(weights) k_out, k_state = sess.run(keras_out, {k_input: x_train}) self.assertAllClose(tf_out, k_out) self.assertAllClose(tf_state, k_state) def testSimpleRNNCellAndBasicRNNCellComparison(self): input_shape = 10 output_shape = 5 timestep = 4 batch = 20 (x_train, _), _ = testing_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=output_shape) fix_weights_generator = keras.layers.SimpleRNNCell(output_shape) fix_weights_generator.build((None, input_shape)) # The SimpleRNNCell contains 3 weights: kernel, recurrent_kernel, and bias # The BasicRNNCell contains 2 weight: kernel and bias, where kernel is # zipped [kernel, recurrent_kernel] in SimpleRNNCell. keras_weights = fix_weights_generator.get_weights() kernel, recurrent_kernel, bias = keras_weights tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias] with self.test_session(graph=ops_lib.Graph()) as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) cell = keras.layers.SimpleRNNCell(output_shape) k_out, k_state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) cell.set_weights(keras_weights) [k_out, k_state] = sess.run([k_out, k_state], {inputs: x_train}) with self.test_session(graph=ops_lib.Graph()) as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(None, timestep, input_shape)) cell = rnn_cell_impl.BasicRNNCell(output_shape) tf_out, tf_state = rnn.dynamic_rnn( cell, inputs, dtype=dtypes.float32) cell.set_weights(tf_weights) [tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train}) self.assertAllClose(tf_out, k_out, atol=1e-5) self.assertAllClose(tf_state, k_state, atol=1e-5) def testBasicLSTMCellInterchangeWithLSTMCell(self): with self.session(graph=ops_lib.Graph()) as sess: basic_cell = rnn_cell_impl.BasicLSTMCell(1) basic_cell(array_ops.ones([1, 1]), state=basic_cell.get_initial_state(inputs=None, batch_size=1, dtype=dtypes.float32)) self.evaluate([v.initializer for v in basic_cell.variables]) self.evaluate(basic_cell._bias.assign([10.] * 4)) save = saver.Saver() prefix = os.path.join(self.get_temp_dir(), "ckpt") save_path = save.save(sess, prefix) with self.session(graph=ops_lib.Graph()) as sess: lstm_cell = rnn_cell_impl.LSTMCell(1, name="basic_lstm_cell") lstm_cell(array_ops.ones([1, 1]), state=lstm_cell.get_initial_state(inputs=None, batch_size=1, dtype=dtypes.float32)) self.evaluate([v.initializer for v in lstm_cell.variables]) save = saver.Saver() save.restore(sess, save_path) self.assertAllEqual([10.] * 4, self.evaluate(lstm_cell._bias)) def testRNNCellSerialization(self): for cell in [ rnn_cell_impl.LSTMCell(32, use_peepholes=True, cell_clip=True), rnn_cell_impl.BasicLSTMCell(32, dtype=dtypes.float32), rnn_cell_impl.BasicRNNCell(32, activation="relu", dtype=dtypes.float32), rnn_cell_impl.GRUCell( 32, kernel_initializer="ones", dtype=dtypes.float32) ]: with self.cached_session(): x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile(optimizer="rmsprop", loss="mse") # Test basic case serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() # The custom_objects is important here since rnn_cell_impl is # not visible as a Keras layer, and also has a name conflict with # keras.LSTMCell and GRUCell. layer = keras.layers.RNN.from_config( config, custom_objects={ "BasicRNNCell": rnn_cell_impl.BasicRNNCell, "GRUCell": rnn_cell_impl.GRUCell, "LSTMCell": rnn_cell_impl.LSTMCell, "BasicLSTMCell": rnn_cell_impl.BasicLSTMCell }) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) ######### Benchmarking RNN code def _static_vs_dynamic_rnn_benchmark_static(inputs_list_t, sequence_length): (_, input_size) = inputs_list_t[0].get_shape().as_list() initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127) cell = contrib_rnn.LSTMCell( num_units=input_size, use_peepholes=True, initializer=initializer, state_is_tuple=False) outputs, final_state = contrib_rnn.static_rnn( cell, inputs_list_t, sequence_length=sequence_length, dtype=dtypes.float32) trainable_variables = ops_lib.get_collection( ops_lib.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients(outputs + [final_state], trainable_variables) return control_flow_ops.group(final_state, *(gradients + outputs)) def _static_vs_dynamic_rnn_benchmark_dynamic(inputs_t, sequence_length): (unused_0, unused_1, input_size) = inputs_t.get_shape().as_list() initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127) cell = contrib_rnn.LSTMCell( num_units=input_size, use_peepholes=True, initializer=initializer, state_is_tuple=False) outputs, final_state = rnn.dynamic_rnn( cell, inputs_t, sequence_length=sequence_length, dtype=dtypes.float32) trainable_variables = ops_lib.get_collection( ops_lib.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) return control_flow_ops.group(final_state, outputs, *gradients) def graph_creation_static_vs_dynamic_rnn_benchmark(max_time): config = config_pb2.ConfigProto() config.allow_soft_placement = True # These parameters don't matter batch_size = 512 num_units = 512 # Set up sequence lengths np.random.seed([127]) sequence_length = np.random.randint(0, max_time, size=batch_size) inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(max_time) ] inputs = np.dstack(inputs_list).transpose([0, 2, 1]) # batch x time x depth def _create_static_rnn(): with session.Session(config=config, graph=ops_lib.Graph()): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] _static_vs_dynamic_rnn_benchmark_static(inputs_list_t, sequence_length) def _create_dynamic_rnn(): with session.Session(config=config, graph=ops_lib.Graph()): inputs_t = variables_lib.Variable(inputs, trainable=False).value() _static_vs_dynamic_rnn_benchmark_dynamic(inputs_t, sequence_length) delta_static = timeit.timeit(_create_static_rnn, number=5) delta_dynamic = timeit.timeit(_create_dynamic_rnn, number=5) print("%d \t %f \t %f \t %f" % (max_time, delta_static, delta_dynamic, delta_dynamic / delta_static)) return delta_static, delta_dynamic def _timer(sess, ops): # Warm in for _ in range(2): sess.run(ops) # Timing run runs = 20 start = time.time() for _ in range(runs): sess.run(ops) end = time.time() return (end - start) / float(runs) def static_vs_dynamic_rnn_benchmark(batch_size, max_time, num_units, use_gpu): config = config_pb2.ConfigProto() config.allow_soft_placement = True # Set up sequence lengths np.random.seed([127]) sequence_length = np.random.randint(0, max_time, size=batch_size) inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(max_time) ] inputs = np.dstack(inputs_list).transpose([0, 2, 1]) # batch x time x depth # Using rnn() with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _static_vs_dynamic_rnn_benchmark_static(inputs_list_t, sequence_length) variables_lib.global_variables_initializer().run() delta_static = _timer(sess, ops) # Using dynamic_rnn() with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_t = variables_lib.Variable(inputs, trainable=False).value() ops = _static_vs_dynamic_rnn_benchmark_dynamic(inputs_t, sequence_length) variables_lib.global_variables_initializer().run() delta_dynamic = _timer(sess, ops) print("%d \t %d \t %d \t %s \t %f \t %f \t %f" % (batch_size, max_time, num_units, use_gpu, delta_static, delta_dynamic, delta_dynamic / delta_static)) return delta_static, delta_dynamic def _half_seq_len_vs_unroll_half_rnn_benchmark(inputs_list_t, sequence_length): (_, input_size) = inputs_list_t[0].get_shape().as_list() initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127) cell = contrib_rnn.LSTMCell( num_units=input_size, use_peepholes=True, initializer=initializer, state_is_tuple=False) outputs, final_state = contrib_rnn.static_rnn( cell, inputs_list_t, sequence_length=sequence_length, dtype=dtypes.float32) trainable_variables = ops_lib.get_collection( ops_lib.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients(outputs + [final_state], trainable_variables) return control_flow_ops.group(final_state, *(gradients + outputs)) def half_seq_len_vs_unroll_half_rnn_benchmark(batch_size, max_time, num_units, use_gpu): config = config_pb2.ConfigProto() config.allow_soft_placement = True # Set up sequence lengths np.random.seed([127]) sequence_length = max_time * np.ones((batch_size,)) inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(max_time) ] # Halve the sequence length, full static unroll with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _half_seq_len_vs_unroll_half_rnn_benchmark(inputs_list_t, sequence_length / 2) variables_lib.global_variables_initializer().run() delta_half_seq_len = _timer(sess, ops) # Halve the unroll size, don't use sequence length with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _half_seq_len_vs_unroll_half_rnn_benchmark( inputs_list_t[:(max_time // 2)], sequence_length / 2) variables_lib.global_variables_initializer().run() delta_unroll_half = _timer(sess, ops) print("%d \t %d \t\t %d \t %s \t %f \t\t %f \t\t %f" % (batch_size, max_time, num_units, use_gpu, delta_half_seq_len, delta_unroll_half, delta_half_seq_len / delta_unroll_half)) return delta_half_seq_len, delta_unroll_half def _concat_state_vs_tuple_state_rnn_benchmark(inputs_list_t, sequence_length, state_is_tuple): (_, input_size) = inputs_list_t[0].get_shape().as_list() initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127) cell = contrib_rnn.LSTMCell( num_units=input_size, use_peepholes=True, initializer=initializer, state_is_tuple=state_is_tuple) outputs, final_state = contrib_rnn.static_rnn( cell, inputs_list_t, sequence_length=sequence_length, dtype=dtypes.float32) final_state = list(final_state) if state_is_tuple else [final_state] trainable_variables = ops_lib.get_collection( ops_lib.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients(outputs + final_state, trainable_variables) return control_flow_ops.group(*(final_state + gradients + outputs)) def concat_state_vs_tuple_state_rnn_benchmark(batch_size, max_time, num_units, use_gpu): config = config_pb2.ConfigProto() config.allow_soft_placement = True # Set up sequence lengths np.random.seed([127]) sequence_length = max_time * np.ones((batch_size,)) inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(max_time) ] # Run with concatenated states (default) with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _concat_state_vs_tuple_state_rnn_benchmark( inputs_list_t, sequence_length, state_is_tuple=False) variables_lib.global_variables_initializer().run() delta_concat_state = _timer(sess, ops) # Run with tuple states (new) with session.Session(config=config, graph=ops_lib.Graph()) as sess: with ops_lib.device("/cpu:0" if not use_gpu else None): inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _concat_state_vs_tuple_state_rnn_benchmark( inputs_list_t, sequence_length, state_is_tuple=True) variables_lib.global_variables_initializer().run() delta_tuple_state = _timer(sess, ops) print("%d \t %d \t %d \t %s \t %f \t\t %f \t\t %f" % (batch_size, max_time, num_units, use_gpu, delta_concat_state, delta_tuple_state, delta_concat_state / delta_tuple_state)) return delta_concat_state, delta_tuple_state def _dynamic_rnn_swap_memory_benchmark(inputs_t, sequence_length, swap_memory): (unused_0, unused_1, input_size) = inputs_t.get_shape().as_list() initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127) cell = contrib_rnn.LSTMCell( num_units=input_size, use_peepholes=True, initializer=initializer, state_is_tuple=False) outputs, final_state = rnn.dynamic_rnn( cell, inputs_t, sequence_length=sequence_length, swap_memory=swap_memory, dtype=dtypes.float32) trainable_variables = ops_lib.get_collection( ops_lib.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) return control_flow_ops.group(final_state, outputs, *gradients) def dynamic_rnn_swap_memory_benchmark(batch_size, max_time, num_units): config = config_pb2.ConfigProto() config.allow_soft_placement = True # Set up sequence lengths np.random.seed([127]) sequence_length = np.random.randint(0, max_time, size=batch_size) inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(max_time) ] inputs = np.dstack(inputs_list).transpose([0, 2, 1]) # batch x time x depth # No memory swap with session.Session(config=config, graph=ops_lib.Graph()) as sess: inputs_t = variables_lib.Variable(inputs, trainable=False).value() ops = _dynamic_rnn_swap_memory_benchmark( inputs_t, sequence_length, swap_memory=False) variables_lib.global_variables_initializer().run() no_swap = _timer(sess, ops) # Memory swap with session.Session(config=config, graph=ops_lib.Graph()) as sess: inputs_t = variables_lib.Variable(inputs, trainable=False).value() ops = _dynamic_rnn_swap_memory_benchmark( inputs_t, sequence_length, swap_memory=True) variables_lib.global_variables_initializer().run() swap = _timer(sess, ops) print("%d \t %d \t %d \t %f \t %f \t %f" % (batch_size, max_time, num_units, no_swap, swap, swap / no_swap)) return no_swap, swap def rnn_long_sequence_benchmark(batch_size, seqlen, num_units, dynamic, swap_memory, nn): config = config_pb2.ConfigProto() config.allow_soft_placement = True # Set up sequence lengths np.random.seed([127]) sequence_length = [seqlen for _ in range(batch_size)] inputs_list = [ np.random.randn(batch_size, num_units).astype(np.float32) for _ in range(seqlen) ] inputs = np.dstack(inputs_list).transpose([0, 2, 1]) # batch x time x depth for _ in range(nn): if dynamic: with session.Session(config=config, graph=ops_lib.Graph()) as sess: inputs_t = variables_lib.Variable(inputs, trainable=False).value() ops = _dynamic_rnn_swap_memory_benchmark( inputs_t, sequence_length, swap_memory=swap_memory) variables_lib.global_variables_initializer().run() elapsed = _timer(sess, ops) else: with session.Session(config=config, graph=ops_lib.Graph()) as sess: inputs_list_t = [ variables_lib.Variable( x, trainable=False).value() for x in inputs_list ] ops = _static_vs_dynamic_rnn_benchmark_static(inputs_list_t, sequence_length) variables_lib.global_variables_initializer().run() elapsed = _timer(sess, ops) print("%d \t %d \t %d \t %s \t %f \t %f" % (batch_size, seqlen, num_units, dynamic, elapsed, elapsed / seqlen)) class BenchmarkRNN(test.Benchmark): def benchmarkGraphCreationStaticVsDynamicLSTM(self): print("Graph Creation: Static Unroll vs. Dynamic Unroll LSTM") print("max_t \t dt(static) \t dt(dynamic) \t dt(dynamic)/dt(static)") for max_time in (1, 25, 50): s_dt, d_dt = graph_creation_static_vs_dynamic_rnn_benchmark(max_time) self.report_benchmark( name="graph_creation_time_static_T%02d" % max_time, iters=5, wall_time=s_dt) self.report_benchmark( name="graph_creation_time_dynamic_T%02d" % max_time, iters=5, wall_time=d_dt) def benchmarkStaticUnrollVsDynamicFlowLSTM(self): print("Calculation: Static Unroll with Dynamic Flow LSTM " "vs. Dynamic Unroll LSTM") print("batch \t max_t \t units \t gpu \t dt(static) \t dt(dynamic) " "\t dt(dynamic)/dt(static)") for batch_size in (256,): for max_time in (50,): for num_units in (512, 256, 128): for use_gpu in (False, True): s_dt, d_dt = static_vs_dynamic_rnn_benchmark(batch_size, max_time, num_units, use_gpu) self.report_benchmark( name="static_unroll_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=s_dt) self.report_benchmark( name="dynamic_unroll_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=d_dt) def benchmarkDynamicLSTMNoMemorySwapVsMemorySwap(self): print("Calculation: Dynamic LSTM No Memory Swap vs. Memory Swap") print("batch \t max_t \t units \t no_swap \t swap \t swap/no_swap") for batch_size in (256, 512): for max_time in (100,): for num_units in (512, 256, 128): no_swap, swap = dynamic_rnn_swap_memory_benchmark(batch_size, max_time, num_units) self.report_benchmark( name="dynamic_lstm_no_memory_swap_T%02d_B%03d_N%03d" % (max_time, batch_size, num_units), iters=20, wall_time=no_swap) self.report_benchmark( name="dynamic_lstm_with_memory_swap_T%02d_B%03d_N%03d" % (max_time, batch_size, num_units), iters=20, wall_time=swap) def benchmarkStaticUnrollHalfSequenceLengthVsHalfUnroll(self): print("Calculation: Static Unroll with Halved Sequence Length " "vs. Half Static Unroll") print("batch \t full_t \t units \t gpu \t dt(half_seq_len) " "\t dt(unroll_half) \t dt(half_seq_len)/dt(unroll_half)") for batch_size in (128,): for max_time in (50,): for num_units in (256,): for use_gpu in (False, True): s_dt, d_dt = half_seq_len_vs_unroll_half_rnn_benchmark(batch_size, max_time, num_units, use_gpu) self.report_benchmark( name="half_seq_len_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=s_dt) self.report_benchmark( name="unroll_half_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=d_dt) def benchmarkStaticUnrollStateConcatVsStateTuple(self): print("Calculation: Static Unroll with Concatenated State " "vs. Tuple State") print("batch \t time \t units \t gpu \t dt(concat_state) " "\t dt(tuple_state) \t dt(concat_state)/dt(tuple_state)") for batch_size in ( 16, 128,): for max_time in (50,): for num_units in ( 16, 128,): for use_gpu in (False, True): c_dt, t_dt = concat_state_vs_tuple_state_rnn_benchmark(batch_size, max_time, num_units, use_gpu) self.report_benchmark( name="concat_state_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=c_dt) self.report_benchmark( name="tuple_state_time_T%02d_B%03d_N%03d_gpu_%s" % (max_time, batch_size, num_units, use_gpu), iters=20, wall_time=t_dt) def _benchmarkDynamicLSTMMemorySwapLongSeq(self): """The memory swapping test for the SOSP submission.""" print("Calculation: Long LSTM Sequence") print("batch \t len \t units \t dynamic \t elapsed_t \t elapsed_t/len") batch_size = 512 seqlen = 800 num_units = 512 dynamic = True swap_memory = True # Some warming up. if swap_memory: rnn_long_sequence_benchmark(batch_size, seqlen, num_units, dynamic, swap_memory, 2) # Measure the performance. for slen in xrange(100, 1100, 100): rnn_long_sequence_benchmark(batch_size, slen, num_units, dynamic, swap_memory, 3) if __name__ == "__main__": test.main()
apache-2.0
920,542,612,437,591,800
38.340708
80
0.6303
false
michaelpantic/tolScreenCleaner
parse.py
1
1448
import csv import re import parseH import parseL import outputAdapterTable import outputAdapterODMax from os import listdir from os.path import isfile, join indexFolder = "../tolScreenCleanerData/INDEX" platesFolder = "../tolScreenCleanerData/PLATES" outputFolder = "../tolScreenCleanerData/OUTPUT" # Get available index files indexFilesH = [ join(indexFolder,f) for f in listdir(indexFolder) if isfile(join(indexFolder,f)) and re.match("H.+.txt",f)] indexFilesL = [ join(indexFolder,f) for f in listdir(indexFolder) if isfile(join(indexFolder,f)) and re.match("L\d+_STRAIN.txt",f)] # Parse all Indexes plates =[]; for fileL in indexFilesL: plates.append(parseL.parseIndex(fileL)); for fileH in indexFilesH: plates.append(parseH.parseIndex(fileH)); print('Found ' + str(len(plates)) + ' different plates:') for plate in plates: print ("\t",plate) outputInfoTable = outputAdapterTable.createOutputFile(outputFolder); outputInfoODMax = outputAdapterODMax.createOutputFile(outputFolder); # go trough found Plates for plate in plates: if plate.MachineType=='H': parseH.parsePlateData(plate, platesFolder) elif plate.MachineType=='L': parseL.parsePlateData(plate, platesFolder) else: raise NameError("Unknown plate type") outputAdapterTable.outputPlateData(plate,outputInfoTable); outputAdapterODMax.outputPlateData(plate,outputInfoODMax); outputAdapterTable.finish(outputInfoTable) outputAdapterODMax.finish(outputInfoODMax)
gpl-2.0
781,799,530,293,800,100
28.55102
131
0.785221
false
shashankg7/pynet
tests/test_tree.py
1
1404
from pynet.net import tree from lxml import etree import unittest #TODO create multiple trees and their answer. s1 = """<root> <b> <d></d> <e></e> </b> <c> <f></f> </c> <b> <e></e> <d></d> </b> <c> <g> <h></h> <i></i> <j></j> </g> </c> </root> """ s2 = """<root> <b> <d></d> <e></e> </b> <c> <g> <h></h> </g> <f></f> </c> </root> """ ans12 = ["root", "b", "d", "e", "c", "f", "g", "h"] # Space between only open-closed tag. #readability s3 = """<c><b><a> </a></b></c>""" s4 = """<c><a> </a><b> </b></c> """ ans34 = ["c", "a"] ans13 = [] ans14 = [] class TestTreeMatch(unittest.TestCase): def test_tree_match(self): tree1 = etree.XML(s1) tree2 = etree.XML(s2) t = tree() ans = ["root", "b", "d", "e", "c", "f", "g", "h"] ret = [] self.assertEquals(7, t.tree_match(tree1, tree2, ret)) for tags, a in zip(ret, ans): self.assertEqual( tags[0].tag, a) if __name__ == "__main__": unittest.main()
mit
-1,266,251,149,165,280,800
21.285714
61
0.321937
false
ewheeler/rapidsms-timelines
timelines/handlers/base.py
1
1997
from __future__ import unicode_literals import re from django.utils.translation import ugettext_lazy as _ from django.utils import formats from rapidsms.contrib.handlers.handlers.keyword import KeywordHandler class AppointmentHandler(KeywordHandler): "Base keyword handler for the APPT prefix." prefix = 'APPT|REPORT|REP' form = None success_text = '' @classmethod def _keyword(cls): if hasattr(cls, "keyword"): pattern = r"^\s*(?:%s)\s*(?:%s)(?:[\s,;:]+(.+))?$"\ % (cls.prefix, cls.keyword) else: pattern = r"^\s*(?:%s)\s*?$" % cls.prefix return re.compile(pattern, re.IGNORECASE) def handle(self, text): "Parse text, validate data, and respond." parsed = self.parse_message(text) form = self.form(data=parsed, connection=self.msg.connection) if form.is_valid(): params = form.save() if 'date' in params: params['date'] = formats.date_format(params['date'], 'SHORT_DATE_FORMAT') self.respond(self.success_text % params) else: error = form.error() if error is None: self.unknown() else: self.respond(error) return True def help(self): "Return help mesage." if self.help_text: keyword = self.keyword.split('|')[0].upper() help_text = self.help_text % {'prefix': self.prefix, 'keyword': keyword} self.respond(help_text) def unknown(self): "Common fallback for unknown errors." keyword = self.keyword.split('|')[0].upper() params = {'prefix': self.prefix, 'keyword': keyword} self.respond(_('Sorry, we cannot understand that message. ' 'For additional help send: %(prefix)s %(keyword)s') % params)
bsd-3-clause
5,640,505,439,613,818,000
32.283333
74
0.536805
false
cjforman/pele
pele/landscape/connect_min.py
1
22807
import logging import numpy as np import networkx as nx from pele.landscape import TSGraph, LocalConnect from pele.landscape._distance_graph import _DistanceGraph __all__ = ["DoubleEndedConnect"] logger = logging.getLogger("pele.connect") class DoubleEndedConnect(object): """ Find a connected network of minima and transition states between min1 and min2 Parameters ---------- min1, min2 : Mimumum() objects the two minima to try to connect pot : potential object the potential mindist : callable the function which returns the optimized minimum distance between two structures database : pele Database object Used to store the new minima and transition states found. niter : int, optional maximum number of iterations verbosity : int this controls how many status messages are printed. (not really implemented yet) merge_minima : bool if True, minima for which NEB finds no transition state candidates between them will be merged max_dist_merge : float merging minima will be aborted if the distance between them is greater than max_dist_merge local_connect_params : dict parameters passed to the local connect algorithm. This includes all NEB and all transition state search parameters, along with, e.g. now many times to retry a local connect run. See documentation for LocalConnect for details. fresh_connect : bool if true, ignore all existing minima and transition states in the database and try to find a new path longest_first : bool if true, always try to connect the longest segment in the path guess first conf_checks : list of callables a list of callable function that determine if a configuration is valid. They must return a bool, and accept the keyword parameters conf_check(energy=energy, coords=coords) If any configuration in a minimum-transition_state-minimum triplet fails a test then the whole triplet is rejected. Notes ----- The algorithm is iterative, with each iteration composed of While min1 and min2 are not connected: 1) choose a pair of known minima to try to connect 2) use NEB to get a guess for the transition states between them 3) refine the transition states to desired accuracy 4) fall off either side of the transition states to find the two minima associated with that candidate 5) add the transition states and associated minima to the known network Of the above, steps 1 and 2 and 3 are the most involved. 2, 3, 4 are wrapped into a separate class called LocalConnect. See this class and the NEB and FindTransitionState classes for detailed descriptions of these procedures. An important note is that the NEB is used only to get a *guess* for the transition state. Thus we only want to put enough time and energy into the NEB routine to get the guess close enough that FindTransitionState can refine it to the correct transition state. FindTransitionState is very fast if the initial guess is good, but can be very slow otherwise. Choose a pair: Here I will describe step 1), the algorithm to find a pair of known minima to try to connect. This choice will keep in mind that the ultimate goal is to connect min1 and min2. In addition to the input parameter "graph", we keep a second graph "Gdist" (now wrapped in a separate class _DistanceGraph) which also has minima as the vertices. Gdist has an edge between every pair of nodes. The edge weight between vertices u and v is if u and v are connected by transition states: weight(u, v) = 0. elif we have already tried local_connect on (u,v): weight(u, v) = Infinity else: weight(u, v) = dist(u, v)**2 This edge weight is set to Infinity to ensure we don't repeat LocalConnect runs over and over again. The minimum weight path between min1 and min2 in Gdist gives a good guess for the best way to try connect min1 and min2. So the algorithm to find a pair of know minima (trial1, trial2) to try to connect is path = Gdist.minimum_weight_path(min1, min2) trial1, trial2 = minima pair in path with lowest nonzero edge weight. (note: if parameter longest_first is True) then the edgepair with the largest edge weight will be selected) todo: allow user to pass graph See Also -------- LocalConnect : the core algorithm of this routine """ def __init__(self, min1, min2, pot, mindist, database, verbosity=1, merge_minima=False, max_dist_merge=0.1, local_connect_params=None, fresh_connect=False, longest_first=True, niter=200, conf_checks=None ): self.minstart = min1 assert min1.id() == min1, "minima must compare equal with their id %d %s %s" % ( min1.id(), str(min1), str(min1.__hash__())) self.minend = min2 self.pot = pot self.mindist = mindist self.pairsNEB = dict() self.longest_first = longest_first self.niter = niter if conf_checks is None: self.conf_checks = [] else: self.conf_checks = conf_checks self.verbosity = int(verbosity) if local_connect_params is None: local_connect_params = dict() self.local_connect_params = dict([("verbosity", verbosity)] + local_connect_params.items()) self.database = database self.fresh_connect = fresh_connect if self.fresh_connect: self.graph = TSGraph(self.database, minima=[self.minstart, self.minend], no_edges=True) else: self.graph = TSGraph(self.database) self.merge_minima = merge_minima self.max_dist_merge = float(max_dist_merge) self.dist_graph = _DistanceGraph(self.database, self.graph, self.mindist, self.verbosity) # check if a connection exists before initializing distance graph if self.graph.areConnected(self.minstart, self.minend): logger.info("minima are already connected. not initializing distance graph") return self.dist_graph.initialize(self.minstart, self.minend) if self.verbosity > 0: logger.info("************************************************************") logger.info("starting a double ended connect run between") logger.info(" minimum 1: id %d energy %f" % (self.minstart.id(), self.minstart.energy)) logger.info(" minimum 2: id %d energy %f" % (self.minend.id(), self.minend.energy)) logger.info(" dist %f" % self.getDist(self.minstart, self.minend)) logger.info("************************************************************") def mergeMinima(self, min1, min2): """merge two minimum objects This will delete min2 and make everything that pointed to min2 point to min1. """ # prefer to delete the minima with the large id. this potentially will be easier if min2.id() < min1.id(): min1, min2 = min2, min1 debug = False dist = self.getDist(min1, min2) logger.info("merging minima %s %s %s %s %s", min1.id(), min2.id(), dist, "E1-E2", min1.energy - min2.energy) # deal with the case where min1 and/or min2 are the same as minstart and/or minend # make sure the one that is deleted (min2) is not minstart or minend if ((min1 == self.minstart and min2 == self.minend) or (min2 == self.minstart and min1 == self.minend)): logger.error("ERROR: trying to merge the start and end minima. aborting") return if min2 == self.minstart or min2 == self.minend: min1, min2 = min2, min1 if dist > self.max_dist_merge: logger.info(" minima merge aborted. distance is too large %s", dist) return # merge minima in transition state graph self.graph.mergeMinima(min1, min2) # merge minima in the database also self.database.mergeMinima(min1, min2) if debug: # testing if min2 in self.graph.graph.nodes(): logger.error("error, min2 is still in self.graph.graph") logger.debug("self.graph.graph. nnodes %s", self.graph.graph.number_of_nodes()) # merge minima in distance graph self.dist_graph.mergeMinima(min1, min2) def getDist(self, min1, min2): """ get the distance between min1 and min2. """ return self.dist_graph.getDist(min1, min2) def _addTransitionState(self, ts_ret, min_ret1, min_ret2): """ add a transition state to the database, the transition state graph and the distance graph """ # if isinstance(min_ret1, tuple): # for compatability with old and new quenchers # min_ret1 = min_ret1[4] # if isinstance(min_ret2, tuple): # for compatability with old and new quenchers # min_ret2 = min_ret2[4] # if isinstance(min1_ret) # sanity check for the energies me1, me2 = min_ret1.energy, min_ret2.energy if ts_ret.energy < me1 or ts_ret.energy < me2: logger.warning("trying to add a transition state that has energy lower than its minima.") logger.warning(" TS energy %s %s %s %s", ts_ret.energy, "minima energy", me1, me2) logger.warning(" aborting") return False # check the minima and transition states are valid configurations. # if any fail, then don't add anything. configs_ok = True for ret in [min_ret1, min_ret2, ts_ret]: for check in self.conf_checks: if not check(energy=ret.energy, coords=ret.coords): configs_ok = False break if not configs_ok: break if not configs_ok: return False # Add the minima to the database min1 = self.database.addMinimum(min_ret1.energy, min_ret1.coords) min2 = self.database.addMinimum(min_ret2.energy, min_ret2.coords) # Add the minima to the transition state graph. self.graph.addMinimum(min1) self.graph.addMinimum(min2) if min1 == min2: logger.warning("stepping off the transition state resulted in twice the same minima %s", min1.id()) return False logger.info("adding transition state %s %s", min1.id(), min2.id()) # add the transition state to the database ts = self.database.addTransitionState(ts_ret.energy, ts_ret.coords, min1, min2, eigenvec=ts_ret.eigenvec, eigenval=ts_ret.eigenval) # update the transition state graph self.graph.addTransitionState(ts) # self.graph.refresh() # update the distance graph self.dist_graph.addMinimum(min1) self.dist_graph.addMinimum(min2) self.dist_graph.setTransitionStateConnection(min1, min2) if self.verbosity > 1: # print some information dse = self.getDist(self.minend, self.minstart) msid = self.minstart.id() meid = self.minend.id() m1id = min1.id() m2id = min2.id() if min1 != self.minstart and min1 != self.minend: ds = self.getDist(min1, self.minstart) de = self.getDist(min1, self.minend) if ds < dse > de: triangle = "" else: triangle = ": new minima not in between start and end" logger.info(" distances: %4d -> %4d = %f %4d -> %4d = %f %4d -> %4d = %f %s" % (msid, m1id, ds, m1id, meid, de, m1id, m2id, dse, triangle)) if min2 != self.minstart and min2 != self.minend: ds = self.getDist(min2, self.minstart) de = self.getDist(min2, self.minend) # if ds < dse > de: # triangle = "" # else: # triangle = ": new minima not in between start and end" logger.info(" distances: %4d -> %4d = %f %4d -> %4d = %f %4d -> %4d = %f" % (msid, m2id, ds, m2id, meid, de, m2id, m2id, dse)) return True def _getLocalConnectObject(self): return LocalConnect(self.pot, self.mindist, **self.local_connect_params) def _localConnect(self, min1, min2): """ do a local connect run between min1 and min2 Notes ----- 1) NEB to find transition state candidates. for each transition state candidate: 2) refine the transition state candidates 3) if successful, fall off either side of the transition state to find the minima the transition state connects. Add the new transition state and minima to the graph """ # Make sure we haven't already tried this pair and # record some data so we don't try it again in the future if (min1, min2) in self.pairsNEB: logger.warning("WARNING: redoing NEB for minima %s %s", min1.id(), min2.id()) logger.warning(" aborting NEB") # self._remove_edgeGdist(min1, min2) self.dist_graph.removeEdge(min1, min2) return True self.pairsNEB[(min1, min2)] = True self.pairsNEB[(min2, min1)] = True # Make sure they're not already connected. sanity test if self.graph.areConnected(min1, min2): logger.warning("in _local_connect, but minima are already connected. aborting %s %s %s", min1.id(), min2.id(), self.getDist(min1, min2)) self.dist_graph.setTransitionStateConnection(min1, min2) self.dist_graph.checkGraph() return True # do local connect run local_connect = self._getLocalConnectObject() res = local_connect.connect(min1, min2) # now add each new transition state to the graph and database. nsuccess = 0 for tsret, m1ret, m2ret in res.new_transition_states: goodts = self._addTransitionState(tsret, m1ret, m2ret) if goodts: nsuccess += 1 # check results if nsuccess == 0: dist = self.getDist(min1, min2) if dist < self.max_dist_merge: logger.warning("local connect failed and the minima are close. Are the minima really the same?") logger.warning(" energies: %s %s %s %s", min1.energy, min2.energy, "distance", dist) if self.merge_minima: self.mergeMinima(min1, min2) else: logger.warning(" set merge_minima=True to merge the minima") return False # remove this edge from Gdist so we don't try this pair again again self.dist_graph.removeEdge(min1, min2) return nsuccess > 0 def _getNextPair(self): """ return a pair of minima to attempt to connect Notes ----- this is the function which attempts to find a clever pair of minima to try to connect with the ultimate goal of connecting minstart and minend this method can be described as follows: make a new graph Gnew which is complete (all vetices connected). The edges have a weight given by if self.graph.areConnected(u,v): weight(u,v) = 0. else: weight(u,v) = mindist(u,v) if an NEB has been attempted between u and v then the edge is removed. we then find the shortest path between minstart and minend. We return the pair in this path which has edge weight with the smallest non zero value update: find the shortest path weighted by distance squared. This penalizes finding the NEB between minima that are very far away. (Does this too much favor long paths?) """ logger.info("finding a good pair to try to connect") # get the shortest path on dist_graph between minstart and minend if True: logger.debug("Gdist has %s %s %s %s", self.dist_graph.Gdist.number_of_nodes(), "nodes and", self.dist_graph.Gdist.number_of_edges(), "edges") path, weights = self.dist_graph.shortestPath(self.minstart, self.minend) weightsum = sum(weights) if path is None or weightsum >= 10e9: logger.warning("Can't find any way to try to connect the minima") return None, None # get the weights of the path segements weightlist = [] for i in range(1, len(path)): min1 = path[i - 1] min2 = path[i] # w = weights.get((min1,min2)) # if w is None: # w = weights.get((min2,min1)) w = weights[i - 1] weightlist.append((w, min1, min2)) if True: # print the path logger.info("best guess for path. (dist=0.0 means the path is known)") for w, min1, min2 in weightlist: if w > 1e-6: dist = self.getDist(min1, min2) else: dist = w logger.info(" path guess %s %s %s", min1.id(), min2.id(), dist) # select which minima pair to return if self.longest_first: weightlist.sort() w, min1, min2 = weightlist[-1] else: weightlist.sort() for w, min1, min2 in weightlist: if w > 1e-6: break return min1, min2 def connect(self): """ the main loop of the algorithm """ self.NEBattempts = 2 for i in range(self.niter): # stop if we're done if self.graph.areConnected(self.minstart, self.minend): logger.info("found connection!") return logger.info("") logger.info("======== starting connect cycle %s %s", i, "========") # get pair of minima to try to connect min1, min2 = self._getNextPair() # fail if we can't find a good pair to try if min1 is None or min2 is None: break # try to connect those minima from pele.optimize.optimization_exceptions import LineSearchError try: self._localConnect(min1, min2) except LineSearchError as err: print err print "caught line search error, aborting connection attempt" break if False and i % 10 == 0: # do some sanity checks self.dist_graph.checkGraph() logger.info("failed to find connection between %s %s", self.minstart.id(), self.minend.id()) def success(self): return self.graph.areConnected(self.minstart, self.minend) def returnPath(self): """return information about the path Returns ------- mints : list of Minimum and TransitionStates a list of Minimum, TransitionState, Minimum objects that make up the path S : list of float numpy array of the distance along the path. len(S) == len(mints) energies : list of float numpy array of the energies along the path If the minima are not connected, return (None, None, None) """ if not self.graph.areConnected(self.minstart, self.minend): return None, None, None minima = nx.shortest_path(self.graph.graph, self.minstart, self.minend) transition_states = [] mints = [minima[0]] for i in range(1, len(minima)): m1 = minima[i - 1] m2 = minima[i] ts = self.database.getTransitionState(m1, m2) transition_states.append(ts) mints.append(ts) mints.append(m2) S = np.zeros(len(mints)) for i in range(1, len(mints)): coords1 = mints[i - 1].coords coords2 = mints[i].coords dist, c1, c2 = self.mindist(coords1, coords2) S[i] = S[i - 1] + dist energies = np.array([m.energy for m in mints]) return mints, S, energies # ########################################################## # only testing stuff below here # ########################################################## def getSetOfMinLJ(system): # pragma: no cover db = system.create_database() bh = system.get_basinhopping(db, outstream=None) bh.run(100) return system.get_potential(), db def test(Connect=DoubleEndedConnect, natoms=16): # pragma: no cover from pele.systems import LJCluster # get min1 system = LJCluster(natoms) pot, database = getSetOfMinLJ(system) minima = database.minima() min1 = minima[0] min2 = minima[1] print min1.energy, min2.energy mindist = system.get_mindist() connect = Connect(min1, min2, pot, mindist, database) connect.connect() graph = connect.graph if False: print graph for node in graph.graph.nodes(): print node.id(), node.energy for ts in graph.storage.transition_states(): print ts.minimum1.id(), ts.minimum2.id(), "E", ts.minimum1.energy, ts.minimum2.energy, ts.energy ret = graph.getPath(min1, min2) if ret is None: print "no path found" return distances, path = ret with open("path.out", "w") as fout: for i in range(len(path) - 1): m1 = path[i] m2 = path[i + 1] n1 = m1.id() m2 = m2.id() # ts = graph._getTS(n1, n2) # print "path", n1, "->", n2, m1.E, "/->", ts.E, "\->", m2.E fout.write("%f\n" % m1.energy) fout.write("%f\n" % ts.energy) m2 = path[-1] n2 = m2.id() fout.write("%f\n" % m2.energy) if __name__ == "__main__": # logger.basicConfig(level=logger.DEBUG) test(natoms=38)
gpl-3.0
-8,087,875,305,333,027,000
37.590525
122
0.577717
false
fgimian/flaskage
flaskage/cli.py
1
12912
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os import sys import logging import click import flaskage from flaskage.scaffold import Scaffold from flaskage.utils import camelcase, AliasedGroup, MODULE_NAME from flaskage.helpers import ( valid_project_directory, ColoredFormatter, PROJECT_NAME, MODEL_COLUMN, COLUMN_TYPE_MAPPING, COLUMN_FACTORY_MAPPING, COLUMN_MODIFIER_MAPPING, COLUMN_MODIFIER_PRIMARY_KEY ) # Determine the location of our templates TEMPLATE_DIR = os.path.abspath( os.path.join( os.path.dirname(flaskage.__file__), 'templates' ) ) # Setup our ignored directories and files IGNORED_DIRS = ['__pycache__'] IGNORED_FILES = ['*.pyc'] def configure_logging(use_color=True): """Adjust log output formatting.""" formatter = ColoredFormatter( '<c>%(description)12s<r> : %(destination)s', use_color=use_color ) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) ch.setFormatter(formatter) logger = logging.getLogger('flaskage.scaffold') logger.setLevel(logging.INFO) logger.addHandler(ch) def mode_option(f): o1 = click.option('-f', '--force', 'mode', flag_value=Scaffold.EXISTING_OVERWRITE, help='Force overwriting of existing files') o2 = click.option('-p', '--prompt', 'mode', default=True, flag_value=Scaffold.EXISTING_PROMPT, help='Prompt to overwrite existing files (default)') o3 = click.option('-s', '--skip', 'mode', flag_value=Scaffold.EXISTING_SKIP, help='Skip existing files') return o1(o2(o3(f))) @click.command(add_help_option=False, cls=AliasedGroup) @click.help_option('-h', '--help') @click.option('--color/--no-color', default=True, help='Use colors in output') def cli(color): """ The Flaskage command provides the ability to generate components of a Flaskage web application. """ # Setup log formatting and display configure_logging(use_color=color) @cli.command(add_help_option=False) @click.help_option('-h', '--help') @mode_option @click.argument('project_name', type=PROJECT_NAME) @click.pass_context def new(ctx, project_name, mode): """Create a new Flaskage project.""" # Unpack the project directory and name name, directory = project_name # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of a new project can only run outside a valid project # directory if valid_project_directory(os.path.dirname(directory)): ctx.fail('You cannot create a new project inside a project directory') click.echo() click.echo('Generating new project %s:' % name) click.echo() scaffold = Scaffold( source_root=os.path.join(TEMPLATE_DIR, 'project'), target_root=directory, variables={'name': name, 'name_camelcase': name_camelcase}, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() click.echo('Getting started with your project:') click.echo() click.echo(' 1. Change into the new project directory') click.echo(' cd %s' % directory) click.echo() click.echo(' 2. Install all client-side components using Bower') click.echo(' bower install') click.echo() click.echo(' 3. Install all server-side dependencies using pip') click.echo(' pip install -r requirements/development.txt') click.echo() click.echo(' 4. Start up the development web server') click.echo(' ./manage.py server') click.echo() @cli.command(add_help_option=False, cls=AliasedGroup) @click.help_option('-h', '--help') def generate(): """Generate code for an application component.""" pass @generate.command(add_help_option=False) @click.help_option('-h', '--help') @mode_option @click.argument('name', type=MODULE_NAME) @click.pass_context def asset(ctx, name, mode): """Generate a set of assets.""" # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of items can only run in a valid project directory if not valid_project_directory(): ctx.fail( 'You can only run the generate command from a valid project ' 'directory' ) click.echo() click.echo('Generating new asset named %s:' % name) click.echo() scaffold = Scaffold( source_root=os.path.join(TEMPLATE_DIR, 'asset'), target_root=os.getcwd(), variables={'name': name, 'name_camelcase': name_camelcase}, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() @generate.command(add_help_option=False) @click.help_option('-h', '--help') @mode_option @click.argument('name', type=MODULE_NAME) @click.pass_context def blueprint(ctx, name, mode): """Generate an application component (blueprint).""" # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of items can only run in a valid project directory if not valid_project_directory(): ctx.fail( 'You can only run the generate command from a valid project ' 'directory' ) click.echo() click.echo('Generating new blueprint named %s:' % name) click.echo() scaffold = Scaffold( source_root=[ os.path.join(TEMPLATE_DIR, 'asset'), os.path.join(TEMPLATE_DIR, 'blueprint'), ], target_root=os.getcwd(), variables={'name': name, 'name_camelcase': name_camelcase}, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() click.echo('Steps required to activate the new blueprint:') click.echo() click.echo(' Add the blueprint import to app/__init__.py in the ' 'configure_blueprints function') click.echo() click.echo(' from .views import %s_view' % name) click.echo(' app.register_blueprint(%s_view.mod)' % name) click.echo() @generate.command(add_help_option=False) @click.help_option('-h', '--help') @mode_option @click.argument('name', type=MODULE_NAME) @click.pass_context def helper(ctx, name, mode): """Generate an application-related helper.""" # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of items can only run in a valid project directory if not valid_project_directory(): ctx.fail( 'You can only run the generate command from a valid project ' 'directory' ) click.echo() click.echo('Generating new helper named %s:' % name) click.echo() scaffold = Scaffold( source_root=os.path.join(TEMPLATE_DIR, 'helper'), target_root=os.getcwd(), variables={'name': name, 'name_camelcase': name_camelcase}, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() @generate.command( add_help_option=False, short_help='Generate a database model' ) @click.help_option('-h', '--help') @mode_option @click.argument('name', type=MODULE_NAME) @click.argument('columns', nargs=-1, type=MODEL_COLUMN) @click.pass_context def model(ctx, name, columns, mode): """ Generate a database model using a given name. You may also specify the columns you need following the model name using the format: <name>[:<type>[,<length>][:<modifier>,<modifier>...]] e.g. flaskage g model user email:string:primary name:string,80:index:required The following types are listed below along with their corresponding SQLAlchemy mapping: \b Numeric Types: - integer (or int): Integer - decimal: Numeric - float: Float \b Text Types: - string (or str): String - text: Text \b Date & Time Types: - date: Date - time: Time - datetime: DateTime \b Other Types: - binary (or bin): LargeBinary - boolean (or bool): Boolean The string, text and binary types also accept an optional length. \b The column modifiers available are: - index - primary - required - unique If no primary key is specified, a primary key integer column named id will be created for you. """ # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of items can only run in a valid project directory if not valid_project_directory(): ctx.fail( 'You can only run the generate command from a valid project ' 'directory' ) # Generate the Python code required for each column (this is too # tedious to do in templates) primary_key_provided = False column_model_definitions = [] column_factory_definitions = [] for column_name, type, length, modifiers in columns: # Generate the type and its size (if applicable) model_definition = 'db.%s' % COLUMN_TYPE_MAPPING[type] if length: model_definition += '(%i)' % length # Generate modifiers (primary key, index .etc) for modifier in modifiers: model_definition += ', %s' % COLUMN_MODIFIER_MAPPING[modifier] if modifier == COLUMN_MODIFIER_PRIMARY_KEY: primary_key_provided = True # Add the model column definition to our list column_model_definitions.append((column_name, model_definition)) # Generate the model factory fakers factory_definition = None if type in COLUMN_FACTORY_MAPPING: if column_name in COLUMN_FACTORY_MAPPING[type]: factory_definition = COLUMN_FACTORY_MAPPING[type][column_name] elif '*' in COLUMN_FACTORY_MAPPING[type]: factory_definition = COLUMN_FACTORY_MAPPING[type]['*'] # Add the factory column definition to our list if factory_definition: column_factory_definitions.append( (column_name, factory_definition) ) click.echo() click.echo('Generating new model named %s:' % name) click.echo() scaffold = Scaffold( source_root=os.path.join(TEMPLATE_DIR, 'model'), target_root=os.getcwd(), variables={ 'name': name, 'name_camelcase': name_camelcase, 'column_model_definitions': column_model_definitions, 'primary_key_provided': primary_key_provided, 'column_factory_definitions': column_factory_definitions }, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() click.echo('Steps required to activate the new model:') click.echo() click.echo(' 1. Add the model import to app/models/__init__.py') click.echo(' from .%s import %s # noqa' % (name, name_camelcase)) click.echo() click.echo(' 2. Add the factory import to test/factories/__init__.py') click.echo(' from .%s_factory import %sFactory # noqa' % (name, name_camelcase)) click.echo() click.echo(' 3. Generate a migration to add the new model to your ' 'database') click.echo(' ./manage.py db migrate') click.echo() click.echo(' 4. Apply the migration') click.echo(' ./manage.py db upgrade') click.echo() @generate.command(add_help_option=False) @click.help_option('-h', '--help') @mode_option @click.argument('name', type=MODULE_NAME) @click.pass_context def library(ctx, name, mode): """Generate an application-agnostic library.""" # Convert the name to CamelCase for use with class names name_camelcase = camelcase(name) # Generation of items can only run in a valid project directory if not valid_project_directory(): ctx.fail( 'You can only run the generate command from a valid project ' 'directory' ) click.echo() click.echo('Generating new library named %s:' % name) click.echo() scaffold = Scaffold( source_root=os.path.join(TEMPLATE_DIR, 'lib'), target_root=os.getcwd(), variables={'name': name, 'name_camelcase': name_camelcase}, ignored_dirs=IGNORED_DIRS, ignored_files=IGNORED_FILES, overwrite_target_root=True, existing_policy=mode ) scaffold.render_structure() click.echo() if __name__ == '__main__': cli()
mit
-9,081,164,089,704,797,000
31.688608
78
0.644129
false
sametmax/Django--an-app-at-a-time
ignore_this_directory/django/utils/datastructures.py
4
10194
import copy from collections import OrderedDict from collections.abc import Mapping class OrderedSet: """ A set which keeps the ordering of the inserted items. Currently backs onto OrderedDict. """ def __init__(self, iterable=None): self.dict = OrderedDict.fromkeys(iterable or ()) def add(self, item): self.dict[item] = None def remove(self, item): del self.dict[item] def discard(self, item): try: self.remove(item) except KeyError: pass def __iter__(self): return iter(self.dict) def __contains__(self, item): return item in self.dict def __bool__(self): return bool(self.dict) def __len__(self): return len(self.dict) class MultiValueDictKeyError(KeyError): pass class MultiValueDict(dict): """ A subclass of dictionary customized to handle multiple values for the same key. >>> d = MultiValueDict({'name': ['Adrian', 'Simon'], 'position': ['Developer']}) >>> d['name'] 'Simon' >>> d.getlist('name') ['Adrian', 'Simon'] >>> d.getlist('doesnotexist') [] >>> d.getlist('doesnotexist', ['Adrian', 'Simon']) ['Adrian', 'Simon'] >>> d.get('lastname', 'nonexistent') 'nonexistent' >>> d.setlist('lastname', ['Holovaty', 'Willison']) This class exists to solve the irritating problem raised by cgi.parse_qs, which returns a list for every key, even though most Web forms submit single name-value pairs. """ def __init__(self, key_to_list_mapping=()): super().__init__(key_to_list_mapping) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, super().__repr__()) def __getitem__(self, key): """ Return the last data value for this key, or [] if it's an empty list; raise KeyError if not found. """ try: list_ = super().__getitem__(key) except KeyError: raise MultiValueDictKeyError(key) try: return list_[-1] except IndexError: return [] def __setitem__(self, key, value): super().__setitem__(key, [value]) def __copy__(self): return self.__class__([ (k, v[:]) for k, v in self.lists() ]) def __deepcopy__(self, memo): result = self.__class__() memo[id(self)] = result for key, value in dict.items(self): dict.__setitem__(result, copy.deepcopy(key, memo), copy.deepcopy(value, memo)) return result def __getstate__(self): return {**self.__dict__, '_data': {k: self._getlist(k) for k in self}} def __setstate__(self, obj_dict): data = obj_dict.pop('_data', {}) for k, v in data.items(): self.setlist(k, v) self.__dict__.update(obj_dict) def get(self, key, default=None): """ Return the last data value for the passed key. If key doesn't exist or value is an empty list, return `default`. """ try: val = self[key] except KeyError: return default if val == []: return default return val def _getlist(self, key, default=None, force_list=False): """ Return a list of values for the key. Used internally to manipulate values list. If force_list is True, return a new copy of values. """ try: values = super().__getitem__(key) except KeyError: if default is None: return [] return default else: if force_list: values = list(values) if values is not None else None return values def getlist(self, key, default=None): """ Return the list of values for the key. If key doesn't exist, return a default value. """ return self._getlist(key, default, force_list=True) def setlist(self, key, list_): super().__setitem__(key, list_) def setdefault(self, key, default=None): if key not in self: self[key] = default # Do not return default here because __setitem__() may store # another value -- QueryDict.__setitem__() does. Look it up. return self[key] def setlistdefault(self, key, default_list=None): if key not in self: if default_list is None: default_list = [] self.setlist(key, default_list) # Do not return default_list here because setlist() may store # another value -- QueryDict.setlist() does. Look it up. return self._getlist(key) def appendlist(self, key, value): """Append an item to the internal list associated with key.""" self.setlistdefault(key).append(value) def items(self): """ Yield (key, value) pairs, where value is the last item in the list associated with the key. """ for key in self: yield key, self[key] def lists(self): """Yield (key, list) pairs.""" return iter(super().items()) def values(self): """Yield the last value on every key list.""" for key in self: yield self[key] def copy(self): """Return a shallow copy of this object.""" return copy.copy(self) def update(self, *args, **kwargs): """Extend rather than replace existing key lists.""" if len(args) > 1: raise TypeError("update expected at most 1 argument, got %d" % len(args)) if args: other_dict = args[0] if isinstance(other_dict, MultiValueDict): for key, value_list in other_dict.lists(): self.setlistdefault(key).extend(value_list) else: try: for key, value in other_dict.items(): self.setlistdefault(key).append(value) except TypeError: raise ValueError("MultiValueDict.update() takes either a MultiValueDict or dictionary") for key, value in kwargs.items(): self.setlistdefault(key).append(value) def dict(self): """Return current object as a dict with singular values.""" return {key: self[key] for key in self} class ImmutableList(tuple): """ A tuple-like object that raises useful errors when it is asked to mutate. Example:: >>> a = ImmutableList(range(5), warning="You cannot mutate this.") >>> a[3] = '4' Traceback (most recent call last): ... AttributeError: You cannot mutate this. """ def __new__(cls, *args, warning='ImmutableList object is immutable.', **kwargs): self = tuple.__new__(cls, *args, **kwargs) self.warning = warning return self def complain(self, *wargs, **kwargs): if isinstance(self.warning, Exception): raise self.warning else: raise AttributeError(self.warning) # All list mutation functions complain. __delitem__ = complain __delslice__ = complain __iadd__ = complain __imul__ = complain __setitem__ = complain __setslice__ = complain append = complain extend = complain insert = complain pop = complain remove = complain sort = complain reverse = complain class DictWrapper(dict): """ Wrap accesses to a dictionary so that certain values (those starting with the specified prefix) are passed through a function before being returned. The prefix is removed before looking up the real value. Used by the SQL construction code to ensure that values are correctly quoted before being used. """ def __init__(self, data, func, prefix): super().__init__(data) self.func = func self.prefix = prefix def __getitem__(self, key): """ Retrieve the real value after stripping the prefix string (if present). If the prefix is present, pass the value through self.func before returning, otherwise return the raw value. """ use_func = key.startswith(self.prefix) if use_func: key = key[len(self.prefix):] value = super().__getitem__(key) if use_func: return self.func(value) return value def _destruct_iterable_mapping_values(data): for i, elem in enumerate(data): if len(elem) != 2: raise ValueError( 'dictionary update sequence element #{} has ' 'length {}; 2 is required.'.format(i, len(elem)) ) if not isinstance(elem[0], str): raise ValueError('Element key %r invalid, only strings are allowed' % elem[0]) yield tuple(elem) class CaseInsensitiveMapping(Mapping): """ Mapping allowing case-insensitive key lookups. Original case of keys is preserved for iteration and string representation. Example:: >>> ci_map = CaseInsensitiveMapping({'name': 'Jane'}) >>> ci_map['Name'] Jane >>> ci_map['NAME'] Jane >>> ci_map['name'] Jane >>> ci_map # original case preserved {'name': 'Jane'} """ def __init__(self, data): if not isinstance(data, Mapping): data = {k: v for k, v in _destruct_iterable_mapping_values(data)} self._store = {k.lower(): (k, v) for k, v in data.items()} def __getitem__(self, key): return self._store[key.lower()][1] def __len__(self): return len(self._store) def __eq__(self, other): return isinstance(other, Mapping) and { k.lower(): v for k, v in self.items() } == { k.lower(): v for k, v in other.items() } def __iter__(self): return (original_key for original_key, value in self._store.values()) def __repr__(self): return repr({key: value for key, value in self._store.values()}) def copy(self): return self
mit
5,136,058,506,778,628,000
28.894428
107
0.558171
false
nicko96/Chrome-Infra
appengine/chromium_rietveld/tests/test_dependency_utils.py
1
7176
#!/usr/bin/env python # Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for codereview/dependency_utils.py.""" import unittest import setup setup.process_args() from codereview import models from codereview import dependency_utils class MockKey(object): def __init__(self, key_id): self.key_id = key_id def id(self): return self.key_id class MockIssue(object): def __init__(self, key_id): self.key_id = key_id @property def key(self): return MockKey(self.key_id) class MockPatchSet(object): def __init__(self, key_id, issue_key_id, dependent_patchsets, depends_on_patchset): self.key_id = key_id self.issue_key_id = issue_key_id self.dependent_patchsets = dependent_patchsets self.depends_on_patchset = depends_on_patchset self.put_called = False def put(self): self.put_called = True @property def key(self): return MockKey(self.key_id) @property def issue_key(self): return MockKey(self.issue_key_id) class TestPatchSetDependencyUtils(unittest.TestCase): """Test the dependency_utils module.""" def setUp(self): # Allow models.Issue.get_by_id to be monkeypatched by the tests. self.original_issue_get_by_id = models.Issue.get_by_id # Allow models.PatchSet.get_by_id to be monkeypatched by the tests. self.original_patchset_get_by_id = models.PatchSet.get_by_id def tearDown(self): # Undo any monkeypatching done by the tests. models.Issue.get_by_id = self.original_issue_get_by_id models.PatchSet.get_by_id = self.original_patchset_get_by_id def test_remove_as_dependent(self): # Create the patchset we will be removing as a dependent. patchset = MockPatchSet('40', '4', [], '3:30') # Make get_by_id methods return what we expect. def mock_issue_get_by_id(): def _w(*args, **_kwargs): return MockIssue(args[1]) return classmethod(_w) models.Issue.get_by_id = mock_issue_get_by_id() mockpatchset = MockPatchSet('30', '3', ['4:40', '1:10'], '') def mock_patchset_get_by_id(): def _w(*_args, **_kwargs): return mockpatchset return classmethod(_w) models.PatchSet.get_by_id = mock_patchset_get_by_id() # Assert that dependent_patchsets of the MockpatchSet is as expected and # that put was called on it. dependency_utils.remove_as_dependent(patchset) self.assertEquals(['1:10'], mockpatchset.dependent_patchsets) self.assertTrue(mockpatchset.put_called) def test_remove_dependencies(self): # Create the patchset we will be removing dependencies of. dependent_patchsets = ['1:10', '2:20', '3:30'] patchset = MockPatchSet('40', '4', dependent_patchsets, '') # Make get_by_id methods return what we expect. def mock_issue_get_by_id(): def _w(*args, **_kwargs): return MockIssue(args[1]) return classmethod(_w) models.Issue.get_by_id = mock_issue_get_by_id() mockpatchsets = [] def mock_patchset_get_by_id(): def _w(*args, **kwargs): mockpatchset = MockPatchSet(args[1], kwargs['parent'].id(), [], '4:40') mockpatchsets.append(mockpatchset) return mockpatchset return classmethod(_w) models.PatchSet.get_by_id = mock_patchset_get_by_id() # Assert that depends_on_patchset of the MockpatchSets are empty and that # put was called on them. dependency_utils.remove_dependencies(patchset) for mockpatchset in mockpatchsets: self.assertEquals('', mockpatchset.depends_on_patchset) self.assertTrue(mockpatchset.put_called) # Now change the depends_on_str for the dependents. Their dependency should # not be changed and put should not be called on them. mockpatchsets = [] def mock_patchset_get_by_id(): def _w(*args, **kwargs): mockpatchset = MockPatchSet(args[1], kwargs['parent'].id(), [], '4:41') mockpatchsets.append(mockpatchset) return mockpatchset return classmethod(_w) models.PatchSet.get_by_id = mock_patchset_get_by_id() dependency_utils.remove_dependencies(patchset) for mockpatchset in mockpatchsets: self.assertEquals('4:41', mockpatchset.depends_on_patchset) self.assertFalse(mockpatchset.put_called) def test_mark_as_dependent_and_get_dependency_str(self): # Make get_by_id methods return what we expect. def mock_issue_get_by_id(): def _w(*args, **_kwargs): return MockIssue(args[1]) return classmethod(_w) models.Issue.get_by_id = mock_issue_get_by_id() mockpatchset = MockPatchSet('40', '4', ['1:10', '2:20'], '') def mock_patchset_get_by_id(): def _w(*_args, **_kwargs): return mockpatchset return classmethod(_w) models.PatchSet.get_by_id = mock_patchset_get_by_id() dependency_str = ( dependency_utils.mark_as_dependent_and_get_dependency_str( '4:40', '3', '30')) # Since the depends on Issue and PatchSet were found the dependency str # should be returned. self.assertEquals('4:40', dependency_str) # Assert that the dependent_patchsets was updated and that put was called. self.assertEquals(['1:10', '2:20', '3:30'], mockpatchset.dependent_patchsets) self.assertTrue(mockpatchset.put_called) # Make the referenced Issue be invalid and assert that a dependency str is # not returned and dependent_patchsets is not updated and that put is not # called. def mock_issue_get_by_id(): def _w(*_args, **_kwargs): return None return classmethod(_w) models.Issue.get_by_id = mock_issue_get_by_id() mockpatchset = MockPatchSet('40', '4', ['1:10', '2:20'], '') dependency_str = ( dependency_utils.mark_as_dependent_and_get_dependency_str( '4:40', '3', '30')) self.assertEquals(None, dependency_str) self.assertEquals(['1:10', '2:20'], mockpatchset.dependent_patchsets) self.assertFalse(mockpatchset.put_called) # Make the referenced Patchset be invalid and assert that a dependency str # is not returned. def mock_issue_get_by_id(): def _w(*args, **_kwargs): return MockIssue(args[1]) return classmethod(_w) models.Issue.get_by_id = mock_issue_get_by_id() def mock_patchset_get_by_id(): def _w(*_args, **_kwargs): return None return classmethod(_w) models.PatchSet.get_by_id = mock_patchset_get_by_id() dependency_str = ( dependency_utils.mark_as_dependent_and_get_dependency_str( '4:40', '3', '30')) self.assertEquals(None, dependency_str) if __name__ == '__main__': unittest.main()
bsd-3-clause
6,662,359,119,886,542,000
33.666667
79
0.665412
false
seriyps/ru_number_to_text
tests.py
1
6388
# -*- coding: utf-8 -*- ''' Created on 13.03.2016 by Artem Tiumentcev @author: Sergey Prokhorov <[email protected]> ''' import unittest from num2t4ru import num2text, decimal2text class TestStrToText(unittest.TestCase): def test_units(self): self.assertEqual(num2text(0), u'ноль') self.assertEqual(num2text(1), u'один') self.assertEqual(num2text(9), u'девять') def test_gender(self): self.assertEqual(num2text(1000), u'одна тысяча') self.assertEqual(num2text(2000), u'две тысячи') self.assertEqual(num2text(1000000), u'один миллион') self.assertEqual(num2text(2000000), u'два миллиона') def test_teens(self): self.assertEqual(num2text(10), u'десять') self.assertEqual(num2text(11), u'одиннадцать') self.assertEqual(num2text(19), u'девятнадцать') def test_tens(self): self.assertEqual(num2text(20), u'двадцать') self.assertEqual(num2text(90), u'девяносто') def test_hundreeds(self): self.assertEqual(num2text(100), u'сто') self.assertEqual(num2text(900), u'девятьсот') def test_orders(self): self.assertEqual(num2text(1000), u'одна тысяча') self.assertEqual(num2text(2000), u'две тысячи') self.assertEqual(num2text(5000), u'пять тысяч') self.assertEqual(num2text(1000000), u'один миллион') self.assertEqual(num2text(2000000), u'два миллиона') self.assertEqual(num2text(5000000), u'пять миллионов') self.assertEqual(num2text(1000000000), u'один миллиард') self.assertEqual(num2text(2000000000), u'два миллиарда') self.assertEqual(num2text(5000000000), u'пять миллиардов') def test_inter_oreders(self): self.assertEqual(num2text(1100), u'одна тысяча сто') self.assertEqual(num2text(2001), u'две тысячи один') self.assertEqual(num2text(5011), u'пять тысяч одиннадцать') self.assertEqual(num2text(1002000), u'один миллион две тысячи') self.assertEqual(num2text(2020000), u'два миллиона двадцать тысяч') self.assertEqual(num2text(5300600), u'пять миллионов триста тысяч шестьсот') self.assertEqual(num2text(1002000000), u'один миллиард два миллиона') self.assertEqual(num2text(2030000000), u'два миллиарда тридцать миллионов') self.assertEqual(num2text(1234567891), u'один миллиард двести тридцать четыре миллиона ' u'пятьсот шестьдесят семь тысяч ' u'восемьсот девяносто один') def test_main_units(self): male_units = ((u'рубль', u'рубля', u'рублей'), 'm') female_units = ((u'копейка', u'копейки', u'копеек'), 'f') self.assertEqual(num2text(101, male_units), u'сто один рубль') self.assertEqual(num2text(102, male_units), u'сто два рубля') self.assertEqual(num2text(105, male_units), u'сто пять рублей') self.assertEqual(num2text(101, female_units), u'сто одна копейка') self.assertEqual(num2text(102, female_units), u'сто две копейки') self.assertEqual(num2text(105, female_units), u'сто пять копеек') self.assertEqual(num2text(0, male_units), u'ноль рублей') self.assertEqual(num2text(0, female_units), u'ноль копеек') self.assertEqual(num2text(3000, male_units), u'три тысячи рублей') def test_decimal2text(self): int_units = ((u'рубль', u'рубля', u'рублей'), 'm') exp_units = ((u'копейка', u'копейки', u'копеек'), 'f') self.assertEqual( decimal2text( '105.245', int_units=int_units, exp_units=exp_units), u'сто пять рублей двадцать четыре копейки') self.assertEqual( decimal2text( '101.26', int_units=int_units, exp_units=exp_units), u'сто один рубль двадцать шесть копеек') self.assertEqual( decimal2text( '102.2450', places=4, int_units=int_units, exp_units=exp_units), u'сто два рубля две тысячи четыреста пятьдесят копеек') # xD self.assertEqual( decimal2text( '111', int_units=int_units, exp_units=exp_units), u'сто одиннадцать рублей ноль копеек') self.assertEqual( decimal2text( '3000.00', int_units=int_units, exp_units=exp_units), u'три тысячи рублей ноль копеек') def test_negative(self): self.assertEqual(num2text(-12345), u"минус двенадцать тысяч триста сорок пять") self.assertEqual( decimal2text('-123.45'), u'минус сто двадцать три сорок пять') if __name__ == '__main__': import sys if len(sys.argv) > 1: try: num = sys.argv[1] if '.' in num: print(decimal2text( num, int_units=((u'штука', u'штуки', u'штук'), 'f'), exp_units=((u'кусок', u'куска', u'кусков'), 'm'))) else: print(num2text( int(num), main_units=((u'штука', u'штуки', u'штук'), 'f'))) except ValueError: print (sys.stderr, "Invalid argument {}".format(sys.argv[1])) sys.exit() unittest.main()
apache-2.0
1,866,135,707,669,408,300
38.550725
84
0.587211
false
wheelcms/wheelcms_axle
wheelcms_axle/tests/test_content_crud.py
1
7287
from wheelcms_axle.models import Node from wheelcms_axle.tests.models import Type1, Type1Type, Type2Type from wheelcms_axle.forms import formfactory from .fixtures import multilang_ENNL, root from .utils import MockedQueryDict import pytest @pytest.mark.usefixtures("multilang_ENNL") @pytest.mark.usefixtures("localtyperegistry") class TestContentCreate(object): types = (Type1Type, Type2Type) def test_success(self, client, root): """ simple case where create succeeds """ form = formfactory(Type1)(parent=root, data=MockedQueryDict(title="hello", slug="world", language="en")) assert form.is_valid() assert form.cleaned_data['slug'] == "world" tp1 = form.save() assert tp1.title == "hello" def test_title_missing(self, client, root): """ title is missing """ form = formfactory(Type1)(parent=root, data=MockedQueryDict(slug="world", language="en")) assert not form.is_valid() assert 'title' in form.errors def test_slug_invalid(self, client, root): """ invalid characters in slug """ form = formfactory(Type1)(parent=root, data=MockedQueryDict(title="hello", slug="world$", language="en")) assert not form.is_valid() assert 'slug' in form.errors def test_slug_used(self, client, root): """ slug already exists in parent """ root.add('world') form = formfactory(Type1)(parent=root, data=MockedQueryDict(title="hello", slug="world", language="en")) assert not form.is_valid() assert 'slug' in form.errors def test_tags(self, client, root): """ test tag suport on content """ form = formfactory(Type1)(parent=root, data=MockedQueryDict(title="hello", slug="world", tags="hello, world", language="en")) assert form.is_valid() assert form.cleaned_data['slug'] == "world" tp1 = form.save() assert tp1.title == "hello" assert "hello" in tp1.tags.values_list("name", flat=True) assert "world" in tp1.tags.values_list("name", flat=True) def test_available_languages(self, client, root): form = formfactory(Type1)(parent=root,node=root) assert set((x[0] for x in form.fields['language'].choices)) == \ set(('en', 'nl', 'any')) def test_allowed_subcontent_empty(self, client, root): """ If no subcontent is explicitly selected, allowed should be saved as NULL which will be interpreted as "use class defaults" """ form = formfactory(Type1)(parent=root, data=MockedQueryDict(title="hello", slug="world", tags="hello, world", language="en", allowed=[])) assert form.is_valid() tp1 = form.save() assert tp1.allowed is None def test_allowed_subcontent_selection(self, client, root): """ If an explicit selection is made, this selection should be saved as comma separated string """ form = formfactory(Type1)(parent=root, data=MockedQueryDict( title="hello", slug="world", tags="hello, world", language="en", allowed=["tests.type1", "tests.type2"])) # import pytest;pytest.set_trace() assert form.is_valid() tp1 = form.save() assert tp1.allowed == "tests.type1,tests.type2" def test_allowed_subcontent_nosubcontent(self, client, root): """ If the "no_sucontent" checkbox is checked, no subcontent is allowed, which is saved as an empty string (not NULL!) Regardless of an "allowed" selection! """ form = formfactory(Type1)(parent=root, data=MockedQueryDict( title="hello", slug="world", tags="hello, world", language="en", allowed=["tests.type1", "tests.type2"], no_subcontent=True)) assert form.is_valid() tp1 = form.save() assert tp1.allowed == "" def test_allowed_subcontent_selection_existing(self, client, root): """ Verify the selection is correctly initialized from a comma separated string """ t = Type1(node=root, title="test", language="en", allowed="tests.type1,tests.type2").save() form = formfactory(Type1)(parent=root, instance=t) assert set(form['allowed'].value()) == \ set(('tests.type1', 'tests.type2')) @pytest.mark.usefixtures("localtyperegistry") @pytest.mark.usefixtures("multilang_ENNL") class TestContentUpdate(object): type = Type1Type def test_available_languages(self, client, root): t = self.type.create(node=root, title="EN trans", language="en").save() form = formfactory(Type1)(parent=root,node=root) assert 'en' not in set((x[0] for x in form.fields['language'].choices)) assert 'nl' in set((x[0] for x in form.fields['language'].choices)) def test_available_languages_any(self, client, root): self.type.create(node=root, title="EN trans", language="en").save() self.type.create(node=root, title="ANY trans", language="any").save() form = formfactory(Type1)(parent=root,node=root) assert 'en' not in set((x[0] for x in form.fields['language'].choices)) assert 'any' not in set((x[0] for x in form.fields['language'].choices)) assert 'nl' in set((x[0] for x in form.fields['language'].choices)) def test_available_languages_current(self, client, root): """ language can, of course, be selected if it's the content being editted """ en = self.type.create(node=root, title="EN trans", language="en").save() any = self.type.create(node=root, title="ANY trans", language="any").save() form = formfactory(Type1)(parent=root,node=root, instance=en.instance) assert 'en' in set((x[0] for x in form.fields['language'].choices)) assert 'any' not in set((x[0] for x in form.fields['language'].choices)) assert 'nl' in set((x[0] for x in form.fields['language'].choices))
bsd-2-clause
7,097,146,730,783,951,000
42.634731
83
0.519693
false
chitr/neutron
neutron/tests/functional/agent/l3/test_dvr_router.py
1
29844
# Copyright (c) 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools import mock import netaddr from neutron.agent.l3 import agent as neutron_l3_agent from neutron.agent.l3 import dvr_snat_ns from neutron.agent.l3 import namespaces from neutron.agent.linux import ip_lib from neutron.agent.linux import utils from neutron.common import constants as l3_constants from neutron.tests.common import l3_test_common from neutron.tests.common import net_helpers from neutron.tests.functional.agent.l3 import framework DEVICE_OWNER_COMPUTE = l3_constants.DEVICE_OWNER_COMPUTE_PREFIX + 'fake' class TestDvrRouter(framework.L3AgentTestFramework): def test_dvr_router_lifecycle_without_ha_without_snat_with_fips(self): self._dvr_router_lifecycle(enable_ha=False, enable_snat=False) def test_dvr_router_lifecycle_without_ha_with_snat_with_fips(self): self._dvr_router_lifecycle(enable_ha=False, enable_snat=True) def test_dvr_router_lifecycle_ha_with_snat_with_fips(self): self._dvr_router_lifecycle(enable_ha=True, enable_snat=True) def _helper_create_dvr_router_fips_for_ext_network( self, agent_mode, **dvr_router_kwargs): self.agent.conf.agent_mode = agent_mode router_info = self.generate_dvr_router_info(**dvr_router_kwargs) self.mock_plugin_api.get_external_network_id.return_value = ( router_info['_floatingips'][0]['floating_network_id']) router = self.manage_router(self.agent, router_info) fip_ns = router.fip_ns.get_name() return router, fip_ns def _validate_fips_for_external_network(self, router, fip_ns): self.assertTrue(self._namespace_exists(router.ns_name)) self.assertTrue(self._namespace_exists(fip_ns)) self._assert_dvr_floating_ips(router) self._assert_snat_namespace_does_not_exist(router) def test_dvr_router_fips_for_multiple_ext_networks(self): agent_mode = 'dvr' # Create the first router fip with external net1 dvr_router1_kwargs = {'ip_address': '19.4.4.3', 'subnet_cidr': '19.4.4.0/24', 'gateway_ip': '19.4.4.1', 'gateway_mac': 'ca:fe:de:ab:cd:ef'} router1, fip1_ns = ( self._helper_create_dvr_router_fips_for_ext_network( agent_mode, **dvr_router1_kwargs)) # Validate the fip with external net1 self._validate_fips_for_external_network(router1, fip1_ns) # Create the second router fip with external net2 dvr_router2_kwargs = {'ip_address': '19.4.5.3', 'subnet_cidr': '19.4.5.0/24', 'gateway_ip': '19.4.5.1', 'gateway_mac': 'ca:fe:de:ab:cd:fe'} router2, fip2_ns = ( self._helper_create_dvr_router_fips_for_ext_network( agent_mode, **dvr_router2_kwargs)) # Validate the fip with external net2 self._validate_fips_for_external_network(router2, fip2_ns) def _dvr_router_lifecycle(self, enable_ha=False, enable_snat=False, custom_mtu=2000, ip_version=4, dual_stack=False): '''Test dvr router lifecycle :param enable_ha: sets the ha value for the router. :param enable_snat: the value of enable_snat is used to set the agent_mode. ''' # The value of agent_mode can be dvr, dvr_snat, or legacy. # Since by definition this is a dvr (distributed = true) # only dvr and dvr_snat are applicable self.agent.conf.agent_mode = 'dvr_snat' if enable_snat else 'dvr' self.agent.conf.network_device_mtu = custom_mtu # We get the router info particular to a dvr router router_info = self.generate_dvr_router_info( enable_ha, enable_snat) # We need to mock the get_agent_gateway_port return value # because the whole L3PluginApi is mocked and we need the port # gateway_port information before the l3_agent will create it. # The port returned needs to have the same information as # router_info['gw_port'] self.mock_plugin_api.get_agent_gateway_port.return_value = router_info[ 'gw_port'] # We also need to mock the get_external_network_id method to # get the correct fip namespace. self.mock_plugin_api.get_external_network_id.return_value = ( router_info['_floatingips'][0]['floating_network_id']) # With all that set we can now ask the l3_agent to # manage the router (create it, create namespaces, # attach interfaces, etc...) router = self.manage_router(self.agent, router_info) if enable_ha: port = router.get_ex_gw_port() interface_name = router.get_external_device_name(port['id']) self._assert_no_ip_addresses_on_interface(router.ha_namespace, interface_name) utils.wait_until_true(lambda: router.ha_state == 'master') # Keepalived notifies of a state transition when it starts, # not when it ends. Thus, we have to wait until keepalived finishes # configuring everything. We verify this by waiting until the last # device has an IP address. device = router.router[l3_constants.INTERFACE_KEY][-1] device_exists = functools.partial( self.device_exists_with_ips_and_mac, device, router.get_internal_device_name, router.ns_name) utils.wait_until_true(device_exists) ext_gateway_port = router_info['gw_port'] self.assertTrue(self._namespace_exists(router.ns_name)) utils.wait_until_true( lambda: self._metadata_proxy_exists(self.agent.conf, router)) self._assert_internal_devices(router) self._assert_dvr_external_device(router) self._assert_dvr_gateway(router) self._assert_dvr_floating_ips(router) self._assert_snat_chains(router) self._assert_floating_ip_chains(router) self._assert_metadata_chains(router) self._assert_extra_routes(router) self._assert_rfp_fpr_mtu(router, custom_mtu) if enable_snat: ip_versions = [4, 6] if (ip_version == 6 or dual_stack) else [4] snat_ns_name = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) self._assert_onlink_subnet_routes( router, ip_versions, snat_ns_name) self._delete_router(self.agent, router.router_id) self._assert_fip_namespace_deleted(ext_gateway_port) self._assert_router_does_not_exist(router) self._assert_snat_namespace_does_not_exist(router) def generate_dvr_router_info(self, enable_ha=False, enable_snat=False, agent=None, **kwargs): if not agent: agent = self.agent router = l3_test_common.prepare_router_data( enable_snat=enable_snat, enable_floating_ip=True, enable_ha=enable_ha, **kwargs) internal_ports = router.get(l3_constants.INTERFACE_KEY, []) router['distributed'] = True router['gw_port_host'] = agent.conf.host router['gw_port']['binding:host_id'] = agent.conf.host floating_ip = router['_floatingips'][0] floating_ip['floating_network_id'] = router['gw_port']['network_id'] floating_ip['host'] = agent.conf.host floating_ip['port_id'] = internal_ports[0]['id'] floating_ip['status'] = 'ACTIVE' self._add_snat_port_info_to_router(router, internal_ports) # FIP has a dependency on external gateway. So we need to create # the snat_port info and fip_agent_gw_port_info irrespective of # the agent type the dvr supports. The namespace creation is # dependent on the agent_type. external_gw_port = router['gw_port'] self._add_fip_agent_gw_port_info_to_router(router, external_gw_port) return router def _add_fip_agent_gw_port_info_to_router(self, router, external_gw_port): # Add fip agent gateway port information to the router_info fip_gw_port_list = router.get( l3_constants.FLOATINGIP_AGENT_INTF_KEY, []) if not fip_gw_port_list and external_gw_port: # Get values from external gateway port fixed_ip = external_gw_port['fixed_ips'][0] float_subnet = external_gw_port['subnets'][0] port_ip = fixed_ip['ip_address'] # Pick an ip address which is not the same as port_ip fip_gw_port_ip = str(netaddr.IPAddress(port_ip) + 5) # Add floatingip agent gateway port info to router prefixlen = netaddr.IPNetwork(float_subnet['cidr']).prefixlen router[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = [ {'subnets': [ {'cidr': float_subnet['cidr'], 'gateway_ip': float_subnet['gateway_ip'], 'id': fixed_ip['subnet_id']}], 'network_id': external_gw_port['network_id'], 'device_owner': l3_constants.DEVICE_OWNER_AGENT_GW, 'mac_address': 'fa:16:3e:80:8d:89', 'binding:host_id': self.agent.conf.host, 'fixed_ips': [{'subnet_id': fixed_ip['subnet_id'], 'ip_address': fip_gw_port_ip, 'prefixlen': prefixlen}], 'id': framework._uuid(), 'device_id': framework._uuid()} ] def _add_snat_port_info_to_router(self, router, internal_ports): # Add snat port information to the router snat_port_list = router.get(l3_constants.SNAT_ROUTER_INTF_KEY, []) if not snat_port_list and internal_ports: # Get values from internal port port = internal_ports[0] fixed_ip = port['fixed_ips'][0] snat_subnet = port['subnets'][0] port_ip = fixed_ip['ip_address'] # Pick an ip address which is not the same as port_ip snat_ip = str(netaddr.IPAddress(port_ip) + 5) # Add the info to router as the first snat port # in the list of snat ports prefixlen = netaddr.IPNetwork(snat_subnet['cidr']).prefixlen router[l3_constants.SNAT_ROUTER_INTF_KEY] = [ {'subnets': [ {'cidr': snat_subnet['cidr'], 'gateway_ip': snat_subnet['gateway_ip'], 'id': fixed_ip['subnet_id']}], 'network_id': port['network_id'], 'device_owner': l3_constants.DEVICE_OWNER_ROUTER_SNAT, 'mac_address': 'fa:16:3e:80:8d:89', 'fixed_ips': [{'subnet_id': fixed_ip['subnet_id'], 'ip_address': snat_ip, 'prefixlen': prefixlen}], 'id': framework._uuid(), 'device_id': framework._uuid()} ] def _assert_dvr_external_device(self, router): external_port = router.get_ex_gw_port() snat_ns_name = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) # if the agent is in dvr_snat mode, then we have to check # that the correct ports and ip addresses exist in the # snat_ns_name namespace if self.agent.conf.agent_mode == 'dvr_snat': device_exists = functools.partial( self.device_exists_with_ips_and_mac, external_port, router.get_external_device_name, snat_ns_name) utils.wait_until_true(device_exists) # if the agent is in dvr mode then the snat_ns_name namespace # should not be present at all: elif self.agent.conf.agent_mode == 'dvr': self.assertFalse( self._namespace_exists(snat_ns_name), "namespace %s was found but agent is in dvr mode not dvr_snat" % (str(snat_ns_name)) ) # if the agent is anything else the test is misconfigured # we force a test failure with message else: self.assertTrue(False, " agent not configured for dvr or dvr_snat") def _assert_dvr_gateway(self, router): gateway_expected_in_snat_namespace = ( self.agent.conf.agent_mode == 'dvr_snat' ) if gateway_expected_in_snat_namespace: self._assert_dvr_snat_gateway(router) self._assert_removal_of_already_deleted_gateway_device(router) snat_namespace_should_not_exist = ( self.agent.conf.agent_mode == 'dvr' ) if snat_namespace_should_not_exist: self._assert_snat_namespace_does_not_exist(router) def _assert_dvr_snat_gateway(self, router): namespace = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) external_port = router.get_ex_gw_port() external_device_name = router.get_external_device_name( external_port['id']) external_device = ip_lib.IPDevice(external_device_name, namespace=namespace) existing_gateway = ( external_device.route.get_gateway().get('gateway')) expected_gateway = external_port['subnets'][0]['gateway_ip'] self.assertEqual(expected_gateway, existing_gateway) def _assert_removal_of_already_deleted_gateway_device(self, router): namespace = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) device = ip_lib.IPDevice("fakedevice", namespace=namespace) # Assert that no exception is thrown for this case self.assertIsNone(router._delete_gateway_device_if_exists( device, "192.168.0.1", 0)) def _assert_snat_namespace_does_not_exist(self, router): namespace = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) self.assertFalse(self._namespace_exists(namespace)) def _assert_dvr_floating_ips(self, router): # in the fip namespace: # Check that the fg-<port-id> (floatingip_agent_gateway) # is created with the ip address of the external gateway port floating_ips = router.router[l3_constants.FLOATINGIP_KEY] self.assertTrue(floating_ips) # We need to fetch the floatingip agent gateway port info # from the router_info floating_agent_gw_port = ( router.router[l3_constants.FLOATINGIP_AGENT_INTF_KEY]) self.assertTrue(floating_agent_gw_port) external_gw_port = floating_agent_gw_port[0] fip_ns = self.agent.get_fip_ns(floating_ips[0]['floating_network_id']) fip_ns_name = fip_ns.get_name() fg_port_created_successfully = ip_lib.device_exists_with_ips_and_mac( fip_ns.get_ext_device_name(external_gw_port['id']), [self._port_first_ip_cidr(external_gw_port)], external_gw_port['mac_address'], namespace=fip_ns_name) self.assertTrue(fg_port_created_successfully) # Check fpr-router device has been created device_name = fip_ns.get_int_device_name(router.router_id) fpr_router_device_created_successfully = ip_lib.device_exists( device_name, namespace=fip_ns_name) self.assertTrue(fpr_router_device_created_successfully) # In the router namespace # Check rfp-<router-id> is created correctly for fip in floating_ips: device_name = fip_ns.get_rtr_ext_device_name(router.router_id) self.assertTrue(ip_lib.device_exists( device_name, namespace=router.ns_name)) def test_dvr_router_rem_fips_on_restarted_agent(self): self.agent.conf.agent_mode = 'dvr_snat' router_info = self.generate_dvr_router_info() router1 = self.manage_router(self.agent, router_info) fip_ns = router1.fip_ns.get_name() self.assertTrue(self._namespace_exists(fip_ns)) restarted_agent = neutron_l3_agent.L3NATAgentWithStateReport( self.agent.host, self.agent.conf) router1.router[l3_constants.FLOATINGIP_KEY] = [] self.manage_router(restarted_agent, router1.router) self._assert_dvr_snat_gateway(router1) self.assertTrue(self._namespace_exists(fip_ns)) def test_dvr_router_add_fips_on_restarted_agent(self): self.agent.conf.agent_mode = 'dvr' router_info = self.generate_dvr_router_info() router = self.manage_router(self.agent, router_info) floating_ips = router.router[l3_constants.FLOATINGIP_KEY] router_ns = router.ns_name fip_rule_prio_1 = self._get_fixed_ip_rule_priority( router_ns, floating_ips[0]['fixed_ip_address']) restarted_agent = neutron_l3_agent.L3NATAgent( self.agent.host, self.agent.conf) floating_ips[0]['floating_ip_address'] = '21.4.4.2' floating_ips[0]['fixed_ip_address'] = '10.0.0.2' self.manage_router(restarted_agent, router_info) fip_rule_prio_2 = self._get_fixed_ip_rule_priority( router_ns, floating_ips[0]['fixed_ip_address']) self.assertNotEqual(fip_rule_prio_1, fip_rule_prio_2) def _get_fixed_ip_rule_priority(self, namespace, fip): iprule = ip_lib.IPRule(namespace) lines = iprule.rule._as_root([4], ['show']).splitlines() for line in lines: if fip in line: info = iprule.rule._parse_line(4, line) return info['priority'] def test_dvr_router_add_internal_network_set_arp_cache(self): # Check that, when the router is set up and there are # existing ports on the uplinked subnet, the ARP # cache is properly populated. self.agent.conf.agent_mode = 'dvr_snat' router_info = l3_test_common.prepare_router_data() router_info['distributed'] = True expected_neighbor = '35.4.1.10' port_data = { 'fixed_ips': [{'ip_address': expected_neighbor}], 'mac_address': 'fa:3e:aa:bb:cc:dd', 'device_owner': DEVICE_OWNER_COMPUTE } self.agent.plugin_rpc.get_ports_by_subnet.return_value = [port_data] router1 = self.manage_router(self.agent, router_info) internal_device = router1.get_internal_device_name( router_info['_interfaces'][0]['id']) neighbors = ip_lib.IPDevice(internal_device, router1.ns_name).neigh self.assertEqual(expected_neighbor, neighbors.show(ip_version=4).split()[0]) def _assert_rfp_fpr_mtu(self, router, expected_mtu=1500): dev_mtu = self.get_device_mtu( router.router_id, router.fip_ns.get_rtr_ext_device_name, router.ns_name) self.assertEqual(expected_mtu, dev_mtu) dev_mtu = self.get_device_mtu( router.router_id, router.fip_ns.get_int_device_name, router.fip_ns.get_name()) self.assertEqual(expected_mtu, dev_mtu) def test_dvr_router_fip_agent_mismatch(self): """Test to validate the floatingip agent mismatch. This test validates the condition where floatingip agent gateway port host mismatches with the agent and so the binding will not be there. """ self.agent.conf.agent_mode = 'dvr' router_info = self.generate_dvr_router_info() floating_ip = router_info['_floatingips'][0] floating_ip['host'] = 'my_new_host' # In this case the floatingip binding is different and so it # should not create the floatingip namespace on the given agent. # This is also like there is no current binding. router1 = self.manage_router(self.agent, router_info) fip_ns = router1.fip_ns.get_name() self.assertTrue(self._namespace_exists(router1.ns_name)) self.assertFalse(self._namespace_exists(fip_ns)) self._assert_snat_namespace_does_not_exist(router1) def test_dvr_router_fip_late_binding(self): """Test to validate the floatingip migration or latebinding. This test validates the condition where floatingip private port changes while migration or when the private port host binding is done later after floatingip association. """ self.agent.conf.agent_mode = 'dvr' router_info = self.generate_dvr_router_info() fip_agent_gw_port = router_info[l3_constants.FLOATINGIP_AGENT_INTF_KEY] # Now let us not pass the FLOATINGIP_AGENT_INTF_KEY, to emulate # that the server did not create the port, since there was no valid # host binding. router_info[l3_constants.FLOATINGIP_AGENT_INTF_KEY] = [] self.mock_plugin_api.get_agent_gateway_port.return_value = ( fip_agent_gw_port[0]) router1 = self.manage_router(self.agent, router_info) fip_ns = router1.fip_ns.get_name() self.assertTrue(self._namespace_exists(router1.ns_name)) self.assertTrue(self._namespace_exists(fip_ns)) self._assert_snat_namespace_does_not_exist(router1) def _assert_snat_namespace_exists(self, router): namespace = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) self.assertTrue(self._namespace_exists(namespace)) def _get_dvr_snat_namespace_device_status( self, router, internal_dev_name=None): """Function returns the internal and external device status.""" snat_ns = dvr_snat_ns.SnatNamespace.get_snat_ns_name( router.router_id) external_port = router.get_ex_gw_port() external_device_name = router.get_external_device_name( external_port['id']) qg_device_created_successfully = ip_lib.device_exists( external_device_name, namespace=snat_ns) sg_device_created_successfully = ip_lib.device_exists( internal_dev_name, namespace=snat_ns) return qg_device_created_successfully, sg_device_created_successfully def test_dvr_router_snat_namespace_with_interface_remove(self): """Test to validate the snat namespace with interface remove. This test validates the snat namespace for all the external and internal devices. It also validates if the internal device corresponding to the router interface is removed when the router interface is deleted. """ self.agent.conf.agent_mode = 'dvr_snat' router_info = self.generate_dvr_router_info() snat_internal_port = router_info[l3_constants.SNAT_ROUTER_INTF_KEY] router1 = self.manage_router(self.agent, router_info) csnat_internal_port = ( router1.router[l3_constants.SNAT_ROUTER_INTF_KEY]) # Now save the internal device name to verify later internal_device_name = router1._get_snat_int_device_name( csnat_internal_port[0]['id']) self._assert_snat_namespace_exists(router1) qg_device, sg_device = self._get_dvr_snat_namespace_device_status( router1, internal_dev_name=internal_device_name) self.assertTrue(qg_device) self.assertTrue(sg_device) self.assertEqual(router1.snat_ports, snat_internal_port) # Now let us not pass INTERFACE_KEY, to emulate # the interface has been removed. router1.router[l3_constants.INTERFACE_KEY] = [] # Now let us not pass the SNAT_ROUTER_INTF_KEY, to emulate # that the server did not send it, since the interface has been # removed. router1.router[l3_constants.SNAT_ROUTER_INTF_KEY] = [] self.agent._process_updated_router(router1.router) router_updated = self.agent.router_info[router_info['id']] self._assert_snat_namespace_exists(router_updated) qg_device, sg_device = self._get_dvr_snat_namespace_device_status( router_updated, internal_dev_name=internal_device_name) self.assertFalse(sg_device) self.assertTrue(qg_device) def _mocked_dvr_ha_router(self, agent): r_info = self.generate_dvr_router_info(enable_ha=True, enable_snat=True, agent=agent) r_snat_ns_name = namespaces.build_ns_name(dvr_snat_ns.SNAT_NS_PREFIX, r_info['id']) mocked_r_snat_ns_name = r_snat_ns_name + '@' + agent.host r_ns_name = namespaces.build_ns_name(namespaces.NS_PREFIX, r_info['id']) mocked_r_ns_name = r_ns_name + '@' + agent.host return r_info, mocked_r_ns_name, mocked_r_snat_ns_name def _setup_dvr_ha_agents(self): self.agent.conf.agent_mode = 'dvr_snat' conf = self._configure_agent('agent2') self.failover_agent = neutron_l3_agent.L3NATAgentWithStateReport( 'agent2', conf) self.failover_agent.conf.agent_mode = 'dvr_snat' def _setup_dvr_ha_bridges(self): br_int_1 = self._get_agent_ovs_integration_bridge(self.agent) br_int_2 = self._get_agent_ovs_integration_bridge(self.failover_agent) veth1, veth2 = self.useFixture(net_helpers.VethFixture()).ports br_int_1.add_port(veth1.name) br_int_2.add_port(veth2.name) def _create_dvr_ha_router(self, agent): get_ns_name = mock.patch.object(namespaces.RouterNamespace, '_get_ns_name').start() get_snat_ns_name = mock.patch.object(dvr_snat_ns.SnatNamespace, 'get_snat_ns_name').start() (r_info, mocked_r_ns_name, mocked_r_snat_ns_name) = self._mocked_dvr_ha_router(agent) get_ns_name.return_value = mocked_r_ns_name get_snat_ns_name.return_value = mocked_r_snat_ns_name router = self.manage_router(agent, r_info) return router def _assert_ip_addresses_in_dvr_ha_snat_namespace(self, router): namespace = router.ha_namespace ex_gw_port = router.get_ex_gw_port() snat_port = router.get_snat_interfaces()[0] ex_gw_port_name = router.get_external_device_name( ex_gw_port['id']) snat_port_name = router._get_snat_int_device_name( snat_port['id']) ip = ex_gw_port["fixed_ips"][0]['ip_address'] prefix_len = ex_gw_port["fixed_ips"][0]['prefixlen'] ex_gw_port_cidr = ip + "/" + str(prefix_len) ip = snat_port["fixed_ips"][0]['ip_address'] prefix_len = snat_port["fixed_ips"][0]['prefixlen'] snat_port_cidr = ip + "/" + str(prefix_len) self._assert_ip_address_on_interface(namespace, ex_gw_port_name, ex_gw_port_cidr) self._assert_ip_address_on_interface(namespace, snat_port_name, snat_port_cidr) def _assert_no_ip_addresses_in_dvr_ha_snat_namespace(self, router): namespace = router.ha_namespace ex_gw_port = router.get_ex_gw_port() snat_port = router.get_snat_interfaces()[0] ex_gw_port_name = router.get_external_device_name( ex_gw_port['id']) snat_port_name = router._get_snat_int_device_name( snat_port['id']) self._assert_no_ip_addresses_on_interface(namespace, snat_port_name) self._assert_no_ip_addresses_on_interface(namespace, ex_gw_port_name) def test_dvr_ha_router_failover(self): self._setup_dvr_ha_agents() self._setup_dvr_ha_bridges() router1 = self._create_dvr_ha_router(self.agent) router2 = self._create_dvr_ha_router(self.failover_agent) utils.wait_until_true(lambda: router1.ha_state == 'master') utils.wait_until_true(lambda: router2.ha_state == 'backup') self._assert_ip_addresses_in_dvr_ha_snat_namespace(router1) self._assert_no_ip_addresses_in_dvr_ha_snat_namespace(router2) self.fail_ha_router(router1) utils.wait_until_true(lambda: router2.ha_state == 'master') utils.wait_until_true(lambda: router1.ha_state == 'backup') self._assert_ip_addresses_in_dvr_ha_snat_namespace(router2) self._assert_no_ip_addresses_in_dvr_ha_snat_namespace(router1) def _assert_fip_namespace_deleted(self, ext_gateway_port): ext_net_id = ext_gateway_port['network_id'] self.agent.fipnamespace_delete_on_ext_net( self.agent.context, ext_net_id) self._assert_interfaces_deleted_from_ovs()
apache-2.0
-3,600,914,941,048,306,700
45.850863
79
0.604276
false
semkiv/heppy_fcc
analyzers/CMSReader.py
1
1582
from PhysicsTools.Heppy.analyzers.core.Analyzer import Analyzer from PhysicsTools.Heppy.analyzers.core.AutoHandle import AutoHandle from heppy_fcc.particles.cms.particle import Particle import math class CMSReader(Analyzer): def declareHandles(self): super(CMSReader, self).declareHandles() self.handles['gen_particles'] = AutoHandle( self.cfg_ana.gen_particles, 'std::vector<reco::GenParticle>' ) self.read_pf = self.cfg_ana.pf_particles is not None if self.read_pf: self.handles['pf_particles'] = AutoHandle( self.cfg_ana.pf_particles, 'std::vector<reco::PFCandidate>' ) def process(self, event): self.readCollections(event.input) store = event.input genp = self.handles['gen_particles'].product() gen_particles = map(Particle, genp) event.gen_particles = sorted( gen_particles, key = lambda ptc: ptc.e(), reverse=True ) event.gen_particles_stable = [ptc for ptc in event.gen_particles if ptc.status()==1 and not math.isnan(ptc.e()) and ptc.e()>1e-5 and ptc.pt()>1e-5 and not abs(ptc.pdgid()) in [12, 14, 16]] if self.read_pf: pfp = self.handles['pf_particles'].product() event.pf_particles = map(Particle, pfp)
gpl-3.0
-7,577,250,021,358,035,000
40.631579
81
0.53287
false
DedMemez/ODS-August-2017
makeatoon/ClothesGUI.py
1
10449
# Fuck you Disyer. Stealing my fucking paypal. GET FUCKED: toontown.makeatoon.ClothesGUI from toontown.toon import ToonDNA from direct.fsm import StateData from direct.gui.DirectGui import * from MakeAToonGlobals import * from toontown.toonbase import TTLocalizer from direct.directnotify import DirectNotifyGlobal import ShuffleButton import random CLOTHES_MAKETOON = 0 CLOTHES_TAILOR = 1 CLOTHES_CLOSET = 2 class ClothesGUI(StateData.StateData): notify = DirectNotifyGlobal.directNotify.newCategory('ClothesGUI') def __init__(self, type, doneEvent, swapEvent = None): StateData.StateData.__init__(self, doneEvent) self.type = type self.toon = None self.swapEvent = swapEvent self.gender = '?' self.girlInShorts = 0 self.swappedTorso = 0 return def load(self): self.matGui = loader.loadModel('phase_3/models/gui/tt_m_gui_mat_mainGui') guiRArrowUp = self.matGui.find('**/tt_t_gui_mat_arrowUp') guiRArrowRollover = self.matGui.find('**/tt_t_gui_mat_arrowUp') guiRArrowDown = self.matGui.find('**/tt_t_gui_mat_arrowDown') guiRArrowDisabled = self.matGui.find('**/tt_t_gui_mat_arrowDisabled') self.shuffleFrame = self.matGui.find('**/tt_t_gui_mat_shuffleFrame') shuffleArrowUp = self.matGui.find('**/tt_t_gui_mat_shuffleArrowUp') shuffleArrowDown = self.matGui.find('**/tt_t_gui_mat_shuffleArrowDown') shuffleArrowRollover = self.matGui.find('**/tt_t_gui_mat_shuffleArrowUp') shuffleArrowDisabled = self.matGui.find('**/tt_t_gui_mat_shuffleArrowDisabled') self.parentFrame = DirectFrame(relief=DGG.RAISED, pos=(0.98, 0, 0.416), frameColor=(1, 0, 0, 0)) self.parentFrame.setPos(-0.36, 0, -0.5) self.parentFrame.reparentTo(base.a2dTopRight) self.shirtFrame = DirectFrame(parent=self.parentFrame, image=self.shuffleFrame, image_scale=halfButtonInvertScale, relief=None, pos=(0, 0, -0.4), hpr=(0, 0, 3), scale=1.2, frameColor=(1, 1, 1, 1), text=TTLocalizer.ClothesShopShirt, text_scale=0.0575, text_pos=(-0.001, -0.015), text_fg=(1, 1, 1, 1)) self.topLButton = DirectButton(parent=self.shirtFrame, relief=None, image=(shuffleArrowUp, shuffleArrowDown, shuffleArrowRollover, shuffleArrowDisabled), image_scale=halfButtonScale, image1_scale=halfButtonHoverScale, image2_scale=halfButtonHoverScale, pos=(-0.2, 0, 0), command=self.swapTop, extraArgs=[-1]) self.topRButton = DirectButton(parent=self.shirtFrame, relief=None, image=(shuffleArrowUp, shuffleArrowDown, shuffleArrowRollover, shuffleArrowDisabled), image_scale=halfButtonInvertScale, image1_scale=halfButtonInvertHoverScale, image2_scale=halfButtonInvertHoverScale, pos=(0.2, 0, 0), command=self.swapTop, extraArgs=[1]) self.bottomFrame = DirectFrame(parent=self.parentFrame, image=self.shuffleFrame, image_scale=halfButtonInvertScale, relief=None, pos=(0, 0, -0.65), hpr=(0, 0, -2), scale=1.2, frameColor=(1, 1, 1, 1), text=TTLocalizer.ColorShopToon, text_scale=0.0575, text_pos=(-0.001, -0.015), text_fg=(1, 1, 1, 1)) self.bottomLButton = DirectButton(parent=self.bottomFrame, relief=None, image=(shuffleArrowUp, shuffleArrowDown, shuffleArrowRollover, shuffleArrowDisabled), image_scale=halfButtonScale, image1_scale=halfButtonHoverScale, image2_scale=halfButtonHoverScale, pos=(-0.2, 0, 0), command=self.swapBottom, extraArgs=[-1]) self.bottomRButton = DirectButton(parent=self.bottomFrame, relief=None, image=(shuffleArrowUp, shuffleArrowDown, shuffleArrowRollover, shuffleArrowDisabled), image_scale=halfButtonInvertScale, image1_scale=halfButtonInvertHoverScale, image2_scale=halfButtonInvertHoverScale, pos=(0.2, 0, 0), command=self.swapBottom, extraArgs=[1]) self.parentFrame.hide() self.shuffleFetchMsg = 'ClothesShopShuffle' self.shuffleButton = ShuffleButton.ShuffleButton(self, self.shuffleFetchMsg) return def unload(self): self.matGui.removeNode() del self.matGui self.parentFrame.destroy() self.shirtFrame.destroy() self.bottomFrame.destroy() self.topLButton.destroy() self.topRButton.destroy() self.bottomLButton.destroy() self.bottomRButton.destroy() del self.shuffleFrame del self.parentFrame del self.shirtFrame del self.bottomFrame del self.topLButton del self.topRButton del self.bottomLButton del self.bottomRButton self.shuffleButton.unload() self.ignore('MAT-newToonCreated') def showButtons(self): self.parentFrame.show() def hideButtons(self): self.parentFrame.hide() def enter(self, toon): self.notify.debug('enter') base.disableMouse() self.toon = toon self.setupScrollInterface() if not self.type == CLOTHES_TAILOR: currTop = (self.toon.style.topTex, self.toon.style.topTexColor, self.toon.style.sleeveTex, self.toon.style.sleeveTexColor) currTopIndex = self.tops.index(currTop) self.swapTop(currTopIndex - self.topChoice) currBottom = (self.toon.style.botTex, self.toon.style.botTexColor) currBottomIndex = self.bottoms.index(currBottom) self.swapBottom(currBottomIndex - self.bottomChoice) choicePool = [self.tops, self.bottoms] self.shuffleButton.setChoicePool(choicePool) self.accept(self.shuffleFetchMsg, self.changeClothes) self.acceptOnce('MAT-newToonCreated', self.shuffleButton.cleanHistory) def exit(self): try: del self.toon except: self.notify.warning('ClothesGUI: toon not found') self.hideButtons() self.ignore('enter') self.ignore('next') self.ignore('last') self.ignore(self.shuffleFetchMsg) def setupButtons(self): self.girlInShorts = 0 if self.gender == 'f': if self.bottomChoice == -1: botTex = self.bottoms[0][0] else: botTex = self.bottoms[self.bottomChoice][0] if ToonDNA.GirlBottoms[botTex][1] == ToonDNA.SHORTS: self.girlInShorts = 1 if self.toon.style.getGender() == 'm': self.bottomFrame['text'] = TTLocalizer.ClothesShopShorts else: self.bottomFrame['text'] = TTLocalizer.ClothesShopBottoms self.acceptOnce('last', self.__handleBackward) self.acceptOnce('next', self.__handleForward) return None def swapTop(self, offset): length = len(self.tops) self.topChoice += offset if self.topChoice <= 0: self.topChoice = 0 self.updateScrollButtons(self.topChoice, length, 0, self.topLButton, self.topRButton) if self.topChoice < 0 or self.topChoice >= len(self.tops) or len(self.tops[self.topChoice]) != 4: self.notify.warning('topChoice index is out of range!') return else: self.toon.style.topTex = self.tops[self.topChoice][0] self.toon.style.topTexColor = self.tops[self.topChoice][1] self.toon.style.sleeveTex = self.tops[self.topChoice][2] self.toon.style.sleeveTexColor = self.tops[self.topChoice][3] self.toon.generateToonClothes() if self.swapEvent != None: messenger.send(self.swapEvent) messenger.send('wakeup') return def swapBottom(self, offset): length = len(self.bottoms) self.bottomChoice += offset if self.bottomChoice <= 0: self.bottomChoice = 0 self.updateScrollButtons(self.bottomChoice, length, 0, self.bottomLButton, self.bottomRButton) if self.bottomChoice < 0 or self.bottomChoice >= len(self.bottoms) or len(self.bottoms[self.bottomChoice]) != 2: self.notify.warning('bottomChoice index is out of range!') return else: self.toon.style.botTex = self.bottoms[self.bottomChoice][0] self.toon.style.botTexColor = self.bottoms[self.bottomChoice][1] if self.toon.generateToonClothes() == 1: self.toon.loop('neutral', 0) self.swappedTorso = 1 if self.swapEvent != None: messenger.send(self.swapEvent) messenger.send('wakeup') return def updateScrollButtons(self, choice, length, startTex, lButton, rButton): if choice >= length - 1: rButton['state'] = DGG.DISABLED else: rButton['state'] = DGG.NORMAL if choice <= 0: lButton['state'] = DGG.DISABLED else: lButton['state'] = DGG.NORMAL def __handleForward(self): self.doneStatus = 'next' messenger.send(self.doneEvent) def __handleBackward(self): self.doneStatus = 'last' messenger.send(self.doneEvent) def resetClothes(self, style): if self.toon: self.toon.style.makeFromNetString(style.makeNetString()) if self.swapEvent != None and self.swappedTorso == 1: self.toon.swapToonTorso(self.toon.style.torso, genClothes=0) self.toon.generateToonClothes() self.toon.loop('neutral', 0) return def changeClothes(self): self.notify.debug('Entering changeClothes') newChoice = self.shuffleButton.getCurrChoice() if newChoice[0] in self.tops: newTopIndex = self.tops.index(newChoice[0]) else: newTopIndex = self.topChoice if newChoice[1] in self.bottoms: newBottomIndex = self.bottoms.index(newChoice[1]) else: newBottomIndex = self.bottomChoice oldTopIndex = self.topChoice oldBottomIndex = self.bottomChoice self.swapTop(newTopIndex - oldTopIndex) self.swapBottom(newBottomIndex - oldBottomIndex) def getCurrToonSetting(self): return [self.tops[self.topChoice], self.bottoms[self.bottomChoice]]
apache-2.0
-5,630,352,317,131,774,000
44.65625
307
0.633266
false
basho/riak-python-client
riak/tests/test_misc.py
1
1659
# Copyright 2010-present Basho Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest class MiscTests(unittest.TestCase): def test_timeout_validation(self): from riak.client.operations import _validate_timeout # valid cases try: _validate_timeout(None) _validate_timeout(None, infinity_ok=True) _validate_timeout('infinity', infinity_ok=True) _validate_timeout(1234) _validate_timeout(1234567898765432123456789) except ValueError: self.fail('_validate_timeout() unexpectedly raised ValueError') # invalid cases with self.assertRaises(ValueError): _validate_timeout('infinity') with self.assertRaises(ValueError): _validate_timeout('infinity-foo') with self.assertRaises(ValueError): _validate_timeout('foobarbaz') with self.assertRaises(ValueError): _validate_timeout('1234') with self.assertRaises(ValueError): _validate_timeout(0) with self.assertRaises(ValueError): _validate_timeout(12.34)
apache-2.0
4,406,450,344,882,683,400
38.5
75
0.675105
false
nttcom/eclcli
eclcli/network/v2/public_ip.py
1
5947
from eclcli.common import command from eclcli.common import utils from ..networkclient.common import utils as to_obj class ListPubicIP(command.Lister): def get_parser(self, prog_name): parser = super(ListPubicIP, self).get_parser(prog_name) parser.add_argument( '--name', metavar="name", help="filter by name") parser.add_argument( '--id', metavar="id", help="filter by id") parser.add_argument( '--status', metavar="status", help="filter by status") parser.add_argument( '--internet_gw_id', metavar="internet_gw_id", help="filter by internet gateway id") parser.add_argument( '--submask_length', metavar="submask_length", help="filter by submask length") parser.add_argument( '--cidr', metavar="cidr", help="filter by cidr") return parser def take_action(self, parsed_args): network_client = self.app.client_manager.network columns = ( 'id', 'name', 'cidr', 'submask_length', 'status', ) column_headers = ( 'ID', 'Name', 'CIDR', 'Submask', 'Status', ) search_opts = {} if parsed_args.name: search_opts.update({"name": parsed_args.name}) if parsed_args.id: search_opts.update({"id": parsed_args.id}) if parsed_args.status: search_opts.update({"status": parsed_args.status}) if parsed_args.internet_gw_id: search_opts.update({"internet_gw_id": parsed_args.internet_gw_id}) if parsed_args.submask_length: search_opts.update({"submask_length": parsed_args.submask_length}) if parsed_args.cidr: search_opts.update({"cidr": parsed_args.cidr}) data = [to_obj.PubicIP(public_ip) for public_ip in network_client.list_public_ips(**search_opts).get('public_ips')] return (column_headers, (utils.get_item_properties( s, columns, ) for s in data)) class ShowPubicIP(command.ShowOne): def get_parser(self, prog_name): parser = super(ShowPubicIP, self).get_parser(prog_name) parser.add_argument( 'public_ip_id', metavar="PUBLIC_IP_ID", help="ID of Pubic IP to show." ) return parser def take_action(self, parsed_args): network_client = self.app.client_manager.network public_ip_id = parsed_args.public_ip_id dic = network_client.show_public_ip(public_ip_id).get('public_ip') columns = utils.get_columns(dic) obj = to_obj.PubicIP(dic) data = utils.get_item_properties( obj, columns,) return columns, data class CreatePubicIP(command.ShowOne): def get_parser(self, prog_name): parser = super(CreatePubicIP, self).get_parser(prog_name) parser.add_argument( '--name', metavar='<string>', help='Name of public ip to create.') parser.add_argument( '--description', metavar='<string>', help='Description of public ip to create.') parser.add_argument( '--internet_gw_id', metavar='INTERNET_GATEWAY_ID', required=True, help='Internet Gateway ID of public ip to create') parser.add_argument( '--submask_length', metavar='SUBNET_MASK_LENGTH', required=True, type=int, help='Submask length of public ip to create.') return parser def take_action(self, parsed_args): network_client = self.app.client_manager.network body = {'public_ip': {}} utils.update_dict( parsed_args, body['public_ip'], ['name', 'description', 'internet_gw_id', 'submask_length']) dic = network_client.create_public_ip(body).get('public_ip') columns = utils.get_columns(dic) obj = to_obj.PubicIP(dic) data = utils.get_item_properties( obj, columns,) return columns, data class SetPubicIP(command.ShowOne): def get_parser(self, prog_name): parser = super(SetPubicIP, self).get_parser(prog_name) parser.add_argument( 'public_ip_id', metavar='PUBLIC_IP_ID', help='ID of Public IP to update.') parser.add_argument( '--description', metavar='<string>', help='Description of public ip to update.') return parser def take_action(self, parsed_args): network_client = self.app.client_manager.network body = {'public_ip': {}} public_ip_id = parsed_args.public_ip_id utils.update_dict( parsed_args, body['public_ip'], ['description', ]) dic = network_client.update_public_ip( public_ip_id, body).get('public_ip') columns = utils.get_columns(dic) obj = to_obj.PubicIP(dic) data = utils.get_item_properties( obj, columns,) return columns, data class DeletePubicIP(command.Command): def get_parser(self, prog_name): parser = super(DeletePubicIP, self).get_parser(prog_name) parser.add_argument( 'public_ip_id', metavar="PUBLIC_IP_ID", nargs="+", help="ID(s) of Public IP to delete." ) return parser def take_action(self, parsed_args): network_client = self.app.client_manager.network for giid in parsed_args.public_ip_id: network_client.delete_public_ip(giid)
apache-2.0
-1,071,310,958,543,056,000
30.3
97
0.543972
false
merll/docker-map
dockermap/exceptions.py
1
2281
# -*- coding: utf-8 -*- from __future__ import unicode_literals import traceback import six class SourceExceptionMixin(object): def __init__(self, src_exc, *args, **kwargs): self._src_exc = src_exc super(SourceExceptionMixin, self).__init__(*args, **kwargs) @property def source_exception(self): """ The original exception information from where the error occurred. Tuple of exception type and exception instance (e.g. the output of ``sys.exc_info()``). :return: Exception tuple. :rtype: tuple """ return self._src_exc @property def source_message(self): """ Formatted output of the exception, without the stack trace. :return: Exception text. :rtype: unicode | str """ return ''.join(traceback.format_exception_only(self._src_exc[0], self._src_exc[1])) def reraise(self): """ Utility method for re-raising the original exception, including output of its stacktrace. """ six.reraise(*self._src_exc) class PartialResultsMixin(object): def __init__(self, partial_results, *args, **kwargs): self._results = partial_results super(PartialResultsMixin, self).__init__(*args, **kwargs) @property def results(self): """ Partial results before the exception occurred. :return: list """ return self._results @six.python_2_unicode_compatible class PartialResultsError(SourceExceptionMixin, PartialResultsMixin, Exception): """ Exception where partial results might be available. """ def __str__(self): return self.source_message @six.python_2_unicode_compatible class DockerStatusError(Exception): def __init__(self, message, detail): self._message = message if isinstance(detail, dict): detail.pop('message', None) if not detail: self._detail = None else: self._detail = detail elif detail: self._detail = detail @property def message(self): return self._message @property def detail(self): return self._detail def __str__(self): return self._message
mit
5,798,657,893,036,697,000
24.920455
111
0.600614
false
qedsoftware/commcare-hq
corehq/ex-submodules/casexml/apps/phone/management/commands/sync_log_debugger.py
1
6017
import json from optparse import make_option import os from django.core.management import BaseCommand import sys from casexml.apps.phone.checksum import Checksum class Command(BaseCommand): """Compare sync logs to see mismatched case ids. This is useful for debugging state mismatches Can also pass in a hash to see which cases HQ is sending down that mobile has purged. Usage: ./manage.py sync_log_debugger <synclog1> [synclog2 synclog3]... <synclog> is a json file of the synclog you are trying to compare. This could also be a folder of synclogs and will compare all of them. optional arguments: --check <hash> removes cases one by one in synclog1 until it matches <hash> --index <index> if you have more than one file passed in, <index> is the one that --check will be run on --depth <depth> specify the number of cases to try removing until you find a match in --check (it's a N choose X problem so gets very slow after --depth > 1 if you have a significant number of cases in the log) """ option_list = BaseCommand.option_list + ( make_option('--debugger', action='store_true', dest='debugger', default=False, help="Drop into a debugger at the end of running the command for manual queries"), make_option('--check', action='store', dest='check_hash', default=None, help=("Run a hash check. Removes cases one by one from the passed-in synclog until " "they hash matches CHECK_HASH")), make_option('--index', action='store', dest='index', default=0, help=("if you have more than one file passed in, <index> is the one " "that --check will be run on")), make_option('--depth', action='store', dest='depth', default=1, help=("specify the number of cases to try removing until you find a match in --check" "(it's a N choose X problem so gets very slow after --depth > 1 if you" "have a significant number of cases in the log)\n")), ) def handle(self, *args, **options): from casexml.apps.phone.models import properly_wrap_sync_log, SyncLog, SimplifiedSyncLog if len(args) < 1: print( "Usage:\n" "./manage.py sync_log_debugger <synclog1> [synclog2 synclog3]...\n" " <synclog> is a json file of the synclog you are trying to compare. Passing\n" " in a folder will compare all of the files in that folder.\n" ) sys.exit(0) logs = [] log_names = [] for filename in args: if os.path.isdir(filename): filenames = [os.path.join(filename, item) for item in sorted(os.listdir(filename))] else: filenames = [filename] for filename in filenames: log_name = os.path.basename(filename) log_names.append(log_name) with open(filename) as f: wrapped_log = properly_wrap_sync_log(json.loads(f.read())) logs.append(wrapped_log) if isinstance(wrapped_log, SyncLog): log_names.append('migrated-{}'.format(log_name)) logs.append(SimplifiedSyncLog.from_other_format(wrapped_log)) elif getattr(wrapped_log, 'migrated_from', None): log_names.append('migrated_from-{}'.format(log_name)) logs.append(properly_wrap_sync_log(wrapped_log.to_json()['migrated_from'])) print 'state hashes' for i in range(len(log_names)): print '{} ({}): {}'.format(log_names[i], logs[i]._id, logs[i].get_state_hash()) print '\ncase diffs' for i in range(len(log_names)): for j in range(len(log_names)): if i != j: case_diff = set(logs[i].get_footprint_of_cases_on_phone()) - \ set(logs[j].get_footprint_of_cases_on_phone()) if case_diff: print 'cases on {} and not {}: {}'.format( log_names[i], log_names[j], ', '.join(sorted(case_diff)) ) if options['debugger']: union_of_ids = set().union(*[set(log.get_footprint_of_cases_on_phone()) for log in logs]) intersection_of_ids = set().intersection(*[set(log.get_footprint_of_cases_on_phone()) for log in logs]) import pdb pdb.set_trace() if options['check_hash']: log_to_check = logs[int(options['index'])] result = _brute_force_search( log_to_check.case_ids_on_phone, options['check_hash'], depth=int(options['depth']) ) if result: print 'check successful - missing ids {}'.format(result) else: print 'no match found' def _brute_force_search(case_id_set, expected_hash, diff=None, depth=1): # utility for brute force searching for a hash diff = diff or set() if _get_hash(case_id_set) == expected_hash: return diff else: if depth > 0: for id in case_id_set: list_to_check = case_id_set - set([id]) newdiff = diff | set([id]) result = _brute_force_search(list_to_check, expected_hash, newdiff, depth-1) if result: return result else: return None def _get_hash(ids): return Checksum(list(ids)).hexdigest()
bsd-3-clause
6,120,540,430,923,160,000
41.373239
115
0.531328
false
EmreAtes/spack
var/spack/repos/builtin/packages/py-psyclone/package.py
1
2683
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/llnl/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## # from spack import * class PyPsyclone(PythonPackage): """Code generation for the PSyKAl framework from the GungHo project, as used by the LFRic model at the UK Met Office.""" homepage = "https://github.com/stfc/PSyclone" url = "https://github.com/stfc/PSyclone/archive/1.5.1.tar.gz" giturl = "https://github.com/stfc/PSyclone.git" version('1.5.1', git=giturl, commit='eba7a097175b02f75dec70616cf267b7b3170d78') version('develop', git=giturl, branch='master') depends_on('py-setuptools', type='build') depends_on('python', type=('build', 'run')) depends_on('py-pyparsing', type=('build', 'run')) # Test cases fail without compatible versions of py-fparser: depends_on('[email protected]', type=('build', 'run'), when='@1.5.1') depends_on('py-fparser', type=('build', 'run'), when='@1.5.2:') # Dependencies only required for tests: depends_on('py-numpy', type='test') depends_on('py-nose', type='test') depends_on('py-pytest', type='test') @run_after('install') @on_package_attributes(run_tests=True) def check_build(self): # Limit py.test to search inside the build tree: touch('pytest.ini') with working_dir('src'): Executable('py.test')() def setup_environment(self, spack_env, run_env): # Allow testing with installed executables: spack_env.prepend_path('PATH', self.prefix.bin)
lgpl-2.1
6,283,712,854,435,846,000
40.276923
78
0.653
false
GeosoftInc/gxpy
geosoft/gxapi/GXE3DV.py
1
2424
### extends 'class_empty.py' ### block ClassImports # NOTICE: Do not edit anything here, it is generated code from . import gxapi_cy from geosoft.gxapi import GXContext, float_ref, int_ref, str_ref from .GXMVIEW import GXMVIEW ### endblock ClassImports ### block Header # NOTICE: The code generator will not replace the code in this block ### endblock Header ### block ClassImplementation # NOTICE: Do not edit anything here, it is generated code class GXE3DV(gxapi_cy.WrapE3DV): """ GXE3DV class. Methods to manipulate an active 3D View """ def __init__(self, handle=0): super(GXE3DV, self).__init__(GXContext._get_tls_geo(), handle) @classmethod def null(cls): """ A null (undefined) instance of `GXE3DV <geosoft.gxapi.GXE3DV>` :returns: A null `GXE3DV <geosoft.gxapi.GXE3DV>` :rtype: GXE3DV """ return GXE3DV() def is_null(self): """ Check if this is a null (undefined) instance :returns: True if this is a null (undefined) instance, False otherwise. :rtype: bool """ return self._internal_handle() == 0 # Miscellaneous def get_data_view(self): """ Get the current data (3D) `GXMVIEW <geosoft.gxapi.GXMVIEW>` :returns: `GXMVIEW <geosoft.gxapi.GXMVIEW>` object :rtype: GXMVIEW .. versionadded:: 9.3 **License:** `Geosoft Open License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-open-lic>`_ """ ret_val = self._get_data_view() return GXMVIEW(ret_val) def get_base_view(self): """ Get the current Base `GXMVIEW <geosoft.gxapi.GXMVIEW>` (used to draw 2D legends for groups) :returns: `GXMVIEW <geosoft.gxapi.GXMVIEW>` object :rtype: GXMVIEW .. versionadded:: 9.3 **License:** `Geosoft Open License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-open-lic>`_ """ ret_val = self._get_base_view() return GXMVIEW(ret_val) ### endblock ClassImplementation ### block ClassExtend # NOTICE: The code generator will not replace the code in this block ### endblock ClassExtend ### block Footer # NOTICE: The code generator will not replace the code in this block ### endblock Footer
bsd-2-clause
-2,210,660,780,140,298,200
24
135
0.62005
false
lodemo/CATANA
src/face_recognition/collabCreateMemMap.py
1
4950
# -*- coding: utf-8 -*- ''' Get the features data from DB, de-pickle data and store it into array-on-disk. ''' # MIT License # # Copyright (c) 2017 Moritz Lode # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import unicode_literals import os import time import numpy as np import pandas as pa import cPickle as cp import json import math from threading import Thread from database import * from sqlalchemy import exists, and_, func from scipy.spatial.distance import cdist, pdist, squareform from scipy.stats import describe import itertools import string import hdbscan from sklearn.cluster import DBSCAN from sklearn.cluster import AgglomerativeClustering import facedist import networkx as nx fileDir = os.path.dirname(os.path.realpath(__file__)) from itertools import izip_longest def find_shape(seq): try: len_ = len(seq) except TypeError: return () shapes = [find_shape(subseq) for subseq in seq] return (len_,) + tuple(max(sizes) for sizes in izip_longest(*shapes, fillvalue=1)) def fill_array(arr, seq): if arr.ndim == 1: try: len_ = len(seq) except TypeError: len_ = 0 arr[:len_] = seq arr[len_:] = np.nan else: for subarr, subseq in izip_longest(arr, seq, fillvalue=()): fill_array(subarr, subseq) db = YTDatabase() start = time.time() with db._session_scope(False) as session: num_features = session.query(VideoFeatures).filter(VideoFeatures.duration > 30.0).count() print 'ALL features > 30:', num_features from sqlalchemy.sql import func videoIDs = [] with db._session_scope(False) as session: #vids = session.query(VideoFeatures.videoID).filter(VideoFeatures.duration > 0.0).distinct().all() vids = session.query(VideoFeatures.videoID).filter(VideoFeatures.duration > 0.0).filter(and_(Video.id==VideoFeatures.videoID, func.date(Video.crawlTimestamp).between('2016-12-28', '2017-03-28'))).distinct().all() print 'first videos:', len(vids) for id in vids: v = session.query(Video).filter(Video.id==id[0]).first() if not v.deleted and session.query(VideoHistory.id).filter(VideoHistory.videoID==v.id).count() > 11: videoIDs.append(v.id) print 'videos', len(videoIDs) pa.DataFrame(videoIDs).to_csv('videoIDs_filtered.csv') #videoIDs = pa.read_csv('videoIDs_filtered.csv',index_col=0)['0'].values.tolist() with db._session_scope(False) as session: num_features = session.query(VideoFeatures).filter(and_(VideoFeatures.duration > 30.0, VideoFeatures.videoID.in_(videoIDs))).count() print 'Video features:', num_features # This does not work, as the features array is not a perfect array, has different row lengths #mmap = np.memmap(os.path.join(fileDir, 'features_memmap.npy'), mode='w+', dtype=np.double, shape=(num_features, 100, 1792)) n = 0 with db._session_scope(False) as session: # Get features from database, filter duration on query, above 30 sec. data = pa.read_sql(session.query(VideoFeatures.feature).filter(and_(VideoFeatures.duration > 30.0, VideoFeatures.videoID.in_(videoIDs))).statement, db.engine) # Feature are stored cpickled data['feature'] = data['feature'].apply(cp.loads) # We can transform the array into a perfect array but the memory usage will rise aswell #fixed_data = np.empty( (len(chunk), 100, 1792) ) #fill_array(fixed_data, chunk['feature'].values) # Due to time consumption of the next computation step, we could only use the first 20 features instead max. 100 #firstth = np.asarray([f[:20] for f in data['feature'].values]) # Save features to disk np.save('features_3MONTH', np.asarray(data['feature'])) #mmap[n:n+chunk.shape[0]] = fixed_data #n += chunk.shape[0] processTime = time.time() - start print 'data extraction took', processTime
mit
-4,439,551,050,796,614,000
30.528662
216
0.702626
false
Remi-C/interactive_map_tracking
interactive_map_tracking.py
1
66133
# -*- coding: utf-8 -*- """ /*************************************************************************** interactive_map_tracking A QGIS plugin A QGIS 2.6 plugin to track camera of user , AND/OR to autocommit/refresh edit on PostGIS vector layer ------------------- begin : 2015-02-20 git sha : $Format:%H$ copyright : (C) 2015 by Lionel Atty, IGN, SIDT email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ from PyQt4.QtCore import QSettings, QTranslator, qVersion, QCoreApplication from PyQt4.QtGui import QAction, QIcon # Initialize Qt resources from file resources.py import resources_rc # Import the code for the dialog from interactive_map_tracking_dialog import interactive_map_trackingDialog import os.path from PyQt4.QtCore import QSettings, QTranslator, qVersion, QCoreApplication from PyQt4.QtCore import QObject, SIGNAL, QUrl from PyQt4.QtGui import QAction, QIcon, QTabWidget from PyQt4.QtWebKit import QWebSettings, QWebView from qgis.gui import QgsMessageBar from qgis.core import * import qgis_layer_tools import qgis_mapcanvas_tools import qgis_log_tools import imt_tools # # for beta test purposes # from PyQt4.QtCore import QTimer import Queue from collections import namedtuple import time import threading def CONVERT_S_TO_MS(s): return s*1000 # with Qt resources files # gui_doc_about = ":/plugins/interactive_map_tracking/gui_doc/About.htm" # gui_doc_user_doc = ":/plugins/interactive_map_tracking/gui_doc/Simplified_User_Guide.htm" # with absolute (os) path class interactive_map_tracking: """QGIS Plugin Implementation.""" def __init__(self, iface): """Constructor. :param iface: An interface instance that will be passed to this class which provides the hook by which you can manipulate the QGIS application at run time. :type iface: QgsInterface """ import time from PyQt4.QtNetwork import QNetworkProxy current_time = time.time() # Save reference to the QGIS interface self.iface = iface # initialize plugin directory self.plugin_dir = os.path.normcase(os.path.dirname(__file__)) # initialize locale locale = QSettings().value('locale/userLocale')[0:2] locale_path = os.path.join( self.plugin_dir, 'i18n', 'interactive_map_tracking_{}.qm'.format(locale)) if os.path.exists(locale_path): self.translator = QTranslator() self.translator.load(locale_path) if qVersion() > '4.3.3': QCoreApplication.installTranslator(self.translator) # Create the dialog (after translation) and keep reference self.dlg = interactive_map_trackingDialog() # Declare instance attributes self.actions = [] self.menu = self.tr(u'&Interactive Map Tracking') # TODO: We are going to let the user set this up in a future iteration self.toolbar = self.iface.addToolBar(u'interactive_map_tracking') self.toolbar.setObjectName(u'interactive_map_tracking') # self.selections = [] self.qsettings_prefix_name = "imt/" self.bSignalForLayerModifiedConnected = False self.bSignalForLayerChangedConnected = False self.bSignalForExtentsChangedConnected = False # self.idCameraPositionLayerInBox = 0 self.currentLayerForTrackingPosition = None self.bSignalForProjectReadConnected = True QObject.connect(self.iface, SIGNAL("projectRead()"), self.qgisInterfaceProjectRead) # MUTEX self.bUseV2Functionnalities = self.dlg.enableUseMutexForTP.isChecked() # url: https://docs.python.org/2/library/collections.html#collections.namedtuple # Definition : namedtuples 'type' self.TP_NAMEDTUPLE_LET = namedtuple('TP_NAMEDTUPLE_LET', ['layer', 'extent', 'w_time']) self.TP_NAMEDTUPLE_ET = namedtuple('TP_NAMEDTUPLE_ET', ['extent', 'w_time']) # LIFO Queue to save (in real time) requests for tracking position self.tp_queue_rt_ntuples_let = Queue.LifoQueue() # self.tp_rt_ntuples_let = self.TP_NAMEDTUPLE_LET(None, None, current_time) self.tp_dict_key_l_values_et = {} self.tp_list_fets = [] self.tp_dict_key_l_values_listfeatures = {} self.tp_dict_layers_to_commit = {} # self.qtimer_tracking_position_rtt_to_memory = QTimer() self.qtimer_tracking_position_rtt_to_memory.timeout.connect(self.tracking_position_qtimer_rttp_to_memory) self.qtimer_tracking_position_memory_to_geom = QTimer() self.qtimer_tracking_position_memory_to_geom.timeout.connect(self.tracking_position_qtimer_memory_to_geom) self.qtimer_tracking_position_geom_to_layer = QTimer() self.qtimer_tracking_position_geom_to_layer.timeout.connect(self.tracking_position_qtimer_geom_to_layer) self.qtimer_tracking_position_layers_to_commit = QTimer() self.qtimer_tracking_position_layers_to_commit.timeout.connect(self.tracking_position_qtimer_layers_to_commit) # OPTIONS: timing reactions # self.tp_timers = imt_tools.TpTimer() # TODO : add this options timing on GUI # in S tp_threshold_time_for_realtime_tracking_position = 0.125 # i.e. 8hz => (max) 8 tracking positions record per second # in MS tp_threshold_time_for_tp_to_mem = 250 # add to reference timing: realtime_tracking_position tp_threshold_time_for_construct_geom = 50 # add to reference timing: tp_to_mem tp_threshold_time_for_sending_geom_to_layer = 100 # add to reference timing: construct_geom tp_threshold_time_for_sending_layer_to_dp = 100 # add to reference timing: sending_geom_to_layer # self.tp_timers.set_delay("tp_threshold_time_for_realtime_tracking_position", tp_threshold_time_for_realtime_tracking_position) self.tp_timers.set_delay("tp_threshold_time_for_tp_to_mem", tp_threshold_time_for_tp_to_mem) self.tp_timers.set_delay("tp_threshold_time_for_construct_geom", tp_threshold_time_for_construct_geom) self.tp_timers.set_delay("tp_threshold_time_for_sending_geom_to_layer", tp_threshold_time_for_sending_geom_to_layer) self.tp_timers.set_delay("tp_threshold_time_for_sending_layer_to_dp", tp_threshold_time_for_sending_layer_to_dp) # in S delay_time_still_moving = 0.750 # delta time used to decide if the user still moving on the map self.tp_timers.set_delay("delay_time_still_moving", delay_time_still_moving) # for timing self.tp_time_last_rttp_to_mem = current_time self.tp_time_last_construct_geom = current_time self.tp_time_last_send_geom_to_layer = current_time self.tp_time_last_send_layer_to_dp = current_time self.tp_queue_qgis_event_to_mem = [] """ Delay on manager of trackposition requests can be interesting to evaluate/benchmark the impact on this value """ self.qtimer_tracking_position_delay = self.tp_timers.get_delay( "p_threshold_time_for_realtime_tracking_position") # in ms # user-id: # from user id OS os_username = imt_tools.get_os_username() # try to use IP to identify the user user_ip = imt_tools.get_lan_ip() # self.tp_user_name = os_username + " (" + user_ip + ")" # default value for threshold scale self.threshold = 0 self.tp_id_user_id = 0 self.tp_id_w_time = 0 self.values = [] self.bRefreshMapFromAutoSave = False self.TP_NAMEDTUPLE_WEBVIEW = namedtuple( 'TP_NAMEDTUPLE_WEBVIEW', ['state', 'width', 'height', 'online_url', 'offline_url'] ) # very dirty @FIXME @TODO : here is the proper way to do it (from within the class `self.plugin_dir`) self.qgis_plugins_directory = self.plugin_dir self.webview_offline_about = os.path.join(self.qgis_plugins_directory , "gui_doc","About.htm" ) self.webview_offline_user_doc = os.path.join(self.qgis_plugins_directory , "gui_doc", "Simplified_User_Guide.htm" ) self.webview_online_about = "https://github.com/Remi-C/interactive_map_tracking/wiki/[User]-About" self.webview_online_user_doc = "https://github.com/Remi-C/interactive_map_tracking/wiki/[User]-User-Guide" self.webview_dict = {} # url : http://qt-project.org/doc/qt-4.8/qurl.html self.webview_default_tuple = self.TP_NAMEDTUPLE_WEBVIEW('init', 0, 0, QUrl(""), QUrl("")) self.webview_dict[self.dlg.webView_userdoc] = self.TP_NAMEDTUPLE_WEBVIEW( 'init', 0, 0, QUrl(self.webview_online_user_doc), QUrl(self.webview_offline_user_doc) ) self.webview_dict[self.dlg.webView_about] = self.TP_NAMEDTUPLE_WEBVIEW( 'init', 0, 0, QUrl(self.webview_online_about), QUrl(self.webview_offline_about) ) self.webview_current = None self.webview_margin = 60 #getting proxy s = QSettings() #getting proxy from qgis options settings proxyEnabled = s.value("proxy/proxyEnabled", "") proxyType = s.value("proxy/proxyType", "" ) proxyHost = s.value("proxy/proxyHost", "" ) proxyPort = s.value("proxy/proxyPort", "" ) proxyUser = s.value("proxy/proxyUser", "" ) proxyPassword = s.value("proxy/proxyPassword", "" ) if proxyEnabled == "true": # test if there are proxy settings proxy = QNetworkProxy() if proxyType == "DefaultProxy": proxy.setType(QNetworkProxy.DefaultProxy) elif proxyType == "Socks5Proxy": proxy.setType(QNetworkProxy.Socks5Proxy) elif proxyType == "HttpProxy": proxy.setType(QNetworkProxy.HttpProxy) elif proxyType == "HttpCachingProxy": proxy.setType(QNetworkProxy.HttpCachingProxy) elif proxyType == "FtpCachingProxy": proxy.setType(QNetworkProxy.FtpCachingProxy) proxy.setHostName(proxyHost) proxy.setPort(int(proxyPort)) proxy.setUser(proxyUser) proxy.setPassword(proxyPassword) QNetworkProxy.setApplicationProxy(proxy) self.dict_tabs_size = {} self.tp_last_extent_saved = QgsRectangle() # noinspection PyMethodMayBeStatic def tr(self, message): """Get the translation for a string using Qt translation API. We implement this ourselves since we do not inherit QObject. :param message: String for translation. :type message: str, QString :returns: Translated version of message. :rtype: QString """ # noinspection PyTypeChecker,PyArgumentList,PyCallByClass return QCoreApplication.translate('interactive_map_tracking', message) def add_action( self, icon_path, text, callback, enabled_flag=True, add_to_menu=True, add_to_toolbar=True, status_tip=None, whats_this=None, parent=None): """Add a toolbar icon to the toolbar. :param icon_path: Path to the icon for this action. Can be a resource path (e.g. ':/plugins/foo/bar.png') or a normal file system path. :type icon_path: str :param text: Text that should be shown in menu items for this action. :type text: str :param callback: Function to be called when the action is triggered. :type callback: function :param enabled_flag: A flag indicating if the action should be enabled by default. Defaults to True. :type enabled_flag: bool :param add_to_menu: Flag indicating whether the action should also be added to the menu. Defaults to True. :type add_to_menu: bool :param add_to_toolbar: Flag indicating whether the action should also be added to the toolbar. Defaults to True. :type add_to_toolbar: bool :param status_tip: Optional text to show in a popup when mouse pointer hovers over the action. :type status_tip: str :param parent: Parent widget for the new action. Defaults None. :type parent: QWidget :param whats_this: Optional text to show in the status bar when the mouse pointer hovers over the action. :returns: The action that was created. Note that the action is also added to self.actions list. :rtype: QAction """ icon = QIcon(icon_path) action = QAction(icon, text, parent) action.triggered.connect(callback) action.setEnabled(enabled_flag) if status_tip is not None: action.setStatusTip(status_tip) if whats_this is not None: action.setWhatsThis(whats_this) if add_to_toolbar: self.toolbar.addAction(action) if add_to_menu: self.iface.addPluginToMenu( self.menu, action) self.actions.append(action) return action def initGui(self): """Create the menu entries and toolbar icons inside the QGIS GUI.""" qgis_log_tools.logMessageINFO("Launch 'InitGui(...)' ...") """Create the menu entries and toolbar icons inside the QGIS GUI.""" icon_path = ':/plugins/interactive_map_tracking/icon.png' # icon_path = ':/plugins/interactive_map_tracking/icon_svg.png' self.add_action( icon_path, text=self.tr(u'Tools for Interactive Map Tracking'), callback=self.run, parent=self.iface.mainWindow()) # self.init_plugin() # Connections # activate/desactivate plugin self.dlg.enablePlugin.clicked.connect(self.enabled_plugin) # activate/desactivate autosave self.dlg.enableAutoSave.clicked.connect(self.enabled_autosave) # activate/desactive tracking position self.dlg.enableTrackPosition.clicked.connect(self.enabled_trackposition) # box for tracking layers self.dlg.refreshLayersListForTrackPosition.clicked.connect(self.refreshComboBoxLayers) QObject.connect(self.dlg.trackingPositionLayerCombo, SIGNAL("currentIndexChanged ( const QString & )"), self.currentIndexChangedTPLCB) QObject.connect(self.dlg.IMT_Window_Tabs, SIGNAL("currentChanged (int)"), self.QTabWidget_CurrentChanged) # Dev Debug self.dlg.enableLogging.clicked.connect(self.enableLogging) self.dlg.enableUseMutexForTP.clicked.connect(self.enableUseMutexForTP) # hide the window plugin # don't change the state (options) of the plugin self.dlg.buttonHide.clicked.connect(self.hide_plugin) # self.refreshComboBoxLayers() self.thresholdChanged() # #QgsMessageLog.logMessage("enableLogging()") self.enableLogging() self.enableUseMutexForTP() def unload(self): """Removes the plugin menu item and icon from QGIS GUI.""" for action in self.actions: self.iface.removePluginMenu( self.tr(u'&Interactive Map Tracking'), action) self.iface.removeToolBarIcon(action) def onResizeEvent(self, event): # url: http://openclassrooms.com/forum/sujet/dimensionnement-automatique-d-une-qtabwidget QTabWidget.resizeEvent(self.dlg.IMT_Window_Tabs, event) # url: http://qt-project.org/doc/qt-4.8/qresizeevent.html self.dict_tabs_size[self.dlg.IMT_Window_Tabs.currentIndex()] = event.size() def run(self): """Run method that performs all the real work""" # # set the icon IMT ^^ icon_path = ':/plugins/interactive_map_tracking/icon.png' self.dlg.setWindowIcon(QIcon(icon_path)) # set the tab at init self.dlg.IMT_Window_Tabs.setCurrentIndex(0) # url: http://qt-project.org/doc/qt-4.8/qtabwidget.html#resizeEvent self.dlg.IMT_Window_Tabs.resizeEvent = self.onResizeEvent # show the dialog self.dlg.show() # self.enabled_plugin() # Run the dialog event loop self.dlg.exec_() def init_plugin(self): """ Init the plugin - Set defaults values in QSetting # note : some value are already setted ! - Setup the GUI """ qgis_log_tools.logMessageINFO("Launch 'init_plugin(...)' ...") s = QSettings() # retrieve default states from Qt Creator GUI design self.update_setting(s, "enabledPlugin", self.dlg.enablePlugin) self.update_setting(s, "enabledAutoSave", self.dlg.enableAutoSave) self.update_setting(s, "enabledTrackPosition", self.dlg.enableTrackPosition) self.update_setting(s, "enabledLogging", self.dlg.enableLogging) self.update_setting(s, "enableV2", self.dlg.enableUseMutexForTP) self.thresholdChanged() s.setValue(self.qsettings_prefix_name + "threshold", str(self.threshold)) if s.value(self.qsettings_prefix_name + "enabledPlugin", "") == "true": self.update_checkbox(s, "enableAutoSave", self.dlg.enableAutoSave) self.update_checkbox(s, "enableTrackPosition", self.dlg.enableTrackPosition) self.update_checkbox(s, "enableLogging", self.dlg.enableLogging) self.update_checkbox(s, "enableV2", self.dlg.enableUseMutexForTP) # self.dlg.thresholdLabel.setEnabled(True) self.dlg.threshold_extent.setEnabled(True) QObject.connect(self.dlg.threshold_extent, SIGNAL("returnPressed ()"), self.thresholdChanged) self.thresholdChanged() else: # self.dlg.enableAutoSave.setDisabled(True) self.dlg.enableTrackPosition.setDisabled(True) self.dlg.enableLogging.setDisabled(True) self.dlg.enableUseMutexForTP.setDisabled(True) self.dlg.thresholdLabel.setDisabled(True) self.dlg.threshold_extent.setDisabled(True) # QObject.disconnect(self.dlg.threshold_extent, SIGNAL("returnPressed ()"), self.thresholdChanged) QObject.disconnect(self.dlg.webView_about, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) QObject.disconnect(self.dlg.webView_userdoc, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) def update_setting(self, _settings, _name_in_setting, _checkbox): """ :param _settings: :param _name_in_setting: :param _checkbox: """ if _checkbox.isChecked(): _settings.setValue(self.qsettings_prefix_name + _name_in_setting, "true") else: _settings.setValue(self.qsettings_prefix_name + _name_in_setting, "false") def update_checkbox(self, _settings, _name_in_setting, _checkbox): """ According to values stores in QSetting, update the state of a checkbox :param _settings: (local) Setting from Qt :type _settings: QSettings :param _name_in_setting: setting's name for the _checkbox in QSettings :type _name_in_setting: QString :param _checkbox: CheckBox to update state :type _checkbox: QCheckBox """ if _settings.value(self.qsettings_prefix_name + _name_in_setting, "") == "true": _checkbox.setDisabled(False) _checkbox.setChecked(True) else: _checkbox.setChecked(False) _checkbox.setDisabled(True) def disconnectSignaleForLayerCrsChanged(self, layer): """ Disconnect the signal: 'layerCrsChanged' of the layer given :param layer: :return: """ if None != layer and self.bSignalForLayerModifiedConnected: QObject.disconnect(layer, SIGNAL("layerCrsChanged()"), self.currentLayerCrsChanged) self.bSignalForLayerCrsChangedConnected = False # qgis_log_tools.logMessageINFO("Disconnect SIGNAL on layer: " + layer.name()) def disconnectSignalForLayerModified(self, layer): """ Disconnect the signal: 'Layer Modified' of the layer given :param layer: QGIS Layer :type layer: QgsMapLayer """ if None != layer and self.bSignalForLayerModifiedConnected: QObject.disconnect(layer, SIGNAL("layerModified()"), self.currentLayerModified) self.bSignalForLayerModifiedConnected = False # qgis_log_tools.logMessageINFO("Disconnect SIGNAL on layer: " + layer.name()) def disconnectSignalForLayerChanged(self): """ Disconnect the signal: 'Current Layer Changed' of the QGIS Interface""" # if self.bSignalForLayerChangedConnected: QObject.disconnect(self.iface, SIGNAL("currentLayerChanged(QgsMapLayer*)"), self.qgisInterfaceCurrentLayerChanged) self.bSignalForLayerChangedConnected = False # qgis_log_tools.logMessageINFO("Disconnect SIGNAL on QGISInterface") def disconnectSignalForExtentsChanged(self): """ Disconnect the signal: 'Canvas Extents Changed' of the QGIS MapCanvas """ # if self.bSignalForExtentsChangedConnected: self.iface.mapCanvas().extentsChanged.disconnect(self.canvasExtentsChanged) self.bSignalForExtentsChangedConnected = False # qgis_log_tools.logMessageINFO("Disconnect SIGNAL on QGISMapCanvas") def connectSignaleForLayerCrsChanged(self, layer): """ Disconnect the signal: 'layerCrsChanged' of the layer given :param layer: :return: """ if None != layer and not self.bSignalForLayerCrsChangedConnected: QObject.connect(layer, SIGNAL("layerCrsChanged()"), self.currentLayerCrsChanged) self.bSignalForLayerCrsChangedConnected = False # qgis_log_tools.logMessageINFO("Connect SIGNAL on layer: " + layer.name()) def connectSignalForLayerModified(self, layer): """ Connect the signal: "Layer Modified" to the layer given :param layer: QGIS layer :type layer: QgsMapLayer """ if None != layer and not self.bSignalForLayerModifiedConnected: QObject.connect(layer, SIGNAL("layerModified()"), self.currentLayerModified) self.bSignalForLayerModifiedConnected = True # qgis_log_tools.logMessageINFO("Connect SIGNAL on layer: " + layer.name()) def connectSignalForLayerChanged(self): """ Connect the signal: 'Layer Changed' to the layer given """ # if not self.bSignalForLayerChangedConnected: QObject.connect(self.iface, SIGNAL("currentLayerChanged(QgsMapLayer*)"), self.qgisInterfaceCurrentLayerChanged) self.bSignalForLayerChangedConnected = True # qgis_log_tools.logMessageINFO("Connect SIGNAL on QGISInterface") def connectSignalForExtentsChanged(self): """ Connect the signal: 'Extent Changed' to the QGIS MapCanvas """ # if not self.bSignalForExtentsChangedConnected: self.iface.mapCanvas().extentsChanged.connect(self.canvasExtentsChanged) self.bSignalForExtentsChangedConnected = True # qgis_log_tools.logMessageINFO("Connect SIGNAL on QGISMapCanvas") def disconnectSignals(self, layer): """ Disconnect alls signals (of current layer & QGIS MapCanvas, Interface) """ # qgis_log_tools.logMessageINFO("Disconnect all SIGNALS ...") # self.disconnectSignalForLayerModified(layer) self.disconnectSignalForLayerChanged() self.disconnectSignalForExtentsChanged() self.disconnectSignaleForLayerCrsChanged() # QObject.disconnect(self.dlg.webView_about, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) QObject.disconnect(self.dlg.webView_userdoc, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) def qgisInterfaceCurrentLayerChanged(self, layer): """ Action when the signal: 'Current Layer Changed' from QGIS MapCanvas is emitted&captured :param layer: QGIS layer -> current layer using by Interactive_Map_Tracking plugin :type layer: QgsMapLayer """ # on deconnecte le layer courant if None != self.currentLayer: self.disconnectSignalForLayerModified(self.currentLayer) # Filtre sur les layers a "surveiller" if not qgis_layer_tools.filter_layer_for_imt(layer): layer = None if None != layer: self.currentLayer = layer # if self.dlg.enablePlugin.isChecked(): if self.dlg.enableAutoSave.isChecked(): qgis_layer_tools.commitChangesAndRefresh(self.currentLayer, self.iface, QSettings()) self.connectSignalForLayerModified(self.currentLayer) qgis_log_tools.logMessageINFO("Change Layer: layer.name=" + layer.name()) else: qgis_log_tools.logMessageINFO("No layer selected (for ITP)") def qgisInterfaceProjectRead(self): """ Action when the signal: 'Project Read' from QGIS Inteface is emitted&captured """ pass def currentLayerModified(self): """ Action when the signal: 'Layer Modified' from QGIS Layer (current) is emitted&captured We connect a new signal: 'RenderComplete' to perform operation after the QGIS rendering (deferred strategy) """ # if None != self.currentLayer: if None != self.iface.mapCanvas(): QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter*)"), self.currentLayerModifiedAndRenderComplete) qgis_log_tools.logMessageINFO("Detect modification on layer:" + self.currentLayer.name()) def currentLayerModifiedAndRenderComplete(self): """ Action when the signal: 'Render Complete' from QGIS Layer (current) is emitted&captured (after emitted&captured signal: 'Layer Modified') """ # QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter*)"), self.currentLayerModifiedAndRenderComplete) # # qgis_layer_tools.bRefreshMapFromAutoSave = True qgis_layer_tools.commitChangesAndRefresh(self.currentLayer, self.iface, QSettings()) def canvasExtentsChanged(self): """ Action when the signal: 'Extent Changed' from QGIS MapCanvas is emitted&captured We connect a new signal: 'RenderComplete' to perform operation after the QGIS rendering (deferred strategy) """ if self.bUseV2Functionnalities: # filter on our dummy refreshMap using little zoom on mapcanvas (=> canvasExtentChanged was emitted) # if self.bRefreshMapFromAutoSave: # self.bRefreshMapFromAutoSave = False # else: self.update_track_position_with_qtimers() else: QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter*)"), self.canvasExtentsChangedAndRenderComplete) def canvasExtentsChangedAndRenderComplete(self): """ Action when the signal: 'Render Complete' from QGIS MapCanvas is emitted&captured (after a emitted&captured signal: 'Extent Changed') """ # QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter*)"), self.canvasExtentsChangedAndRenderComplete) if self.bUseV2Functionnalities: self.update_track_position_with_qtimers() else: self.update_track_position() def filter_layer_for_tracking_position(layer): # set Attributes for Layer in DB # On récupère automatiquement le nombre de champs qui compose les features présentes dans ce layer # How to get field names in pyqgis 2.0 # url: http://gis.stackexchange.com/questions/76364/how-to-get-field-names-in-pyqgis-2-0 dataProvider = layer.dataProvider() # Return a map of indexes with field names for this layer. # url: http://qgis.org/api/classQgsVectorDataProvider.html#a53f4e62cb05889ecf9897fc6a015c296 fields = dataProvider.fields() # get fields name from the layer field_names = [field.name() for field in fields] # find index for field 'user-id' id_user_id_field = imt_tools.find_index_field_by_name(field_names, "user_id") if id_user_id_field == -1: qgis_log_tools.logMessageWARNING( "No \"user_id\"::text field attributes found in layer: " + layer.name()) return -1 # find index for field 'writing_time' id_w_time_field = imt_tools.find_index_field_by_name(field_names, "w_time") if id_w_time_field == -1: qgis_log_tools.logMessageWARNING( "No \"w_time\"::text attributes found in layer: " + layer.name()) return -1 return [id_user_id_field, id_w_time_field] def currentIndexChangedTPLCB(self, layer_name): """ :param layer_name: :return: """ qgis_log_tools.logMessageINFO("Launch 'currentIndexChangedTPLCB(self, layer_name=" + layer_name + ")' ...") # layer_name == "" when when we clear the combobox (for example) if layer_name == "": return layer_for_tp = imt_tools.find_layer_in_qgis_legend_interface(self.iface, layer_name) self.currentLayerForTrackingPosition = layer_for_tp # set the layer for tracking position (plugin) list_id_fields = qgis_layer_tools.filter_layer_trackingposition_required_fields(layer_for_tp) self.tp_id_user_id = list_id_fields[0] self.tp_id_w_time = list_id_fields[1] dataProvider = layer_for_tp.dataProvider() # Return a map of indexes with field names for this layer. # url: http://qgis.org/api/classQgsVectorDataProvider.html#a53f4e62cb05889ecf9897fc6a015c296 fields = dataProvider.fields() # set the fields # reset all fields in None self.values = [None for i in range(fields.count())] # set user_id field (suppose constant for a layer (in QGIS session)) self.values[self.tp_id_user_id] = self.tp_user_name def refreshComboBoxLayers(self): """ Action when the Combo Box attached to refreshing layers for tracking position is clicked """ # qgis_log_tools.logMessageINFO("Launch 'refreshComboBoxLayers(...)' ...") self.dlg.trackingPositionLayerCombo.clear() idComboBoxIndex = -1 idComboBoxForDefaultSearchLayer = -1 # search a default layer ('camera_position') if no layer was selected before # else we search the same layer (if it present) if self.currentLayerForTrackingPosition is None: defaultSearchLayer = "camera_position" else: defaultSearchLayer = self.currentLayerForTrackingPosition.name() # dictionnary to link id on combobox and objects QGIS layer dict_key_comboboxindex_value_layer = {} # layers = QgsMapLayerRegistry.instance().mapLayers().values() for layer in layers: # filter on layers to add in combobox if qgis_layer_tools.filter_layer_for_trackingposition(layer): idComboBoxIndex = self.dlg.trackingPositionLayerCombo.count() dict_key_comboboxindex_value_layer[idComboBoxIndex] = layer self.dlg.trackingPositionLayerCombo.addItem(layer.name(), layer) # default search layer if layer.name() == defaultSearchLayer: idComboBoxForDefaultSearchLayer = idComboBoxIndex # qgis_log_tools.logMessageINFO( defaultSearchLayer + " layer found - id in combobox: " + str(idComboBoxForDefaultSearchLayer) ) # update GUI if idComboBoxForDefaultSearchLayer != -1: self.dlg.trackingPositionLayerCombo.setCurrentIndex(idComboBoxForDefaultSearchLayer) idComboBoxIndex = idComboBoxForDefaultSearchLayer if idComboBoxIndex != -1: try: self.currentLayerForTrackingPosition = dict_key_comboboxindex_value_layer[idComboBoxIndex] qgis_log_tools.logMessageINFO("Set the layer to: " + self.currentLayerForTrackingPosition.name()) except: qgis_log_tools.logMessageINFO("!!! ERROR for selecting layer !!!") def enabled_autosave(self): """ Action when the checkbox 'Enable Auto-Save and Refresh' is clicked """ # qgis_log_tools.logMessageINFO("Launch 'enable_autosave(...)' ...") resultCommit = False # filtre sur les layers if qgis_layer_tools.filter_layer_for_imt(self.iface.activeLayer()): self.currentLayer = self.iface.activeLayer() else: self.currentLayer = None # if self.dlg.enableAutoSave.isChecked(): # resultCommit = qgis_layer_tools.commitChangesAndRefresh(self.currentLayer, self.iface, QSettings()) # self.connectSignalForLayerModified(self.currentLayer) else: self.disconnectSignalForLayerModified(self.currentLayer) # return resultCommit def stop_threads(self): if self.qtimer_tracking_position_rtt_to_memory.isActive(): self.qtimer_tracking_position_rtt_to_memory.stop() if self.qtimer_tracking_position_memory_to_geom.isActive(): self.qtimer_tracking_position_memory_to_geom.stop() if self.qtimer_tracking_position_geom_to_layer.isActive(): self.qtimer_tracking_position_geom_to_layer.stop() if self.qtimer_tracking_position_layers_to_commit.isActive(): self.qtimer_tracking_position_layers_to_commit.stop() def enabled_trackposition(self): """ Action when the checkbox 'Enable Tracking Position' is clicked """ # qgis_log_tools.logMessageINFO("Launch 'enable_trackposition(...)' ...") if self.dlg.enableTrackPosition.isChecked(): # self.refreshComboBoxLayers() # self.connectSignalForExtentsChanged() else: self.disconnectSignalForExtentsChanged() self.stop_threads() def enableLogging(self): """ Action when the checkbox 'Enable LOGging' is clicked """ # qgis_log_tools.setLogging(self.dlg.enableLogging.isChecked()) def enableUseMutexForTP(self): """ Action when the checkbox 'Use Mutex (for TrackingPosition) [BETA]' is clicked Beta test for: - using Mutex to protect commitChange operation in multi-threads context (signals strategy) - using queuing requests from TrackPosition (we try to amortize the cost and effects on QGIS GUI) """ self.bUseV2Functionnalities = self.dlg.enableUseMutexForTP.isChecked() if not(self.dlg.enableUseMutexForTP.isChecked() and self.dlg.enableTrackPosition.isChecked()): self.stop_threads() def enabled_plugin(self): """ Action when the checkbox 'Enable SteetGen3 Plugin' is clicked Activate/desactivate all options/capabilities of IMT plugin: AutoSave&Refresh, TrackPosition """ qgis_log_tools.logMessageINFO("Launch 'enabled_plugin(...)' ...") #force the plugin to be in front self.dlg.raise_() resultCommit = False # filtre sur les layers a prendre en compte if qgis_layer_tools.filter_layer_postgis(self.iface.activeLayer()): self.currentLayer = self.iface.activeLayer() else: self.currentLayer = None if self.dlg.enablePlugin.isChecked(): # self.dlg.enableAutoSave.setEnabled(True) self.dlg.enableTrackPosition.setEnabled(True) self.dlg.enableLogging.setEnabled(True) self.dlg.thresholdLabel.setEnabled(True) self.dlg.threshold_extent.setEnabled(True) QObject.connect(self.dlg.threshold_extent, SIGNAL("editingFinished ()"), self.thresholdChanged) self.dlg.enableUseMutexForTP.setEnabled(True) # self.connectSignalForLayerChanged() if self.dlg.enableAutoSave.isChecked(): self.connectSignalForLayerModified(self.currentLayer) resultCommit = qgis_layer_tools.commitChangesAndRefresh(self.currentLayer, self.iface, QSettings()) if self.dlg.enableTrackPosition.isChecked(): self.refreshComboBoxLayers() self.connectSignalForExtentsChanged() else: self.dlg.enableAutoSave.setDisabled(True) self.dlg.enableTrackPosition.setDisabled(True) self.dlg.enableLogging.setDisabled(True) self.dlg.thresholdLabel.setDisabled(True) self.dlg.threshold_extent.setDisabled(True) QObject.disconnect(self.dlg.threshold_extent, SIGNAL("returnPressed ()"), self.thresholdChanged) self.dlg.enableUseMutexForTP.setDisabled(True) # self.disconnectSignalForLayerChanged() if self.dlg.enableAutoSave.isChecked(): self.disconnectSignalForLayerModified(self.currentLayer) if self.dlg.enableTrackPosition.isChecked(): self.disconnectSignalForExtentsChanged() self.stop_threads() return resultCommit def update_setting(self, _s, _name_in_setting, _checkbox): """ Update the value store in settings (Qt settings) according to checkbox (Qt) status :param _s: Qt Settings :type _s: QSettings :param _name_in_setting: Name of the setting in QSetting :type _name_in_setting: QString :param _checkbox: CheckBox link to this setting :type _checkbox: QCheckBox """ if _checkbox.isChecked(): _s.setValue(self.qsettings_prefix_name + _name_in_setting, "true") else: _s.setValue(self.qsettings_prefix_name + _name_in_setting, "false") def update_settings(self, _s): """ Update all settings :param _s: Qt Settings :type _s: QSettings """ dlg = self.dlg # Update (Qt) settings according to the GUI IMT plugin self.update_setting(_s, "enabledPlugin", dlg.enablePlugin) self.update_setting(_s, "enablesAutoSave", dlg.enableAutoSave) self.update_setting(_s, "enablesTrackPosition", dlg.enableTrackPosition) def hide_plugin(self): """ Hide the plugin. Don't change the state of the plugin """ # @FIXME there is a mistake here, this function is also called before init. Because QSettings is a singleton, variable are inited before end of init ! self.update_settings(QSettings()) self.dlg.hide() def thresholdChanged(self): """ QT Line edit changed, we get/interpret the new value (if valid) Format for threshold scale : 'a'[int]:'b'[int] We just used 'b' for scale => threshold_scale = 'b' """ validFormat = True try: threshold_string = self.dlg.threshold_extent.text() self.threshold = int(threshold_string) except ValueError: try: a, b = threshold_string.split(":") try: int(a) # just to verify the type of 'a' self.threshold = int(b) # only use 'b' to change the threshold scale value except Exception: validFormat = False # problem with 'a' except Exception: validFormat = False # problem with 'b' # Input format problem! if validFormat == False: qgis_log_tools.logMessageWARNING("Invalid input for scale! Scale format input : [int]:[int] or just [int]") # just for visualisation purpose self.dlg.threshold_extent.setText("1:" + str(self.threshold)) def update_size_dlg_from_frame(self, dlg, frame, margin_width=60): """ :param dlg: :param frame: :param margin_width: :return: """ width = frame.contentsSize().width() height = frame.contentsSize().height() # width += margin_width # width = max(1024, width) height = min(768, max(height, width*4/3)) # dlg.resize(width, height) # return width, height def update_size_dlg_from_tuple(self, dlg, tuple): dlg.resize(tuple.width, tuple.height) return tuple.width, tuple.height def webview_loadFinished(self, ok): """ :param ok: """ # safe because we stop the listener of this event when we changed the tab webview = self.webview_current tuple_webview = self.webview_dict.setdefault(webview, self.webview_default_tuple) last_state = tuple_webview.state qgis_log_tools.logMessageINFO("#last_state : " + str(last_state)) if ok: # we have loaded a HTML page (offline or online) qgis_log_tools.logMessageINFO("## WebView : OK") # update the QDiaglog sizes width, height = self.update_size_dlg_from_frame( self.dlg, webview.page().currentFrame(), self.webview_margin ) # update the tuple for this webview self.webview_dict[webview] = self.TP_NAMEDTUPLE_WEBVIEW( 'online', width, height, tuple_webview.online_url, tuple_webview.offline_url ) # qgis_log_tools.logMessageINFO("### width : " + str(width) + " - height : " + str(height)) else: if self.webview_dict[webview].state == 'online': qgis_log_tools.logMessageINFO("## WebView : FAILED TO LOAD from " + str(self.webview_dict[webview].online_url))#online_url else : qgis_log_tools.logMessageINFO("## WebView : FAILED TO LOAD from " + str(self.webview_dict[webview].offline_url)) # if self.webview_dict[webview].state != 'offline': #regular case we failed, but we are going to try again self.webview_dict[webview] = self.TP_NAMEDTUPLE_WEBVIEW( 'offline', tuple_webview.width, tuple_webview.height, tuple_webview.online_url, tuple_webview.offline_url ) # try to load the offline version (still in initial state) # @FIXME : doesn't load the images in offline mode on XP... webview.load(QUrl(tuple_webview.offline_url)) else: # we already failed last, time, stopping to try qgis_log_tools.logMessageINFO("## WebView : stopping to try to retrieve html") def webview_load_page(self, webview, margin=60): """ :param webview: :param margin: :return: """ # tuple_webview = self.webview_dict.setdefault(webview, self.webview_default_tuple) self.webview_margin = margin self.webview_current = webview # signal : 'loadFinished(bool)' QObject.connect(webview, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) # reset/clear the web widget # url : http://qt-project.org/doc/qt-4.8/qwebview.html#settings websetting = webview.settings() websetting.clearMemoryCaches() globalsettings = websetting.globalSettings() globalsettings.clearMemoryCaches() if tuple_webview.state == 'offline': # offline webview.load(tuple_webview.offline_url) else: # 'init' or 'online' webview.load(tuple_webview.online_url) def QTabWidget_CurrentChanged(self, index): """ :param index: :return: """ QObject.disconnect(self.dlg.webView_about, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) QObject.disconnect(self.dlg.webView_userdoc, SIGNAL("loadFinished (bool)"), self.webview_loadFinished) if index == 3: qgis_log_tools.logMessageINFO("## Tab : User Doc") self.webview_load_page(self.dlg.webView_userdoc, self.webview_margin) elif index == 4: qgis_log_tools.logMessageINFO("## Tab : About") self.webview_load_page(self.dlg.webView_about, self.webview_margin) else: self.dict_tabs_size[index] = self.dict_tabs_size.setdefault(index, self.dlg.minimumSize()) self.dlg.resize(self.dict_tabs_size[index]) # TODO: optimize update_track_position because it's a (critical) real-time method ! def update_track_position(self, bWithProjectionInCRSLayer=True, bUseEmptyFields=False): """ Perform the update tracking position (in real-time) Save the current Qgis Extent (+metadatas) into a QGIS vector layer (compatible for tracking position). The QGIS Vector Layer need at least 2 attributes: - user_id: text - w_time: text :param bWithProjectionInCRSLayer: Option [default=True]. If True, project the QGIS MapCanvas extent (QGIS World CRS) into Layer CRS (CRS=Coordinates Reference System) :type bWithProjectionInCRSLayer: bool :param bUseEmptyFields: Option [default=False] If True, don't set fields (user_id, w_time) If False, use a auto-generate id for user (user-name from OS + IP Lan) and current date time (from time stamp os into QDateTime string format) :type bUseEmptyFields: bool """ if self.currentLayerForTrackingPosition is None: return -1 mapCanvas = self.iface.mapCanvas() mapcanvas_extent = mapCanvas.extent() layer_for_polygon_extent = self.currentLayerForTrackingPosition # # filter on extent size # try: # threshold = int(self.dlg.threshold_extent.text()) # except Exception: # qgis_log_tools.logMessageWARNING("Threshold can only be a number") # return -1 # if max(mapcanvas_extent.width(), mapcanvas_extent.height()) > threshold: if mapCanvas.scale() > self.threshold: qgis_log_tools.logMessageWARNING("MapCanvas extent size exceed the Threshold size for tracking") qgis_log_tools.logMessageWARNING( "-> MapCanvas extent size= " + str(max(mapcanvas_extent.width(), mapcanvas_extent.height())) + "\tThreshold size= " + str(self.threshold)) return -2 # get the list points from the current extent (from QGIS MapCanvas) list_points_from_mapcanvas = imt_tools.construct_listpoints_from_extent(mapcanvas_extent) ## NEED TO OPTIMIZE ## if bWithProjectionInCRSLayer: # url: http://qgis.org/api/classQgsMapCanvas.html#af0ffae7b5e5ec8b29764773fa6a74d58 extent_src_crs = mapCanvas.mapSettings().destinationCrs() # url: http://qgis.org/api/classQgsMapLayer.html#a40b79e2d6043f8ec316a28cb17febd6c extent_dst_crs = layer_for_polygon_extent.crs() # url: http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/crs.html xform = QgsCoordinateTransform(extent_src_crs, extent_dst_crs) # list_points = [xform.transform(point) for point in list_points_from_mapcanvas] else: list_points = list_points_from_mapcanvas ## NEED TO OPTIMIZE ## # list of lists of points gPolygon = QgsGeometry.fromPolygon([list_points]) fet = QgsFeature() fet.setGeometry(gPolygon) if bUseEmptyFields: pass else: # update the time stamp attribute self.values[self.tp_id_w_time] = imt_tools.get_timestamp_from_qt_string_format() fet.setAttributes(self.values) # How can I programatically create and add features to a memory layer in QGIS 1.9? # url: http://gis.stackexchange.com/questions/60473/how-can-i-programatically-create-and-add-features-to-a-memory-layer-in-qgis-1-9 # write the layer and send request to DB layer_for_polygon_extent.startEditing() layer_for_polygon_extent.addFeatures([fet], False) # bool_makeSelected=False # resultCommit = layer_for_polygon_extent.commitChanges() # if resultCommit: qgis_log_tools.logMessageINFO("Location saved in layer: " + layer_for_polygon_extent.name()) else: qgis_log_tools.logMessageCRITICAL( "saving position failed : are you sure the selected tracking layer: " + layer_for_polygon_extent.name() + "has at least 2 attributes : \"user_id\"::text and \"w_time\"::text") commitErrorString = layer_for_polygon_extent.commitErrors()[2] commitErrorStringShort = commitErrorString[commitErrorString.rfind(":") + 2:len( commitErrorString)] # +2 to skip ': ' prefix of commitError msg self.iface.messageBar().pushMessage("IMT. ERROR : " + "\"" + commitErrorStringShort + "\"", "", QgsMessageBar.CRITICAL, 0) # return resultCommit def update_track_position_with_qtimers(self, bWithProjectionInCRSLayer=True, bUseEmptyFields=False): """ Note: it's not a Thread/QTimer :param bWithProjectionInCRSLayer: :param bUseEmptyFields: :return: """ bIsTimeToUpdate = self.tp_timers.is_time_to_update("update_track_position_with_qtimers", "tp_threshold_time_for_realtime_tracking_position") if bIsTimeToUpdate: # Do we have a current layer activate for tracking position ? if self.currentLayerForTrackingPosition is None: # if not, no need to go further return -1 mapCanvas = self.iface.mapCanvas() mapcanvas_extent = mapCanvas.extent() # Add a filter to prevent to save the same extent (useful in regards to our 'dummy' approach to refresh map) if imt_tools.extent_equal(self.tp_last_extent_saved, mapcanvas_extent, 0.01): # 10 mm return -3 # Filter on extent map scale (size) # We use a threshold scale (user input in the GUI) if mapCanvas.scale() > self.threshold: qgis_log_tools.logMessageWARNING("MapCanvas extent scale exceed the Threshold scale for tracking") qgis_log_tools.logMessageWARNING( "-> MapCanvas scale= " + str(mapCanvas.scale()) + "\tThreshold scale= " + str(self.threshold)) return -2 layer_for_itp = self.currentLayerForTrackingPosition # Build the tuple contains: # - layer used for tracking position # - list of points extract from the current extent for QGIS Map Canvas # - acquisition time for this track rt_ntuple = self.TP_NAMEDTUPLE_LET( layer_for_itp, imt_tools.construct_listpoints_from_extent(mapcanvas_extent), imt_tools.get_timestamp() ) self.tp_last_extent_saved = mapcanvas_extent self.tp_timers.update("update_track_position_with_qtimers") # This queue is not protect (multi-threads context) # but it's oki in your case # queue in write-append only here ! self.tp_queue_rt_ntuples_let.put(rt_ntuple) interval = self.tp_timers.get_delay("tp_threshold_time_for_tp_to_mem") self.qtimer_tracking_position_rtt_to_memory.start(interval) # update timer for still moving here ! self.tp_timers.update("still moving") return 1 def tracking_position_qtimer_rttp_to_memory(self): """ Action perform when the QTimer for Tracking Position is time out Enqueue requests from Tracking Position to amortize the cost&effect on QGIS GUI This pass transfer events inputs map moving into memory (QGIS -> Python) """ qgis_log_tools.logMessageINFO("~~ CALL : tracking_position_qtimer_rttp_to_memory ~~") # qgis_log_tools.logMessage("self.tp_timers.delta_with_current_time('tp_time_last_rttp_to_mem'): " # + str(self.tp_timers.delta_with_current_time("tp_time_last_rttp_to_mem"))) # bIsTimeToUpdate = self.tp_timers.is_time_to_update("tp_time_last_rttp_to_mem", # "tp_threshold_time_for_tp_to_mem") size_tp_queue = self.tp_queue_rt_ntuples_let.qsize() # this queue is not protect (multi-threads context) # but it's oki in your case while not self.tp_queue_rt_ntuples_let.empty(): # queue in read-write-delete/pop here tp_tuple = self.tp_queue_rt_ntuples_let.get() self.tp_queue_rt_ntuples_let.task_done() # url: http://stackoverflow.com/questions/20585920/how-to-add-multiple-values-to-a-dictionary-key-in-python self.tp_dict_key_l_values_et.setdefault(tp_tuple.layer, []).append( self.TP_NAMEDTUPLE_ET(tp_tuple.extent, tp_tuple.w_time) ) if size_tp_queue != 0: # update timer # self.tp_timers.update("tp_time_last_rttp_to_mem") # qgis_log_tools.logMessageINFO("** Pack " + str(size_tp_queue) + " tuples for 1 call -> mem") ##################### # Process Management ##################### self.qtimer_tracking_position_rtt_to_memory.stop() # interval = self.tp_timers.get_delay("tp_threshold_time_for_construct_geom") self.qtimer_tracking_position_memory_to_geom.start(interval) ##################### def tracking_position_qtimer_memory_to_geom(self): """ Action perform when the QTimer for Tracking Position is time out Enqueue requests from Tracking Position to amortize the cost&effect on QGIS GUI This pass convert tracking extents datas (MEMory side) to QGIS GEOMetries (MEMory side) In this pass we project the entries points in world (QGIS) CRS into CRS of the layer target (for tracking position) """ qgis_log_tools.logMessageINFO("~~ CALL : tracking_position_qtimer_memory_to_geom ~~") # qgis_log_tools.logMessage("self.tp_timers.delta_with_current_time('tp_time_last_rttp_to_mem'): " # + str(self.tp_timers.delta_with_current_time("tp_time_last_rttp_to_mem"))) # bIsTimeToUpdate = self.tp_timers.is_time_to_update("tp_time_last_rttp_to_mem", # "tp_threshold_time_for_construct_geom") mapCanvas = self.iface.mapCanvas() # url: http://qgis.org/api/classQgsMapCanvas.html#af0ffae7b5e5ec8b29764773fa6a74d58 extent_src_crs = mapCanvas.mapSettings().destinationCrs() append_in_dic = False for layer in self.tp_dict_key_l_values_et.keys(): layer_to_commit = layer # url: http://qgis.org/api/classQgsMapLayer.html#a40b79e2d6043f8ec316a28cb17febd6c extent_dst_crs = layer_to_commit.crs() # url: http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/crs.html xform = QgsCoordinateTransform(extent_src_crs, extent_dst_crs) tp_list_fets = [] # pop key from tracking position dictionary list_ntuples = self.tp_dict_key_l_values_et.pop(layer) append_at_least_1_fet = False for tp_namedtuple in list_ntuples: mapcanvas_extent = tp_namedtuple.extent w_time = tp_namedtuple.w_time # get the list points from the current extent (from QGIS MapCanvas) list_points_from_mapcanvas = mapcanvas_extent # TODO: add a option for this feature (Projected points in CRS destination layer) in GUI bWithProjectionInCRSLayer = True if bWithProjectionInCRSLayer: # list_points = [xform.transform(point) for point in list_points_from_mapcanvas] else: list_points = list_points_from_mapcanvas # list of lists of points gPolygon = QgsGeometry.fromPolygon([list_points]) fet = QgsFeature() fet.setGeometry(gPolygon) # update the time stamp attribute self.values[self.tp_id_w_time] = imt_tools.convert_timestamp_to_qt_string_format(w_time) fet.setAttributes(self.values) tp_list_fets.append(fet) append_at_least_1_fet = True if append_at_least_1_fet: self.tp_dict_key_l_values_listfeatures.setdefault(layer, []).append(tp_list_fets) append_in_dic = True qgis_log_tools.logMessageINFO( "-- Pack " + str(len(tp_list_fets)) + " features in layer: " + layer.name()) if append_in_dic: # update timer # self.tp_timers.update("tp_time_last_construct_geom") ##################### # Process Management ##################### # self.qtimer_tracking_position_memory_to_geom.stop() # interval = self.tp_timers.get_delay("tp_threshold_time_for_sending_geom_to_layer") interval += CONVERT_S_TO_MS(max(0.0, (self.tp_timers.get_delay("delay_time_still_moving")-self.tp_timers.delta_with_current_time("still moving")))) self.qtimer_tracking_position_geom_to_layer.start(interval) ##################### # qgis_log_tools.logMessage("=> still moving = " + str(self.tp_timers.get_delay("delay_time_still_moving")-self.tp_timers.delta_with_current_time("still moving"))) # qgis_log_tools.logMessage("=> still moving = " + str(max(0.0, self.tp_timers.get_delay("delay_time_still_moving")-self.tp_timers.delta_with_current_time("still moving")))) # qgis_log_tools.logMessage("delay= " + str(delay)) def tracking_position_qtimer_geom_to_layer(self): """ Action perform when the QTimer for Tracking Position is time out Enqueue requests from Tracking Position to amortize the cost&effect on QGIS GUI In this pass we transfer if timeout for delay is done and we 'not moving' on QGIS Map QGIS GEOmetries [MEM] into target Layer [MEM] This operation send/render geometries into the Layer (we see a rectangle representation of our extent on the screen) """ qgis_log_tools.logMessageINFO("~~ CALL : tracking_position_qtimer_geom_to_layer ~~") bNotMovingOnQGISMap = self.tp_timers.is_time_to_update("still moving", "delay_time_still_moving") # qgis_log_tools.logMessage("self.tp_timers.delta_with_current_time('still moving'): " + str(self.tp_timers.delta_with_current_time("still moving"))) # qgis_log_tools.logMessage("bNotMovingOnQGISMap: " + str(bNotMovingOnQGISMap)) # qgis_log_tools.logMessage("delay_time_still_moving: " + str(self.tp_timers.get_delay("delay_time_still_moving"))) # if bIsTimeToUpdate and bNotMovingOnQGISMap: if bNotMovingOnQGISMap: append_in_dict_one_time = False for layer in self.tp_dict_key_l_values_listfeatures.keys(): # from the dict we retrieve a list of list tp_list_of_list_fets = self.tp_dict_key_l_values_listfeatures.pop(layer) # How can I programatically create and add features to a memory layer in QGIS 1.9? # url: http://gis.stackexchange.com/questions/60473/how-can-i-programatically-create-and-add-features-to-a-memory-layer-in-qgis-1-9 # write the layer and send request to DB layer.startEditing() for tp_list_fets in tp_list_of_list_fets: layer.addFeatures(tp_list_fets, False) # bool_makeSelected=False self.tp_dict_layers_to_commit[layer] = 1 append_in_dict_one_time = True qgis_log_tools.logMessageINFO( "++ Pack requests => " + str(len(tp_list_of_list_fets)) + " extents for layer: " + layer.name()) if append_in_dict_one_time: # update timer # self.tp_timers.update("tp_time_last_send_geom_to_layer") ##################### # Process Management ##################### self.qtimer_tracking_position_geom_to_layer.stop() # interval = self.tp_timers.get_delay("tp_threshold_time_for_sending_layer_to_dp") interval += CONVERT_S_TO_MS(max(0.0, self.tp_timers.get_delay("delay_time_still_moving")-self.tp_timers.delta_with_current_time("still moving"))) self.qtimer_tracking_position_layers_to_commit.start(interval) ##################### # qgis_log_tools.logMessageINFO("tp_threshold_time_for_sending_layer_to_dp= " + str(self.tp_timers.get_delay("tp_threshold_time_for_sending_layer_to_dp"))) else: self.qtimer_tracking_position_geom_to_layer.setInterval(self.tp_timers.get_delay("delay_time_still_moving")*1000) def tracking_position_qtimer_layers_to_commit(self): """Action perform when the QTimer for Tracking Position is time out Enqueue requests from Tracking Position to amortize the cost&effect on QGIS GUI In this pass, we commit QGIS Layer into Data Provider (PostGIS DataBase, or ShapeFile, or anything (local or distant) MEM -> DP """ qgis_log_tools.logMessageINFO("~~ CALL : tracking_position_qtimer_layers_to_commit ~~") bNotMovingOnQGISMap = self.tp_timers.is_time_to_update("still moving", "delay_time_still_moving") # qgis_log_tools.logMessage("self.tp_timers.delta_with_current_time(''tp_time_last_send_geom_to_layer''):"+str(self.tp_timers.delta_with_current_time("tp_time_last_send_geom_to_layer"))) # qgis_log_tools.logMessage("bNotMovingOnQGISMap: " + str(bNotMovingOnQGISMap)) if bNotMovingOnQGISMap: layers = self.tp_dict_layers_to_commit.keys() # clear dict self.tp_dict_layers_to_commit.clear() for layer_to_commit in layers: # try: # update timer # self.tp_timers.update("tracking_position_qtimer_layers_to_commit") resultCommit = layer_to_commit.commitChanges() if resultCommit: qgis_log_tools.logMessageINFO("* Commit change layer:" + layer_to_commit.name + " [OK]") except: # TODO : deal with errors/exceptions pass ##################### # Process Management ##################### # last link of processes chain self.qtimer_tracking_position_layers_to_commit.stop() ##################### else: ##################### # Process Management ##################### interval = CONVERT_S_TO_MS(self.tp_timers.get_delay("delay_time_still_moving")) self.qtimer_tracking_position_layers_to_commit.setInterval(interval) ##################### def tracking_position_log_threads_infos(self): """ DEBUG INFORMATIONS """ qgis_log_tools.logMessageINFO( "self.tp_queue_rt_ntuples_let.qsize(): " + str(self.tp_queue_rt_ntuples_let.qsize())) qgis_log_tools.logMessageINFO( "- self.tp_dict_key_l_values_et.qsize(): " + str(len(self.tp_dict_key_l_values_et))) qgis_log_tools.logMessageINFO("- - self.tp_list_fets: " + str(len(self.tp_list_fets))) qgis_log_tools.logMessageINFO( "- - - self.tp_dict_key_l_values_listfeatures: " + str(len(self.tp_dict_key_l_values_listfeatures))) qgis_log_tools.logMessageINFO( "- - - - self.tp_list_layers_to_commit: " + str(len(self.tp_dict_layers_to_commit)))
gpl-3.0
6,448,873,579,100,184,000
42.5639
194
0.61615
false
bccp/nbodykit
nbodykit/tests/test_binned_stat.py
2
9104
from runtests.mpi import MPITest from nbodykit import setup_logging from nbodykit.binned_statistic import BinnedStatistic import pytest import tempfile import numpy.testing as testing import numpy import os data_dir = os.path.join(os.path.split(os.path.abspath(__file__))[0], 'data') setup_logging("debug") @MPITest([1]) def test_to_json(comm): # load from JSON ds1 = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_1d.json')) # to JSON with tempfile.NamedTemporaryFile(delete=False) as ff: ds1.to_json(ff.name) ds2 = BinnedStatistic.from_json(ff.name) # same data? for name in ds1: testing.assert_almost_equal(ds1[name], ds2[name]) # cleanup os.remove(ff.name) @MPITest([1]) def test_1d_load(comm): # load plaintext format with pytest.warns(FutureWarning): ds1 = BinnedStatistic.from_plaintext(['k'], os.path.join(data_dir, 'dataset_1d_deprecated.dat')) # wrong dimensions with pytest.raises(ValueError): ds1 = BinnedStatistic.from_plaintext(['k', 'mu'], os.path.join(data_dir, 'dataset_1d_deprecated.dat')) # load from JSON ds2 = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_1d.json')) # same data? for name in ds1: testing.assert_almost_equal(ds1[name], ds2[name]) @MPITest([1]) def test_2d_load(comm): # load plaintext format with pytest.warns(FutureWarning): ds1 = BinnedStatistic.from_plaintext(['k', 'mu'], os.path.join(data_dir, 'dataset_2d_deprecated.dat')) # load from JSON ds2 = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # same data? for name in ds1: testing.assert_almost_equal(ds1[name], ds2[name]) @MPITest([1]) def test_str(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # list all variable names s = str(dataset) # now just list total number of variables dataset['test1'] = numpy.ones(dataset.shape) dataset['test2'] = numpy.ones(dataset.shape) s = str(dataset) # this is the same as str r = repr(dataset) @MPITest([1]) def test_getitem(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # invalid key with pytest.raises(KeyError): bad = dataset['error'] # slice columns sliced = dataset[['k', 'mu', 'power']] sliced = dataset[('k', 'mu', 'power')] # invalid slice with pytest.raises(KeyError): bad =dataset[['k', 'mu', 'error']] # too many dims in slice with pytest.raises(IndexError): bad = dataset[0,0,0] # cannot access single element of 2D power with pytest.raises(IndexError): bad = dataset[0,0] @MPITest([1]) def test_array_slice(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # get the first mu column sliced = dataset[:,0] assert sliced.shape[0] == dataset.shape[0] assert len(sliced.shape) == 1 assert sliced.dims == ['k'] # get the first mu column but keep dimension sliced = dataset[:,[0]] assert sliced.shape[0] == dataset.shape[0] assert sliced.shape[1] == 1 assert sliced.dims == ['k', 'mu'] @MPITest([1]) def test_list_array_slice(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # get the first and last mu column sliced = dataset[:,[0, -1]] assert len(sliced.shape) == 2 assert sliced.dims == ['k', 'mu'] # make sure we grabbed the right data for var in dataset: testing.assert_array_equal(dataset[var][:,[0,-1]], sliced[var]) @MPITest([1]) def test_variable_set(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) modes = numpy.ones(dataset.shape) # add new variable dataset['TEST'] = modes assert 'TEST' in dataset # override existing variable dataset['modes'] = modes assert numpy.all(dataset['modes'] == 1.0) # needs right shape with pytest.raises(ValueError): dataset['TEST'] = 10. @MPITest([1]) def test_copy(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) copy = dataset.copy() for var in dataset: testing.assert_array_equal(dataset[var], copy[var]) @MPITest([1]) def test_rename_variable(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) test = numpy.zeros(dataset.shape) dataset['test'] = test dataset.rename_variable('test', 'renamed_test') assert 'renamed_test' in dataset assert 'test' not in dataset @MPITest([1]) def test_sel(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # no exact match fails with pytest.raises(IndexError): sliced = dataset.sel(k=0.1) # this should be squeezed sliced = dataset.sel(k=0.1, method='nearest') assert len(sliced.dims) == 1 # this is not squeezed sliced = dataset.sel(k=[0.1], method='nearest') assert sliced.shape[0] == 1 # this return empty k with arbitary edges. sliced = dataset.sel(k=[], method='nearest') assert sliced.shape[0] == 0 # slice in a specific k-range sliced = dataset.sel(k=slice(0.02, 0.15), mu=[0.5], method='nearest') assert sliced.shape[1] == 1 assert numpy.alltrue((sliced['k'] >= 0.02)&(sliced['k'] <= 0.15)) @MPITest([1]) def test_take(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) sliced = dataset.take(k=[8]) assert sliced.shape[0] == 1 assert len(sliced.dims) == 2 sliced = dataset.take(k=[]) assert sliced.shape[0] == 0 assert len(sliced.dims) == 2 dataset.take(k=dataset.coords['k'] < 0.3) assert len(sliced.dims) == 2 dataset.take(dataset['modes'] > 0) assert len(sliced.dims) == 2 dataset.take(dataset['k'] < 0.3) assert len(sliced.dims) == 2 @MPITest([1]) def test_squeeze(comm): dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # need to specify which dimension to squeeze with pytest.raises(ValueError): squeezed = dataset.squeeze() with pytest.raises(ValueError): squeezed = dataset[[0],[0]].squeeze() sliced = dataset[:,[2]] with pytest.raises(ValueError): squeezed = sliced.squeeze('k') squeezed = sliced.squeeze('mu') assert len(squeezed.dims) == 1 assert squeezed.shape[0] == sliced.shape[0] @MPITest([1]) def test_average(comm): import warnings dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) # unweighted with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) avg = dataset.average('mu') for var in dataset.variables: if var in dataset._fields_to_sum: x = numpy.nansum(dataset[var], axis=-1) else: x = numpy.nanmean(dataset[var], axis=-1) testing.assert_allclose(x, avg[var]) # weighted weights = numpy.random.random(dataset.shape) dataset['weights'] = weights avg = dataset.average('mu', weights='weights') for var in dataset: if var in dataset._fields_to_sum: x = numpy.nansum(dataset[var], axis=-1) else: x = numpy.nansum(dataset[var]*dataset['weights'], axis=-1) x /= dataset['weights'].sum(axis=-1) testing.assert_allclose(x, avg[var]) @MPITest([1]) def test_reindex(comm): import warnings dataset = BinnedStatistic.from_json(os.path.join(data_dir, 'dataset_2d.json')) with pytest.raises(ValueError): new, spacing = dataset.reindex('k', 0.005, force=True, return_spacing=True) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) weights = numpy.random.random(dataset.shape) dataset['weights'] = weights new, spacing = dataset.reindex('k', 0.02, weights='weights', force=True, return_spacing=True) diff = numpy.diff(new.coords['k']) assert numpy.alltrue(diff > numpy.diff(dataset.coords['k'])[0]) with pytest.raises(ValueError): new = dataset.reindex('mu', 0.4, force=False) new = dataset.reindex('mu', 0.4, force=True) @MPITest([1]) def test_subclass_copy_sel(comm): # this test asserts the sel returns instance of subclass. # and the copy method can change the class. class A(BinnedStatistic): def mymethod(self): return self.copy(cls=BinnedStatistic) # load from JSON dataset = A.from_json(os.path.join(data_dir, 'dataset_2d.json')) dataset.mymethod() # no exact match fails with pytest.raises(IndexError): sliced = dataset.sel(k=0.1) # this should be squeezed sliced = dataset.sel(k=0.1, method='nearest') assert len(sliced.dims) == 1 assert isinstance(sliced, A) assert isinstance(sliced.mymethod(), BinnedStatistic)
gpl-3.0
4,051,709,132,764,577,000
27.098765
114
0.636424
false
RichardLeeK/MachineLearning
MachineLearning/Img3DProcess/main.py
1
2129
# Basic OBJ file viewer. needs objloader from: # http://www.pygame.org/wiki/OBJFileLoader # LMB + move: rotate # RMB + move: pan # Scroll wheel: zoom in/out import sys, pygame from pygame.locals import * from pygame.constants import * from OpenGL.GL import * from OpenGL.GLU import * # IMPORT OBJECT LOADER from objloader import * pygame.init() viewport = (800,600) hx = viewport[0]/2 hy = viewport[1]/2 srf = pygame.display.set_mode(viewport, OPENGL | DOUBLEBUF) glLightfv(GL_LIGHT0, GL_POSITION, (-40, 200, 100, 0.0)) glLightfv(GL_LIGHT0, GL_AMBIENT, (0.2, 0.2, 0.2, 1.0)) glLightfv(GL_LIGHT0, GL_DIFFUSE, (0.5, 0.5, 0.5, 1.0)) glEnable(GL_LIGHT0) glEnable(GL_LIGHTING) glEnable(GL_COLOR_MATERIAL) glEnable(GL_DEPTH_TEST) glShadeModel(GL_SMOOTH) # most obj files expect to be smooth-shaded # LOAD OBJECT AFTER PYGAME INIT obj = OBJ('testData.obj', swapyz=True) clock = pygame.time.Clock() glMatrixMode(GL_PROJECTION) glLoadIdentity() width, height = viewport gluPerspective(90.0, width/float(height), 1, 100.0) glEnable(GL_DEPTH_TEST) glMatrixMode(GL_MODELVIEW) rx, ry = (0,0) tx, ty = (0,0) zpos = 5 rotate = move = False while 1: clock.tick(30) for e in pygame.event.get(): if e.type == QUIT: sys.exit() elif e.type == KEYDOWN and e.key == K_ESCAPE: sys.exit() elif e.type == MOUSEBUTTONDOWN: if e.button == 4: zpos = max(1, zpos-1) elif e.button == 5: zpos += 1 elif e.button == 1: rotate = True elif e.button == 3: move = True elif e.type == MOUSEBUTTONUP: if e.button == 1: rotate = False elif e.button == 3: move = False elif e.type == MOUSEMOTION: i, j = e.rel if rotate: rx += i ry += j if move: tx += i ty -= j glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glLoadIdentity() # RENDER OBJECT glTranslate(tx/20., ty/20., - zpos) glRotate(ry, 1, 0, 0) glRotate(rx, 0, 1, 0) glCallList(obj.gl_list) pygame.display.flip()
mit
1,437,956,592,720,366,300
25.962025
77
0.602161
false
dialogtekgeek/DSTC6-End-to-End-Conversation-Modeling
ChatbotBaseline/tools/seq2seq_model.py
1
4813
# -*- coding: utf-8 -*- """Sequence-to-sequence model module Copyright (c) 2017 Takaaki Hori ([email protected]) This software is released under the MIT License. http://opensource.org/licenses/mit-license.php """ import six import chainer import chainer.functions as F from chainer import cuda import numpy as np class Sequence2SequenceModel(chainer.Chain): def __init__(self, encoder, decoder): """ Define model structure Args: encoder (~chainer.Chain): encoder network decoder (~chainer.Chain): decoder network """ super(Sequence2SequenceModel, self).__init__( encoder = encoder, decoder = decoder ) def loss(self,es,x,y,t): """ Forward propagation and loss calculation Args: es (pair of ~chainer.Variable): encoder state x (list of ~chainer.Variable): list of input sequences y (list of ~chainer.Variable): list of output sequences t (list of ~chainer.Variable): list of target sequences if t is None, it returns only states Return: es (pair of ~chainer.Variable(s)): encoder state ds (pair of ~chainer.Variable(s)): decoder state loss (~chainer.Variable) : cross-entropy loss """ es,ey = self.encoder(es,x) ds,dy = self.decoder(es,y) if t is not None: loss = F.softmax_cross_entropy(dy,t) # avoid NaN gradients (See: https://github.com/pfnet/chainer/issues/2505) if chainer.config.train: loss += F.sum(F.concat(ey, axis=0)) * 0 return es, ds, loss else: # if target is None, it only returns states return es, ds def generate(self, es, x, sos, eos, unk=0, maxlen=100, beam=5, penalty=1.0, nbest=1): """ Generate sequence using beam search Args: es (pair of ~chainer.Variable(s)): encoder state x (list of ~chainer.Variable): list of input sequences sos (int): id number of start-of-sentence label eos (int): id number of end-of-sentence label unk (int): id number of unknown-word label maxlen (int): list of target sequences beam (int): list of target sequences penalty (float): penalty added to log probabilities of each output label. nbest (int): number of n-best hypotheses to be output Return: list of tuples (hyp, score): n-best hypothesis list - hyp (list): generated word Id sequence - score (float): hypothesis score pair of ~chainer.Variable(s)): decoder state of best hypothesis """ # encoder es,ey = self.encoder(es, [x]) # beam search ds = self.decoder.initialize(es, ey, sos) hyplist = [([], 0., ds)] best_state = None comp_hyplist = [] for l in six.moves.range(maxlen): new_hyplist = [] argmin = 0 for out,lp,st in hyplist: logp = self.decoder.predict(st) lp_vec = cuda.to_cpu(logp.data[0]) + lp if l > 0: new_lp = lp_vec[eos] + penalty * (len(out)+1) new_st = self.decoder.update(st,eos) comp_hyplist.append((out, new_lp)) if best_state is None or best_state[0] < new_lp: best_state = (new_lp, new_st) for o in np.argsort(lp_vec)[::-1]: if o == unk or o == eos:# exclude <unk> and <eos> continue new_lp = lp_vec[o] if len(new_hyplist) == beam: if new_hyplist[argmin][1] < new_lp: new_st = self.decoder.update(st, o) new_hyplist[argmin] = (out+[o], new_lp, new_st) argmin = min(enumerate(new_hyplist), key=lambda h:h[1][1])[0] else: break else: new_st = self.decoder.update(st, o) new_hyplist.append((out+[o], new_lp, new_st)) if len(new_hyplist) == beam: argmin = min(enumerate(new_hyplist), key=lambda h:h[1][1])[0] hyplist = new_hyplist if len(comp_hyplist) > 0: maxhyps = sorted(comp_hyplist, key=lambda h:-h[1])[:nbest] return maxhyps, best_state[1] else: return [([],0)],None
mit
1,694,128,833,325,667,000
39.445378
90
0.503636
false
vrenaville/report-print-send
base_report_to_printer/report.py
1
4026
# -*- coding: utf-8 -*- ############################################################################## # # Author: Guewen Baconnier # Copyright 2014 Camptocamp SA # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import models, exceptions, _, api class Report(models.Model): _inherit = 'report' @api.v7 def print_document(self, cr, uid, ids, report_name, html=None, data=None, context=None): """ Print a document, do not return the document file """ if context is None: context = self.pool['res.users'].context_get(cr, uid) local_context = context.copy() local_context['must_skip_send_to_printer'] = True document = self.get_pdf(cr, uid, ids, report_name, html=html, data=data, context=local_context) report = self._get_report_from_name(cr, uid, report_name) behaviour = report.behaviour()[report.id] printer = behaviour['printer'] if not printer: raise exceptions.Warning( _('No printer configured to print this report.') ) return printer.print_document(report, document, report.report_type) @api.v8 def print_document(self, records, report_name, html=None, data=None): return self._model.print_document(self._cr, self._uid, records.ids, report_name, html=html, data=data, context=self._context) def _can_print_report(self, cr, uid, ids, behaviour, printer, document, context=None): """Predicate that decide if report can be sent to printer If you want to prevent `get_pdf` to send report you can set the `must_skip_send_to_printer` key to True in the context """ if context is not None and context.get('must_skip_send_to_printer'): return False if behaviour['action'] == 'server' and printer and document: return True return False @api.v7 def get_pdf(self, cr, uid, ids, report_name, html=None, data=None, context=None): """ Generate a PDF and returns it. If the action configured on the report is server, it prints the generated document as well. """ document = super(Report, self).get_pdf(cr, uid, ids, report_name, html=html, data=data, context=context) report = self._get_report_from_name(cr, uid, report_name) behaviour = report.behaviour()[report.id] printer = behaviour['printer'] can_print_report = self._can_print_report(cr, uid, ids, behaviour, printer, document, context=context) if can_print_report: printer.print_document(report, document, report.report_type) return document @api.v8 def get_pdf(self, records, report_name, html=None, data=None): return self._model.get_pdf(self._cr, self._uid, records.ids, report_name, html=html, data=data, context=self._context)
agpl-3.0
-2,749,583,403,344,640,500
43.252747
79
0.561351
false
AjabWorld/ajabsacco
ajabsacco/core/models/loans.py
1
15611
from decimal import Decimal as D import uuid from django.contrib.auth.models import AbstractUser from django.db import models from .querysets.loans import * from .abstract import ExtraField, LedgerBalance from ajabsacco.core.codes.loans import * TRANSACTION_TYPES = ( (TRANSACTION_TYPE_LOAN_DISBURSAL, "Loan Disbursal"), (TRANSACTION_TYPE_INTEREST_APPLY, "Apply Interest on Account"), (TRANSACTION_TYPE_FEE_APPLY, "Apply Fee on Account"), (TRANSACTION_TYPE_PENALTY_APPLY, "Apply Penalty on Account"), (TRANSACTION_TYPE_PRINCIPAL_POSTING, "Principal Posting"), (TRANSACTION_TYPE_INTEREST_POSTING, "Interest Posting"), (TRANSACTION_TYPE_FEE_POSTING, "Fee Posting"), (TRANSACTION_TYPE_PENALTY_POSTING, "Penalty Posting"), (TRANSACTION_TYPE_PRINCIPAL_WRITE_OFF, "Principal Write-Off"), (TRANSACTION_TYPE_INTEREST_WRITE_OFF, "Interest Write-Off"), (TRANSACTION_TYPE_FEE_WRITE_OFF, "Fee Write-Off"), (TRANSACTION_TYPE_PENALTY_WRITE_OFF, "Penalty Write-Off"), ) class LoanProduct(models.Model): DECLINING_BALANCE = 1 INTEREST_CALCULATION_METHODS = ( (DECLINING_BALANCE, "Declining Balance"), ) PERIOD_UNIT_DAYS = 1 PERIOD_UNIT_MONTHS = 2 PERIOD_UNITS = ( (1, 'Day'), (2, 'Month'), ) PERSONAL = 1 GROUP = 2 BUSINESS = 3 LOAN_TYPE = ( (PERSONAL, 'Personal'), (GROUP, 'Group'), (BUSINESS, 'Business'), ) STATEMENT_ISSUE_FREQUENCY = ( (1, 'Monthly'), (2, 'Quaterly'), (3, 'Yearly'), ) ROLE_CHOICES = ( (0, 'Finance Committee'), (1, 'Audit and Supervision Committee'), (2, 'Finance Committee'), (3, 'General Manager/CEO'), (4, 'Accountant'), (5, 'Cashier'), (6, 'Accountant\'s Assistant'), (7, 'Member'), ) PRINCIPAL_GRACE_PERIOD = 1 FULL_GRACE_PERIOD = 2 GRACE_PERIOD_TYPES = ( (1, "Principal Grace Period"), (2, "Full Grace Period"), ) ALLOCATION_CHOICE_FEE = 1 ALLOCATION_CHOICE_PENALTY = 2 ALLOCATION_CHOICE_INTEREST = 3 ALLOCATION_CHOICE_PRINCIPAL = 4 ALLOCATION_CHOICES = ( (ALLOCATION_CHOICE_FEE, "Fee"), (ALLOCATION_CHOICE_PENALTY, "Penalty"), (ALLOCATION_CHOICE_INTEREST, "Interest"), (ALLOCATION_CHOICE_PRINCIPAL, "Principal"), ) ALLOCATION_ORDER = [ ALLOCATION_CHOICE_FEE, ALLOCATION_CHOICE_PENALTY, ALLOCATION_CHOICE_INTEREST, ALLOCATION_CHOICE_PRINCIPAL, ] allocation_order = None ACCOUNTING_RULES = [ #(Transaction Type, Debit, Credit) (TRANSACTION_TYPE_LOAN_DISBURSAL, LOAN_PORTFOLIO_CONTROL_ACCOUNT, LOAN_FUND_SOURCE), (TRANSACTION_TYPE_INTEREST_APPLY, INTEREST_INCOME_RECEIVABLE_ACCOUNT, INTEREST_INCOME_ACCOUNT), (TRANSACTION_TYPE_FEE_APPLY, FEE_INCOME_RECEIVABLE_ACCOUNT, FEE_INCOME_ACCOUNT), (TRANSACTION_TYPE_PENALTY_APPLY, PENALTY_INCOME_RECEIVABLE_ACCOUNT, PENALTY_INCOME_ACCOUNT), (TRANSACTION_TYPE_PRINCIPAL_POSTING, LOAN_FUND_SOURCE, LOAN_PORTFOLIO_CONTROL_ACCOUNT), (TRANSACTION_TYPE_INTEREST_POSTING, LOAN_FUND_SOURCE, INTEREST_INCOME_RECEIVABLE_ACCOUNT), (TRANSACTION_TYPE_FEE_POSTING, LOAN_FUND_SOURCE, FEE_INCOME_RECEIVABLE_ACCOUNT), (TRANSACTION_TYPE_PENALTY_POSTING, LOAN_FUND_SOURCE, PENALTY_INCOME_RECEIVABLE_ACCOUNT), (TRANSACTION_TYPE_PRINCIPAL_WRITE_OFF, LOAN_WRITE_OFF_EXPENSE_ACCOUNT, LOAN_PORTFOLIO_CONTROL_ACCOUNT), (TRANSACTION_TYPE_INTEREST_WRITE_OFF, LOAN_WRITE_OFF_EXPENSE_ACCOUNT, INTEREST_INCOME_RECEIVABLE_ACCOUNT), (TRANSACTION_TYPE_FEE_WRITE_OFF, LOAN_WRITE_OFF_EXPENSE_ACCOUNT, FEE_INCOME_RECEIVABLE_ACCOUNT), (TRANSACTION_TYPE_PENALTY_WRITE_OFF, LOAN_WRITE_OFF_EXPENSE_ACCOUNT, PENALTY_INCOME_RECEIVABLE_ACCOUNT), ] name = models.CharField(max_length=90) description = models.CharField(max_length=800) is_active = models.BooleanField(default=False) loan_type = models.IntegerField(choices=LOAN_TYPE, default=PERSONAL) statement_issue_frequency = models.IntegerField( choices=STATEMENT_ISSUE_FREQUENCY, default=1) default_repayment_period = models.IntegerField(default=0) default_grace_period = models.IntegerField(default=0) period_unit = models.IntegerField(default=PERIOD_UNIT_MONTHS, choices=PERIOD_UNITS) grace_period_type = models.IntegerField(default=FULL_GRACE_PERIOD, choices=GRACE_PERIOD_TYPES) #Normally, most saccos can give you loans up to 3x your savings loan_to_savings_ratio = models.IntegerField(default=3) min_amount = models.DecimalField(decimal_places=2, max_digits=18, default=D(0.0)) max_amount = models.DecimalField(decimal_places=2, max_digits=18, default=D(0.0)) min_installments = models.IntegerField(null=True, blank=False) max_installments = models.IntegerField(null=True, blank=False) min_interest_rate = models.DecimalField(decimal_places=2, max_digits=4, default=D('0.0')) max_interest_rate = models.DecimalField(decimal_places=2, max_digits=4, default=D('0.0')) interest_calculation_method = models.IntegerField( choices=INTEREST_CALCULATION_METHODS, default=DECLINING_BALANCE) creation_date = models.DateTimeField(auto_now=True) last_modified_date = models.DateTimeField(auto_now_add=True) class Meta: verbose_name = "Loan Product" verbose_name_plural = "Loan Products" def __str__(self): return self.name class LoanProductFee(models.Model): FEE_TYPES = ( (1, "Manual Fee"), (2, "Late Repayment"), (3, "Disbursal"), (4, "Payment Due"), ) name = models.CharField(max_length=50) product = models.ForeignKey('LoanProduct', related_name="fees") fee_type = models.IntegerField(choices=FEE_TYPES) transaction_type = models.IntegerField(choices=TRANSACTION_TYPES) class Meta: verbose_name = "Loan Product Fee" verbose_name_plural = "Loan Product Fees" def __str__(self): return self.name class LoanProductExtraField(ExtraField): product = models.ForeignKey('LoanProduct', related_name="product_extra_fields") class Meta: verbose_name = "Loan Product Custom Field" verbose_name_plural = "Loan Product Custom Fields" def __str__(self): return self.field_name class LoanAccount(models.Model): ''' These are the Member Accounts. They hold the low level member accounts only. amount stored as cents: Balance effected every 4pm and 4am Pending debits and credits are posted daily (to current balance), and updated hourly ''' PENDING_APPROVAL = 1 APPROVED = 2 ACTIVE = 3 ON_HOLD = 4 CLOSED = 5 SUSPENDED = 6 ACCOUNT_STATE = ( (PENDING_APPROVAL, "Pending Approval"), (APPROVED, "Approved"), (ACTIVE, "Active"), (ON_HOLD, "On-Hold"), (CLOSED, "Closed"), (SUSPENDED, "Suspended"), ) PERFOMING = 1 WATCH = 2 SUBSTANDARD = 3 DOUBTFUL = 4 LOSS = 5 LOAN_RISK_CATEGORIES = ( (PERFOMING, "Perfoming Loan"), (WATCH, "Watch Loan (Past Due)"), (SUBSTANDARD, "Substandard Loan"), (DOUBTFUL, "Charged-off"), (LOSS, "Loss"), ) NO_DELINQUENCY = 1 CURRENT_DELINQUENCY = 2 HISTORICAL_DELINQUENCY = 3 DELINQUENCY_STATUS = ( (NO_DELINQUENCY, "No Delinquency"), (CURRENT_DELINQUENCY, "Current Delinquency"), (HISTORICAL_DELINQUENCY, "Historical Delinquent"), ) account_number = models.CharField(unique=True, db_index=True, max_length=10) product = models.ForeignKey('LoanProduct', related_name="product_accounts", related_query_name="product_account") holder = models.ForeignKey('Member', related_name="loan_accounts", related_query_name="loan_account") status = models.IntegerField(choices=ACCOUNT_STATE, default=PENDING_APPROVAL) all_requirements_met = models.BooleanField(default=False) amount = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) repayment_period = models.IntegerField(default=0) installments = models.IntegerField(default=0) grace_period = models.IntegerField(default=0) notes = models.CharField(max_length=400, null=True, blank=True) #Current balance updated after transactions current_balance = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0')) current_balance_date = models.DateTimeField(null=True, blank=True) #On Apraisal loan_risk_category = models.IntegerField(choices=LOAN_RISK_CATEGORIES, default=PERFOMING) deliquency_status = models.IntegerField(choices=DELINQUENCY_STATUS, default=NO_DELINQUENCY) #Interest rate per period unit interest_rate = models.DecimalField(max_digits=4, decimal_places=2, default=D('0.0')) #How much can we loan this member for this product, #this is useful, for accounts such as mobile based loans #If this is null, we will use the product's max as the limit credit_limit = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) #Date stamped by actions date_approved = models.DateTimeField(null=True, blank=True) date_disbursed = models.DateTimeField(null=True, blank=True) reason_disbursed = models.CharField(max_length=140, null=True, blank=True) date_closed = models.DateTimeField(null=True, blank=True) reason_closed = models.CharField(max_length=140, null=True, blank=True) overdue_balance = models.DecimalField(max_digits=25, decimal_places=5, null=True, blank=True) overdue_date = models.DateTimeField(null=True, blank=True) last_repayment_amount = models.DecimalField(max_digits=25, decimal_places=5, null=True, blank=True) last_repayment_date = models.DateTimeField(null=True, blank=True) last_appraisal_date = models.DateTimeField(null=True, blank=True) last_accruals_date = models.DateTimeField(null=True, blank=True) last_restucture_date = models.DateTimeField(null=True, blank=True) date_created = models.DateTimeField(auto_now_add=True, blank=True) last_modified_date =models.DateTimeField(auto_now=True, blank=True) objects = LoanAccountQuerySet.as_manager() class Meta: verbose_name = "Loan Account" verbose_name_plural = "Loan Accounts" def __str__(self): return "#%s: %s for %s" % (self.account_number, self.product, self.holder) @property def period_unit_interest_rate(self): if self.product.period_unit == LoanProduct.PERIOD_UNIT_MONTHS: return (self.interest_rate / D('12.0')) elif self.product.period_unit == LoanProduct.PERIOD_UNIT_MONTHS: return (self.interest_rate / D('360.0')) @property def monthly_interest_rate(self): return self.period_unit_interest_rate() @property def daily_interest_rate(self): return self.period_unit_interest_rate() class LoanAccountExtraField(ExtraField): account = models.ForeignKey('LoanAccount', related_name="account_extra_fields") class Meta: verbose_name = "Loan Account Custom Field" verbose_name_plural = "Loan Account Custom Fields" class Security(models.Model): COLLATERAL_ASSET = 1 GUARANTOR_GROUP = 2 SECURITY_TYPES = ( (COLLATERAL_ASSET, 'Collateral Asset'), (GUARANTOR_GROUP, 'Guarantor Group') ) PENDING_APPROVAL = 1 APPROVED = 2 ACTIVE = 3 CLOSED = 4 ON_HOLD = 5 RECOVERED = 6 SECURITY_STATUS = ( (PENDING_APPROVAL, "Pending Approval"), (APPROVED, "Approved"), (ACTIVE, "Active"), (CLOSED, "Closed"), (ON_HOLD, "On Hold"), (RECOVERED, "Recovered"), ) LAND = 1 VEHICLE = 2 GOVERNMENT_BONDS = 3 MACHINERY = 4 GUARANTORS_SAVINGS = 5 BUILDING = 6 COLLATERAL_ASSET_TYPES = ( (LAND, "Land"), (VEHICLE, "Vehicle"), (GOVERNMENT_BONDS, "Government Bonds"), (MACHINERY, "Machinery"), (GUARANTORS_SAVINGS, "Guarantor's Savings"), (BUILDING, "Building"), ) #Name for Collateral Asset name = models.CharField(max_length=50, null=True) #Loan Account secured loan_account = models.ForeignKey('LoanAccount', related_name="securities", null=True) #Type of security, for matching data security_type = models.IntegerField(choices=SECURITY_TYPES, default=GUARANTOR_GROUP) collateral_type = models.IntegerField(default=GUARANTORS_SAVINGS, choices=COLLATERAL_ASSET_TYPES) status = models.IntegerField(choices=SECURITY_STATUS, default=PENDING_APPROVAL) #We can put here the amount we are to recover from this security if defaulted salvage_value = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) last_valuation_date = models.DateTimeField(null=True) #group guaranting loan, this can be null if its a collateral asset guarantor_group = models.ForeignKey('core.Group', null=True) #Loan Amount recovered since disbursal amount_recovered = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) #Amount identification = models.CharField(max_length=50, null=True) place_of_issue = models.CharField(max_length=50, null=True) #Timestamp date_created = models.DateTimeField(auto_now_add=True, null=True) date_modified = models.DateTimeField(auto_now=True, null=True) class Meta: verbose_name = "Loan Security" verbose_name_plural = "Loan Securities" unique_together = ('security_type', 'loan_account') class LoanTransactionEntry(models.Model): ''' We separate all the loan product transactions from the GL transactions ''' CREDIT = 0 DEBIT = 1 ITEM_TYPE = ( (CREDIT, 'Credit'), (DEBIT, 'Debit'), ) PENDING_POSTING = 0 POSTED = 1 ON_HOLD = 2 STATUS = ( (PENDING_POSTING, 'Pending Posting'), (POSTED, 'Posted'), (ON_HOLD, 'On Hold'), ) #metadata transaction_id = models.UUIDField() transaction_type = models.IntegerField(choices=TRANSACTION_TYPES, null=True) account = models.ForeignKey('LoanAccount', null=True, related_name="account_transactions", related_query_name="account_transaction") amount = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) approved_by = models.ForeignKey('Member', related_name='approvals_on_loan_accounts', null=True, blank=True) sms_sent = models.BooleanField(default=False) email_sent = models.BooleanField(default=False) creation_date = models.DateTimeField(auto_now_add=True) #Transaction Data item_type = models.IntegerField(choices=ITEM_TYPE) status = models.IntegerField(default=0, choices=STATUS) gl_account_code = models.CharField("Loan Ledger Account", max_length=20, null=True, choices=LOAN_CHART_OF_ACCOUNTS) ledger_balance_increment = models.DecimalField(decimal_places=2, max_digits=18, default=D('0.0')) posting_date = models.DateTimeField(null=True, blank=True) objects = LoanTransactionEntryQuerySet.as_manager() class Meta: verbose_name = "Loan Transaction Entry" verbose_name_plural = "Loan Transaction Entries" def __str__(self): return "%s transaction, %s item on GL account #%s" % ( self.get_transaction_type_display(), self.get_item_type_display(), self.gl_account_code )
apache-2.0
418,958,189,437,914,500
34.723112
119
0.671386
false
dloureiro/sf-crm-utils
sf-crm-addDocument.py
1
3153
#!/usr/bin/env python # # sf-crm-addDocument.py # Copyright (C) <year> <name of author> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sugarcrm import xlwt import datetime import os.path import json import pprint from optparse import OptionParser import base64 VERSION = "1.0" def main(): parser = OptionParser(usage="usage: sf-crm-addDocument filepath", version="sf-crm-addDocument " + VERSION) (options, args) = parser.parse_args() document = args[0] fileName = os.path.basename(document) path = os.path.dirname(document) ofCode = os.path.basename(path) #print "ofCode " + ofCode #print "filename " + fileName home = os.path.expanduser("~") configFile=os.path.join(home,".sugar2xls.config") if not os.path.isfile(configFile) : print "Error : config file " + configFile + " does not exist" exit() config = json.load(open(configFile,"r")) pp = pprint.PrettyPrinter(indent=4) #pp.pprint(config) # This is the URL for the v4 REST API in your SugarCRM server. url = config["url"] username = config["username"] password = config["password"] # This way you log-in to your SugarCRM instance. conn = sugarcrm.Sugarcrm(url, username, password) #data = conn.get_module_fields("Revisions") #pp.pprint(data) #exit() print "Recuperation de l'opportunite correspondant a l'OF " + ofCode #pp.pprint(aDocument) query = conn.modules["Opportunities"].query() opp = query.filter(of_code_c__contains=ofCode) opportunity = opp[0] # This new query has a filter. Please notice that the filter parameter is the # field name in the SugarCRM module, followed by a double underscore, and then # an operator (it can be 'exact', 'contains', 'gt', 'gte', 'lt', 'lte' or 'in'). query = conn.modules['Documents'].query() print "Creation d'un document" aDocument = sugarcrm.SugarEntry(conn.modules["Documents"]) aDocument["name"] = fileName aDocument["filename"]=fileName aDocument["document_name"]=fileName aDocument.save() print aDocument["id"] with open(document) as f: encoded = base64.b64encode(f.read()) print "encoded : " + encoded conn.set_document_revision({"id": aDocument["id"], "revision":1, "filename":fileName + "-test", "file":encoded}) print "Liaison entre le doc cree et "+ opportunity["name"] aDocument.relate(opportunity) if __name__ == '__main__': main()
gpl-3.0
-5,350,635,180,503,216,000
28.194444
85
0.664129
false
nikoladimitroff/Zmey
Tools/BlenderPlugins/scripts/addons/io_scene_gltf2/gltf2_get.py
1
11682
# Copyright (c) 2017 The Khronos Group Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Imports # import bpy import os from .gltf2_debug import * # # Globals # # # Functions # def get_used_materials(): """ Gathers and returns all unfiltered, valid Blender materials. """ materials = [] for blender_material in bpy.data.materials: if blender_material.node_tree and blender_material.use_nodes: for currentNode in blender_material.node_tree.nodes: if isinstance(currentNode, bpy.types.ShaderNodeGroup): if currentNode.node_tree.name.startswith('glTF Metallic Roughness'): materials.append(blender_material) elif currentNode.node_tree.name.startswith('glTF Specular Glossiness'): materials.append(blender_material) else: materials.append(blender_material) return materials def get_material_requires_texcoords(glTF, index): """ Query function, if a material "needs" texture cooridnates. This is the case, if a texture is present and used. """ if glTF.get('materials') is None: return False materials = glTF['materials'] if index < 0 or index >= len(materials): return False material = materials[index] # General if material.get('emissiveTexture') is not None: return True if material.get('normalTexture') is not None: return True if material.get('occlusionTexture') is not None: return True # Metallic roughness if material.get('baseColorTexture') is not None: return True if material.get('metallicRoughnessTexture') is not None: return True # Specular glossiness if material.get('diffuseTexture') is not None: return True if material.get('specularGlossinessTexture') is not None: return True # Common Material if material.get('diffuseTexture') is not None: return True if material.get('specularTexture') is not None: return True if material.get('shininessTexture') is not None: return True if material.get('ambientTexture') is not None: return True return False def get_material_requires_normals(glTF, index): """ Query function, if a material "needs" normals. This is the case, if a texture is present and used. At point of writing, same function as for texture coordinates. """ return get_material_requires_texcoords(glTF, index) def get_image_index(export_settings, uri): """ Return the image index in the glTF array. """ if export_settings['gltf_uri'] is None: return -1 if uri in export_settings['gltf_uri']: return export_settings['gltf_uri'].index(uri) return -1 def get_texture_index_by_filepath(export_settings, glTF, filepath): """ Return the texture index in the glTF array by a given filepath. """ if filepath is None: return -1 uri = get_uri(filepath) if export_settings['gltf_uri'] is None: return -1 if glTF.get('textures') is None: return -1 image_uri = export_settings['gltf_uri'] index = 0 for texture in glTF['textures']: current_image_uri = image_uri[texture['source']] if current_image_uri == uri: return index index += 1 return -1 def get_texture_index(export_settings, glTF, name, shader_node_group): """ Return the texture index in the glTF array. """ if shader_node_group is None: return -1 if not isinstance(shader_node_group, bpy.types.ShaderNodeGroup): return -1 if shader_node_group.inputs.get(name) is None: return -1 if len(shader_node_group.inputs[name].links) == 0: return -1 from_node = shader_node_group.inputs[name].links[0].from_node # if not isinstance(from_node, bpy.types.ShaderNodeTexImage): return -1 if from_node.image is None or from_node.image.size[0] == 0 or from_node.image.size[1] == 0: return -1 return get_texture_index_by_filepath(export_settings, glTF, from_node.image.filepath) def get_texcoord_index(glTF, name, shader_node_group): """ Return the texture coordinate index, if assigend and used. """ if shader_node_group is None: return 0 if not isinstance(shader_node_group, bpy.types.ShaderNodeGroup): return 0 if shader_node_group.inputs.get(name) is None: return 0 if len(shader_node_group.inputs[name].links) == 0: return 0 from_node = shader_node_group.inputs[name].links[0].from_node # if not isinstance(from_node, bpy.types.ShaderNodeTexImage): return 0 # if len(from_node.inputs['Vector'].links) == 0: return 0 input_node = from_node.inputs['Vector'].links[0].from_node if not isinstance(input_node, bpy.types.ShaderNodeUVMap): return 0 if input_node.uv_map == '': return 0 # # Try to gather map index. for blender_mesh in bpy.data.meshes: texCoordIndex = blender_mesh.uv_textures.find(input_node.uv_map) if texCoordIndex >= 0: return texCoordIndex return 0 def get_material_index(glTF, name): """ Return the material index in the glTF array. """ if name is None: return -1 if glTF.get('materials') is None: return -1 index = 0 for material in glTF['materials']: if material['name'] == name: return index index += 1 return -1 def get_mesh_index(glTF, name): """ Return the mesh index in the glTF array. """ if glTF.get('meshes') is None: return -1 index = 0 for mesh in glTF['meshes']: if mesh['name'] == name: return index index += 1 return -1 def get_skin_index(glTF, name, index_offset): """ Return the skin index in the glTF array. """ if glTF.get('skins') is None: return -1 skeleton = get_node_index(glTF, name) index = 0 for skin in glTF['skins']: if skin['skeleton'] == skeleton: return index + index_offset index += 1 return -1 def get_camera_index(glTF, name): """ Return the camera index in the glTF array. """ if glTF.get('cameras') is None: return -1 index = 0 for camera in glTF['cameras']: if camera['name'] == name: return index index += 1 return -1 def get_light_index_cmn(glTF, name): """ Return the light index in the glTF array. """ if glTF.get('extensions') is None: return -1 extensions = glTF['extensions'] if extensions.get('KHR_lights_cmn') is None: return -1 khr_lights_cmn = extensions['KHR_lights_cmn'] if khr_lights_cmn.get('lights') is None: return -1 lights = khr_lights_cmn['lights'] index = 0 for light in lights: if light['name'] == name: return index index += 1 return -1 def get_light_index_pbr(glTF, name): """ Return the light index in the glTF array. """ if glTF.get('extensions') is None: return -1 extensions = glTF['extensions'] if extensions.get('KHR_lights_pbr') is None: return -1 khr_lights_pbr = extensions['KHR_lights_pbr'] if khr_lights_pbr.get('lights') is None: return -1 lights = khr_lights_pbr['lights'] index = 0 for light in lights: if light['name'] == name: return index index += 1 return -1 def get_node_index(glTF, name): """ Return the node index in the glTF array. """ if glTF.get('nodes') is None: return -1 index = 0 for node in glTF['nodes']: if node['name'] == name: return index index += 1 return -1 def get_scene_index(glTF, name): """ Return the scene index in the glTF array. """ if glTF.get('scenes') is None: return -1 index = 0 for scene in glTF['scenes']: if scene['name'] == name: return index index += 1 return -1 def get_uri(filepath): """ Return the final PNG uri depending on a filepath. """ return os.path.splitext(bpy.path.basename(filepath))[0] + '.png' def get_node(data_path): """ Return Blender node on a given Blender data path. """ if data_path is None: return None index = data_path.find("[\"") if (index == -1): return None node_name = data_path[(index + 2):] index = node_name.find("\"") if (index == -1): return None return node_name[:(index)] def get_data_path(data_path): """ Return Blender data path. """ index = data_path.rfind('.') if index == -1: return data_path return data_path[(index + 1):] def get_scalar(default_value, init_value = 0.0): """ Return scalar with a given default/fallback value. """ return_value = init_value if default_value is None: return return_value return_value = default_value return return_value def get_vec2(default_value, init_value = [0.0, 0.0]): """ Return vec2 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 2: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 2: return return_value return return_value def get_vec3(default_value, init_value = [0.0, 0.0, 0.0]): """ Return vec3 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 3: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 3: return return_value return return_value def get_vec4(default_value, init_value = [0.0, 0.0, 0.0, 1.0]): """ Return vec4 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 4: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 4: return return_value return return_value def get_index(list, name): """ Return index of a glTF element by a given name. """ if list is None or name is None: return -1 index = 0 for element in list: if element.get('name') is None: return -1 if element['name'] == name: return index index += 1 return -1
mit
986,731,978,539,314,600
20.086643
114
0.586715
false
chadspratt/AveryDB
join.py
1
1126
"""Contains a simple class for storing join configurations.""" ## # Copyright 2013 Chad Spratt # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## class Join(object): """A struct for storing a join definition.""" def __init__(self, joinalias, jointable, joinfield, targetalias, targettable, targetfield, inner=False): self.joinalias = joinalias self.jointable = jointable self.joinfield = joinfield self.targetalias = targetalias self.targettable = targettable self.targetfield = targetfield self.inner = inner
apache-2.0
-2,738,151,809,143,295,000
37.827586
76
0.686501
false
ningirsu/stepmania-server
smserver/resources/user_resource.py
1
3748
""" User resources """ import hashlib import sqlalchemy from smserver import exceptions from smserver import models from smserver.resources import base class UserResource(base.BaseResource): """ User class resource """ MIN_PASSWORD_LENGTH = 8 def create(self, name, password, email=None, rank=1): """ Create a new user """ if len(password) < self.MIN_PASSWORD_LENGTH: raise exceptions.ValidationError(self.token, "Password too short") if rank > 1 and rank > self.connection.level(): raise exceptions.Unauthorized( self.token, "Unauthorized to create user with rank %s" % rank ) password = hashlib.sha256(password.encode('utf-8')).hexdigest() user = models.User( name=name, password=password, email=email, rank=rank ) try: self.session.add(user) self.session.commit() except sqlalchemy.exc.IntegrityError: self.session.rollback() raise exceptions.ValidationError(self.token, "User already exist") self.log.info("%s create user %s", self.token, user.id) return user def login(self, name, password): """ Login a new user in our database """ if len(password) < self.MIN_PASSWORD_LENGTH: raise exceptions.Forbidden(self.token, "Invalid name or password") password = hashlib.sha256(password.encode('utf-8')).hexdigest() user = (self.session .query(models.User) .filter_by(name=name, password=password) .one_or_none()) if not user: raise exceptions.Forbidden(self.token, "Invalid name or password") if models.Ban.is_ban(self.session, user_id=user.id): raise exceptions.Forbidden(self.token, "User ban from this server") self.log.info("%s successfully login user %s", self.token, name) return user def login_or_create(self, name, password): """ Login or create a user if the name don't exists """ if len(password) < self.MIN_PASSWORD_LENGTH: raise exceptions.Forbidden(self.token, "Invalid name or password") user = (self.session .query(models.User) .filter_by(name=name) .one_or_none()) if not user: return self.create(name, password) return self.login(name, password) def connect(self, user, pos=0): """ Connect the user in the given position """ if user.online and user not in self.connection.users: raise exceptions.Unauthorized(self.token, "User already online") nb_onlines = models.User.nb_onlines(self.session) max_users = self.serv.config.server.get("max_users", -1) if max_users > 0 and nb_onlines >= max_users: raise exceptions.Unauthorized( self.token, "nb max users reaches (%s/%s)" % (nb_onlines, max_users) ) for online_user in self.connection.active_users: if online_user.pos == pos and online_user != user: self.log.info("%s log out user %s", self.token, online_user.name) online_user.pos = None online_user.online = False user.pos = pos user.online = True user.connection = self.connection user.room_id = self.connection.room_id user.last_ip = self.connection.ip user.client_name = self.connection.client_name user.client_version = self.connection.client_version self.serv.send_sd_running_status(session=self.session) return user
mit
-8,784,744,963,530,073,000
31.034188
81
0.592316
false
Azure/azure-sdk-for-python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_07_01/aio/operations/_usages_operations.py
1
5201
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UsagesOperations: """UsagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_07_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location: str, **kwargs ) -> AsyncIterable["_models.UsagesListResult"]: """List network usages for a subscription. :param location: The location where resource usage is queried. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either UsagesListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_07_01.models.UsagesListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UsagesListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._ ]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('UsagesListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/usages'} # type: ignore
mit
6,820,042,527,769,866,000
45.4375
134
0.637954
false
FederatedAI/FATE
examples/dsl/v1/experiment/generate_mock_data.py
1
6367
import random import sys import numpy as np SAMPLE_NUM = 10000 # For sparse data, it means how many non-zero features in one sample. # The total possible feature num depends on your tag interval below. FEATURE_NUM = 20 TAG_INTERVAL = (2019120799, 2019121299) VALUE_INTERVAL = (0, 10000) # SAVE_FILE_NAME = DATA_TYPE + "_" + str(SAMPLE_NUM) + "_" + str(FEATURE_NUM) + ".csv" def generate_tag_1_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i]] valid_set = [x for x in range(TAG_INTERVAL[0], TAG_INTERVAL[1])] features = np.random.choice(valid_set, FEATURE_NUM, replace=False) one_data += [":".join([x, "1.0"]) for x in features] counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_str_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") header = ['id', 'y'] + ['x' + str(i) for i in range(FEATURE_NUM)] yield header counter = 0 for sample_i in range(SAMPLE_NUM): valid_set = ["test" + str(x) for x in range(0, FEATURE_NUM)] features = np.random.choice(valid_set, FEATURE_NUM, replace=False) one_data = [ids[sample_i], round(random.random())] + list(features) counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_tag_float_value_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i]] valid_set = [x for x in range(TAG_INTERVAL[0], TAG_INTERVAL[1])] tags = np.random.choice(valid_set, FEATURE_NUM, replace=False) values = 100 * np.random.random(FEATURE_NUM) one_data += [":".join([str(tags[i]), str(round(values[i], 2))]) for i in range(FEATURE_NUM)] counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_tag_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i]] valid_set = [x for x in range(TAG_INTERVAL[0], TAG_INTERVAL[1])] tags = np.random.choice(valid_set, FEATURE_NUM, replace=False) one_data += [str(tag) for tag in tags] counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_tag_value_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i]] for feature_i in range(FEATURE_NUM): tag = str(random.randint(TAG_INTERVAL[0], TAG_INTERVAL[1])) value = str(random.randint(VALUE_INTERVAL[0], VALUE_INTERVAL[1])) tag_value = ":".join([tag, value]) one_data.append(tag_value) counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_label_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") header = ['id', 'y'] + ['x' + str(i) for i in range(FEATURE_NUM)] yield header counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i], round(random.random())] + list(np.random.random(FEATURE_NUM)) counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def generate_non_label_data(ids): if len(ids) != SAMPLE_NUM: raise ValueError("len ids should equal to sample number") header = ['id'] + ['x' + str(i) for i in range(FEATURE_NUM)] yield header counter = 0 for sample_i in range(SAMPLE_NUM): one_data = [ids[sample_i]] + list(np.random.random(FEATURE_NUM)) counter += 1 if counter % 10000 == 0: print("generate data {}".format(counter)) yield one_data def read_file(file, has_header=False): header = None data = [] with open(file, "r") as fin: if has_header: header = fin.readline().replace('\n', '') line = fin.readline() while True: split_line = line.replace("\n", '').split(",") data.append(split_line) line = fin.readline() if not line: break return header, data def save_file(file, data, header=None, delimitor=','): with open(file, 'w') as fout: if header: fout.write("".join([header, '\n'])) for d in data: d = list(map(str, d)) fout.write(d[0] + ',' + delimitor.join(d[1:]) + "\n") if __name__ == "__main__": # ids = [_data[0] for _data in ids_data] DATA_TYPE = sys.argv[1] role = sys.argv[2] SAVE_FILE_NAME = "generated_data_{}.csv".format(role) ids = [x for x in range(SAMPLE_NUM)] if DATA_TYPE == 'tag_1': new_data = generate_tag_1_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=',') if DATA_TYPE == 'tag_float_value': new_data = generate_tag_float_value_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=';') if DATA_TYPE == 'tag': new_data = generate_tag_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=';') if DATA_TYPE == 'tag_integer_value': new_data = generate_tag_value_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=',') if DATA_TYPE == 'label': new_data = generate_label_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=',') if DATA_TYPE == 'non_label': new_data = generate_non_label_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=',') if DATA_TYPE == 'str': new_data = generate_str_data(ids) save_file(SAVE_FILE_NAME, new_data, delimitor=',') print("finish generate data , save data in {}".format(SAVE_FILE_NAME))
apache-2.0
7,247,381,461,808,039,000
29.610577
100
0.580179
false
wangjun/python-pinyin
pypinyin/__init__.py
1
14031
#!/usr/bin/env python # -*- coding: utf-8 -*- """汉语拼音转换工具.""" from __future__ import unicode_literals from copy import deepcopy from itertools import chain import os import re import sys from . import phonetic_symbol, pinyin_dict __title__ = 'pypinyin' __version__ = '0.9.0' __author__ = 'mozillazg, 闲耘' __license__ = 'MIT' __copyright__ = 'Copyright (c) 2014 mozillazg, 闲耘' __all__ = [ 'pinyin', 'lazy_pinyin', 'slug', 'STYLE_NORMAL', 'NORMAL', 'STYLE_TONE', 'TONE', 'STYLE_TONE2', 'TONE2', 'STYLE_INITIALS', 'INITIALS', 'STYLE_FINALS', 'FINALS', 'STYLE_FINALS_TONE', 'FINALS_TONE', 'STYLE_FINALS_TONE2', 'FINALS_TONE2', 'STYLE_FIRST_LETTER', 'FIRST_LETTER' ] # fix "TypeError: Item in ``from list'' not a string" in Python 2 __all__ = [str(x) for x in __all__] PY2 = sys.version_info < (3, 0) if not PY2: unicode = str str = bytes callable = lambda x: getattr(x, '__call__', None) # 词语拼音库 if os.environ.get('PYPINYIN_NO_PHRASES'): PHRASES_DICT = {} else: from . import phrases_dict PHRASES_DICT = phrases_dict.phrases_dict.copy() # 单字拼音库 PINYIN_DICT = pinyin_dict.pinyin_dict.copy() # 声母表 _INITIALS = 'b,p,m,f,d,t,n,l,g,k,h,j,q,x,zh,ch,sh,r,z,c,s'.split(',') # 带声调字符与使用数字标识的字符的对应关系,类似: {u'ā': 'a1'} PHONETIC_SYMBOL = phonetic_symbol.phonetic_symbol.copy() # 所有的带声调字符 re_phonetic_symbol_source = ''.join(PHONETIC_SYMBOL.keys()) # 匹配带声调字符的正则表达式 RE_PHONETIC_SYMBOL = r'[' + re.escape(re_phonetic_symbol_source) + r']' # 匹配使用数字标识声调的字符的正则表达式 RE_TONE2 = r'([aeoiuvnm])([0-4])$' # 有拼音的汉字 RE_HANS = re.compile(r'^(?:[\u3400-\u4dbf\u4e00-\u9fff\uf900-\ufaff])+$') # 没有拼音的字符 RE_NONE_HANS = re.compile(r'^(?:[^\u3400-\u4dbf\u4e00-\u9fff\uf900-\ufaff])+$') # 拼音风格 PINYIN_STYLE = { 'NORMAL': 0, # 普通风格,不带声调 'TONE': 1, # 标准风格,声调在韵母的第一个字母上 'TONE2': 2, # 声调在拼音之后,使用数字 1~4 标识 'INITIALS': 3, # 仅保留声母部分 'FIRST_LETTER': 4, # 仅保留首字母 'FINALS': 5, # 仅保留韵母部分,不带声调 'FINALS_TONE': 6, # 仅保留韵母部分,带声调 'FINALS_TONE2': 7, # 仅保留韵母部分,声调在拼音之后,使用数字 1~4 标识 } # 普通风格,不带声调 NORMAL = STYLE_NORMAL = PINYIN_STYLE['NORMAL'] # 标准风格,声调在韵母的第一个字母上 TONE = STYLE_TONE = PINYIN_STYLE['TONE'] # 声调在拼音之后,使用数字 1~4 标识 TONE2 = STYLE_TONE2 = PINYIN_STYLE['TONE2'] # 仅保留声母部分 INITIALS = STYLE_INITIALS = PINYIN_STYLE['INITIALS'] # 仅保留首字母 FIRST_LETTER = STYLE_FIRST_LETTER = PINYIN_STYLE['FIRST_LETTER'] # 仅保留韵母部分,不带声调 FINALS = STYLE_FINALS = PINYIN_STYLE['FINALS'] # 仅保留韵母部分,带声调 FINALS_TONE = STYLE_FINALS_TONE = PINYIN_STYLE['FINALS_TONE'] # 仅保留韵母部分,声调在拼音之后,使用数字 1~4 标识 FINALS_TONE2 = STYLE_FINALS_TONE2 = PINYIN_STYLE['FINALS_TONE2'] def _seg(chars): """按是否是汉字进行分词""" s = '' # 保存一个词 ret = [] # 分词结果 flag = 0 # 上一个字符是什么? 0: 汉字, 1: 不是汉字 for n, c in enumerate(chars): if RE_HANS.match(c): # 汉字, 确定 flag 的初始值 if n == 0: # 第一个字符 flag = 0 if flag == 0: s += c else: # 上一个字符不是汉字, 分词 ret.append(s) flag = 0 s = c else: # 不是汉字 if n == 0: # 第一个字符, 确定 flag 的初始值 flag = 1 if flag == 1: s += c else: # 上一个字符是汉字, 分词 ret.append(s) flag = 1 s = c ret.append(s) # 最后的词 return ret def simple_seg(hans): '将传入的字符串按是否有拼音来分割' assert not isinstance(hans, str), \ 'must be unicode string or [unicode, ...] list' if isinstance(hans, unicode): return _seg(hans) else: hans = list(hans) if len(hans) == 1: return simple_seg(hans[0]) return list(chain(*[simple_seg(x) for x in hans])) def seg(hans): if getattr(seg, 'no_jieba', None): ret = hans return simple_seg(ret) if seg.jieba is None: try: import jieba seg.jieba = jieba except ImportError: seg.no_jieba = True return seg(hans) else: hans = simple_seg(hans) ret = [] for x in hans: if RE_NONE_HANS.match(x): # 没有拼音的字符,不再参与二次分词 ret.append(x) else: ret.extend(list(seg.jieba.cut(x))) return ret seg.jieba = None if os.environ.get('PYPINYIN_NO_JIEBA'): seg.no_jieba = True def load_single_dict(pinyin_dict): """载入用户自定义的单字拼音库 :param pinyin_dict: 单字拼音库。比如: ``{0x963F: u"ā,ē"}`` :type pinyin_dict: dict """ PINYIN_DICT.update(pinyin_dict) def load_phrases_dict(phrases_dict): """载入用户自定义的词语拼音库 :param phrases_dict: 词语拼音库。比如: ``{u"阿爸": [[u"ā"], [u"bà"]]}`` :type phrases_dict: dict """ PHRASES_DICT.update(phrases_dict) def initial(pinyin): """获取单个拼音中的声母. :param pinyin: 单个拼音 :type pinyin: unicode :return: 声母 :rtype: unicode """ for i in _INITIALS: if pinyin.startswith(i): return i return '' def final(pinyin): """获取单个拼音中的韵母. :param pinyin: 单个拼音 :type pinyin: unicode :return: 韵母 :rtype: unicode """ initial_ = initial(pinyin) or None if not initial_: return pinyin return ''.join(pinyin.split(initial_, 1)) def toFixed(pinyin, style): """根据拼音风格格式化带声调的拼音. :param pinyin: 单个拼音 :param style: 拼音风格 :return: 根据拼音风格格式化后的拼音字符串 :rtype: unicode """ # 声母 if style == INITIALS: return initial(pinyin) def _replace(m): symbol = m.group(0) # 带声调的字符 # 不包含声调 if style in [NORMAL, FIRST_LETTER, FINALS]: # 去掉声调: a1 -> a return re.sub(RE_TONE2, r'\1', PHONETIC_SYMBOL[symbol]) # 使用数字标识声调 elif style in [TONE2, FINALS_TONE2]: # 返回使用数字标识声调的字符 return PHONETIC_SYMBOL[symbol] # 声调在头上 else: return symbol # 替换拼音中的带声调字符 py = re.sub(RE_PHONETIC_SYMBOL, _replace, pinyin) # 首字母 if style == FIRST_LETTER: py = py[0] # 韵母 elif style in [FINALS, FINALS_TONE, FINALS_TONE2]: py = final(py) return py def _handle_nopinyin_char(chars, errors='default'): """处理没有拼音的字符""" if callable(errors): return errors(chars) if errors == 'default': return chars elif errors == 'ignore': return None elif errors == 'replace': if len(chars) > 1: return ''.join(unicode('%x' % ord(x)) for x in chars) else: return unicode('%x' % ord(chars)) def handle_nopinyin(chars, errors='default'): py = _handle_nopinyin_char(chars, errors=errors) if not py: return [] if isinstance(py, list): return py else: return [py] def single_pinyin(han, style, heteronym, errors='default'): """单字拼音转换. :param han: 单个汉字 :param errors: 指定如何处理没有拼音的字符,详情请参考 :py:func:`~pypinyin.pinyin` :return: 返回拼音列表,多音字会有多个拼音项 :rtype: list """ num = ord(han) # 处理没有拼音的字符 if num not in PINYIN_DICT: return handle_nopinyin(han, errors=errors) pys = PINYIN_DICT[num].split(",") # 字的拼音列表 if not heteronym: return [toFixed(pys[0], style)] # 输出多音字的多个读音 # 临时存储已存在的拼音,避免多音字拼音转换为非音标风格出现重复。 py_cached = {} pinyins = [] for i in pys: py = toFixed(i, style) if py in py_cached: continue py_cached[py] = py pinyins.append(py) return pinyins def phrases_pinyin(phrases, style, heteronym, errors='default'): """词语拼音转换. :param phrases: 词语 :param errors: 指定如何处理没有拼音的字符 :return: 拼音列表 :rtype: list """ py = [] if phrases in PHRASES_DICT: py = deepcopy(PHRASES_DICT[phrases]) for idx, item in enumerate(py): py[idx] = [toFixed(item[0], style=style)] else: for i in phrases: single = single_pinyin(i, style=style, heteronym=heteronym, errors=errors) if single: py.append(single) return py def _pinyin(words, style, heteronym, errors): pys = [] # 初步过滤没有拼音的字符 if RE_HANS.match(words): pys = phrases_pinyin(words, style=style, heteronym=heteronym, errors=errors) return pys for word in simple_seg(words): if not (RE_HANS.match(word)): py = handle_nopinyin(word, errors=errors) pys.append(py) if py else None else: pys.extend(_pinyin(word, style, heteronym, errors)) return pys def pinyin(hans, style=TONE, heteronym=False, errors='default'): """将汉字转换为拼音. :param hans: 汉字字符串( ``u'你好吗'`` )或列表( ``[u'你好', u'吗']`` ). 如果用户安装了 ``jieba`` , 将使用 ``jieba`` 对字符串进行 分词处理。可以通过传入列表的方式禁用这种行为。 也可以使用自己喜爱的分词模块对字符串进行分词处理, 只需将经过分词处理的字符串列表传进来就可以了。 :type hans: unicode 字符串或字符串列表 :param style: 指定拼音风格 :param errors: 指定如何处理没有拼音的字符 * ``'default'``: 保留原始字符 * ``'ignore'``: 忽略该字符 * ``'replace'``: 替换为去掉 ``\\u`` 的 unicode 编码字符串 (``u'\\u90aa'`` => ``u'90aa'``) * callable 对象: 回调函数之类的可调用对象。如果 ``erros`` 参数 的值是个可调用对象,那么程序会回调这个函数: ``func(char)``:: def foobar(char): return 'a' pinyin(u'あ', errors=foobar) :param heteronym: 是否启用多音字 :return: 拼音列表 :rtype: list Usage:: >>> from pypinyin import pinyin >>> import pypinyin >>> pinyin(u'中心') [[u'zh\u014dng'], [u'x\u012bn']] >>> pinyin(u'中心', heteronym=True) # 启用多音字模式 [[u'zh\u014dng', u'zh\xf2ng'], [u'x\u012bn']] >>> pinyin(u'中心', style=pypinyin.INITIALS) # 设置拼音风格 [[u'zh'], [u'x']] >>> pinyin(u'中心', style=pypinyin.TONE2) [[u'zho1ng'], [u'xi1n']] """ # 对字符串进行分词处理 if isinstance(hans, unicode): hans = seg(hans) pys = [] for words in hans: pys.extend(_pinyin(words, style, heteronym, errors)) return pys def slug(hans, style=NORMAL, heteronym=False, separator='-', errors='default'): """生成 slug 字符串. :param hans: 汉字 :type hans: unicode or list :param style: 指定拼音风格 :param heteronym: 是否启用多音字 :param separstor: 两个拼音间的分隔符/连接符 :param errors: 指定如何处理没有拼音的字符,详情请参考 :py:func:`~pypinyin.pinyin` :return: slug 字符串. :: >>> import pypinyin >>> pypinyin.slug(u'中国人') u'zhong-guo-ren' >>> pypinyin.slug(u'中国人', separator=u' ') u'zhong guo ren' >>> pypinyin.slug(u'中国人', style=pypinyin.INITIALS) u'zh-g-r' """ return separator.join(chain(*pinyin(hans, style=style, heteronym=heteronym, errors=errors) )) def lazy_pinyin(hans, style=NORMAL, errors='default'): """不包含多音字的拼音列表. 与 :py:func:`~pypinyin.pinyin` 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音. :param hans: 汉字 :type hans: unicode or list :param style: 指定拼音风格 :param errors: 指定如何处理没有拼音的字符,详情请参考 :py:func:`~pypinyin.pinyin` :return: 拼音列表(e.g. ``['zhong', 'guo', 'ren']``) :rtype: list Usage:: >>> from pypinyin import lazy_pinyin >>> import pypinyin >>> lazy_pinyin(u'中心') [u'zhong', u'xin'] >>> lazy_pinyin(u'中心', style=pypinyin.TONE) [u'zh\u014dng', u'x\u012bn'] >>> lazy_pinyin(u'中心', style=pypinyin.INITIALS) [u'zh', u'x'] >>> lazy_pinyin(u'中心', style=pypinyin.TONE2) [u'zho1ng', u'xi1n'] """ return list(chain(*pinyin(hans, style=style, heteronym=False, errors=errors)))
mit
-516,029,625,758,082,300
24.881319
79
0.549762
false
markrobinson85/odoo-pos-promotions
pos_promotions/promotion_model.py
1
2597
# -*- coding: utf-8 -*- from openerp import models, fields, api from openerp.osv import osv class Promotion(models.Model): #_inherit = "account.analytic.account" _name = "pos.promotion" _description = "Promotional Rule" _inherit = "mail.thread" name = fields.Char("Promotion Name", required=True) notes = fields.Text() locations = fields.Many2many("pos.config", string="Locations", track_visibility="onchange") active = fields.Boolean("Active", track_visibility="onchange") coupon_code = fields.Char("Coupon Code", required=False, track_visibility="onchange") date_start = fields.Date("Start Date", default=fields.Date.today, track_visibility="onchange") date_end = fields.Date("End Date", track_visibility="onchange") priority = fields.Integer("Priority", track_visibility="onchange") discount_type = fields.Selection([('to_percent', 'Percentage'), ('bogo_cheapest', 'The Cheapest'), ('fixed_discount', 'Fixed Price Discount')]) max_qty = fields.Integer("Maximum Quantity", track_visibility="onchange") discount_step = fields.Integer("Discount Step", track_visibility="onchange") discount_amount = fields.Float("Discount Amount", track_visibility="onchange") stop_processing = fields.Boolean("Stop processing rules after this rule.", track_visibility="onchange") categories_applied = fields.Many2many("pos.category", "promotion_category_applied", string="Categories Applied", track_visibility="onchange") categories_excluded = fields.Many2many("pos.category", "promotion_category_excluded", string="Categories Excluded", track_visibility="onchange") products_applied = fields.Many2many("product.template", "promotion_product_applied", string="Products Applied", track_visibility="onchange") products_excluded = fields.Many2many("product.template", "promotion_product_excluded", string="Products Excluded", track_visibility="onchange") label = fields.Char("Label (How discount appears on receipt)", track_visiblity="onchange", track_visibility="onchange") class Discount(osv.osv): _name = "pos.promotion.discount" _description = "Discount applied to order line." name = fields.Char("Discount Name") rule = fields.Many2many('pos.promotion', string="Promotions Applied") discount_applied = fields.Float("Discount Amount") #class PromotionOrderLine(osv.osv): # _inherit = 'pos.order.line' # discount = fields.One2one("pos.promotion.discount") #rule_ids = fields.Char('Rules applied', default="") #rules_applied = fields.Many2many('pos.promotion', string="Promotions Applied")
mit
-5,878,874,552,577,806,000
63.95
148
0.725838
false
tkzeng/molecular-design-toolkit
moldesign/min/descent.py
1
5697
# Copyright 2016 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import moldesign as mdt from moldesign import utils from moldesign import units as u from .base import MinimizerBase from . import toplevel def exports(o): __all__.append(o.__name__) return o __all__ = [] @exports class GradientDescent(MinimizerBase): """ A careful (perhaps overly careful) gradient descent implementation designed to relax structures far from equilibrium. A backtracking line search is performed along the steepest gradient direction. The maximum move for any single atom is also limited by ``max_atom_move`` Note: This algorithm is good at stably removing large forces, but it's very poorly suited to locating any type of critical point; don't use this to find a minimum! References: https://www.math.washington.edu/~burke/crs/408/lectures/L7-line-search.pdf Args: mol (moldesign.Molecule): molecule to minimize max_atom_move (Scalar[length]): maximum displacement of a single atom scaling (Scalar[length/force]): unit of displacement per unit force gamma (float): number between 0 and 1 indicating scale factor for backtracking search control (float): threshold for terminating line search; this is a proportion (0<=``control``<=1) of the expected function decrease **kwargs (dict): kwargs from :class:`MinimizerBase` """ _strip_units = False def __init__(self, mol, max_atom_move=0.05*u.angstrom, scaling=0.01*u.angstrom**2/u.eV, gamma=0.4, control=0.25, **kwargs): super(GradientDescent, self).__init__(mol, **kwargs) assert 'forces' in self.request_list, 'Gradient descent built-in gradients' self.max_atom_move = max_atom_move self.scaling = scaling self.gamma = gamma self.control = control self._last_energy = None def run(self): print 'Starting geometry optimization: built-in gradient descent' lastenergy = self.objective(self._coords_to_vector(self.mol.positions)) current = self._coords_to_vector(self.mol.positions) for i in xrange(self.nsteps): grad = self.grad(current) if np.abs(grad.max()) < self.force_tolerance: # converged return move = self.scale_move(grad) armijo_goldstein_prefac = self.control * move.norm() for icycle in xrange(0, 10): g = self.gamma**icycle newpos = self._make_move(current, g * move) # move direction may be different than gradient direction due to constraints move_vec = (newpos-current).normalized() if grad.dot(move_vec) >= 0.0: # move flipped direction! if self._constraint_convergence(newpos, current, grad): return # flip was because we're converged else: # flip was because move was too big newenergy = np.inf * u.default.energy continue try: newenergy = self.objective(newpos) except mdt.QMConvergenceError: continue if newenergy <= lastenergy + g * armijo_goldstein_prefac * grad.dot(move_vec): break else: if newenergy >= lastenergy: raise mdt.ConvergenceFailure('Line search failed') if self._constraint_convergence(newpos, current, grad): return else: current = newpos lastenergy = newenergy self._sync_positions(current) self.callback() def scale_move(self, grad): move = -self.scaling*grad mmax = np.abs(move).max() if mmax > self.max_atom_move: # rescale the move move *= self.max_atom_move/mmax return move def _make_move(self, current, move): if self.mol.constraints: # TODO: get constraint forces from lagrange multipliers and use them to check for convergence self._sync_positions(current) prev = self.mol.positions.copy() self._sync_positions(current+move) mdt.geom.shake_positions(self.mol, prev) return self._coords_to_vector(self.mol.positions) else: return current + move def _constraint_convergence(self, pos, lastpos, energygrad): """ Test for force-based convergence after projecting out constraint forces Until the shake method starts explicitly storing constraint forces, we calculate this direction as the SHAKE-adjusted displacement vector from the current descent step """ direction = mdt.mathutils.normalized((pos - lastpos).flatten()) proj_grad = energygrad.dot(direction) return abs(proj_grad) < self.force_tolerance gradient_descent = GradientDescent._as_function('gradient_descent') exports(gradient_descent) toplevel(gradient_descent)
apache-2.0
-3,904,053,056,946,175,500
37.234899
105
0.626119
false
NASLab/GroundROS
src/experimental_results/tracking_log_analysis.py
1
1388
# python experimental tests for Husky import numpy as np import glob import matplotlib.pyplot as plt for file in glob.glob("*.npy"): data = np.load(file)[5:, :] print file, error_long = data[:, 0] error_lat = data[:, 1] ref_x = [value-data[0,2] for value in data[:, 2]] # print ref_x[:30] ref_y = [value-data[0,3] for value in data[:, 3]] pos_x = [value-data[0,4] for value in data[:, 4]][0::20] pos_y = [value-data[0,5] for value in data[:, 5]][0::20] pos_theta = data[:, 6] time = data[:, 7] - data[0, 7] vel = data[:,8] # plt.plot(ref_x, ref_y, 'ro') # plt.gca().set_aspect('equal', adjustable='box') f0 = plt.figure() f1 = plt.figure() f2 = plt.figure() ax0 = f0.add_subplot(111) ax0.plot(ref_x, ref_y, '--', lw=3,label='Reference Trajectory') ax0.plot(pos_x[0], pos_y[0], 'mo',markersize = 10,label='Start Point') ax0.plot(pos_x, pos_y, 'ro',label='Robot Trajectory') ax0.legend() ax0.axis('equal') ax1 = f1.add_subplot(111) ax1.plot(time, error_long,lw=3,label='Longitudinal Error') ax1.plot(time, error_lat,lw=3,label='Lateral Error') ax1.legend() ax2 = f2.add_subplot(111) ax2.plot(time,vel,lw=3,label='Velocity Profile') ax2.legend() plt.draw() plt.pause(.1) # <------- raw_input("<Hit Enter To Close>") plt.close(f0) plt.close(f1)
mit
3,869,541,272,850,976,300
29.173913
74
0.582133
false
jeffmahoney/crash-python
crash/addrxlat.py
1
2632
# -*- coding: utf-8 -*- # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79: import addrxlat import crash from crash.cache.syscache import utsname from crash.util import offsetof from crash.util.symbols import Types import gdb types = Types(['uint32_t *', 'uint64_t *']) class TranslationContext(addrxlat.Context): def __init__(self, *args: int, **kwargs: int) -> None: super().__init__(*args, **kwargs) self.read_caps = addrxlat.CAPS(addrxlat.KVADDR) def cb_sym(self, symtype: int, *args: str) -> int: if symtype == addrxlat.SYM_VALUE: ms = gdb.lookup_minimal_symbol(args[0]) if ms is not None: return int(ms.value().address) elif symtype == addrxlat.SYM_SIZEOF: sym = gdb.lookup_symbol(args[0], None)[0] if sym is not None: return sym.type.sizeof elif symtype == addrxlat.SYM_OFFSETOF: sym = gdb.lookup_symbol(args[0], None, gdb.SYMBOL_STRUCT_DOMAIN)[0] if sym is None: # this works for typedefs: sym = gdb.lookup_symbol(args[0], None)[0] if sym is not None: ret = offsetof(sym.type, args[1], True) if ret is None: raise RuntimeError("offsetof can't return None with errors=True") return super().cb_sym(symtype, *args) def cb_read32(self, faddr: addrxlat.FullAddress) -> int: v = gdb.Value(faddr.addr).cast(types.uint32_t_p_type) return int(v.dereference()) def cb_read64(self, faddr: addrxlat.FullAddress) -> int: v = gdb.Value(faddr.addr).cast(types.uint64_t_p_type) return int(v.dereference()) class CrashAddressTranslation: def __init__(self) -> None: try: target = crash.current_target() self.context = target.kdump.get_addrxlat_ctx() self.system = target.kdump.get_addrxlat_sys() except AttributeError: self.context = TranslationContext() self.system = addrxlat.System() self.system.os_init(self.context, arch=utsname.machine, type=addrxlat.OS_LINUX) self.is_non_auto = False xlatmap = self.system.get_map(addrxlat.SYS_MAP_MACHPHYS_KPHYS) for addr_range in xlatmap: if addr_range.meth == addrxlat.SYS_METH_NONE: continue meth = self.system.get_meth(addr_range.meth) if meth.kind != addrxlat.LINEAR or meth.off != 0: self.is_non_auto = True break
gpl-2.0
-4,112,297,611,290,940,000
37.144928
85
0.577508
false
ReactiveX/RxPY
tests/test_observable/test_maxby.py
1
11240
import unittest from rx import operators as ops from rx.testing import TestScheduler, ReactiveTest on_next = ReactiveTest.on_next on_completed = ReactiveTest.on_completed on_error = ReactiveTest.on_error subscribe = ReactiveTest.subscribe subscribed = ReactiveTest.subscribed disposed = ReactiveTest.disposed created = ReactiveTest.created class TestMaxBy(unittest.TestCase): def test_maxby_empty(self): scheduler = TestScheduler() msgs = [ on_next(150, {"key": 1, "value": 'z'}), on_completed(250) ] xs = scheduler.create_hot_observable(msgs) def create(): def mapper(x): return x["key"] return xs.pipe(ops.max_by(mapper)) res = scheduler.start(create=create).messages self.assertEqual(2, len(res)) self.assertEqual(0, len(res[0].value.value)) assert(res[1].value.kind == 'C' and res[1].time == 250) def test_maxby_return(self): scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }), on_next(210, { "key": 2, "value": 'a' }), on_completed(250) ] xs = scheduler.create_hot_observable(msgs) def create(): def mapper(x): return x["key"] return xs.pipe(ops.max_by(mapper)) res = scheduler.start(create=create).messages self.assertEqual(2, len(res)) assert(res[0].value.kind == 'N') self.assertEqual(1, len(res[0].value.value)) self.assertEqual(2, res[0].value.value[0]["key"]) self.assertEqual('a', res[0].value.value[0]["value"]) assert(res[1].value.kind == 'C' and res[1].time == 250) def test_maxby_some(self): scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }), on_next(210, { "key": 3, "value": 'b' }), on_next(220, { "key": 4, "value": 'c' }), on_next(230, { "key": 2, "value": 'a' }), on_completed(250) ] xs = scheduler.create_hot_observable(msgs) def create(): def mapper(x): return x["key"] return xs.pipe(ops.max_by(mapper)) res = scheduler.start(create=create).messages self.assertEqual(2, len(res)) assert(res[0].value.kind == 'N') self.assertEqual(1, len(res[0].value.value[0]["value"])) self.assertEqual(4, res[0].value.value[0]["key"]) self.assertEqual('c', res[0].value.value[0]["value"]) assert(res[1].value.kind == 'C' and res[1].time == 250) def test_maxby_multiple(self): scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }), on_next(210, { "key": 3, "value": 'b' }), on_next(215, { "key": 2, "value": 'd' }), on_next(220, { "key": 3, "value": 'c' }), on_next(225, { "key": 2, "value": 'y' }), on_next(230, { "key": 4, "value": 'a' }), on_next(235, { "key": 4, "value": 'r' }), on_completed(250) ] xs = scheduler.create_hot_observable(msgs) def create(): return xs.pipe(ops.max_by(lambda x: x["key"])) res = scheduler.start(create=create).messages self.assertEqual(2, len(res)) assert(res[0].value.kind == 'N') self.assertEqual(2, len(res[0].value.value)) self.assertEqual(4, res[0].value.value[0]["key"]) self.assertEqual('a', res[0].value.value[0]["value"]) self.assertEqual(4, res[0].value.value[1]["key"]) self.assertEqual('r', res[0].value.value[1]["value"]) assert(res[1].value.kind == 'C' and res[1].time == 250) def test_maxby_on_error(self): ex = 'ex' scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }), on_error(210, ex) ] xs = scheduler.create_hot_observable(msgs) def create(): return xs.pipe(ops.max_by(lambda x: x["key"])) res = scheduler.start(create=create).messages assert res == [on_error(210, ex)] def test_maxby_never(self): scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }) ] xs = scheduler.create_hot_observable(msgs) def create(): return xs.pipe(ops.max_by(lambda x: x["key"])) res = scheduler.start(create=create).messages assert res == [] # def test_MaxBy_Comparer_Empty(): # var msgs, res, reverseComparer, scheduler, xs # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }), # on_completed(250) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # return x.key # }, reverseComparer) # }).messages # self.assertEqual(2, res.length) # self.assertEqual(0, res[0].value.value.length) # assert(res[1].value.kind == 'C' and res[1].time == 250) # def test_MaxBy_Comparer_Return(): # var msgs, res, reverseComparer, scheduler, xs # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }), on_next(210, { # key: 2, # value: 'a' # }), on_completed(250) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # return x.key # }, reverseComparer) # }).messages # self.assertEqual(2, res.length) # assert(res[0].value.kind == 'N') # self.assertEqual(1, res[0].value.value.length) # self.assertEqual(2, res[0].value.value[0].key) # self.assertEqual('a', res[0].value.value[0].value) # assert(res[1].value.kind == 'C' and res[1].time == 250) # def test_MaxBy_Comparer_Some(): # var msgs, res, reverseComparer, scheduler, xs # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }), on_next(210, { # key: 3, # value: 'b' # }), on_next(220, { # key: 4, # value: 'c' # }), on_next(230, { # key: 2, # value: 'a' # }), on_completed(250) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # return x.key # }, reverseComparer) # }).messages # self.assertEqual(2, res.length) # assert(res[0].value.kind == 'N') # self.assertEqual(1, res[0].value.value.length) # equal(2, res[0].value.value[0].key) # self.assertEqual('a', res[0].value.value[0].value) # assert(res[1].value.kind == 'C' and res[1].time == 250) # def test_MaxBy_Comparer_Throw(): # var ex, msgs, res, reverseComparer, scheduler, xs # ex = 'ex' # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }), on_error(210, ex) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # return x.key # }, reverseComparer) # }).messages # assert res == [on_error(210, ex)] # def test_MaxBy_Comparer_Never(): # var msgs, res, reverseComparer, scheduler, xs # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # return x.key # }, reverseComparer) # }).messages # assert res == [] # def test_MaxBy_SelectorThrows(): # var ex, msgs, res, reverseComparer, scheduler, xs # ex = 'ex' # scheduler = TestScheduler() # msgs = [ # on_next(150, { # key: 1, # value: 'z' # }), on_next(210, { # key: 3, # value: 'b' # }), on_next(220, { # key: 2, # value: 'c' # }), on_next(230, { # key: 4, # value: 'a' # }), on_completed(250) # ] # reverseComparer = function (a, b) { # if (a > b) { # return -1 # } # if (a < b) { # return 1 # } # return 0 # } # xs = scheduler.create_hot_observable(msgs) # res = scheduler.start(create=create) # return xs.max_by(function (x) { # throw ex # }, reverseComparer) # }).messages # assert res == [on_error(210, ex)] def test_maxby_comparerthrows(self): ex = 'ex' scheduler = TestScheduler() msgs = [ on_next(150, { "key": 1, "value": 'z' }), on_next(210, { "key": 3, "value": 'b' }), on_next(220, { "key": 2, "value": 'c' }), on_next(230, { "key": 4, "value": 'a' }), on_completed(250) ] def reverse_comparer(a, b): raise Exception(ex) xs = scheduler.create_hot_observable(msgs) def create(): return xs.pipe(ops.max_by(lambda x: x["key"], reverse_comparer)) res = scheduler.start(create=create).messages assert res == [on_error(220, ex)]
mit
3,801,385,841,253,108,000
27.241206
76
0.457117
false
camayak/django-apiserver
tests/core/tests/paginator.py
1
5585
from django.conf import settings from django.test import TestCase from apiserver.exceptions import BadRequest from apiserver.paginator import Paginator from core.models import Note from core.tests.resources import NoteResource from django.db import reset_queries class PaginatorTestCase(TestCase): fixtures = ['note_testdata.json'] def setUp(self): super(PaginatorTestCase, self).setUp() self.data_set = Note.objects.all() self.old_debug = settings.DEBUG settings.DEBUG = True def tearDown(self): settings.DEBUG = self.old_debug super(PaginatorTestCase, self).tearDown() def _get_query_count(self): try: from django.db import connections return connections['default'].queries except ImportError: from django.db import connection return connection.queries def test_page1(self): reset_queries() self.assertEqual(len(self._get_query_count()), 0) paginator = Paginator({}, self.data_set, resource_uri='/api/v1/notes/', limit=2, offset=0) # REGRESSION: Check to make sure only part of the cache is full. # We used to run ``len()`` on the ``QuerySet``, which would populate # the entire result set. Owwie. paginator.get_count() self.assertEqual(len(self._get_query_count()), 1) # Should be nothing in the cache. self.assertEqual(paginator.objects._result_cache, None) meta = paginator.page()['meta'] self.assertEqual(meta['limit'], 2) self.assertEqual(meta['offset'], 0) self.assertEqual(meta['previous'], None) self.assertEqual(meta['next'], '/api/v1/notes/?limit=2&offset=2') self.assertEqual(meta['total_count'], 6) def test_page2(self): paginator = Paginator({}, self.data_set, resource_uri='/api/v1/notes/', limit=2, offset=2) meta = paginator.page()['meta'] self.assertEqual(meta['limit'], 2) self.assertEqual(meta['offset'], 2) self.assertEqual(meta['previous'], '/api/v1/notes/?limit=2&offset=0') self.assertEqual(meta['next'], '/api/v1/notes/?limit=2&offset=4') self.assertEqual(meta['total_count'], 6) def test_page3(self): paginator = Paginator({}, self.data_set, resource_uri='/api/v1/notes/', limit=2, offset=4) meta = paginator.page()['meta'] self.assertEqual(meta['limit'], 2) self.assertEqual(meta['offset'], 4) self.assertEqual(meta['previous'], '/api/v1/notes/?limit=2&offset=2') self.assertEqual(meta['next'], None) self.assertEqual(meta['total_count'], 6) def test_large_limit(self): paginator = Paginator({}, self.data_set, resource_uri='/api/v1/notes/', limit=20, offset=0) meta = paginator.page()['meta'] self.assertEqual(meta['limit'], 20) self.assertEqual(meta['offset'], 0) self.assertEqual(meta['previous'], None) self.assertEqual(meta['next'], None) self.assertEqual(meta['total_count'], 6) def test_all(self): paginator = Paginator({'limit': 0}, self.data_set, resource_uri='/api/v1/notes/', limit=2, offset=0) page = paginator.page() meta = page['meta'] self.assertEqual(meta['limit'], 0) self.assertEqual(meta['offset'], 0) self.assertEqual(meta['total_count'], 6) self.assertEqual(len(page['objects']), 6) self.assertFalse('previous' in meta) self.assertFalse('next' in meta) def test_complex_get(self): request = { 'slug__startswith': 'food', 'format': 'json', } paginator = Paginator(request, self.data_set, resource_uri='/api/v1/notes/', limit=2, offset=2) meta = paginator.page()['meta'] self.assertEqual(meta['limit'], 2) self.assertEqual(meta['offset'], 2) self.assertEqual(meta['previous'], '/api/v1/notes/?slug__startswith=food&offset=0&limit=2&format=json') self.assertEqual(meta['next'], '/api/v1/notes/?slug__startswith=food&offset=4&limit=2&format=json') self.assertEqual(meta['total_count'], 6) def test_limit(self): paginator = Paginator({}, self.data_set, limit=20, offset=0) paginator.limit = '10' self.assertEqual(paginator.get_limit(), 10) paginator.limit = None self.assertEqual(paginator.get_limit(), 20) paginator.limit = 10 self.assertEqual(paginator.get_limit(), 10) paginator.limit = -10 self.assertRaises(BadRequest, paginator.get_limit) paginator.limit = 'hAI!' self.assertRaises(BadRequest, paginator.get_limit) def test_offset(self): paginator = Paginator({}, self.data_set, limit=20, offset=0) paginator.offset = '10' self.assertEqual(paginator.get_offset(), 10) paginator.offset = 0 self.assertEqual(paginator.get_offset(), 0) paginator.offset = 10 self.assertEqual(paginator.get_offset(), 10) paginator.offset= -10 self.assertRaises(BadRequest, paginator.get_offset) paginator.offset = 'hAI!' self.assertRaises(BadRequest, paginator.get_offset) def test_regression_nonqueryset(self): paginator = Paginator({}, ['foo', 'bar', 'baz'], limit=2, offset=0) # This would fail due to ``count`` being present on ``list`` but called # differently. page = paginator.page() self.assertEqual(page['objects'], ['foo', 'bar'])
bsd-2-clause
-2,993,944,627,323,012,600
37.784722
111
0.617547
false
caedesvvv/pynoded
pynoded/shapes/arrow.py
1
1616
""" Arrow shapes """ from pynoded.graph import GraphObject from math import atan2,pi from cubicspline import cubicspline from numpy import array class Arrow(GraphObject): """ An arrow connecting two objects. """ def __init__(self,parent,x0,y0,x1,y1,color): GraphObject.__init__(self,parent,x0,y0) self.x1=x1 self.y1=y1 self.color=color self.maxdist = 3 def Draw_(self, ctx): x1,y1=self.ToLocal(self.x1, self.y1) ctx.set_line_width(1) linewidth,_ = ctx.device_to_user_distance(1., 1.) ctx.set_line_width(linewidth) ctx.set_source_rgb(*self.color) ctx.move_to(0,0) dist = abs(complex(x1, y1)) elast = dist/2.0 ctx.curve_to(elast, 0, x1-elast, y1, x1, y1) ctx.stroke() data = [[float(elast), float(0)], [float(x1-elast), float(y1)], [float(x1), float(y1)], [0, 0]] data = array(data) time, val = cubicspline(data, 123) if linewidth > self.maxdist: return ctx.move_to(x1, y1) # following is to draw the arrow in direction of line # but now we're drawing the in/out tangential, so not needed # angle=atan2(0,x1) # ctx.rotate(angle) ctx.rel_line_to(-6*linewidth,0) ctx.rel_line_to(0,2*linewidth) ctx.rel_line_to(6*linewidth,-2*linewidth) ctx.rel_line_to(-6*linewidth,-2*linewidth) ctx.rel_line_to(0,2*linewidth) ctx.fill_preserve() ctx.stroke() def Test(self,x,y): return False
gpl-3.0
-2,896,924,524,325,959,000
28.925926
68
0.564975
false
colloquium/spacewalk
client/tools/rhn-virtualization/virtualization/poller.py
1
10725
# # Copyright (c) 2008--2010 Red Hat, Inc. # # This software is licensed to you under the GNU General Public License, # version 2 (GPLv2). There is NO WARRANTY for this software, express or # implied, including the implied warranties of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. You should have received a copy of GPLv2 # along with this software; if not, see # http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. # # Red Hat trademarks are not licensed under GPLv2. No permission is # granted to use or replicate Red Hat trademarks that are incorporated # in this software or its documentation. # import sys sys.path.append("/usr/share/rhn/") import binascii import traceback try: import libvirt except ImportError: # There might not be a libvirt. libvirt = None from optparse import OptionParser from virtualization.state import State from virtualization.errors import VirtualizationException from virtualization.constants import PropertyType, \ VirtualizationType, \ IdentityType, \ VIRT_STATE_NAME_MAP, \ VIRT_VDSM_STATUS_MAP from virtualization.notification import Plan, \ EventType, \ TargetType from virtualization.util import hyphenize_uuid, \ is_fully_virt from virtualization.poller_state_cache import PollerStateCache from virtualization.domain_directory import DomainDirectory ############################################################################### # Globals ############################################################################### options = None ############################################################################### # Public Interface ############################################################################### def poll_hypervisor(): """ This function polls the hypervisor for information about the currently running set of domains. It returns a dictionary object that looks like the following: { uuid : { 'name' : '...', 'uuid' : '...', 'virt_type' : '...', 'memory_size' : '...', 'vcpus' : '...', 'state' : '...' }, ... } """ if not libvirt: return {} try: conn = libvirt.open(None) except libvirt.libvirtError, lve: # virConnectOpen() failed conn = None if not conn: # No connection to hypervisor made return {} domainIDs = conn.listDomainsID() state = {} for domainID in domainIDs: try: domain = conn.lookupByID(domainID) except libvirt.libvirtError, lve: raise VirtualizationException, \ "Failed to obtain handle to domain %d: %s" % \ (domainID, repr(lve)) uuid = binascii.hexlify(domain.UUID()) # SEE: http://libvirt.org/html/libvirt-libvirt.html#virDomainInfo # for more info. domain_info = domain.info() # Set the virtualization type. We can tell if the domain is fully virt # by checking the domain's OSType() attribute. virt_type = VirtualizationType.PARA if is_fully_virt(domain): virt_type = VirtualizationType.FULLY # we need to filter out the small per/minute KB changes # that occur inside a vm. To do this we divide by 1024 to # drop our precision down to megabytes with an int then # back up to KB memory = int(domain_info[2] / 1024); memory = memory * 1024; properties = { PropertyType.NAME : domain.name(), PropertyType.UUID : uuid, PropertyType.TYPE : virt_type, PropertyType.MEMORY : str(memory), # current memory PropertyType.VCPUS : domain_info[3], PropertyType.STATE : VIRT_STATE_NAME_MAP[domain_info[0]] } state[uuid] = properties if state: _log_debug("Polled state: %s" % repr(state)) return state def poll_through_vdsm(): """ This method polls all the virt guests running on a VDSM enabled Host. Libvirt is disabled by default on RHEV-M managed clients. * Imports the localvdsm client that talks to the localhost and fetches the list of vms and their info. * Extract the data and construct the state to pass it to the execution plan for guest polling. * The server should account for business rules similar to xen/kvm. """ import localvdsm try: server = localvdsm.connect() except: # VDSM raised an exception we're done here return {} # Extract list of vm's. True returns full list try: domains = server.list(True) except: # Something went wrong in vdsm, exit return {} if not len(domains['vmList']): # No domains, exit. return state = {} for domain in domains['vmList']: #trim uuid uuid = domain['vmId'].lower().replace('-', '') # Map the VDSM status to libvirt for server compatibility status = 'nostate' if VIRT_VDSM_STATUS_MAP.has_key(domain['status']): status = VIRT_VDSM_STATUS_MAP[domain['status']] # This is gonna be fully virt as its managed by VDSM virt_type = VirtualizationType.FULLY #Memory memory = int(domain['memSize']) * 1024 # vcpus if domain.has_key('smp'): vcpus = domain['smp'] else: vcpus = '1' properties = { PropertyType.NAME : domain['vmName'], PropertyType.UUID : uuid, PropertyType.TYPE : virt_type, PropertyType.MEMORY : memory, # current memory PropertyType.VCPUS : vcpus, PropertyType.STATE : status} state[uuid] = properties if state: _log_debug("Polled state: %s" % repr(state)) return state def poll_state(uuid): """ Polls just the state of the guest with the provided UUID. This state is returned. """ conn = libvirt.open(None) if not conn: raise VirtualizationException, \ "Failed to open connection to hypervisor." # Attempt to connect to the domain. Since there is technically no # "stopped" state, we will assume that if we cannot connect the domain is # not running. Unfortunately, we can't really determine if the domain # actually exists. domain = None try: domain = conn.lookupByUUIDString(hyphenize_uuid(uuid)) except libvirt.libvirtError, lve: # Can't find domain. Return stopped state. return State(None) # Now that we have the domain, lookup the state. domain_info = domain.info() return State(VIRT_STATE_NAME_MAP[domain_info[0]]) ############################################################################### # Helper Functions ############################################################################### def _send_notifications(poller_state): """ This function will send notifications based on vm state change to the server. To reduce the possibility of spamming the server but still maintain an element of consistency, it will compare the previous poll state against the current poll state and only send notifications if something has changed. In the event that the cache might have gotten into an inconsistent state, the cache will be removed after every 50 polls (this is about every 1.5 hours). This will cause the full state to be re-uploaded and put things back in sync, if necessary. """ # Now, if anything changed, send the appropriate notification for it. if poller_state.is_changed(): added = poller_state.get_added() removed = poller_state.get_removed() modified = poller_state.get_modified() plan = Plan() # Declare virtualization host first plan.add(EventType.EXISTS, TargetType.SYSTEM, { PropertyType.IDENTITY : IdentityType.HOST, PropertyType.UUID : '0000000000000000' }) for (uuid, data) in added.items(): plan.add(EventType.EXISTS, TargetType.DOMAIN, data) for (uuid, data) in modified.items(): plan.add(EventType.EXISTS, TargetType.DOMAIN, data) for (uuid, data) in removed.items(): plan.add(EventType.REMOVED, TargetType.DOMAIN, data) plan.execute() def _parse_options(): usage = "Usage: %prog [options]" parser = OptionParser(usage) parser.set_defaults(debug=False) parser.add_option("-d", "--debug", action="store_true", dest="debug") global options (options, args) = parser.parse_args() def _log_debug(msg, include_trace = 0): if options and options.debug: print "DEBUG: " + str(msg) if include_trace: e_info = sys.exc_info() traceback.print_exception(e_info[0], e_info[1], e_info[2]) ############################################################################### # Main Program ############################################################################### if __name__ == "__main__": # First, handle the options. _parse_options() # check for VDSM status import commands vdsm_enabled = False status, msg = commands.getstatusoutput("/etc/init.d/vdsmd status") if status == 0: vdsm_enabled = True # Crawl each of the domains on this host and obtain the new state. if vdsm_enabled: domain_list = poll_through_vdsm() elif libvirt: domain_list = poll_hypervisor() else: # If no libvirt nor vdsm is present, this program is pretty much # useless. Just exit. sys.exit(0) if not domain_list: # No domains returned, nothing to do, exit polling sys.exit(0) # create the unkonwn domain config files (for libvirt only) if libvirt and not vdsm_enabled: uuid_list = domain_list.keys() domain = DomainDirectory() domain.save_unknown_domain_configs(uuid_list) cached_state = PollerStateCache(domain_list, debug = options and options.debug) # Send notifications, if necessary. _send_notifications(cached_state) # Save the new state. cached_state.save()
gpl-2.0
-3,612,708,035,236,073,000
33.596774
79
0.565315
false
forseti-security/forseti-security
google/cloud/forseti/scanner/audit/resource_rules_engine.py
1
13538
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rules engine for Resources.""" from builtins import object import collections from google.cloud.forseti.common.util import logger from google.cloud.forseti.scanner.audit import base_rules_engine from google.cloud.forseti.scanner.audit import errors from google.cloud.forseti.services import utils LOGGER = logger.get_logger(__name__) _SUPPORTED_MODES = {'required'} RuleViolation = collections.namedtuple( 'RuleViolation', ['resource_id', 'resource_name', 'resource_type', 'full_name', 'rule_index', 'rule_name', 'violation_type', 'violation_data', 'resource_data'] ) class ResourceRulesEngine(base_rules_engine.BaseRulesEngine): """Rules engine for Resources.""" def __init__(self, rules_file_path, snapshot_timestamp=None): """Initialize. Args: rules_file_path (str): file location of rules snapshot_timestamp (str): snapshot timestamp. Defaults to None. If set, this will be the snapshot timestamp used in the engine. """ super(ResourceRulesEngine, self).__init__( rules_file_path=rules_file_path) self.rule_book = None def build_rule_book(self, global_configs=None): """Build ResourceRuleBook from the rules definition file. Args: global_configs (dict): Global configurations. """ self.rule_book = ResourceRuleBook(self._load_rule_definitions()) def find_violations(self, resources, force_rebuild=False): """Determine whether the resources violate rules. Args: resources (List[Resource]): resources to find violations for. force_rebuild (bool): If True, rebuilds the rule book. This will reload the rules definition file and add the rules to the book. Returns: generator: A generator of rule violations. """ if self.rule_book is None or force_rebuild: self.build_rule_book() violations = self.rule_book.find_violations(resources) return violations def add_rules(self, rule_defs): """Add rules to the rule book. Args: rule_defs (dict): rule definitions dictionary """ if self.rule_book is not None: self.rule_book.add_rules(rule_defs) class ResourceRuleBook(base_rules_engine.BaseRuleBook): """The RuleBook for Resources.""" def __init__(self, rule_defs=None): """Initialization. Args: rule_defs (dict): rule definitons dictionary. """ super(ResourceRuleBook, self).__init__() self.rules = [] if not rule_defs: self.rule_defs = {} else: self.rule_defs = rule_defs self.add_rules(rule_defs) def add_rules(self, rule_defs): """Add rules to the rule book. Args: rule_defs (dict): rule definitions dictionary. """ for (i, rule) in enumerate(rule_defs.get('rules', [])): self.add_rule(rule, i) def add_rule(self, rule_def, rule_index): """Add a rule to the rule book. Args: rule_def (dict): A dictionary containing rule definition properties. rule_index (int): The index of the rule from the rule definitions. Assigned automatically when the rule book is built. raises: InvalidRulesSchemaError: if invalid rules definition. """ mode = rule_def.get('mode', '') if mode not in _SUPPORTED_MODES: raise errors.InvalidRulesSchemaError( 'Unexpected "mode" in rule {}: got {}, want one of {}'.format( rule_index, mode, _SUPPORTED_MODES)) if not rule_def.get('resource_types'): raise errors.InvalidRulesSchemaError( 'Missing non empty "resource_types" in rule {}'.format( rule_index)) resource_tree = ResourceTree.from_json( rule_def.get('resource_trees', [])) self.rules.append( Rule(name=rule_def['name'], index=rule_index, resource_types=set(rule_def['resource_types']), resource_tree=resource_tree)) def find_violations(self, resources): """Find resource violations in the rule book. Args: resources (List[Resource]): The resources to check for violations. Yields: RuleViolation: resource rule violations. """ for rule in self.rules: for violation in rule.find_violations(resources): yield violation def get_applicable_resource_types(self): """Get the applicable resource types defined in this rule book. The applcable resource types are a union of all resource types defined in each rule. Returns: Set[string]: applicable resource types. """ types = set() for rule in self.rules: types.update(rule.resource_types) return types class ResourceTree(object): """ResourceTree represents resources in a tree format.""" def __init__(self, resource_type=None, resource_id=None, children=None): """Initialize a resource tree. Args: resource_type (str): type of this resource. Leave as None if this is a root node with multiple children. In that case, this tree will represent a multi-root tree. resource_id (str): id of this resource or '*'. Leave as None if this is a root node with multiple children. In that case, this tree will represent a multi-root tree. children (List[ResourceTree]): children of this node. """ self.resource_type = resource_type self.resource_id = resource_id self.children = children or [] @classmethod def from_json(cls, json_nodes): """Create a resource tree from the given JSON representation of nodes. If there are multiple json nodes, the resulting tree will have a root node with no resource type or id and each json node as a child. If there is only one json node, the root will have the resource id and type of the node. Args: json_nodes(List[dict]): JSON representation of nodes. Returns: ResourceTree: The resource tree representation of the json nodes. """ nodes = cls._from_json(json_nodes) if len(nodes) == 1: return nodes[0] return ResourceTree(children=nodes) @classmethod def _from_json(cls, json_nodes): """Build Resource Tree nodes. Args: json_nodes(List[dict]): JSON representation of nodes. Returns: ResourceTree: The resource tree representation of the json nodes. """ nodes = [] for json_node in json_nodes: node = ResourceTree( resource_type=json_node['type'], resource_id=json_node['resource_id'], children=cls._from_json(json_node.get('children', []))) nodes.append(node) return nodes def match(self, resource, resource_types): """Match the given resource against this resource tree. Args: resource (Resource): The resource to match. resource_types (List[string]): Applicable resource types. Violations on types not in this list will not be reported. Returns: ResourceTree: The final matching node, or None if there is no match. """ tuples = [] for resource_type, resource_id in ( utils.get_resources_from_full_name(resource.full_name)): tuples.append((resource_type, resource_id)) # Tuples are returned in reverse order, so reverse them. tuples = list(reversed(tuples)) # Left trim tuples that are not appicable. for resource_type, _ in tuples: if resource_type not in resource_types: tuples = tuples[1:] if not tuples: return None return self.match_tuples(tuples) def match_tuples(self, tuples): """Match the given tuples against this tree. Args: tuples (List[Tuple[string, string]]): (type, id) pairs of resources. Together, they represent one full resource. e.g. organization/123/project/456/ should be represented as [('organization', '123'), ('project', '456')]. Returns: ResourceTree: The final matching node, or None if there is no match. """ if not self.resource_type: return self._find_matching_child(tuples) for resource_type, resource_id in tuples: id_match = self.resource_id == '*' or ( resource_id == self.resource_id) if resource_type == self.resource_type and id_match: tuples = tuples[1:] if not tuples: return self if not self.children: return None return self._find_matching_child(tuples) return None def _find_matching_child(self, tuples): """Finds a matching child node. Assumes that a child will either match an exact resource id, or a wildcard. The exact match child is given preference. Args: tuples (List[Tuple[string, string]]): (type, id) pairs of resources. Together, they represent one full resource. e.g. organization/123/project/456/ should be represented as [('organization', '123'), ('project', '456')]. Returns: ResourceTree: Matching child node, or None if none matched. """ wildcard_child = None for child in self.children: node = child.match_tuples(tuples) if node: if node.resource_id != '*': return node else: wildcard_child = node return wildcard_child def get_nodes(self): """Get all nodes in this resource tree. Returns: List[ResourceTree]: nodes in this tree. """ nodes = [] if self.resource_type: nodes.append(self) for child in self.children: nodes.extend(child.get_nodes()) return nodes class Rule(object): """Rule properties from the rule definition file. Also finds violations. """ def __init__(self, name, index, resource_types, resource_tree): """Initialize. Args: name (str): Name of the loaded rule. index (int): The index of the rule from the rule definitions. resource_types (List[str]): The applicable resource types of this rule. resource_tree (ResourceTree): Tree representing the valid resources. """ self.name = name self.index = index self.resource_types = resource_types self.resource_tree = resource_tree def find_violations(self, resources): """Find violations for this rule against the given resource. Args: resources (List[Resource]): resources to check for violations. Yields: RuleViolation: resource rule violation. """ matched_nodes = set() for resource in resources: if resource.type not in self.resource_types: continue node = self.resource_tree.match(resource, self.resource_types) if node: matched_nodes.add(node) else: yield RuleViolation( resource_id=resource.id, resource_name=resource.display_name, resource_type=resource.type, full_name=resource.full_name, rule_index=self.index, rule_name=self.name, violation_type='RESOURCE_VIOLATION', violation_data='', resource_data=resource.data or '', ) for node in self.resource_tree.get_nodes(): if node.resource_id != '*' and ( node not in matched_nodes): yield RuleViolation( resource_id=node.resource_id, resource_name=node.resource_id, resource_type=node.resource_type, full_name=node.resource_id, rule_index=self.index, rule_name=self.name, violation_type='RESOURCE_VIOLATION', violation_data='', resource_data='', )
apache-2.0
7,402,139,771,712,971,000
33.891753
80
0.581844
false
fmalina/python-netsuite
netsuite/api/customer.py
1
1591
from netsuite.client import client, passport, app_info from netsuite.utils import ( get_record_by_type, search_records_using ) from netsuite.service import ( Customer, CustomerSearchBasic, SearchStringField ) import uuid def get_customer(internal_id): return get_record_by_type('customer', internal_id) def get_or_create_customer(customer_data): """ Lookup customer, add a customer if lookup fails. """ internal_id = lookup_customer_id_by_name_and_email(customer_data) if not internal_id: customer_data['entityId'] = str(uuid.uuid4()) customer = Customer(**customer_data) response = client.service.add(customer, _soapheaders={ 'passport': passport, 'applicationInfo': app_info }) r = response.body.writeResponse if r.status.isSuccess: internal_id = r.baseRef.internalId return get_customer(internal_id) def lookup_customer_id_by_name_and_email(customer_data): name_and_email = {k: v for k, v in customer_data.items() if k in ['firstName', 'lastName', 'email']} search_fields = {k: SearchStringField(searchValue=v, operator='is') for k, v in name_and_email.items()} customer_search = CustomerSearchBasic(**search_fields) response = search_records_using(customer_search) r = response.body.searchResult if r.status.isSuccess: if r.recordList is None: return records = r.recordList.record if len(records) > 0: return records[0].internalId
bsd-3-clause
-684,644,612,951,325,200
29.596154
71
0.642992
false
algorhythms/LeetCode
987 Vertical Order Traversal of a Binary Tree.py
1
2279
#!/usr/bin/python3 """ Given a binary tree, return the vertical order traversal of its nodes values. For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1). Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates). If two nodes have the same position, then the value of the node that is reported first is the value that is smaller. Return an list of non-empty reports in order of X coordinate. Every report will have a list of values of nodes. Example 1: Input: [3,9,20,null,null,15,7] Output: [[9],[3,15],[20],[7]] Explanation: Without loss of generality, we can assume the root node is at position (0, 0): Then, the node with value 9 occurs at position (-1, -1); The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2); The node with value 20 occurs at position (1, -1); The node with value 7 occurs at position (2, -2). Example 2: Input: [1,2,3,4,5,6,7] Output: [[4],[2],[1,5,6],[3],[7]] Explanation: The node with value 5 and the node with value 6 have the same position according to the given scheme. However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6. Note: The tree will have between 1 and 1000 nodes. Each node's value will be between 0 and 1000. """ # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None from collections import defaultdict class Solution: def __init__(self): self.mp = defaultdict(list) # element (-Y, val) # from left to right, top to bottom def verticalTraversal(self, root: TreeNode) -> List[List[int]]: self.dfs(root, 0, 0) ret = [] mn = min(self.mp) mx = max(self.mp) for i in range(mn, mx+1): ret.append([ val for _, val in sorted(self.mp[i]) ]) return ret def dfs(self, node, x, y): if not node: return self.mp[x].append((-y, node.val)) self.dfs(node.left, x-1, y-1) self.dfs(node.right, x+1, y-1)
mit
-3,850,868,018,202,838,500
28.986842
101
0.641948
false
UCMAndesLab/webCTRLsMAP
webctrl.py
1
2580
import os, subprocess import json from webctrlSOAP import webctrlSOAP from smap import actuate, driver from smap.authentication import authenticated class _Actuator(actuate.SmapActuator): GET_REQUEST = 'getValue' SET_REQUEST = 'setValue' def setup(self, opts): self.devicePath = os.path.expanduser(opts['devicePath']) self.serverAddr = opts['webctrlServerAddr']; if 'scriptPath' in opts: self.scriptPath = opts['scriptPath']; else: self.webctrl = webctrlSOAP(); def webctrlRequest(self, typeOfRequest, inputValue = "0"): cleanDevicePath = "\"{0}\"".format(self.devicePath) print cleanDevicePath; if 'scriptPath' in self: pythonCmd = [self.scriptPath, typeOfRequest, self.serverAddr, cleanDevicePath, inputValue] value = subprocess.check_output(pythonCmd) else: if typeOfRequest == self.SET_REQUEST: value = self.webctrl.setValue(self.serverAddr, self.devicePath, inputValue); else: value = self.webctrl.getValue(self.serverAddr, self.devicePath); return value; def get_state(self, request): return float(self.webctrlRequest(self.GET_REQUEST)); def set_state(self, request, state): status = self.webctrlRequest(self.SET_REQUEST, str(state)); if status: return float(state); class WebCTRL_Actuator(_Actuator, actuate.IntegerActuator): def setup(self, opts): actuate.IntegerActuator.setup(self, opts) _Actuator.setup(self, opts) class WebCtrlDriver(driver.SmapDriver): def setup(self, opts): zoneSetpoint = [] zoneSetpoint.append('unoccupied_heating'); zoneSetpoint.append('unoccupied_cooling'); zoneSetpoint.append('occupied_heating'); zoneSetpoint.append('occupied_cooling'); # List of WebCtrl points/types [Facilities/Bldg1/VAV1_1/] [Damper Position] [double] klass = WebCTRL_Actuator setpointFile = open(opts['setpointFile'], 'r'); jsonStr = setpointFile.read(); setpoints = json.loads(jsonStr); for entry in setpoints: data_type = 'double' for point in zoneSetpoint: devicePath = '{0}/{1}/setpoints/{2}.value'.format(entry['refName'], entry['block'], point); setup=opts; setup['devicePath'] = devicePath; actuatorPath = '{0}/{1}'.format(entry['path'], point); print actuatorPath self.add_actuator(actuatorPath, 'Value', klass, setup=setup, data_type=data_type)
mit
-4,791,517,070,495,689,000
34.833333
103
0.644961
false
smly/nips17_adversarial_attack
defense/import_from_tf_baseline/dump_ens_adv_inception_v3.py
1
27088
# -*- coding: utf-8 -*- import os import sys import math from pathlib import Path import scipy.misc import h5py import numpy as np import tensorflow as tf import torch import torch.nn as nn import click from models.slim.nets.inception_v3 import ( inception_v3, inception_v3_arg_scope) import inception_v3_fullconv slim = tf.contrib.slim FMT_CONV = 'InceptionV3/InceptionV3/{}/convolution' FMT_RELU = 'InceptionV3/InceptionV3/{}/Relu' FMT_OTHER = 'InceptionV3/{}/{}' TEST_THRESHOLD = 1e-2 def _make_padding(padding_name, conv_shape): padding_name = padding_name.decode("utf-8") if padding_name == "VALID": return [0, 0] elif padding_name == "SAME": return [ math.floor(int(conv_shape[0])/2), math.floor(int(conv_shape[1])/2) ] else: raise RuntimeError(f"Invalid padding name: {padding_name}") def get_store_path(outdir, name): return ( Path(outdir) / Path('dump') / Path(f'{name}.h5')) def dump_conv2d(sess, name='Conv2d_1a_3x3', outdir='./dump'): conv_operation = sess.graph.get_operation_by_name(FMT_CONV.format(name)) weights_tensor = sess.graph.get_tensor_by_name( FMT_OTHER.format(name, 'weights:0')) weights = weights_tensor.eval() padding = _make_padding( conv_operation.get_attr('padding'), weights_tensor.get_shape()) strides = conv_operation.get_attr('strides') conv_out = sess.graph.get_operation_by_name( FMT_CONV.format(name)).outputs[0].eval() bn_beta = sess.graph.get_tensor_by_name( FMT_OTHER.format(name, 'BatchNorm/beta:0')).eval() bn_mean = sess.graph.get_tensor_by_name( FMT_OTHER.format(name, 'BatchNorm/moving_mean:0')).eval() bn_var = sess.graph.get_tensor_by_name( FMT_OTHER.format(name, 'BatchNorm/moving_variance:0')).eval() relu_out = sess.graph.get_operation_by_name( FMT_RELU.format(name)).outputs[0].eval() store_path = get_store_path(outdir, name) if not store_path.parent.exists(): store_path.parent.mkdir(parents=True) with h5py.File(str(store_path), 'w') as h5f: # conv h5f.create_dataset("weights", data=weights) h5f.create_dataset("strides", data=strides) h5f.create_dataset("padding", data=padding) h5f.create_dataset("conv_out", data=conv_out) # batch norm h5f.create_dataset("beta", data=bn_beta) h5f.create_dataset("mean", data=bn_mean) h5f.create_dataset("var", data=bn_var) h5f.create_dataset("relu_out", data=relu_out) def dump_logits(sess, name='Logits/Conv2d_1c_1x1', outdir='./dump'): conv_operation = sess.graph.get_operation_by_name( f'InceptionV3/{name}/convolution') weights_tensor = sess.graph.get_tensor_by_name( f'InceptionV3/{name}/weights:0') weights = weights_tensor.eval() biases_tensor = sess.graph.get_tensor_by_name( f'InceptionV3/{name}/biases:0') biases = biases_tensor.eval() padding = _make_padding( conv_operation.get_attr('padding'), weights_tensor.get_shape()) strides = conv_operation.get_attr('strides') conv_out = sess.graph.get_operation_by_name( f'InceptionV3/{name}/BiasAdd').outputs[0].eval() store_path = get_store_path(outdir, name) if not store_path.parent.exists(): store_path.parent.mkdir(parents=True) with h5py.File(str(store_path), 'w') as h5f: h5f.create_dataset("weights", data=weights) h5f.create_dataset("biases", data=biases) h5f.create_dataset("strides", data=strides) h5f.create_dataset("padding", data=padding) h5f.create_dataset("conv_out", data=conv_out) def dump_conv2d_logit(sess, name='Conv2d_1a_3x3', outdir='./dump'): conv_operation = sess.graph.get_operation_by_name( 'InceptionV3/{}/convolution'.format(name)) weights_tensor = sess.graph.get_tensor_by_name( 'InceptionV3/{}/weights:0'.format(name)) weights = weights_tensor.eval() padding = _make_padding( conv_operation.get_attr('padding'), weights.shape) strides = conv_operation.get_attr('strides') conv_out = sess.graph.get_operation_by_name( 'InceptionV3/{}/convolution'.format(name) ).outputs[0].eval() beta = sess.graph.get_tensor_by_name( 'InceptionV3/{}/BatchNorm/beta:0'.format(name)).eval() mean = sess.graph.get_tensor_by_name( 'InceptionV3/{}/BatchNorm/moving_mean:0'.format(name)).eval() var = sess.graph.get_tensor_by_name( 'InceptionV3/{}/BatchNorm/moving_variance:0'.format(name)).eval() relu_out = sess.graph.get_operation_by_name( 'InceptionV3/{}/Relu'.format(name)).outputs[0].eval() store_path = get_store_path(outdir, name) if not store_path.parent.exists(): store_path.parent.mkdir(parents=True) with h5py.File(str(store_path), 'w') as h5f: h5f.create_dataset("weights", data=weights) h5f.create_dataset("strides", data=strides) h5f.create_dataset("padding", data=padding) h5f.create_dataset("conv_out", data=conv_out) # batch norm h5f.create_dataset("beta", data=beta) h5f.create_dataset("mean", data=mean) h5f.create_dataset("var", data=var) h5f.create_dataset("relu_out", data=relu_out) def dump_mixed_5b(sess, name='Mixed_5b', outdir='./dump'): dump_conv2d(sess, name=f'{name}/Branch_0/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv2d_0b_5x5', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0b_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0c_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_3/Conv2d_0b_1x1', outdir=outdir) def dump_mixed_5c(sess, name='Mixed_5c', outdir='./dump'): dump_conv2d(sess, name=f'{name}/Branch_0/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv2d_0b_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv_1_0c_5x5', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0b_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0c_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_3/Conv2d_0b_1x1', outdir=outdir) def dump_mixed_5d(sess, name='Mixed_5d', outdir='./dump'): dump_conv2d(sess, name=f'{name}/Branch_0/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_1/Conv2d_0b_5x5', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0a_1x1', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0b_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_2/Conv2d_0c_3x3', outdir=outdir) dump_conv2d(sess, name=f'{name}/Branch_3/Conv2d_0b_1x1', outdir=outdir) def dump_mixed_6a(sess, name='Mixed_6a', outdir='./dump'): dump_conv2d(sess, f"{name}/Branch_0/Conv2d_1a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_3x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_1a_1x1", outdir=outdir) def dump_mixed_6b(sess, name='Mixed_6b', outdir='./dump'): dump_conv2d(sess, f"{name}/Branch_0/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_1x7", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0c_7x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0b_7x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0c_1x7", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0d_7x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0e_1x7", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_3/Conv2d_0b_1x1", outdir=outdir) def dump_mixed_6c(sess, name='Mixed_6c', outdir='./dump'): dump_mixed_6b(sess, name=name, outdir=outdir) def dump_mixed_6d(sess, name='Mixed_6d', outdir='./dump'): dump_mixed_6b(sess, name=name, outdir=outdir) def dump_mixed_6e(sess, name='Mixed_6e', outdir='./dump'): dump_mixed_6b(sess, name=name, outdir=outdir) def dump_mixed_7a(sess, name='Mixed_7a', outdir='./dump'): dump_conv2d(sess, f"{name}/Branch_0/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_0/Conv2d_1a_3x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_1x7", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0c_7x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_1a_3x3", outdir=outdir) def dump_mixed_7b(sess, name='Mixed_7b', outdir='./dump'): dump_conv2d(sess, f"{name}/Branch_0/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_1x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_3x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0b_3x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0c_1x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0d_3x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_3/Conv2d_0b_1x1", outdir=outdir) def dump_mixed_7c(sess, name='Mixed_7c', outdir='./dump'): dump_conv2d(sess, f"{name}/Branch_0/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0b_1x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_1/Conv2d_0c_3x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0a_1x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0b_3x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0c_1x3", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_2/Conv2d_0d_3x1", outdir=outdir) dump_conv2d(sess, f"{name}/Branch_3/Conv2d_0b_1x1", outdir=outdir) def dump_aux_logits(sess, outdir='./dump'): dump_conv2d_logit(sess, "AuxLogits/Conv2d_1b_1x1", outdir=outdir) dump_conv2d_logit(sess, "AuxLogits/Conv2d_2a_5x5", outdir=outdir) weights_tensor = sess.graph.get_tensor_by_name( 'InceptionV3/AuxLogits/Conv2d_2b_1x1/weights:0') weights = weights_tensor.eval() biases_tensor = sess.graph.get_tensor_by_name( 'InceptionV3/AuxLogits/Conv2d_2b_1x1/biases:0') biases = biases_tensor.eval() store_path = get_store_path(outdir, 'AuxLogits') if not store_path.parent.exists(): store_path.parent.mkdir(parents=True) with h5py.File(str(store_path), 'w') as h5f: h5f.create_dataset("weights", data=weights) h5f.create_dataset("biases", data=biases) def _assign_from_checkpoint(sess, checkpoint): init_fn = slim.assign_from_checkpoint_fn( checkpoint, slim.get_model_variables('InceptionV3')) init_fn(sess) def show_all_variables(): for v in slim.get_model_variables(): print(v.name, v.get_shape()) def dump_all(sess, logits, outdir): tf.summary.scalar('logs', logits[0][0]) summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter("logs", sess.graph) # run for comparing output values later out = sess.run(summary_op) summary_writer.add_summary(out, 0) dump_logits(sess, outdir=outdir) dump_conv2d(sess, name='Conv2d_1a_3x3', outdir=outdir) dump_conv2d(sess, name='Conv2d_2a_3x3', outdir=outdir) dump_conv2d(sess, name='Conv2d_2b_3x3', outdir=outdir) dump_conv2d(sess, name='Conv2d_3b_1x1', outdir=outdir) dump_conv2d(sess, name='Conv2d_4a_3x3', outdir=outdir) dump_mixed_5b(sess, outdir=outdir) dump_mixed_5c(sess, outdir=outdir) dump_mixed_5d(sess, outdir=outdir) dump_mixed_6a(sess, outdir=outdir) dump_mixed_6b(sess, outdir=outdir) dump_mixed_6c(sess, outdir=outdir) dump_mixed_6d(sess, outdir=outdir) dump_mixed_6e(sess, outdir=outdir) dump_mixed_7a(sess, outdir=outdir) dump_mixed_7b(sess, outdir=outdir) dump_mixed_7c(sess, outdir=outdir) dump_aux_logits(sess, outdir=outdir) def dump_proc(checkpoint, outdir, verbose): with tf.Graph().as_default(),\ slim.arg_scope(inception_v3_arg_scope()): img = scipy.misc.imread('./000b7d55b6184b08.png') inputs = np.ones((1, 299, 299, 3), dtype=np.float32) inputs[0] = (img / 255.0) * 2 - 1.0 inputs = tf.stack(inputs) logits, _ = inception_v3(inputs, num_classes=1001, is_training=False) with tf.Session() as sess: _assign_from_checkpoint(sess, checkpoint) if verbose > 0: show_all_variables() dump_all(sess, logits, outdir) def load_conv2d(state, outdir, name, path): store_path = str( Path(outdir) / Path("dump") / Path("{}.h5".format(path))) with h5py.File(store_path, 'r') as h5f: state[f'{name}.conv.weight'] = torch.from_numpy( h5f['weights'][()]).permute(3, 2, 0, 1) out_planes = state['{}.conv.weight'.format(name)].size(0) state[f'{name}.bn.weight'] = torch.ones(out_planes) state[f'{name}.bn.bias'] = torch.from_numpy(h5f['beta'][()]) state[f'{name}.bn.running_mean'] = torch.from_numpy(h5f['mean'][()]) state[f'{name}.bn.running_var'] = torch.from_numpy(h5f['var'][()]) def load_aux_logits(state, outdir): load_conv2d(state, outdir, 'AuxLogits.conv0', 'AuxLogits/Conv2d_1b_1x1') load_conv2d(state, outdir, 'AuxLogits.conv1', 'AuxLogits/Conv2d_2a_5x5') store_path = str( Path(outdir) / Path("dump") / Path("AuxLogits.h5")) with h5py.File(store_path, 'r') as h5f: state['AuxLogits.fc.bias'] = torch.from_numpy(h5f['biases'][()]) state['AuxLogits.fc.weight'] = torch.from_numpy(h5f['weights'][()]) store_path = str( Path(outdir) / Path("dump") / Path("Logits/Conv2d_1c_1x1.h5")) with h5py.File(store_path, 'r') as h5f: state["fc.weight"] = torch.from_numpy( h5f['weights'][()]).permute(3, 2, 0, 1) state["fc.bias"] = torch.from_numpy(h5f['biases'][()]) def load_mixed_5b(state, outdir, name): name_path_pairs = [ # Branch 0 (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), # Branch 1 (f'{name}.branch5x5_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch5x5_2', f'{name}/Branch_1/Conv2d_0b_5x5'), # Branch 2 (f'{name}.branch3x3dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_2/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3', f'{name}/Branch_2/Conv2d_0c_3x3'), # Branch 3 (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_5c(state, outdir, name): name_path_pairs = [ (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch5x5_1', f'{name}/Branch_1/Conv2d_0b_1x1'), (f'{name}.branch5x5_2', f'{name}/Branch_1/Conv_1_0c_5x5'), (f'{name}.branch3x3dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_2/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3', f'{name}/Branch_2/Conv2d_0c_3x3'), (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_5d(state, outdir, name): name_path_pairs = [ (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch5x5_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch5x5_2', f'{name}/Branch_1/Conv2d_0b_5x5'), (f'{name}.branch3x3dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_2/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3', f'{name}/Branch_2/Conv2d_0c_3x3'), (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_6a(state, outdir, name): name_path_pairs = [ (f'{name}.branch3x3', f'{name}/Branch_0/Conv2d_1a_1x1'), (f'{name}.branch3x3dbl_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_1/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3', f'{name}/Branch_1/Conv2d_1a_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_6b(state, outdir, name): name_path_pairs = [ (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch7x7_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch7x7_2', f'{name}/Branch_1/Conv2d_0b_1x7'), (f'{name}.branch7x7_3', f'{name}/Branch_1/Conv2d_0c_7x1'), (f'{name}.branch7x7dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch7x7dbl_2', f'{name}/Branch_2/Conv2d_0b_7x1'), (f'{name}.branch7x7dbl_3', f'{name}/Branch_2/Conv2d_0c_1x7'), (f'{name}.branch7x7dbl_4', f'{name}/Branch_2/Conv2d_0d_7x1'), (f'{name}.branch7x7dbl_5', f'{name}/Branch_2/Conv2d_0e_1x7'), (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_6c(state, outdir, name): load_mixed_6b(state, outdir, name) def load_mixed_6d(state, outdir, name): load_mixed_6b(state, outdir, name) def load_mixed_6e(state, outdir, name): load_mixed_6b(state, outdir, name) def load_mixed_7a(state, outdir, name): name_path_pairs = [ (f'{name}.branch3x3_1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch3x3_2', f'{name}/Branch_0/Conv2d_1a_3x3'), (f'{name}.branch7x7x3_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch7x7x3_2', f'{name}/Branch_1/Conv2d_0b_1x7'), (f'{name}.branch7x7x3_3', f'{name}/Branch_1/Conv2d_0c_7x1'), (f'{name}.branch7x7x3_4', f'{name}/Branch_1/Conv2d_1a_3x3'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_7b(state, outdir, name): name_path_pairs = [ (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch3x3_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch3x3_2a', f'{name}/Branch_1/Conv2d_0b_1x3'), (f'{name}.branch3x3_2b', f'{name}/Branch_1/Conv2d_0b_3x1'), (f'{name}.branch3x3dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_2/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3a', f'{name}/Branch_2/Conv2d_0c_1x3'), (f'{name}.branch3x3dbl_3b', f'{name}/Branch_2/Conv2d_0d_3x1'), (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_mixed_7c(state, outdir, name): name_path_pairs = [ (f'{name}.branch1x1', f'{name}/Branch_0/Conv2d_0a_1x1'), (f'{name}.branch3x3_1', f'{name}/Branch_1/Conv2d_0a_1x1'), (f'{name}.branch3x3_2a', f'{name}/Branch_1/Conv2d_0b_1x3'), (f'{name}.branch3x3_2b', f'{name}/Branch_1/Conv2d_0c_3x1'), (f'{name}.branch3x3dbl_1', f'{name}/Branch_2/Conv2d_0a_1x1'), (f'{name}.branch3x3dbl_2', f'{name}/Branch_2/Conv2d_0b_3x3'), (f'{name}.branch3x3dbl_3a', f'{name}/Branch_2/Conv2d_0c_1x3'), (f'{name}.branch3x3dbl_3b', f'{name}/Branch_2/Conv2d_0d_3x1'), (f'{name}.branch_pool', f'{name}/Branch_3/Conv2d_0b_1x1'), ] for name_, path_ in name_path_pairs: load_conv2d(state, outdir, name_, path_) def load_state_dict_from_h5py(outdir): state = {} load_conv2d(state, outdir, 'Conv2d_1a_3x3', 'Conv2d_1a_3x3') load_conv2d(state, outdir, 'Conv2d_2a_3x3', 'Conv2d_2a_3x3') load_conv2d(state, outdir, 'Conv2d_2b_3x3', 'Conv2d_2b_3x3') load_conv2d(state, outdir, 'Conv2d_3b_1x1', 'Conv2d_3b_1x1') load_conv2d(state, outdir, 'Conv2d_4a_3x3', 'Conv2d_4a_3x3') load_mixed_5b(state, outdir, 'Mixed_5b') load_mixed_5c(state, outdir, 'Mixed_5c') load_mixed_5d(state, outdir, 'Mixed_5d') load_mixed_6a(state, outdir, 'Mixed_6a') load_mixed_6b(state, outdir, 'Mixed_6b') load_mixed_6c(state, outdir, 'Mixed_6c') load_mixed_6d(state, outdir, 'Mixed_6d') load_mixed_6e(state, outdir, 'Mixed_6e') load_mixed_7a(state, outdir, 'Mixed_7a') load_mixed_7b(state, outdir, 'Mixed_7b') load_mixed_7c(state, outdir, 'Mixed_7c') load_aux_logits(state, outdir) return state def load_proc(outdir, export_path, verbose): model = inception_v3_fullconv.inception_v3( num_classes=1001, pretrained=False) state_dict = load_state_dict_from_h5py(outdir) model.load_state_dict(state_dict) model.eval() torch.save(state_dict, export_path) return model def test_conv2d(outdir, module, path): store_path = str( Path(outdir) / Path("dump") / Path(f"{path}.h5")) with h5py.File(store_path, 'r') as h5f: output_tf_conv = torch.from_numpy(h5f['conv_out'][()]) output_tf_conv.transpose_(1, 3) output_tf_conv.transpose_(2, 3) output_tf_relu = torch.from_numpy(h5f['relu_out'][()]) output_tf_relu.transpose_(1, 3) output_tf_relu.transpose_(2, 3) def test_dist_conv(self, input, output): dist = torch.dist(output.data, output_tf_conv) assert dist < TEST_THRESHOLD def test_dist_relu(self, input, output): dist = torch.dist(output.data, output_tf_relu) assert dist < TEST_THRESHOLD module.conv.register_forward_hook(test_dist_conv) module.relu.register_forward_hook(test_dist_relu) def test_conv2d_nobn(outdir, module, path): store_path = str( Path(outdir) / Path("dump") / Path(f"{path}.h5")) with h5py.File(store_path, 'r') as h5f: output_tf = torch.from_numpy(h5f['conv_out'][()]) output_tf.transpose_(1, 3) output_tf.transpose_(2, 3) def test_dist(self, input, output): dist = torch.dist(output.data, output_tf) assert dist < TEST_THRESHOLD module.register_forward_hook(test_dist) def _register_forward_hook(outdir, model): test_conv2d(outdir, model.Conv2d_1a_3x3, 'Conv2d_1a_3x3') test_conv2d(outdir, model.Conv2d_2a_3x3, 'Conv2d_2a_3x3') test_conv2d(outdir, model.Conv2d_2b_3x3, 'Conv2d_2b_3x3') test_conv2d(outdir, model.Conv2d_3b_1x1, 'Conv2d_3b_1x1') test_conv2d(outdir, model.Conv2d_4a_3x3, 'Conv2d_4a_3x3') test_conv2d(outdir, model.Mixed_5b.branch1x1, 'Mixed_5b/Branch_0/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_5b.branch5x5_1, 'Mixed_5b/Branch_1/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_5b.branch5x5_2, 'Mixed_5b/Branch_1/Conv2d_0b_5x5') test_conv2d(outdir, model.Mixed_5b.branch3x3dbl_1, 'Mixed_5b/Branch_2/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_5b.branch3x3dbl_2, 'Mixed_5b/Branch_2/Conv2d_0b_3x3') test_conv2d(outdir, model.Mixed_5b.branch3x3dbl_3, 'Mixed_5b/Branch_2/Conv2d_0c_3x3') test_conv2d(outdir, model.Mixed_5b.branch_pool, 'Mixed_5b/Branch_3/Conv2d_0b_1x1') test_conv2d(outdir, model.Mixed_5c.branch1x1, 'Mixed_5c/Branch_0/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_5c.branch5x5_1, 'Mixed_5c/Branch_1/Conv2d_0b_1x1') test_conv2d(outdir, model.Mixed_5c.branch5x5_2, 'Mixed_5c/Branch_1/Conv_1_0c_5x5') test_conv2d(outdir, model.Mixed_5c.branch3x3dbl_1, 'Mixed_5c/Branch_2/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_5c.branch3x3dbl_2, 'Mixed_5c/Branch_2/Conv2d_0b_3x3') test_conv2d(outdir, model.Mixed_5c.branch3x3dbl_3, 'Mixed_5c/Branch_2/Conv2d_0c_3x3') test_conv2d(outdir, model.Mixed_5c.branch_pool, 'Mixed_5c/Branch_3/Conv2d_0b_1x1') test_conv2d(outdir, model.Mixed_6b.branch7x7_1, 'Mixed_6b/Branch_1/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_6b.branch7x7_2, 'Mixed_6b/Branch_1/Conv2d_0b_1x7') test_conv2d(outdir, model.Mixed_6b.branch7x7_3, 'Mixed_6b/Branch_1/Conv2d_0c_7x1') # 7a test_conv2d(outdir, model.Mixed_7a.branch3x3_1, 'Mixed_7a/Branch_0/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_7a.branch3x3_2, 'Mixed_7a/Branch_0/Conv2d_1a_3x3') # 7b test_conv2d(outdir, model.Mixed_7b.branch3x3_1, 'Mixed_7b/Branch_1/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_7b.branch3x3_2a, 'Mixed_7b/Branch_1/Conv2d_0b_1x3') test_conv2d(outdir, model.Mixed_7b.branch3x3_2b, 'Mixed_7b/Branch_1/Conv2d_0b_3x1') # 7c test_conv2d(outdir, model.Mixed_7c.branch3x3_1, 'Mixed_7c/Branch_1/Conv2d_0a_1x1') test_conv2d(outdir, model.Mixed_7c.branch3x3_2a, 'Mixed_7c/Branch_1/Conv2d_0b_1x3') test_conv2d(outdir, model.Mixed_7c.branch3x3_2b, 'Mixed_7c/Branch_1/Conv2d_0c_3x1') test_conv2d_nobn(outdir, model.fc, 'Logits/Conv2d_1c_1x1') def run_test(outdir, model): _register_forward_hook(outdir, model) img = scipy.misc.imread('./000b7d55b6184b08.png') inputs = np.ones((1, 299, 299, 3), dtype=np.float32) inputs[0] = img.astype(np.float32) / 255.0 inputs = torch.from_numpy(inputs) inputs = inputs * 2 - 1.0 inputs = inputs.permute(0, 3, 1, 2) outputs = model.forward(torch.autograd.Variable(inputs)) print("OK") @click.command() @click.option('--checkpoint', help='checkpoint file', default='./ens3_adv_inception_v3.ckpt') @click.option('--outdir', help='output directory', default='./dump') @click.option('--export-path', default='../working_files/ens3incepv3_fullconv_state.pth') @click.option('-v', '--verbose', count=True) def main(checkpoint, outdir, export_path, verbose): dump_proc(checkpoint, outdir, verbose) model = load_proc(outdir, export_path, verbose) if verbose > 0: run_test(outdir, model) if __name__ == '__main__': main()
apache-2.0
3,584,438,041,364,404,000
37.477273
76
0.628138
false
makielab/sea-cucumber
seacucumber/tasks.py
1
3306
""" Supporting celery tasks go in this module. The primarily interesting one is SendEmailTask, which handles sending a single Django EmailMessage object. """ import logging from django.conf import settings from celery.task import Task from boto.ses.exceptions import SESAddressBlacklistedError, SESDomainEndsWithDotError from seacucumber.util import get_boto_ses_connection, dkim_sign from seacucumber import FORCE_UNICODE logger = logging.getLogger(__name__) class SendEmailTask(Task): """ Sends an email through Boto's SES API module. """ def __init__(self): self.max_retries = getattr(settings, 'CUCUMBER_MAX_RETRIES', 60) self.default_retry_delay = getattr(settings, 'CUCUMBER_RETRY_DELAY', 60) self.rate_limit = getattr(settings, 'CUCUMBER_RATE_LIMIT', 1) # A boto.ses.SESConnection object, after running _open_ses_conn(). self.connection = None def run(self, from_email, recipients, message): """ This does the dirty work. Connects to Amazon SES via boto and fires off the message. :param str from_email: The email address the message will show as originating from. :param list recipients: A list of email addresses to send the message to. :param str message: The body of the message. """ self._open_ses_conn() try: # We use the send_raw_email func here because the Django # EmailMessage object we got these values from constructs all of # the headers and such. signed_msg = dkim_sign(message) if FORCE_UNICODE: signed_msg = unicode(signed_msg, 'utf-8') self.connection.send_raw_email( source=from_email, destinations=recipients, raw_message=signed_msg, ) except SESAddressBlacklistedError, exc: # Blacklisted users are those which delivery failed for in the # last 24 hours. They'll eventually be automatically removed from # the blacklist, but for now, this address is marked as # undeliverable to. logger.warning( 'Attempted to email a blacklisted user: %s' % recipients, exc_info=exc, extra={'trace': True} ) return False except SESDomainEndsWithDotError, exc: # Domains ending in a dot are simply invalid. logger.warning( 'Invalid recipient, ending in dot: %s' % recipients, exc_info=exc, extra={'trace': True} ) return False except Exception, exc: # Something else happened that we haven't explicitly forbade # retry attempts for. #noinspection PyUnresolvedReferences self.retry(exc=exc) # We shouldn't ever block long enough to see this, but here it is # just in case (for debugging?). return True def _open_ses_conn(self): """ Create a connection to the AWS API server. This can be reused for sending multiple emails. """ if self.connection: return self.connection = get_boto_ses_connection()
mit
261,616,636,548,345,380
37.44186
85
0.609498
false
cpcloud/numpy
numpy/lib/function_base.py
2
123894
from __future__ import division, absolute_import, print_function import warnings import sys import collections import operator import numpy as np import numpy.core.numeric as _nx from numpy.core import linspace, atleast_1d, atleast_2d from numpy.core.numeric import ( ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, empty_like, ndarray, around, floor, ceil, take, dot, where, intp, integer, isscalar ) from numpy.core.umath import ( pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, mod, exp, log10 ) from numpy.core.fromnumeric import ( ravel, nonzero, sort, partition, mean ) from numpy.core.numerictypes import typecodes, number from numpy.lib.twodim_base import diag from .utils import deprecate from ._compiled_base import _insert, add_docstring from ._compiled_base import digitize, bincount, interp as compiled_interp from ._compiled_base import add_newdoc_ufunc from numpy.compat import long # Force range to be a generator, for np.delete's usage. if sys.version_info[0] < 3: range = xrange __all__ = [ 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' ] def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will be removed in Numpy 2.0. Use the density keyword instead. If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use `density` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 density : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the `normed` keyword if given. Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError( '`bins` should be a positive integer.') if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. range = (0, 1) else: range = (a.min(), a.max()) mn, mx = [mi + 0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins + 1, endpoint=True) else: bins = asarray(bins) if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = int else: ntype = weights.dtype n = np.zeros(bins.shape, ntype) block = 65536 if weights is None: for i in arange(0, len(a), block): sa = sort(a[i:i+block]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), block): tmp_a = a[i:i+block] tmp_w = weights[i:i+block] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero, ], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for Numpy 2.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. weights : array_like (N,), optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # avoid rounding issues for comparisons when dealing with inexact types if np.issubdtype(sample.dtype, np.inexact): edge_dt = sample.dtype else: edge_dt = float # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError( "Element at index %s in `bins` should be a positive " "integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) else: edges[i] = asarray(bins[i], edge_dt) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError( "Found bin edge of size <= 0. Did you specify `bins` with" "non-monotonic sequence?") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal)) # Shift these points one bin to the left. Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1, -1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : {array_type, double} Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix): a = np.asarray(a) if weights is None: avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else: a = a + 0.0 wgt = np.array(weights, dtype=a.dtype, copy=0) # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """ Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have a default value of 0. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if (isscalar(condlist) or not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray))): condlist = [condlist] condlist = array(condlist, dtype=bool) n = len(condlist) # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars zerod = False if x.ndim == 0: x = x[None] zerod = True if condlist.shape[-1] != 1: condlist = condlist.T if n == n2 - 1: # compute the "otherwise" condition. totlist = np.logical_or.reduce(condlist, axis=0) condlist = np.vstack([condlist, ~totlist]) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections.Callable): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ # Check the size of condlist and choicelist are the same, or abort. if len(condlist) != len(choicelist): raise ValueError( 'list of cases must be same length as list of conditions') # Now that the dtype is known, handle the deprecated select([], []) case if len(condlist) == 0: warnings.warn("select with an empty condition list is not possible" "and will be deprecated", DeprecationWarning) return np.asarray(default)[()] choicelist = [np.asarray(choice) for choice in choicelist] choicelist.append(np.asarray(default)) # need to get the result type before broadcasting for correct scalar # behaviour dtype = np.result_type(*choicelist) # Convert conditions to arrays and broadcast conditions and choices # as the shape is needed for the result. Doing it seperatly optimizes # for example when all choices are scalars. condlist = np.broadcast_arrays(*condlist) choicelist = np.broadcast_arrays(*choicelist) # If cond array is not an ndarray in boolean format or scalar bool, abort. deprecated_ints = False for i in range(len(condlist)): cond = condlist[i] if cond.dtype.type is not np.bool_: if np.issubdtype(cond.dtype, np.integer): # A previous implementation accepted int ndarrays accidentally. # Supported here deliberately, but deprecated. condlist[i] = condlist[i].astype(bool) deprecated_ints = True else: raise ValueError( 'invalid entry in choicelist: should be boolean ndarray') if deprecated_ints: msg = "select condlists containing integer ndarrays is deprecated " \ "and will be removed in the future. Use `.astype(bool)` to " \ "convert to bools." warnings.warn(msg, DeprecationWarning) if choicelist[0].ndim == 0: # This may be common, so avoid the call. result_shape = condlist[0].shape else: result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape result = np.full(result_shape, choicelist[-1], dtype) # Use np.copyto to burn each choicelist array onto result, using the # corresponding condlist as a boolean mask. This is done in reverse # order since the first choice should take precedence. choicelist = choicelist[-2::-1] condlist = condlist[::-1] for choice, cond in zip(choicelist, condlist): np.copyto(result, choice, where=cond) return result def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:ndarray.copy are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs): """ Return the gradient of an N-dimensional array. The gradient is computed using second order accurate central differences in the interior and second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. `*varargs` : scalars 0, 1, or N scalars specifying the sample distances in each direction, that is: `dx`, `dy`, `dz`, ... The default distance is 1. Returns ------- gradient : ndarray N arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] >>> x = np.array([0,1,2,3,4]) >>> dx = gradient(x) >>> y = x**2 >>> gradient(y,dx) array([0., 2., 4., 6., 8.]) """ f = np.asanyarray(f) N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") # use central differences on interior and one-sided differences on the # endpoints. This preserves second order-accuracy over the full domain. outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N slice4 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M': # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm': # Needs to keep the specific units, can't be a general unit otype = f.dtype # Convert datetime64 data into ints. Make dummy variable `y` # that is a view of ints if the data is datetime64, otherwise # just set y equal to the the array `f`. if f.dtype.char in ["M", "m"]: y = f.view('int64') else: y = f for axis in range(N): if y.shape[axis] < 2: raise ValueError( "Shape of array too small to calculate a numerical gradient, " "at least two elements are required.") # Numerical differentiation: 1st order edges, 2nd order interior if y.shape[axis] == 2: # Use first order differences for time data out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (y[1] - y[0]) out[slice1] = (y[slice2] - y[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (y[-1] - y[-2]) out[slice1] = (y[slice2] - y[slice3]) # Numerical differentiation: 2st order edges, 2nd order interior else: # Use second order differences where possible out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 0 slice3[axis] = 1 slice4[axis] = 2 # 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0 out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 slice4[axis] = -3 # 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3]) out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 # divide by step size outvals.append(out / dx[axis]) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) slice4[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d, cumsum Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, default is `fp[-1]`. Returns ------- y : {float, ndarray} The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() """ if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : {ndarray, scalar} The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd + pi, 2*pi) - pi _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) ph_correct = ddmod - dd _nx.copyto(ph_correct, 0, where=abs(dd) < discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a, copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True], tmp[1:] != tmp[:-1])) return tmp[idx] except AttributeError: items = sorted(set(x)) return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. """ def __init__(self, pyfunc, otypes='', doc=None, excluded=None, cache=False): self.pyfunc = pyfunc self.cache = cache self._ufunc = None # Caching to improve default performance if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError( "Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError( "Invalid otype specification") # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty if not args: raise ValueError('args can not be empty') if self.otypes: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) inputs = [asarray(_a).flat[0] for _a in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple # functions at least -- this wrapping can almost double the # execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if not args: _res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(_a, copy=False, subok=True, dtype=object) for _a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: _res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: _res = tuple([array(_x, copy=False, subok=True, dtype=_t) for _x, _t in zip(outputs, otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None): """ Estimate a covariance matrix, given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError( "ddof must be integer") # Handles complex arrays too m = np.asarray(m) if y is None: dtype = np.result_type(m, np.float64) else: y = np.asarray(y) dtype = np.result_type(m, y, np.float64) X = array(m, ndmin=2, dtype=dtype) if X.shape[0] == 1: rowvar = 1 if rowvar: N = X.shape[1] axis = 0 else: N = X.shape[0] axis = 1 # check ddof if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) if fact <= 0: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) fact = 0.0 if y is not None: y = array(y, copy=False, ndmin=2, dtype=dtype) X = concatenate((X, y), axis) X -= X.mean(axis=1-axis, keepdims=True) if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: return (dot(X, X.T.conj()) / fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ Return correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `P`, and the covariance matrix, `C`, is .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `P` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : {None, int}, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix """ c = cov(x, y, rowvar, bias, ddof) try: d = diag(c) except ValueError: # scalar covariance # nan if incorrect value (nan, inf, 0), 1 otherwise return c / c return c / sqrt(multiply.outer(d, d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius van Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x < 0) x[ind] = -x[ind] ind = (x <= 8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M, beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0, M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi * where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b def _ureduce(a, func, **kwargs): """ Internal Function. Call `func` with `a` as first argument swapping the axes to use extended axis on functions that don't support it natively. Returns result and a.shape with axis dims set to 1. Parameters ---------- a : array_like Input array or object that can be converted to an array. func : callable Reduction function Kapable of receiving an axis argument. It is is called with `a` as first argument followed by `kwargs`. kwargs : keyword arguments additional keyword arguments to pass to `func`. Returns ------- result : tuple Result of func(a, **kwargs) and a.shape with axis dims set to 1 which can be used to reshape the result to the same shape a ufunc with keepdims=True would produce. """ a = np.asanyarray(a) axis = kwargs.get('axis', None) if axis is not None: keepdim = list(a.shape) nd = a.ndim try: axis = operator.index(axis) if axis >= nd or axis < -nd: raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) keepdim[axis] = 1 except TypeError: sax = set() for x in axis: if x >= nd or x < -nd: raise IndexError("axis %d out of bounds (%d)" % (x, nd)) if x in sax: raise ValueError("duplicate value in axis") sax.add(x % nd) keepdim[x] = 1 keep = sax.symmetric_difference(frozenset(range(nd))) nkeep = len(keep) # swap axis that should not be reduced to front for i, s in enumerate(sorted(keep)): a = a.swapaxes(i, s) # merge reduced axis a = a.reshape(a.shape[:nkeep] + (-1,)) kwargs['axis'] = -1 else: keepdim = [1] * a.ndim r = func(a, **kwargs) return r, keepdim def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ r, k = _ureduce(a, func=_median, axis=axis, out=out, overwrite_input=overwrite_input) if keepdims: return r.reshape(k) else: return r def _median(a, axis=None, out=None, overwrite_input=False): # can't be reasonably be implemented in terms of percentile as we have to # call mean to not break astropy a = np.asanyarray(a) if axis is not None and axis >= a.ndim: raise IndexError( "axis %d out of bounds (%d)" % (axis, a.ndim)) if overwrite_input: if axis is None: part = a.ravel() sz = part.size if sz % 2 == 0: szh = sz // 2 part.partition((szh - 1, szh)) else: part.partition((sz - 1) // 2) else: sz = a.shape[axis] if sz % 2 == 0: szh = sz // 2 a.partition((szh - 1, szh), axis=axis) else: a.partition((sz - 1) // 2, axis=axis) part = a else: if axis is None: sz = a.size else: sz = a.shape[axis] if sz % 2 == 0: part = partition(a, ((sz // 2) - 1, sz // 2), axis=axis) else: part = partition(a, (sz - 1) // 2, axis=axis) if part.shape == (): # make 0-D arrays work return part.item() if axis is None: axis = 0 indexer = [slice(None)] * part.ndim index = part.shape[axis] // 2 if part.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Use mean in odd and even case to coerce data type # and check, use out array. return mean(part[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int or sequence of int, optional Axis along which the percentiles are computed. The default (None) is to compute the percentiles along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the content of the passed in array `a` after this function completes -- treat it as undefined. Default is False. Note that, if the `a` input is not already an array this parameter will have no effect, `a` will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- percentile : scalar or ndarray If a single percentile `q` is given and axis=None a scalar is returned. If multiple percentiles `q` are given an array holding the result is returned. The results are listed in the first axis. (If `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if ``q=50``, the same as the minimum if ``q=0``and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) array([ 3.5]) >>> np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([[ 7.], [ 2.]]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) array([[ 6.5, 4.5, 2.5]]) >>> m array([[ 6.5, 4.5, 2.5]]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([[ 7.], [ 2.]]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) array([ 3.5]) """ q = asarray(q, dtype=np.float64) r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation) if keepdims: if q.ndim == 0: return r.reshape(k) else: return r.reshape([len(q)] + k) else: return r def _percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): a = asarray(a) if q.ndim == 0: # Do not allow 0-d arrays because following code fails for scalar zerod = True q = q[None] else: zerod = False # avoid expensive reductions, relevant for arrays with < O(1000) elements if q.size < 10: for i in range(q.size): if q[i] < 0. or q[i] > 100.: raise ValueError("Percentiles must be in the range [0,100]") q[i] /= 100. else: # faster than any() if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): raise ValueError("Percentiles must be in the range [0,100]") q /= 100. # prepare a for partioning if overwrite_input: if axis is None: ap = a.ravel() else: ap = a else: if axis is None: ap = a.flatten() else: ap = a.copy() if axis is None: axis = 0 Nx = ap.shape[axis] indices = q * (Nx - 1) # round fractional indices according to interpolation method if interpolation == 'lower': indices = floor(indices).astype(intp) elif interpolation == 'higher': indices = ceil(indices).astype(intp) elif interpolation == 'midpoint': indices = floor(indices) + 0.5 elif interpolation == 'nearest': indices = around(indices).astype(intp) elif interpolation == 'linear': pass # keep index as fraction and interpolate else: raise ValueError( "interpolation can only be 'linear', 'lower' 'higher', " "'midpoint', or 'nearest'") if indices.dtype == intp: # take the points along axis ap.partition(indices, axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) axis = 0 if zerod: indices = indices[0] r = take(ap, indices, axis=axis, out=out) else: # weight the points above and below the indices indices_below = floor(indices).astype(intp) indices_above = indices_below + 1 indices_above[indices_above > Nx - 1] = Nx - 1 weights_above = indices - indices_below weights_below = 1.0 - weights_above weights_shape = [1, ] * ap.ndim weights_shape[axis] = len(indices) weights_below.shape = weights_shape weights_above.shape = weights_shape ap.partition(concatenate((indices_below, indices_above)), axis=axis) x1 = take(ap, indices_below, axis=axis) * weights_below x2 = take(ap, indices_above, axis=axis) * weights_above # ensure axis with qth is first x1 = np.rollaxis(x1, axis, 0) x2 = np.rollaxis(x2, axis, 0) if zerod: x1 = x1.squeeze(0) x2 = x2.squeeze(0) if out is not None: r = add(x1, x2, out=out) else: r = add(x1, x2) return r def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) try: ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = getattr(__import__(place, globals(), {}, [obj]), obj) if isinstance(doc, str): add_docstring(new, doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new, doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new, val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(xi)] shape = [x.size for x in output] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Notes ----- Often it is preferable to use a boolean mask. For example: >>> mask = np.ones(len(arr), dtype=bool) >>> mask[[0,2,4]] = False >>> result = arr[mask,...] Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further use of `mask`. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 if ndim == 0: warnings.warn( "in the future the special handling of scalars will be removed " "from delete and raise an error", DeprecationWarning) if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): start, stop, step = obj.indices(N) xr = range(start, stop, step) numtodel = len(xr) if numtodel <= 0: if wrap: return wrap(arr.copy()) else: return arr.copy() # Invert if step is negative: if step < 0: step = -step start = xr[-1] stop = xr[0] + 1 newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. keep = ones(stop-start, dtype=bool) keep[:stop-start:step] = False slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(start, stop) arr = arr[slobj2] slobj2[axis] = keep new[slobj] = arr[slobj2] if wrap: return wrap(new) else: return new _obj = obj obj = np.asarray(obj) # After removing the special handling of booleans and out of # bounds values, the conversion to the array can be removed. if obj.dtype == bool: warnings.warn( "in the future insert will treat boolean arrays and array-likes " "as boolean index instead of casting it to integer", FutureWarning) obj = obj.astype(intp) if isinstance(_obj, (int, long, integer)): # optimization for a single value obj = obj.item() if (obj < -N or obj >= N): raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (obj < 0): obj += N newshape[axis] -= 1 new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1, None) new[slobj] = arr[slobj2] else: if obj.size == 0 and not isinstance(_obj, np.ndarray): obj = obj.astype(intp) if not np.can_cast(obj, intp, 'same_kind'): # obj.size = 1 special case always failed and would just # give superfluous warnings. warnings.warn( "using a non-integer array as obj in delete will result in an " "error in the future", DeprecationWarning) obj = obj.astype(intp) keep = ones(N, dtype=bool) # Test if there are out of bound indices, this is deprecated inside_bounds = (obj < N) & (obj >= -N) if not inside_bounds.all(): warnings.warn( "in the future out of bounds indices will raise an error " "instead of being ignored by `numpy.delete`.", DeprecationWarning) obj = obj[inside_bounds] positive_indices = obj >= 0 if not positive_indices.all(): warnings.warn( "in the future negative indices will not be ignored by " "`numpy.delete`.", FutureWarning) obj = obj[positive_indices] keep[obj, ] = False slobj[axis] = keep new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. .. versionadded:: 1.8.0 Support for multiple insertions when `obj` is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. `values` should be shaped so that ``arr[...,obj,...] = values`` is legal. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. concatenate : Join a sequence of arrays together. delete : Delete elements from an array. Notes ----- Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 else: if ndim > 0 and (axis < -ndim or axis >= ndim): raise IndexError( "axis %i is out of bounds for an array of " "dimension %i" % (axis, ndim)) if (axis < 0): axis += ndim if (ndim == 0): warnings.warn( "in the future the special handling of scalars will be removed " "from insert and raise an error", DeprecationWarning) arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): # turn it into a range object indices = arange(*obj.indices(N), **{'dtype': intp}) else: # need to copy obj, because indices will be changed in-place indices = np.array(obj) if indices.dtype == bool: # See also delete warnings.warn( "in the future insert will treat boolean arrays and " "array-likes as a boolean index instead of casting it to " "integer", FutureWarning) indices = indices.astype(intp) # Code after warning period: #if obj.ndim != 1: # raise ValueError('boolean array argument obj to insert ' # 'must be one dimensional') #indices = np.flatnonzero(obj) elif indices.ndim > 1: raise ValueError( "index array argument obj to insert must be one dimensional " "or scalar") if indices.size == 1: index = indices.item() if index < -N or index > N: raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (index < 0): index += N values = array(values, copy=False, ndmin=arr.ndim) if indices.ndim == 0: # broadcasting is very different here, since a[:,0,:] = ... behaves # very different from a[:,[0],:] = ...! This changes values so that # it works likes the second case. (here a[:,0:1,:]) values = np.rollaxis(values, 0, (axis % values.ndim) + 1) numnew = values.shape[axis] newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, index) new[slobj] = arr[slobj] slobj[axis] = slice(index, index+numnew) new[slobj] = values slobj[axis] = slice(index+numnew, None) slobj2 = [slice(None)] * ndim slobj2[axis] = slice(index, None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif indices.size == 0 and not isinstance(obj, np.ndarray): # Can safely cast the empty list to intp indices = indices.astype(intp) if not np.can_cast(indices, intp, 'same_kind'): warnings.warn( "using a non-integer array as obj in insert will result in an " "error in the future", DeprecationWarning) indices = indices.astype(intp) indices[indices < 0] += N numnew = len(indices) order = indices.argsort(kind='mergesort') # stable sort indices[order] += np.arange(numnew) newshape[axis] += numnew old_mask = ones(newshape[axis], dtype=bool) old_mask[indices] = False new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = indices slobj2[axis] = old_mask new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
bsd-3-clause
-4,577,193,708,041,557,500
31.013953
88
0.568833
false
minzhang28/docker-py
docker/client.py
1
14161
# Copyright 2013 dotCloud inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import struct from functools import partial import requests import requests.exceptions import six import websocket from . import api from . import constants from . import errors from .auth import auth from .ssladapter import ssladapter from .tls import TLSConfig from .transport import UnixAdapter from .utils import utils, check_resource, update_headers, kwargs_from_env from .utils.socket import frames_iter try: from .transport import NpipeAdapter except ImportError: pass def from_env(**kwargs): return Client.from_env(**kwargs) class Client( requests.Session, api.BuildApiMixin, api.ContainerApiMixin, api.DaemonApiMixin, api.ExecApiMixin, api.ImageApiMixin, api.VolumeApiMixin, api.NetworkApiMixin, api.SwarmApiMixin): def __init__(self, base_url=None, version=None, timeout=constants.DEFAULT_TIMEOUT_SECONDS, tls=False, user_agent=constants.DEFAULT_USER_AGENT): super(Client, self).__init__() if tls and not base_url: raise errors.TLSParameterError( 'If using TLS, the base_url argument must be provided.' ) self.base_url = base_url self.timeout = timeout self.headers['User-Agent'] = user_agent self._auth_configs = auth.load_config() base_url = utils.parse_host( base_url, constants.IS_WINDOWS_PLATFORM, tls=bool(tls) ) if base_url.startswith('http+unix://'): self._custom_adapter = UnixAdapter(base_url, timeout) self.mount('http+docker://', self._custom_adapter) self.base_url = 'http+docker://localunixsocket' elif base_url.startswith('npipe://'): if not constants.IS_WINDOWS_PLATFORM: raise errors.DockerException( 'The npipe:// protocol is only supported on Windows' ) try: self._custom_adapter = NpipeAdapter(base_url, timeout) except NameError: raise errors.DockerException( 'Install pypiwin32 package to enable npipe:// support' ) self.mount('http+docker://', self._custom_adapter) self.base_url = 'http+docker://localnpipe' else: # Use SSLAdapter for the ability to specify SSL version if isinstance(tls, TLSConfig): tls.configure_client(self) elif tls: self._custom_adapter = ssladapter.SSLAdapter() self.mount('https://', self._custom_adapter) self.base_url = base_url # version detection needs to be after unix adapter mounting if version is None: self._version = constants.DEFAULT_DOCKER_API_VERSION elif isinstance(version, six.string_types): if version.lower() == 'auto': self._version = self._retrieve_server_version() else: self._version = version else: raise errors.DockerException( 'Version parameter must be a string or None. Found {0}'.format( type(version).__name__ ) ) @classmethod def from_env(cls, **kwargs): return cls(**kwargs_from_env(**kwargs)) def _retrieve_server_version(self): try: return self.version(api_version=False)["ApiVersion"] except KeyError: raise errors.DockerException( 'Invalid response from docker daemon: key "ApiVersion"' ' is missing.' ) except Exception as e: raise errors.DockerException( 'Error while fetching server API version: {0}'.format(e) ) def _set_request_timeout(self, kwargs): """Prepare the kwargs for an HTTP request by inserting the timeout parameter, if not already present.""" kwargs.setdefault('timeout', self.timeout) return kwargs @update_headers def _post(self, url, **kwargs): return self.post(url, **self._set_request_timeout(kwargs)) @update_headers def _get(self, url, **kwargs): return self.get(url, **self._set_request_timeout(kwargs)) @update_headers def _put(self, url, **kwargs): return self.put(url, **self._set_request_timeout(kwargs)) @update_headers def _delete(self, url, **kwargs): return self.delete(url, **self._set_request_timeout(kwargs)) def _url(self, pathfmt, *args, **kwargs): for arg in args: if not isinstance(arg, six.string_types): raise ValueError( 'Expected a string but found {0} ({1}) ' 'instead'.format(arg, type(arg)) ) quote_f = partial(six.moves.urllib.parse.quote_plus, safe="/:") args = map(quote_f, args) if kwargs.get('versioned_api', True): return '{0}/v{1}{2}'.format( self.base_url, self._version, pathfmt.format(*args) ) else: return '{0}{1}'.format(self.base_url, pathfmt.format(*args)) def _raise_for_status(self, response, explanation=None): """Raises stored :class:`APIError`, if one occurred.""" try: response.raise_for_status() except requests.exceptions.HTTPError as e: if e.response.status_code == 404: raise errors.NotFound(e, response, explanation=explanation) raise errors.APIError(e, response, explanation=explanation) def _result(self, response, json=False, binary=False): assert not (json and binary) self._raise_for_status(response) if json: return response.json() if binary: return response.content return response.text def _post_json(self, url, data, **kwargs): # Go <1.1 can't unserialize null to a string # so we do this disgusting thing here. data2 = {} if data is not None: for k, v in six.iteritems(data): if v is not None: data2[k] = v if 'headers' not in kwargs: kwargs['headers'] = {} kwargs['headers']['Content-Type'] = 'application/json' return self._post(url, data=json.dumps(data2), **kwargs) def _attach_params(self, override=None): return override or { 'stdout': 1, 'stderr': 1, 'stream': 1 } @check_resource def _attach_websocket(self, container, params=None): url = self._url("/containers/{0}/attach/ws", container) req = requests.Request("POST", url, params=self._attach_params(params)) full_url = req.prepare().url full_url = full_url.replace("http://", "ws://", 1) full_url = full_url.replace("https://", "wss://", 1) return self._create_websocket_connection(full_url) def _create_websocket_connection(self, url): return websocket.create_connection(url) def _get_raw_response_socket(self, response): self._raise_for_status(response) if six.PY3: sock = response.raw._fp.fp.raw if self.base_url.startswith("https://"): sock = sock._sock else: sock = response.raw._fp.fp._sock try: # Keep a reference to the response to stop it being garbage # collected. If the response is garbage collected, it will # close TLS sockets. sock._response = response except AttributeError: # UNIX sockets can't have attributes set on them, but that's # fine because we won't be doing TLS over them pass return sock def _stream_helper(self, response, decode=False): """Generator for data coming from a chunked-encoded HTTP response.""" if response.raw._fp.chunked: reader = response.raw while not reader.closed: # this read call will block until we get a chunk data = reader.read(1) if not data: break if reader._fp.chunk_left: data += reader.read(reader._fp.chunk_left) if decode: if six.PY3: data = data.decode('utf-8') data = json.loads(data) yield data else: # Response isn't chunked, meaning we probably # encountered an error immediately yield self._result(response) def _multiplexed_buffer_helper(self, response): """A generator of multiplexed data blocks read from a buffered response.""" buf = self._result(response, binary=True) walker = 0 while True: if len(buf[walker:]) < 8: break _, length = struct.unpack_from('>BxxxL', buf[walker:]) start = walker + constants.STREAM_HEADER_SIZE_BYTES end = start + length walker = end yield buf[start:end] def _multiplexed_response_stream_helper(self, response): """A generator of multiplexed data blocks coming from a response stream.""" # Disable timeout on the underlying socket to prevent # Read timed out(s) for long running processes socket = self._get_raw_response_socket(response) self._disable_socket_timeout(socket) while True: header = response.raw.read(constants.STREAM_HEADER_SIZE_BYTES) if not header: break _, length = struct.unpack('>BxxxL', header) if not length: continue data = response.raw.read(length) if not data: break yield data def _stream_raw_result_old(self, response): ''' Stream raw output for API versions below 1.6 ''' self._raise_for_status(response) for line in response.iter_lines(chunk_size=1, decode_unicode=True): # filter out keep-alive new lines if line: yield line def _stream_raw_result(self, response): ''' Stream result for TTY-enabled container above API 1.6 ''' self._raise_for_status(response) for out in response.iter_content(chunk_size=1, decode_unicode=True): yield out def _read_from_socket(self, response, stream): socket = self._get_raw_response_socket(response) if stream: return frames_iter(socket) else: return six.binary_type().join(frames_iter(socket)) def _disable_socket_timeout(self, socket): """ Depending on the combination of python version and whether we're connecting over http or https, we might need to access _sock, which may or may not exist; or we may need to just settimeout on socket itself, which also may or may not have settimeout on it. To avoid missing the correct one, we try both. We also do not want to set the timeout if it is already disabled, as you run the risk of changing a socket that was non-blocking to blocking, for example when using gevent. """ sockets = [socket, getattr(socket, '_sock', None)] for s in sockets: if not hasattr(s, 'settimeout'): continue timeout = -1 if hasattr(s, 'gettimeout'): timeout = s.gettimeout() # Don't change the timeout if it is already disabled. if timeout is None or timeout == 0.0: continue s.settimeout(None) def _get_result(self, container, stream, res): cont = self.inspect_container(container) return self._get_result_tty(stream, res, cont['Config']['Tty']) def _get_result_tty(self, stream, res, is_tty): # Stream multi-plexing was only introduced in API v1.6. Anything # before that needs old-style streaming. if utils.compare_version('1.6', self._version) < 0: return self._stream_raw_result_old(res) # We should also use raw streaming (without keep-alives) # if we're dealing with a tty-enabled container. if is_tty: return self._stream_raw_result(res) if stream else \ self._result(res, binary=True) self._raise_for_status(res) sep = six.binary_type() if stream: return self._multiplexed_response_stream_helper(res) else: return sep.join( [x for x in self._multiplexed_buffer_helper(res)] ) def get_adapter(self, url): try: return super(Client, self).get_adapter(url) except requests.exceptions.InvalidSchema as e: if self._custom_adapter: return self._custom_adapter else: raise e @property def api_version(self): return self._version class AutoVersionClient(Client): def __init__(self, *args, **kwargs): if 'version' in kwargs and kwargs['version']: raise errors.DockerException( 'Can not specify version for AutoVersionClient' ) kwargs['version'] = 'auto' super(AutoVersionClient, self).__init__(*args, **kwargs)
apache-2.0
-6,174,621,705,723,003,000
34.760101
79
0.578985
false
Megalinuxcoin/megalinuxcoin
contrib/bitrpc/bitrpc.py
1
7850
from jsonrpc import ServiceProxy import sys import string # ===== BEGIN USER SETTINGS ===== # if you do not set these you will be prompted for a password for every command rpcuser = "" rpcpass = "" # ====== END USER SETTINGS ====== if rpcpass == "": access = ServiceProxy("http://127.0.0.1:56883") else: access = ServiceProxy("http://"+rpcuser+":"+rpcpass+"@127.0.0.1:56883") cmd = sys.argv[1].lower() if cmd == "backupwallet": try: path = raw_input("Enter destination path/filename: ") print access.backupwallet(path) except: print "\n---An error occurred---\n" elif cmd == "getaccount": try: addr = raw_input("Enter a Megalinuxcoin address: ") print access.getaccount(addr) except: print "\n---An error occurred---\n" elif cmd == "getaccountaddress": try: acct = raw_input("Enter an account name: ") print access.getaccountaddress(acct) except: print "\n---An error occurred---\n" elif cmd == "getaddressesbyaccount": try: acct = raw_input("Enter an account name: ") print access.getaddressesbyaccount(acct) except: print "\n---An error occurred---\n" elif cmd == "getbalance": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getbalance(acct, mc) except: print access.getbalance() except: print "\n---An error occurred---\n" elif cmd == "getblockbycount": try: height = raw_input("Height: ") print access.getblockbycount(height) except: print "\n---An error occurred---\n" elif cmd == "getblockcount": try: print access.getblockcount() except: print "\n---An error occurred---\n" elif cmd == "getblocknumber": try: print access.getblocknumber() except: print "\n---An error occurred---\n" elif cmd == "getconnectioncount": try: print access.getconnectioncount() except: print "\n---An error occurred---\n" elif cmd == "getdifficulty": try: print access.getdifficulty() except: print "\n---An error occurred---\n" elif cmd == "getgenerate": try: print access.getgenerate() except: print "\n---An error occurred---\n" elif cmd == "gethashespersec": try: print access.gethashespersec() except: print "\n---An error occurred---\n" elif cmd == "getinfo": try: print access.getinfo() except: print "\n---An error occurred---\n" elif cmd == "getnewaddress": try: acct = raw_input("Enter an account name: ") try: print access.getnewaddress(acct) except: print access.getnewaddress() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaccount": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaccount(acct, mc) except: print access.getreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaddress": try: addr = raw_input("Enter a Megalinuxcoin address (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaddress(addr, mc) except: print access.getreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "gettransaction": try: txid = raw_input("Enter a transaction ID: ") print access.gettransaction(txid) except: print "\n---An error occurred---\n" elif cmd == "getwork": try: data = raw_input("Data (optional): ") try: print access.gettransaction(data) except: print access.gettransaction() except: print "\n---An error occurred---\n" elif cmd == "help": try: cmd = raw_input("Command (optional): ") try: print access.help(cmd) except: print access.help() except: print "\n---An error occurred---\n" elif cmd == "listaccounts": try: mc = raw_input("Minimum confirmations (optional): ") try: print access.listaccounts(mc) except: print access.listaccounts() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaccount": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaccount(mc, incemp) except: print access.listreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaddress": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaddress(mc, incemp) except: print access.listreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "listtransactions": try: acct = raw_input("Account (optional): ") count = raw_input("Number of transactions (optional): ") frm = raw_input("Skip (optional):") try: print access.listtransactions(acct, count, frm) except: print access.listtransactions() except: print "\n---An error occurred---\n" elif cmd == "move": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.move(frm, to, amt, mc, comment) except: print access.move(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendfrom": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendfrom(frm, to, amt, mc, comment, commentto) except: print access.sendfrom(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendmany": try: frm = raw_input("From: ") to = raw_input("To (in format address1:amount1,address2:amount2,...): ") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.sendmany(frm,to,mc,comment) except: print access.sendmany(frm,to) except: print "\n---An error occurred---\n" elif cmd == "sendtoaddress": try: to = raw_input("To (in format address1:amount1,address2:amount2,...): ") amt = raw_input("Amount:") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendtoaddress(to,amt,comment,commentto) except: print access.sendtoaddress(to,amt) except: print "\n---An error occurred---\n" elif cmd == "setaccount": try: addr = raw_input("Address: ") acct = raw_input("Account:") print access.setaccount(addr,acct) except: print "\n---An error occurred---\n" elif cmd == "setgenerate": try: gen= raw_input("Generate? (true/false): ") cpus = raw_input("Max processors/cores (-1 for unlimited, optional):") try: print access.setgenerate(gen, cpus) except: print access.setgenerate(gen) except: print "\n---An error occurred---\n" elif cmd == "settxfee": try: amt = raw_input("Amount:") print access.settxfee(amt) except: print "\n---An error occurred---\n" elif cmd == "stop": try: print access.stop() except: print "\n---An error occurred---\n" elif cmd == "validateaddress": try: addr = raw_input("Address: ") print access.validateaddress(addr) except: print "\n---An error occurred---\n" elif cmd == "walletpassphrase": try: pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60) print "\n---Wallet unlocked---\n" except: print "\n---An error occurred---\n" elif cmd == "walletpassphrasechange": try: pwd = raw_input("Enter old wallet passphrase: ") pwd2 = raw_input("Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2) print print "\n---Passphrase changed---\n" except: print print "\n---An error occurred---\n" print else: print "Command not found or not supported"
mit
8,456,373,962,798,494,000
23.228395
79
0.662293
false
mekkablue/Glyphs-Scripts
Compare Frontmost Fonts/Compare Glyph Heights of Frontmost Fonts.py
1
8413
#MenuTitle: Compare Glyph Heights # -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals __doc__=""" Lists all glyphs that differ from the second font in height beyond a given threshold. """ import vanilla class CompareGlyphHeightsOfFrontmostFonts( object ): def __init__( self ): # Window 'self.w': windowWidth = 320 windowHeight = 200 windowWidthResize = 100 # user can resize width by this value windowHeightResize = 0 # user can resize height by this value self.w = vanilla.FloatingWindow( ( windowWidth, windowHeight ), # default window size "Compare Glyph Heights of Frontmost Fonts", # window title minSize = ( windowWidth, windowHeight ), # minimum size (for resizing) maxSize = ( windowWidth + windowWidthResize, windowHeight + windowHeightResize ), # maximum size (for resizing) autosaveName = "com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.mainwindow" # stores last window position and size ) # UI elements: linePos, inset, lineHeight = 12, 15, 22 self.w.descriptionText = vanilla.TextBox( (inset, linePos+2, -inset, 28), u"Lists all glyphs that differ in height more than the given threshold. Detailed report in Macro Window.", sizeStyle='small', selectable=True ) linePos += lineHeight*2 self.w.tolerateText = vanilla.TextBox( (inset, linePos+2, 140, 14), u"Tolerate difference up to:", sizeStyle='small', selectable=True ) self.w.tolerate = vanilla.EditText( (inset+140, linePos, -inset, 19), "5", callback=self.SavePreferences, sizeStyle='small' ) self.w.tolerate.getNSTextField().setToolTip_("How much of a difference is OK. Hint: overshoot size is a good idea for this one.") linePos += lineHeight self.w.heights = vanilla.CheckBox( (inset, linePos-1, -inset, 20), u"Compare top bounds (‘heights’)", value=True, callback=self.SavePreferences, sizeStyle='small' ) self.w.heights.getNSButton().setToolTip_("Measures and compares the heights of the top edges (bbox maximum).") linePos += lineHeight self.w.depths = vanilla.CheckBox( (inset, linePos-1, -inset, 20), u"Compare bottom bounds (‘depths’)", value=False, callback=self.SavePreferences, sizeStyle='small' ) self.w.depths.getNSButton().setToolTip_("Measures and compares the heights of the bottom edges (bbox minimum).") linePos += lineHeight self.w.includeNonExporting = vanilla.CheckBox( (inset, linePos-1, -inset, 20), u"Include non-exporting glyphs", value=False, callback=self.SavePreferences, sizeStyle='small' ) self.w.includeNonExporting.getNSButton().setToolTip_("If enabled, also measures glyphs that are set to not export.") linePos += lineHeight # Run Button: self.w.runButton = vanilla.Button( (-120-inset, -20-inset, -inset, -inset), "Compare", sizeStyle='regular', callback=self.CompareGlyphHeightsOfFrontmostFontsMain ) self.w.setDefaultButton( self.w.runButton ) # Load Settings: if not self.LoadPreferences(): print("Note: 'Compare Glyph Heights of Frontmost Fonts' could not load preferences. Will resort to defaults") # Open window and focus on it: self.w.open() self.w.makeKey() def updateGUI(self): if not self.w.heights.get() and not self.w.depths.get(): self.w.runButton.enable(False) else: self.w.runButton.enable(True) def SavePreferences( self, sender ): try: Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.heights"] = self.w.heights.get() Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.depths"] = self.w.depths.get() Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.tolerate"] = self.w.tolerate.get() Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.includeNonExporting"] = self.w.includeNonExporting.get() self.updateGUI() except: return False return True def LoadPreferences( self ): try: Glyphs.registerDefault("com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.heights", 0) Glyphs.registerDefault("com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.depths", 0) Glyphs.registerDefault("com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.tolerate", 0) Glyphs.registerDefault("com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.includeNonExporting", 0) self.w.heights.set( Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.heights"] ) self.w.depths.set( Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.depths"] ) self.w.tolerate.set( Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.tolerate"] ) self.w.includeNonExporting.set( Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.includeNonExporting"] ) self.updateGUI() except: return False return True def CompareGlyphHeightsOfFrontmostFontsMain( self, sender ): try: # update settings to the latest user input: if not self.SavePreferences( self ): print("Note: 'Compare Glyph Heights of Frontmost Fonts' could not write preferences.") if len(Glyphs.fonts) < 2: Message(title="Compare Error", message="You need to have at least two fonts open for comparing.", OKButton="Ooops") else: # brings macro window to front and clears its log: Glyphs.clearLog() # Glyphs.showMacroWindow() thisFont = Glyphs.font # frontmost font otherFont = Glyphs.fonts[1] # second font thisFileName = thisFont.filepath.lastPathComponent() otherFileName = otherFont.filepath.lastPathComponent() print("Compare Glyph Heights of Frontmost Fonts Report for:\n (1) %s: %s\n %s\n (2) %s: %s\n %s" % ( thisFont.familyName, thisFileName, thisFont.filepath, otherFont.familyName, otherFileName, otherFont.filepath, )) print() heights = Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.heights"] depths = Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.depths"] tolerate = float(Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.tolerate"]) includeNonExporting = Glyphs.defaults["com.mekkablue.CompareGlyphHeightsOfFrontmostFonts.includeNonExporting"] theseIDs = [m.id for m in thisFont.masters] otherIDs = [m.id for m in otherFont.masters] masters = zip(theseIDs, otherIDs) collectedGlyphNames = [] if len(theseIDs) != len(otherIDs): print(u"⚠️ Different number of masters in %s and %s" % (thisFont.filepath.lastPathComponent(), otherFont.filepath.lastPathComponent())) for thisGlyph in thisFont.glyphs: if thisGlyph.export or includeNonExporting: glyphName = thisGlyph.name otherGlyph = otherFont.glyphs[glyphName] if not otherGlyph: print(u"⚠️ %s: not in other font (%s)" % (glyphName, otherFileName)) else: for idPair in masters: thisID, otherID = idPair thisLayer = thisGlyph.layers[thisID] otherLayer = otherGlyph.layers[otherID] if not (thisLayer and otherLayer): print(u"⚠️ Cannot compare layers in %s" % glyphName) else: if heights: thisHeight = thisLayer.bounds.origin.y + thisLayer.bounds.size.height otherHeight = otherLayer.bounds.origin.y + otherLayer.bounds.size.height if abs(thisHeight-otherHeight) > tolerate: print(u"❌ %s heights: (1) %.1f, (2) %.1f" % (glyphName, thisHeight, otherHeight)) collectedGlyphNames.append(glyphName) if depths: thisDepth = thisLayer.bounds.origin.y otherDepth = otherLayer.bounds.origin.y if abs(thisDepth-otherDepth) > tolerate: print(u"❌ %s depths: (1) %.1f, (2) %.1f" % (glyphName, thisDepth, otherDepth)) collectedGlyphNames.append(glyphName) if not collectedGlyphNames: Message(title="No significant differences", message="No differences larger than %.1f found between the two frontmost fonts. See the macro window for error messages."%tolerate, OKButton=u"😎 Cool") else: collectedGlyphNames = tuple(set(collectedGlyphNames)) tabText = "/"+"/".join(collectedGlyphNames) thisFont.newTab(tabText) except Exception as e: # brings macro window to front and reports error: Glyphs.showMacroWindow() print("Compare Glyph Heights of Frontmost Fonts Error: %s" % e) import traceback print(traceback.format_exc()) CompareGlyphHeightsOfFrontmostFonts()
apache-2.0
-8,828,711,297,698,775,000
48.046784
219
0.723706
false
rustychris/stompy
stompy/xr_utils.py
1
13940
import logging log=logging.getLogger('xr_utils') from collections import OrderedDict import xarray as xr import six import numpy as np def gradient(ds,varname,coord): # rather than assume that consecutive data points are valid, # fit a line to the data values per water column daC,daz = xr.broadcast(ds[varname],ds[coord]) z=daz.values C=daC.values assert z.shape==C.shape newdims=[dim for dim in daC.dims if dim!=coord] newshape=[len(daC[dim]) for dim in newdims] newdims,newshape result=np.zeros(newshape,'f8') for idx in np.ndindex(*newshape): colC=C[idx] colz=z[idx] assert colC.ndim==colz.ndim==1 # sanity valid=np.isfinite(colC*colz) if np.sum(valid)>1: mb=np.polyfit(colz[valid],colC[valid],1) result[idx]=mb[0] else: result[idx]=np.nan return xr.DataArray(result,coords=[ds[dim] for dim in newdims],name='d%s/d%s'%(varname,coord)) def find_var(nc,pred): for fld in nc: try: if pred(nc[fld]): return fld except: pass return None def redimension(ds,new_dims, intragroup_dim=None, inplace=False, save_mapping=False): """ copy ds, making new_dims into the defining dimensions for variables which share shape with new_dims. each entry in new_dims must have the same dimension, and must be unidimensional Example: Dataset: coordinates sample [0,1,2..100] data variables date(sample) [...] station(sample) [...] depth(sample) [...] salinity(sample) [...] We'd like to end up with salinity(date,station,profile_sample) depth(date,station,profile_sample) Or Dataset: coordinates time [...] item [...] data variables x(item) [...] y(item) [...] z(item) [...] salinity(time,time) [...,...] Which you want to become Dataset: coordinates time [.] x [.] y [.] zi [.] data variables z(x,y,zi) [...] salinity(time,x,y,zi) [....] In other words, replace item with three orthogonal dimensions. Two of the orthogonal dimensions have existing coordinates, and the third is an index to elements within the bin defined by x,y. save_mapping: create an additional variable in the output which stores the mapping of the linear dimension to the new, orthogonal dimensions intragroup_dim: introduce an additional dimension to enumerate the original data which map to the same new coordinates. """ if not inplace: ds=ds.copy() lin_dim=ds[new_dims[0]].dims[0]# the original linear dimension orig_dims=[ ds[vname].values.copy() for vname in new_dims ] Norig=len(orig_dims[0]) # length of the original, linear dimension uni_new_dims=[ np.unique(od) for od in orig_dims] for und in uni_new_dims: try: if np.any(und<0): log.warning("New dimensions have negative values -- will continue but you probably want to drop those first") except TypeError: # some versions of numpy/xarray will not compare times to 0, # triggering a TypeError pass # note that this is just the shape that will replace occurences of lin_dim new_shape=[len(und) for und in uni_new_dims] # build up an index array new_idxs=[ np.searchsorted(und,od) for und,od in zip( uni_new_dims, orig_dims ) ] if intragroup_dim is not None: # here we need to first count up the max number within each 'bin' # so new_idxs count_per_group=np.zeros(new_shape,'i4') intra_idx=np.zeros(Norig,'i4') for orig_idx,idxs in enumerate(zip(*new_idxs)): intra_idx[orig_idx] = count_per_group[idxs] count_per_group[ idxs ]+=1 n_intragroup=count_per_group.max() # 55 in the test case # add in the new dimension new_shape.append(n_intragroup) new_idxs.append(intra_idx) # negative means missing. at this point, intragroup_dim has not been taken care of # mapper: array of the shape of the new dimensions, with each entry giving the linear # index into the original dimension mapper=np.zeros(new_shape,'i4') - 1 mapper[ tuple(new_idxs) ] = np.arange(Norig) # install the new coordinates - first the grouped coordinates for nd,und in zip(new_dims,uni_new_dims): del ds[nd] # doesn't like replacing these in one go ds[nd]= ( (nd,), und ) if intragroup_dim is not None: # and second the new intragroup coordinate: new_dims.append(intragroup_dim) ds[intragroup_dim] = ( (intragroup_dim,), np.arange(n_intragroup) ) for vname in ds.data_vars: if lin_dim not in ds[vname].dims: # print("Skipping %s"%vname) continue # print(vname) var_new_dims=[] var_new_slice=[] mask_slice=[] for d in ds[vname].dims: if d==lin_dim: var_new_dims += new_dims var_new_slice.append( mapper ) mask_slice.append( mapper<0 ) else: var_new_dims.append(d) var_new_slice.append(slice(None)) mask_slice.append(slice(None)) var_new_dims=tuple(var_new_dims) var_new_slice=tuple(var_new_slice) # this is time x nSegment # ds[vname].values.shape # 10080,1494 # This is the beast: but now it's including some crap values at the beginning new_vals=ds[vname].values[var_new_slice] mask=np.zeros_like(new_vals,'b1') mask[mask_slice] = True new_vals=np.ma.array(new_vals,mask=mask) old_attrs=OrderedDict(ds[vname].attrs) # This seems to be dropping the attributes ds[vname]=( var_new_dims, new_vals ) for k in old_attrs: if k != '_FillValue': ds[vname].attrs[k] = old_attrs[k] if save_mapping: ds['mapping']= ( new_dims, mapper) return ds def sort_dimension(ds,sort_var,sort_dim,inplace=False): """ sort_var: variable whose value will be used to sort items along sort_dim. sort_dim must be in sort_var.dims only variables with dimensions the same or a superset of sort_var.dims can/will be sorted. """ if not inplace: ds=ds.copy() #if ds[sort_var].ndim>1: # the interesting case # want to sort within each 'bin' sort_var_dims=ds[sort_var].dims sort_var_dimi = sort_var_dims.index(sort_dim) new_order=ds[sort_var].argsort(axis=sort_var_dimi).values # this only works for variables with a superset of sort_var's # dimensions (or the same). # i.e. depth(date,station,prof_sample) # can't be used to sort a variable of (station,prof_sample) # but it can be used to sort a variable of (analyte,date,station,prof_sample) for v in ds.data_vars: for d in sort_var_dims: compat=True if d not in ds[v].dims: # print("%s not compatible with dimensions for sorting"%v) compat=False if not compat: continue # build up transpose trans_dims=[] for d in ds[v].dims: if d not in sort_var_dims: trans_dims.append(d) n_extra=len(trans_dims) trans_dims+=sort_var_dims orig_dims=ds[v].dims tmp_trans=ds[v].transpose(*trans_dims) vals=tmp_trans.values # actually a tricky type of indexing to handle: # new_order.shape: (23, 37, 52) # luckily numpy knows how to do this relatively efficiently: idxs=np.ix_( *[np.arange(N) for N in vals.shape] ) idxs=list(idxs) idxs[n_extra+sort_var_dimi]=new_order tmp_trans.values=vals[tuple(idxs)] ds[v].values=tmp_trans.transpose(*orig_dims) return ds def first_finite(da,dim): # yecch. valid=np.isfinite(da.values) dimi=da.get_axis_num('prof_sample') first_valid=np.argmax( valid, axis=dimi) new_shape=[ slice(length) for d,length in enumerate(da.shape) if d!=dimi ] indexers=np.ogrid[ tuple(new_shape) ] indexers[dimi:dimi]=[first_valid] da_reduced=da.isel(**{dim:0,'drop':True}) da_reduced.values=da.values[tuple(indexers)] return da_reduced # Helper for z_from_sigma def decode_sigma(ds,sigma_v): """ ds: Dataset sigma_v: sigma coordinate variable. return DataArray of z coordinate implied by sigma_v """ import re formula_terms=sigma_v.attrs['formula_terms'] terms={} for hit in re.findall(r'\s*(\w+)\s*:\s*(\w+)', formula_terms): terms[hit[0]]=ds[hit[1]] # this is where xarray really shines -- it will promote z to the # correct dimensions automatically, by name # This ordering of the multiplication puts laydim last, which is # assumed in some other [fragile] code. # a little shady, but its helpful to make the ordering here intentional z=(terms['eta'] - terms['bedlevel'])*terms['sigma'] + terms['bedlevel'] return z def z_from_sigma(dataset,variable,interfaces=False,dz=False): """ Create a z coordinate for variable as a Dataset from the given dataset interfaces: False => do nothing related to layer boundaries variable name => use the given variable to define interfaces between layers. True => try to infer the variable, fallback to even spacing otherwise. if interfaces is anything other than False, then the return value will be a Dataset with the centers in a 'z_ctr' variable and the interfaces in a 'z_int' dz: implies interfaces, and includes a z_dz variable giving thickness of each layer. """ da=dataset[variable] da_dims=da.dims if dz: assert interfaces is not False,"Currently must enable interfaces to get thickness dz" # Variables which are definitely sigma, and might be the one we're looking for sigma_vars=[v for v in dataset.variables if dataset[v].attrs.get('standard_name',None) == 'ocean_sigma_coordinate'] # xr data arrays sigma_ctr_v=None # sigma coordinate for centers sigma_int_v=None # sigma coordinate for interfaces for v in sigma_vars: if set(dataset[v].dims)<=set(da_dims): assert sigma_ctr_v is None,"Multiple matches for layer center sigma coordinate" sigma_ctr_v=dataset[v] assert sigma_ctr_v is not None,"Failed to find a layer-center sigma coordinate" # With the layer center variable known, can search for layer interfaces if interfaces is False: pass else: if interfaces is True: maybe_int_vars=sigma_vars else: # Even when its specified, check to see that it has the expected form maybe_int_vars=[interfaces] for v in maybe_int_vars: ctr_dims=set(sigma_ctr_v.dims) int_dims=set(dataset[v].dims) ctr_only = list(ctr_dims - int_dims) int_only = list(int_dims - ctr_dims) if (len(ctr_only)!=1) or (len(int_only)!=1): continue if len(dataset[ctr_only[0]])+1==len(dataset[int_only[0]]): assert sigma_int_v is None,"Multiple matches for layer interface sigma coordinate" sigma_int_v=dataset[v] z_ctr=decode_sigma(dataset,sigma_ctr_v) if sigma_int_v is not None: z_int=decode_sigma(dataset,sigma_int_v) result=xr.Dataset() result['z_ctr']=z_ctr if interfaces is not False: result['z_int']=z_int if dz is not False: dz=xr.ones_like( z_ctr ) dz.values[...]=np.diff( z_int, axis=z_int.get_axis_num(int_only[0])) result['z_dz']=dz return result def bundle_components(ds,new_var,comp_vars,frame,comp_names=None): """ ds: Dataset new_var: name of the vector-valued variable to create comp_vars: list of variables, one-per component frame: name to give the component dimension, i.e. the name of the reference frame comp_names: list same length as comp_vars, used to name the components. """ vector=xr.concat([ds[v] for v in comp_vars],dim=frame) # That puts xy as the first dimension, but I'd rather it last dims=vector.dims roll_dims=dims[1:] + dims[:1] ds[new_var]=vector.transpose( *roll_dims ) if comp_names is not None: ds[frame]=(frame,),comp_names def concat_permissive(srcs,**kw): """ Small wrapper around xr.concat which fills in nan coordinates where they are missing, in case some of the incoming datasets have more metadata than others. """ extra_coords=set() for src in srcs: extra_coords |= set(src.coords) expanded_srcs=[] for src in srcs: for extra in extra_coords: if extra not in src: src=src.assign_coords(**{extra:np.nan}) expanded_srcs.append(src) return xr.concat(expanded_srcs,**kw) def structure_to_dataset(arr,dim,extra={}): """ Convert a numpy structure array to a dataset. arr: structure array. dim: name of the array dimension. can be a tuple with multiple dimension names if arr.ndim>1. extra: dict optionally mapping specific fields to additional dimensions within that field. """ if isinstance(dim,six.string_types): dim=(dim,) ds=xr.Dataset() for fld in arr.dtype.names: if fld in extra: extra_dims=extra[fld] else: extra_dims=['d%02d'%d for d in arr[fld].shape[1:]] ds[fld]=dim+tuple(extra_dims),arr[fld] return ds
mit
-1,026,334,121,185,740,400
31.877358
125
0.611047
false
helixyte/everest
everest/tests/test_attributes.py
1
1306
""" This file is part of the everest project. See LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information. Created on Oct 16, 2013. """ import pytest from everest.attributes import get_attribute_cardinality from everest.attributes import is_terminal_attribute from everest.constants import CARDINALITY_CONSTANTS from everest.resources.base import Member from everest.resources.descriptors import member_attribute from everest.resources.descriptors import terminal_attribute __docformat__ = 'reStructuredText en' __all__ = ['TestAttributes', ] class TestAttributes(object): @pytest.mark.parametrize('attr_name', ['attr']) def test_get_attribute_cardinality(self, attr_name): mb_attr = member_attribute(Member, attr_name) assert get_attribute_cardinality(mb_attr) == CARDINALITY_CONSTANTS.ONE t_attr = terminal_attribute(int, attr_name) with pytest.raises(ValueError): get_attribute_cardinality(t_attr) @pytest.mark.parametrize('attr_name', ['attr']) def test_is_terminal_attribute(self, attr_name): mb_attr = member_attribute(Member, attr_name) assert is_terminal_attribute(mb_attr) is False t_attr = terminal_attribute(int, attr_name) assert is_terminal_attribute(t_attr) is True
mit
-6,292,481,921,457,133,000
35.277778
78
0.726646
false
DataONEorg/d1_python
test_utilities/src/d1_test/__init__.py
1
1672
#!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DataONE Test Utilities. The :doc:`/d1_test/index` package contains various utilities for testing DataONE infrastructure components and clients. These include: :doc:`Instance Generator </d1_test/instance_generator/index>`: Used for creating randomized System Metadata documents :doc:`Stress Tester </d1_test/stress_tester/index>`: Used for stress testing of Member Node implementations. The stress_tester creates a configurable number of concurrent connections to a Member Node and populates the MN with randomly generated objects while running queries and object retrievals. :doc:`Utilities </d1_test/utilities/index>`: Misc test utilities. """ # Suppress log messages instead of raising exception if the program using the library # does not configure the logging system. import logging logging.getLogger(__name__).addHandler(logging.NullHandler())
apache-2.0
5,586,200,502,569,184,000
37.883721
87
0.7811
false
etsinko/Pentaho-reports-for-OpenERP
openerp_addon/pentaho_reports/__openerp__.py
1
9063
# -*- encoding: utf-8 -*- { "name": "Pentaho Reports for OpenERP", "description": """ Pentaho - OpenERP Report Integration by Willow IT ================================================= This module integrates Pentaho's reporting engine with OpenERP. This project was developed by Willow IT, using the libraries and extensions developed by De Bortoli Wines, Australia (Pieter van der Merwe in particular) for the Pentaho reporting system. The OpenERP addon also derives from and/or is inspired by the Jasper Reports addon developed by NaN-tic. Willow IT contributions: * Deepak Seshadri - OpenERP-Pentaho server connector (Java) * Richard deMeester - frontend and core functions, automated wizard and action implementation * Douglas Parker - additional integration * Jon Wilson - inspiration, testing, and whipping Report Designer and Java Component ---------------------------------- For notes on installing and running the report designer, 3.9, refer to: **http://bit.ly/L4wPoC** Report designer version 5.0 and higher includes the OpenERP datasource. It can be installed and used without the need for additional components. The README document contains instructions relevant to building and running the java component. Report Types ------------ Broadly speaking, two types of data sources can be used to produce the reports. OpenERP object data sources or SQL query data sources. * Object data sources have the advantage that they can use OpenERP model columns, even those that are not stored in the database. This includes functional fields, related fields, properties. They can iterate through one2many and many2many subfields. They also respect OpenERP record rules. * SQL data sources have the advantage that they allow greater flexibility in selections, and other SQL features like grouping and selective inclusion of sub-queries. It also allows selection where no OpenERP model relationship exists. It does not respect OpenERP record rules, which may be seen as an advantage for creating summary type reports which may be run by users who may not be able to view low-level data. Because of this, you need to be careful. Report Parameters ----------------- Prompted and hidden parameters are supported, as are mandatory values. A number of reserved parameters are automatically passed, but the report needs to define these parameters in order to receive and use them. Reserved parameters currently passed are: * *ids*: the context ids when the report action is called. This is almost always needed for object based reports to be meaningful. * *user_id*: the id of the user running the report. * *user_name*: the display name of the user running the report. * *context_lang*: the language in effect when the report action is executed. * *context_tz*: the timezone in effect when the report action is executed. This list of reserved parameters is available for use is all data sources, even those which return possible parameter selections, therefore allowing meaningful selections for other parameters. Most Pentaho report parameter types and features have been mapped, where practicable, to something which makes sense to an OpenERP environment. This means that a number of Java data types don't necessarily differentiate. For example, (Integer / Long / Short / BigInteger / et al) will all be treated as integers. Default values can be passed for the parameters, and may default value formulae work. Hidden parameters must obviously receive and work with a default value of some sort. This default can be the Pentaho default, or can be sent to the report in the context in the format: **{'pentaho_defaults': { .... }}** where the passed dictionary contains the parameter names as keys. See below for guidance on where to set this up. Pentaho Display Types have been consolidated. Drop Down, Single Value List, etc, all display as OpenERP selection pull downs. Some Pentaho multi value selection types, such as Check Box, etc, are implemented as single value selection pull downs. Date Picker uses the standard OpenERP date/time widget. Pentaho multi value lists are implemented as many2manytag widgets, and support integer, string, and numeric data types. Other Pentaho parameter features should be considered unsupported, such as Post-Processing Formula, Display Value Formula, Visible Items, Validate Values, et al. Setup ----- Some parameters may be required in Settings/Customization/System Parameters. The address of the Pentaho server which is used to render the report is defined with the parameter: **pentaho.server.url** For object based data sources, the Pentaho server will use XML-RPC to connect to the current database using the interface and port as defined in the OpenERP config file, and the reporting user's credentials. If not defined in the config file, the interface and port can be defined with the parameters: * pentaho.openerp.xml.interface * pentaho.openerp.xml.port For SQL query based data sources, the Pentaho server will use the following parameters: * pentaho.postgres.host * pentaho.postgres.port * pentaho.postgres.login * pentaho.postgres.password Report Actions -------------- Reports are defined to OpenERP under **Settings/Technical/Low Level Objects/Actions/Reports**. This is the place where standard OpenERP report actions are defined. Selecting the appropriate checkbox can convert existing report actions to Pentaho Report Actions. Reports can be handled by OpenERP in two ways. They can be linked to a menu, or they can be linked to a model. * Model linked reports will appear in the right hand toolbar as per standard reports, or they can be specifically called with an action, such as a button. A record or number of records needs to be selected before the action will be invoked, and the ids of the selected records will be passed to the report as a list parameter called "ids". A report invoked this way will not prompt for any additional parameters. A front end custom wizard can be created if desired to invoke the action, but that wizard and the report would be very closely tied and need to be developed in conjunction with one other. * Menu linked reports will appear somewhere in a menu. They will pop up a window prompting for a report output type, and any additional (visible) parameters that are defined. Object ids passed to these reports are not meaningful, as no object or ids are guaranteed to be in effect when the action is called, so selection of data needs to be based on other parameters. Other reserved parameters, such as user id, may be meaningful in the context of prompting for parameters or ultimate data selection. Report actions can override existing OpenERP actions (such as invoice prints) or can be new actions. The service name is only important if it is overriding an existing service, or if the report is to be invoked from coded actions like buttons or wizards. For menu linked actions or generic object linked actions, the service name is incidental. Output types specified here are defaults, and can be overridden by either a custom wizard or by menu linked reports. They will not be changeable for model linked reports which don't have specific coding. The prpt (Pentaho report definition) file selected is stored in the database. Changing the report using the designer will require the report to be re-loaded. A prpt file and action can easily be defined as part of a module and distributed this way. Be aware, though, if the module is upgraded from within OpenERP it could potentially reload the distributed report and may lose changes that were uploaded manually after module installation. Security groups entered against the action will be respected in regard to action visibility - they play no role in the report execution. If a context value is required to set a default value, it needs to be set against the created action. It comes up under Settings/Customization/Low Level Actions/Actions/Window Actions. It will already have a Context Value with the service_name defined, which should be left intact. Disclaimer ---------- This has been developed over time to meet specific requirements as we have needed to meet them. If something is wrong, or you think would make a great feature, please do let us know at: **[email protected]** Library ------- We will be endeavouring to create a library of sample and useful reports. Check at: **http://www.willowit.com.au/** where we will announce when and where this is available. In the meantime, if you develop any reports or templates that you would consider worth sharing, please email them through with some description or details. """, "version": "0.1", "author": "WillowIT Pty Ltd", "website": "http://www.willowit.com.au/", "depends": ["base"], "category": "Reporting subsystems", "data": [ "report_xml_view.xml", 'wizard/report_prompt.xml', 'data/config_data.xml', ], "installable": True, "active": False }
gpl-2.0
-8,140,916,819,647,359,000
47.989189
114
0.766965
false
googlearchive/titan
titan/files/mixins/stats_recorder.py
1
5131
#!/usr/bin/env python # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Enable Titan Stats recording of all core file operations.""" import random from titan import files from titan import stats class StatsRecorderMixin(files.File): """Mixin which uses Titan Stats to record usage and timing stats.""" def __init__(self, *args, **kwargs): self._stats_invocation_counters = {} self._stats_latency_counters = {} super(StatsRecorderMixin, self).__init__(*args, **kwargs) def _start_stats_recording(self, unique_counter_name): counter_name = unique_counter_name.name latency_counter_name = '%s/latency' % counter_name latency_counter = stats.AverageTimingCounter(latency_counter_name) latency_counter.start() unique_id = hash(unique_counter_name) self._stats_latency_counters[unique_id] = latency_counter self._stats_invocation_counters[unique_id] = stats.Counter(counter_name) def _stop_stats_recording(self, unique_counter_name): unique_id = hash(unique_counter_name) self._stats_latency_counters[unique_id].stop() self._stats_invocation_counters[unique_id].increment() counters = [ self._stats_invocation_counters[unique_id], self._stats_latency_counters[unique_id], ] stats.log_counters(counters, counters_func=make_all_counters) @property def _file(self): if self.is_loaded: # Only record stats if not loaded. return super(StatsRecorderMixin, self)._file unique_counter_name = _UniqueCounterName('files/File/load') self._start_stats_recording(unique_counter_name) try: return super(StatsRecorderMixin, self)._file finally: self._stop_stats_recording(unique_counter_name) def write(self, *args, **kwargs): unique_counter_name = _UniqueCounterName('files/File/write') self._start_stats_recording(unique_counter_name) try: return super(StatsRecorderMixin, self).write(*args, **kwargs) finally: self._stop_stats_recording(unique_counter_name) def copy_to(self, *args, **kwargs): unique_counter_name = _UniqueCounterName('files/File/copy_to') self._start_stats_recording(unique_counter_name) try: return super(StatsRecorderMixin, self).copy_to(*args, **kwargs) finally: self._stop_stats_recording(unique_counter_name) def delete(self, *args, **kwargs): unique_counter_name = _UniqueCounterName('files/File/delete') self._start_stats_recording(unique_counter_name) try: return super(StatsRecorderMixin, self).delete(*args, **kwargs) finally: self._stop_stats_recording(unique_counter_name) def serialize(self, *args, **kwargs): unique_counter_name = _UniqueCounterName('files/File/serialize') self._start_stats_recording(unique_counter_name) try: return super(StatsRecorderMixin, self).serialize(*args, **kwargs) finally: self._stop_stats_recording(unique_counter_name) class _UniqueCounterName(object): """A unique counter name container. This object's hash is used to prevent overlap of the same counter name which may be created multiple times within a code path. """ def __init__(self, name): self.random_offset = random.randint(0, 1000000) self.name = name def __hash__(self): return id(self) + self.random_offset def make_all_counters(): """Make a new list of all counters which can be aggregated and saved.""" counters = [ # Invocation counters. stats.Counter('files/File/load'), stats.Counter('files/File/write'), stats.Counter('files/File/delete'), stats.Counter('files/File/serialize'), # TODO(user): Add these when the new APIs are implemented. # stats.Counter('files/Files/list'), # stats.Counter('files/File/copy'), # stats.Counter('files/Dir/copy'), # stats.Counter('files/Dir/list'), # stats.Counter('files/Dir/exists'), # Timing counters. stats.AverageTimingCounter('files/File/load/latency'), stats.AverageTimingCounter('files/File/write/latency'), stats.AverageTimingCounter('files/File/delete/latency'), stats.AverageTimingCounter('files/File/serialize/latency'), # TODO(user): Add these when the new APIs are implemented. # stats.AverageTimingCounter('files/Files/list/latency'), # stats.AverageTimingCounter('files/File/copy/latency'), # stats.AverageTimingCounter('files/Dir/copy/latency'), # stats.AverageTimingCounter('files/Dir/list/latency'), # stats.AverageTimingCounter('files/Dir/exists/latency'), ] return counters
apache-2.0
4,395,640,276,062,918,700
35.913669
76
0.701228
false
abhishekdepro/Mantle
first_time.py
1
2523
import urllib2 import re import datetime import sqlite3 a=0 city=raw_input('enter city') print("") print("Entered city: "+city.upper()) print "Crunching the latest data", for i in range(0,100): a+=2 if(i%10==0): print ".", print("") print "Searching for alternative sources", for i in range(0,100): a+=2 if(i%10==0): print ".", print("") print "Post processing data", for i in range(0,100): a+=2 if(i%10==0): print ".", print("") str1="&type=accurate&mode=xml&units=metric&cnt=2" str2=city+str1 url = "http://api.openweathermap.org/data/2.5/forecast/daily?q=%s" % str2 source=urllib2.urlopen(url) tomorrow=str(datetime.date.today()+datetime.timedelta(days=1)) htmltext=source.read() print("<------------------------WEATHER REPORT: "+city.upper()+" for "+tomorrow+" ------------>") # search for pattern using regular expressions (.+?) #if(htmltext.find(adate)!=-1): wind='<windDirection deg="(.+?)" code="(.+?)" name="(.+?)"/>' temp='<temperature day="(.+?)" min="(.+?)" max="(.+?)" night="(.+?)" eve="(.+?)" morn="(.+?)"/>' condition='<symbol number="(.+?)" name="(.+?)" var="(.+?)"/>' pattern_wind=re.compile(wind) pattern_temp=re.compile(temp) pattern_cond=re.compile(condition) try: # match pattern with htmltext weather_winddirection=re.findall(pattern_wind,htmltext) weather_temp=re.findall(pattern_temp,htmltext) weather_cond=re.findall(pattern_cond,htmltext) conn = sqlite3.connect(':memory:') conn = sqlite3.connect("D://Programming/weather_forecast.db") c=conn.cursor() print "Overall Weather status: ",weather_cond[1][1] print "Temperature @Morning: ",weather_temp[1][5] print "Temperature @Day: ",weather_temp[1][0] print "Temperature @Evening: ",weather_temp[1][4] print "Temperature @Night: ",weather_temp[1][3] print "" print "Max Temperature: ",weather_temp[1][2] print "Min Temperature: ",weather_temp[1][1] print "" if(weather_winddirection[1][2]!=""): print "Wind Direction: ",weather_winddirection[1][2] # Create table c.execute('''CREATE TABLE data (city text, tomorrow text, weathercond text, morning text, day text, evening text, night text)''') # Insert a row of data c.execute("INSERT INTO data VALUES (?,?,?,?,?,?,?)", (city,tomorrow,weather_cond[1][1],weather_temp[1][5],weather_temp[1][0],weather_temp[1][4],weather_temp[1][3])) # Save (commit) the changes conn.commit() conn.close() except Exception: print "Data unavailable!"
apache-2.0
-2,885,661,126,470,217,700
32.197368
168
0.632184
false
venicegeo/eventkit-cloud
eventkit_cloud/api/views.py
1
86169
"""Provides classes for handling API requests.""" import logging # -*- coding: utf-8 -*- from datetime import datetime, timedelta from django.core.cache import cache from dateutil import parser from django.conf import settings from django.contrib.auth.models import User, Group from django.contrib.contenttypes.models import ContentType from django.contrib.gis.geos import GEOSException, GEOSGeometry from django.db import transaction from django.db.models import Q from django.shortcuts import redirect, render from django.utils.translation import ugettext as _ from django_filters.rest_framework import DjangoFilterBackend from notifications.models import Notification from rest_framework import filters, permissions, status, views, viewsets, mixins from rest_framework.decorators import action from rest_framework.exceptions import APIException, NotFound, PermissionDenied from rest_framework.parsers import JSONParser from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from rest_framework.serializers import ValidationError from audit_logging.models import AuditEvent from eventkit_cloud.api.filters import ( ExportRunFilter, JobFilter, UserFilter, GroupFilter, UserJobActivityFilter, LogFilter, ) from eventkit_cloud.api.pagination import LinkHeaderPagination from eventkit_cloud.api.permissions import IsOwnerOrReadOnly from eventkit_cloud.api.renderers import ( HOTExportApiRenderer, PlainTextRenderer, ) from eventkit_cloud.api.serializers import ( ExportFormatSerializer, ExportRunSerializer, ProjectionSerializer, ExportTaskRecordSerializer, JobSerializer, RegionMaskSerializer, DataProviderTaskRecordSerializer, RegionSerializer, ListJobSerializer, ProviderTaskSerializer, DataProviderSerializer, LicenseSerializer, UserDataSerializer, GroupSerializer, UserJobActivitySerializer, NotificationSerializer, GroupUserSerializer, AuditEventSerializer, DataProviderRequestSerializer, SizeIncreaseRequestSerializer, FilteredDataProviderSerializer, FilteredDataProviderTaskRecordSerializer, ) from eventkit_cloud.api.validators import validate_bbox_params, validate_search_bbox from eventkit_cloud.core.helpers import ( sendnotification, NotificationVerb, NotificationLevel, ) from eventkit_cloud.core.models import ( GroupPermission, GroupPermissionLevel, annotate_users_restricted, attribute_class_filter, annotate_groups_restricted, ) from eventkit_cloud.jobs.models import ( ExportFormat, Projection, Job, Region, RegionMask, DataProvider, DataProviderTask, DatamodelPreset, License, VisibilityState, UserJobActivity, JobPermission, JobPermissionLevel, ) from eventkit_cloud.tasks.export_tasks import ( pick_up_run_task, cancel_export_provider_task, ) from eventkit_cloud.tasks.models import ( ExportRun, ExportTaskRecord, DataProviderTaskRecord, prefetch_export_runs, ) from eventkit_cloud.tasks.task_factory import ( create_run, get_invalid_licenses, InvalidLicense, Error, ) from eventkit_cloud.user_requests.models import DataProviderRequest, SizeIncreaseRequest from eventkit_cloud.utils.gdalutils import get_area from eventkit_cloud.utils.provider_check import perform_provider_check from eventkit_cloud.utils.stats.aoi_estimators import AoiEstimator from eventkit_cloud.utils.stats.geomutils import get_estimate_cache_key # Get an instance of a logger logger = logging.getLogger(__name__) # controls how api responses are rendered renderer_classes = (JSONRenderer, HOTExportApiRenderer) ESTIMATE_CACHE_TIMEOUT = 600 class JobViewSet(viewsets.ModelViewSet): """ Main endpoint for export creation and management. Provides endpoints for creating, listing and deleting export jobs. Updates to existing jobs are not supported as exports can be cloned. Request data can be posted as either `application/x-www-form-urlencoded` or `application/json`. **Request parameters**: * name (required): The name of the export. * description (required): A description of the export. * event: The project or event associated with this export, eg Nepal Activation. * xmin (required): The minimum longitude coordinate. * ymin (required): The minimum latitude coordinate. * xmax (required): The maximum longitude coordinate. * ymax (required): The maximum latitude coordinate. * formats (required): One of the supported export formats ([html](/api/formats) or [json](/api/formats.json)). * Use the format `slug` as the value of the formats parameter, eg `formats=thematic&formats=shp`. * min_zoom: The minimum zoom level for your export on a per provider basis. * max_zoom: The maximum zoom level for your export on a per provider basis. * preset: One of the published preset files ([html](/api/configurations) or [json](/api/configurations.json)). * Use the `uid` as the value of the preset parameter, eg `preset=eed84023-6874-4321-9b48-2f7840e76257`. * If no preset parameter is provided, then the default HDM tags will be used for the export. * visibility : PUBLIC PRIVATE or SHARED * Unpublished exports will be purged from the system 48 hours after they are created. """ serializer_class = JobSerializer permission_classes = (permissions.IsAuthenticated, IsOwnerOrReadOnly) parser_classes = (JSONParser,) lookup_field = "uid" pagination_class = LinkHeaderPagination filter_backends = (DjangoFilterBackend, filters.SearchFilter) filter_class = JobFilter search_fields = ( "name", "description", "visibility", "event", "user__username", "region__name", ) def dispatch(self, request, *args, **kwargs): return viewsets.ModelViewSet.dispatch(self, request, *args, **kwargs) def get_queryset(self): """Return all objects user can view.""" jobs = JobPermission.userjobs(self.request.user, JobPermissionLevel.READ.value) return Job.objects.filter(Q(visibility=VisibilityState.PUBLIC.value) | Q(pk__in=jobs)) def list(self, request, *args, **kwargs): """ List export jobs. The list of returned exports can be filtered by the **filters.JobFilter** and/or by a bounding box extent. Args: request: the HTTP request. *args: Variable length argument list. **kwargs: Arbitary keyword arguments. Returns: A serialized collection of export jobs. Uses the **serializers.ListJobSerializer** to return a simplified representation of export jobs. Raises: ValidationError: if the supplied extents are invalid. """ params = self.request.query_params.get("bbox", None) if params is None: queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) if page is not None: serializer = ListJobSerializer(page, many=True, context={"request": request}) return self.get_paginated_response(serializer.data) else: serializer = ListJobSerializer(queryset, many=True, context={"request": request}) return Response(serializer.data) if len(params.split(",")) < 4: raise ValidationError(code="missing_bbox_parameter", detail="Missing bounding box parameter") else: extents = params.split(",") data = { "xmin": extents[0], "ymin": extents[1], "xmax": extents[2], "ymax": extents[3], } try: bbox_extents = validate_bbox_params(data) bbox = validate_search_bbox(bbox_extents) queryset = self.filter_queryset(Job.objects.filter(the_geom__within=bbox)) page = self.paginate_queryset(queryset) if page is not None: serializer = ListJobSerializer(page, many=True, context={"request": request}) return self.get_paginated_response(serializer.data) else: serializer = ListJobSerializer(queryset, many=True, context={"request": request}) return Response(serializer.data) except ValidationError as e: logger.debug(e.detail) raise ValidationError(code="validation_error", detail=e.detail) def create(self, request, *args, **kwargs): """ Create a Job from the supplied request data. The request data is validated by *api.serializers.JobSerializer*. Associates the *Job* with required *ExportFormats*, *ExportConfig* * request: the HTTP request in JSON. Example: { "name" : "Example Name", "description" : "Example Description", "event" : "Example Event (Project)", "include_zipfile" : true, "selection": { ... valid geojson ... }, "tags" : [], "projections" : [4326], "provider_tasks" : [{ "provider" : "osm", "formats" : ["shp", "gpkg"] } ] } To monitor the resulting export run retrieve the `uid` value from the returned json and call /api/runs?job_uid=[the returned uid] * Returns: the newly created Job instance. Example: { "provider_tasks": [ { "provider": "osm", "formats": [ "gpkg" ] } ], "uid": "cf9c038c-a09a-4058-855a-b0b1d5a6c5c4", "url": "http://cloud.eventkit.test/api/jobs/cf9c038c-a09a-4058-855a-b0b1d5a6c5c4", "name": "test", "description": "test", "event": "test", "created_at": "2017-03-10T15:09:29.802364Z", "owner": "admin", "exports": [ { "formats": [ { "uid": "167fbc03-83b3-41c9-8034-8566257cb2e8", "url": "http://cloud.eventkit.test/api/formats/gpkg", "slug": "gpkg", "name": "Geopackage", "description": "GeoPackage" } ], "provider": "OpenStreetMap Tiles" } ], "configurations": [], "visibility" : "PRIVATE", "feature_save": false, "feature_pub": false, "region": null, "extent": { "type": "Feature", "properties": { "uid": "cf9c038c-a09a-4058-855a-b0b1d5a6c5c4", "name": "test" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -43.248281, -22.816694 ], [ -43.248281, -22.812105 ], [ -43.242617, -22.812105 ], [ -43.242617, -22.816694 ], [ -43.248281, -22.816694 ] ] ] } }, "tags": [ { "key": "highway", "value": "path", "data_model": "HDM", "geom_types": [ "line" ] } ], "include_zipfile": false } * Raises: ValidationError: in case of validation errors. ** returns: Not 202 """ from eventkit_cloud.tasks.task_factory import InvalidLicense, Unauthorized serializer = self.get_serializer(data=request.data) if serializer.is_valid(raise_exception=True): """Get the required data from the validated request.""" export_providers = request.data.get("export_providers", []) provider_tasks = request.data.get("provider_tasks", []) projections = request.data.get("projections", []) tags = request.data.get("tags") preset = request.data.get("preset") with transaction.atomic(): if export_providers: for ep in export_providers: ep["user"] = request.user.id provider_serializer = DataProviderSerializer( data=export_providers, many=True, context={"request": request} ) if provider_serializer.is_valid(): provider_serializer.save() if len(provider_tasks) > 0: """Save the job and make sure it's committed before running tasks.""" try: job = serializer.save() provider_serializer = ProviderTaskSerializer( data=provider_tasks, many=True, context={"request": request} ) try: provider_serializer.is_valid(raise_exception=True) job.provider_tasks.add(*provider_serializer.save()) job.save() except ValidationError: raise ValidationError( code="invalid_provider_task", detail="A provider and an export format must be selected." ) # Check max area (skip for superusers) if not self.request.user.is_superuser: error_data = {"errors": []} for provider_task in job.provider_tasks.all(): provider = provider_task.provider bbox = job.extents srs = "4326" cache_key = get_estimate_cache_key( bbox, srs, provider_task.min_zoom, provider_task.max_zoom, provider.slug ) # find cache key that contains the estimator hash with correct time, size values size, time = cache.get(cache_key, (None, None)) max_selection = provider.get_max_selection_size(self.request.user) max_data_size = provider.get_max_data_size(self.request.user) # Don't rely solely on max_data_size as estimates can sometimes be inaccurate # Allow user to get a job that passes max_data_size or max_selection condition: if size and max_data_size is not None: # max_data_size is an optional configuration if size <= max_data_size: continue else: status_code = status.HTTP_400_BAD_REQUEST error_data["errors"] += [ { "status": status_code, "title": _("Estimated size too large"), "detail": _( f"The estimated size " f"exceeds the maximum data size for the {provider.name}" ), } ] if max_selection and 0 < float(max_selection) < get_area(job.the_geom.geojson): status_code = status.HTTP_400_BAD_REQUEST error_data["errors"] += [ { "status": status_code, "title": _("Selection area too large"), "detail": _(f"The selected area is too large for the {provider.name}"), } ] if error_data["errors"]: return Response(error_data, status=status_code) if preset: """Get the tags from the uploaded preset.""" logger.debug("Found preset with uid: {0}".format(preset)) job.json_tags = preset job.save() elif tags: """Get tags from request.""" simplified_tags = [] for entry in tags: tag = { "key": entry["key"], "value": entry["value"], "geom": entry["geom_types"], } simplified_tags.append(tag) job.json_tags = simplified_tags job.save() else: """ Use hdm preset as default tags if no preset or tags are provided in the request. """ hdm_default_tags = DatamodelPreset.objects.get(name="hdm").json_tags job.json_tags = hdm_default_tags job.save() except Exception as e: logger.error(e) raise else: # TODO: Specify which provider task is invalid. raise ValidationError( code="invalid_provider_task", detail=f"One or more provider tasks are invalid: {provider_tasks}.", ) try: projection_db_objects = Projection.objects.filter(srid__in=projections) job.projections.add(*projection_db_objects) job.save() except Exception as e: # TODO: Specify which projection is invalid. raise ValidationError( code="invalid_projection", detail=f"One or more projections are invalid: {projections}." ) # run the tasks job_uid = str(job.uid) # run needs to be created so that the UI can be updated with the task list. user_details = get_user_details(request) try: # run needs to be created so that the UI can be updated with the task list. run_uid = create_run(job_uid=job_uid, user=request.user) except InvalidLicense as il: raise ValidationError(code="invalid_license", detail=str(il)) except Unauthorized as ua: raise PermissionDenied(code="permission_denied", detail=str(ua)) running = JobSerializer(job, context={"request": request}) # Run is passed to celery to start the tasks. pick_up_run_task.apply_async( queue="runs", routing_key="runs", kwargs={"run_uid": run_uid, "user_details": user_details}, ) return Response(running.data, status=status.HTTP_202_ACCEPTED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @action(methods=["get", "post"], detail=True) def run(self, request, uid=None, *args, **kwargs): """ Creates the run (i.e. runs the job). Gets the job_uid and current user from the request. Creates an instance of the TaskFactory and calls run_task on it, passing the job_uid and user. *request:* the http request *Returns:* - the serialized run data. """ # This is just to make it easier to trace when user_details haven't been sent user_details = get_user_details(request) if user_details is None: user_details = {"username": "unknown-JobViewSet.run"} from eventkit_cloud.tasks.task_factory import InvalidLicense, Unauthorized try: # run needs to be created so that the UI can be updated with the task list. run_uid = create_run(job_uid=uid, user=request.user) except (InvalidLicense, Error) as err: return Response([{"detail": _(str(err))}], status.HTTP_400_BAD_REQUEST) # Run is passed to celery to start the tasks. except Unauthorized: raise PermissionDenied( code="permission_denied", detail="ADMIN permission is required to run this DataPack." ) run = ExportRun.objects.get(uid=run_uid) if run: logger.debug("Placing pick_up_run_task for {0} on the queue.".format(run.uid)) pick_up_run_task.apply_async( queue="runs", routing_key="runs", kwargs={"run_uid": run_uid, "user_details": user_details}, ) logger.debug("Getting Run Data.".format(run.uid)) running = ExportRunSerializer(run, context={"request": request}) logger.debug("Returning Run Data.".format(run.uid)) return Response(running.data, status=status.HTTP_202_ACCEPTED) else: return Response([{"detail": _("Failed to run Export")}], status.HTTP_400_BAD_REQUEST) @transaction.atomic def partial_update(self, request, uid=None, *args, **kwargs): """ Update one or more attributes for the given job * request: the HTTP request in JSON. Examples: { "visibility" : 'SHARED', "featured" : true } { "featured" : false } * Returns: a copy of the new values on success Example: { "visibility": 'SHARED', "featured" : true, "success": true } ** returns: 400 on error """ job = Job.objects.get(uid=uid) # Does the user have admin permission to make changes to this job? jobs = JobPermission.userjobs(request.user, JobPermissionLevel.ADMIN.value) if not jobs.filter(id=job.id): return Response( [{"detail": "ADMIN permission is required to update this Datapack."}], status.HTTP_400_BAD_REQUEST, ) response = {} payload = request.data for attribute, value in payload.items(): if attribute == "visibility" and value not in VisibilityState.__members__: msg = "unknown visibility value - %s" % value return Response([{"detail": msg}], status.HTTP_400_BAD_REQUEST) if attribute == "permissions": pass elif hasattr(job, attribute): setattr(job, attribute, value) response[attribute] = value else: msg = "unidentified job attribute - %s" % attribute return Response([{"detail": msg}], status.HTTP_400_BAD_REQUEST) # update permissions if present. Insure we are not left with 0 admministrators # users and / or groups may be updated. If no update info is provided, maintain # the current set of permissions. admins = 0 if "permissions" in payload: serializer = JobSerializer(job, context={"request": request}) current_permissions = serializer.get_permissions(job) if "members" not in payload["permissions"]: payload["permissions"]["members"] = current_permissions["members"] if "groups" not in payload["permissions"]: payload["permissions"]["groups"] = current_permissions["groups"] users = payload["permissions"]["members"] groups = payload["permissions"]["groups"] # make sure all user names, group names, and permissions are valid, and insure there is at least one admin # if the job is made private for index, set in enumerate([users, groups]): for key in set: if index == 0: record = User.objects.filter(username=key) else: record = Group.objects.filter(name=key) if not record.exists(): return Response( [{"detail": "unidentified user or group : %s" % key}], status.HTTP_400_BAD_REQUEST, ) perm = set[key] if perm not in JobPermissionLevel.__members__: return Response( [{"detail": "invalid permission value : %s" % perm}], status.HTTP_400_BAD_REQUEST, ) if perm == GroupPermissionLevel.ADMIN.value: admins += 1 if admins == 0: return Response( [{"detail": "Cannot update job permissions with no administrator."}], status.HTTP_400_BAD_REQUEST, ) # The request represents all expected permissions for the file not a partial update of the permissions. # Therefore we delete the existing permissions, because the new permissions should be the only permissions. with transaction.atomic(): job.permissions.all().delete() user_objects = User.objects.filter(username__in=users) group_objects = Group.objects.filter(name__in=groups) user_job_permissions = [ JobPermission(job=job, content_object=user, permission=users.get(user.username)) for user in user_objects ] # NOQA group_job_permissions = [ JobPermission(job=job, content_object=group, permission=groups.get(group.name)) for group in group_objects ] # NOQA JobPermission.objects.bulk_create(user_job_permissions + group_job_permissions) response["permissions"] = payload["permissions"] job.save() response["success"] = True return Response(response, status=status.HTTP_200_OK) def retrieve(self, request, uid=None, *args, **kwargs): """ Look up a single job by uid value. * uid: optional job uid lookup field * return: The selected job. """ return super(JobViewSet, self).retrieve(self, request, uid, *args, **kwargs) def update(self, request, uid=None, *args, **kwargs): """ Update a job object, looked up by uid. * uid: optional job uid lookup field * return: The status of the update. """ return super(JobViewSet, self).update(self, request, uid, *args, **kwargs) @action(methods=["post"], detail=False) def filter(self, request, *args, **kwargs): """ Return all jobs that are readable by every groups and every user in the payload { "permissions" : { groups : [ 'group_one', 'group_two', ...] members : ['user_one', 'user_two' ... ] } } """ if "permissions" not in request.data: raise PermissionDenied(code="permission_denied", detail="Missing permissions attribute.") jobs = get_jobs_via_permissions(request.data["permissions"]) serializer = ListJobSerializer(jobs, many=True, context={"request": request}) return Response(serializer.data) @transaction.atomic def destroy(self, request, uid=None, *args, **kwargs): """ Destroy a job """ job = Job.objects.get(uid=uid) # Does the user have admin permission to make changes to this job? logger.info("DELETE REQUEST") jobs = JobPermission.userjobs(request.user, JobPermissionLevel.ADMIN.value) if not jobs.filter(id=job.id): raise PermissionDenied(code="permission_denied", detail="ADMIN permission is required to delete this job.") super(JobViewSet, self).destroy(request, *args, **kwargs) return Response(status=status.HTTP_204_NO_CONTENT) class ExportFormatViewSet(viewsets.ReadOnlyModelViewSet): """ ###ExportFormat API endpoint. Endpoint exposing the supported export formats. """ serializer_class = ExportFormatSerializer permission_classes = (permissions.IsAuthenticated,) queryset = ExportFormat.objects.all() lookup_field = "slug" ordering = ["description"] def list(self, request, slug=None, *args, **kwargs): """ * slug: optional slug value of export format * return: A list of format types. """ return super(ExportFormatViewSet, self).list(self, request, slug, *args, **kwargs) def retrieve(self, request, slug=None, *args, **kwargs): """ * slug: optional slug value of export format * return: A single format object matching the provided slug value. """ return super(ExportFormatViewSet, self).retrieve(self, request, slug, *args, **kwargs) class ProjectionViewSet(viewsets.ReadOnlyModelViewSet): """ A simple ViewSet for listing or retrieving projections. """ serializer_class = ProjectionSerializer permission_classes = (permissions.IsAuthenticated,) queryset = Projection.objects.all() lookup_field = "srid" ordering = ["srid"] class AuditEventViewSet(viewsets.ReadOnlyModelViewSet): """ A simple ViewSet for listing or retrieving AuditEvents. """ serializer_class = AuditEventSerializer permission_classes = (permissions.IsAdminUser,) queryset = AuditEvent.objects.all() filter_class = LogFilter lookup_field = "id" ordering = ["datetime"] search_fields = ("username", "datetime", "ip", "email", "event") class LicenseViewSet(viewsets.ReadOnlyModelViewSet): """ Endpoint to get detailed information about the data licenses. """ serializer_class = LicenseSerializer permission_classes = (permissions.IsAuthenticated,) queryset = License.objects.all() lookup_field = "slug" ordering = ["name"] @action(methods=["get"], detail=True, renderer_classes=[PlainTextRenderer]) def download(self, request, slug=None, *args, **kwargs): """ Responds to a GET request with a text file of the license text *request:* the http request *slug:* the license slug *Returns:* - a .txt file of the license text. """ try: license_text = License.objects.get(slug=slug).text response = Response(license_text, content_type="text/plain") response["Content-Disposition"] = 'attachment; filename="{}.txt"'.format(slug) return response except Exception: raise NotFound(code="not_found", detail="Could not find requested license.") def list(self, request, slug=None, *args, **kwargs): """ * slug: optional slug value of license * return: A list of license objects. """ return super(LicenseViewSet, self).list(self, request, slug, *args, **kwargs) def retrieve(self, request, slug=None, *args, **kwargs): """ * slug: optional slug value of license * return: A single license object matching the provided slug value. """ return super(LicenseViewSet, self).retrieve(self, request, slug, *args, **kwargs) class DataProviderViewSet(viewsets.ReadOnlyModelViewSet): """ Endpoint exposing the supported data providers. """ serializer_class = DataProviderSerializer permission_classes = (permissions.IsAuthenticated,) parser_classes = (JSONParser,) lookup_field = "slug" ordering = ["name"] def get_queryset(self): """ This view should return a list of all the purchases for the currently authenticated user. """ return DataProvider.objects.filter(Q(user=self.request.user) | Q(user=None)) @action(methods=["get", "post"], detail=True) def status(self, request, slug=None, *args, **kwargs): """ Checks the status of a data provider to confirm that it is available. * slug: The DataProvider object slug. * return: The HTTP response of the data provider health check, in cases where there is no error. If the data provider does not exist, returns status 400 bad request. """ try: geojson = self.request.data.get("geojson", None) providers, filtered_provider = attribute_class_filter(self.get_queryset(), self.request.user) provider = providers.get(slug=slug) return Response(perform_provider_check(provider, geojson), status=status.HTTP_200_OK) except DataProvider.DoesNotExist: raise NotFound(code="not_found", detail="Could not find the requested provider.") except Exception as e: logger.error(e) raise APIException("server_error", detail="Internal server error.") def list(self, request, slug=None, *args, **kwargs): """ List all data providers. * slug: optional lookup field * return: A list of data providers. """ providers, filtered_providers = attribute_class_filter(self.get_queryset(), self.request.user) data = DataProviderSerializer(providers, many=True, context={"request": request}).data data += FilteredDataProviderSerializer(filtered_providers, many=True).data return Response(data) def retrieve(self, request, slug=None, *args, **kwargs): """ Look up a single data provider by slug value. * slug: optional lookup field * return: The data provider with the given slug. """ providers, filtered_providers = attribute_class_filter(self.get_queryset().filter(slug=slug), self.request.user) if providers: return Response(DataProviderSerializer(providers.get(slug=slug), context={"request": request}).data) elif filtered_providers: return Response(FilteredDataProviderSerializer(providers.get(slug=slug)).data) class RegionViewSet(viewsets.ReadOnlyModelViewSet): """ Endpoint exposing the supported regions. """ serializer_class = RegionSerializer permission_classes = (permissions.IsAuthenticated,) queryset = Region.objects.all() lookup_field = "uid" def list(self, request, uid=None, *args, **kwargs): """ List all regions. * uid: optional lookup field * return: A list of regions. """ return super(RegionViewSet, self).list(self, request, uid, *args, **kwargs) def retrieve(self, request, uid=None, *args, **kwargs): """ Look up a single region by slug value. * uid: optional lookup field * return: The region with the given slug. """ return super(RegionViewSet, self).retrieve(self, request, uid, *args, **kwargs) class RegionMaskViewSet(viewsets.ReadOnlyModelViewSet): """ Return a MULTIPOLYGON representing the mask of the HOT Regions as a GeoJSON Feature Collection. """ serializer_class = RegionMaskSerializer permission_classes = (permissions.IsAuthenticated,) queryset = RegionMask.objects.all() class ExportRunViewSet(viewsets.ModelViewSet): """ **retrieve:** Returns the exact run as specified by the run UID in the url `/runs/{uid}` **list:** Returns a list of all the runs. Export runs can be filtered and ordered by adding optional parameters to the url: * `user`: The user who created the job. * `status`: The current run status (can include any number of the following: COMPLETED, SUBMITTED, INCOMPLETE, or FAILED). * Example = `/api/runs?status=SUBMITTED,INCOMPLETE,FAILED` * `job_uid`: The uid of a particular job. * `min_date`: Minimum date (YYYY-MM-DD) for the `started_at` field. * `max_date`: Maximum date (YYYY-MM-DD) for the `started_at` field. * `started_at`: The DateTime a run was started at in ISO date-time format. * `published`: True or False for whether the owning job is published or not. * `ordering`: Possible values are `started_at, status, user__username, job__name, job__event, and job__published`. * Order can be reversed by adding `-` to the front of the order parameter. An example request using some of the parameters. `/api/runs?user=test_user&status=FAILED,COMPLETED&min_date=2017-05-20&max_date=2017-12-21&published=True&ordering= -job__name` **filter:** Accessed at `/runs/filter`. Accepts GET and POST. Support all the url params of 'list' with the addition of advanced features like `search_term`, `bbox`, and `geojson`. * `search_term`: A value to search the job name, description and event text for. * `bbox`: Bounding box in the form of `xmin,ymin,xmax,ymax`. To filter by geojson send the geojson geometry in the body of a POST request under the key `geojson`. """ serializer_class = ExportRunSerializer permission_classes = (permissions.IsAuthenticated,) pagination_class = LinkHeaderPagination filter_backends = (DjangoFilterBackend, filters.OrderingFilter) filter_class = ExportRunFilter lookup_field = "uid" search_fields = ( "user__username", "status", "job__uid", "min_date", "max_date", "started_at", "job__published", ) ordering_fields = ( "job__name", "started_at", "user__username", "job__published", "status", "job__event", "job__featured", ) ordering = ("-started_at",) def get_queryset(self): jobs = JobPermission.userjobs(self.request.user, "READ") if self.request.query_params.get("slim"): return ExportRun.objects.filter( Q(job__in=jobs) | Q(job__visibility=VisibilityState.PUBLIC.value) ).select_related("job") else: return prefetch_export_runs( (ExportRun.objects.filter(Q(job__in=jobs) | Q(job__visibility=VisibilityState.PUBLIC.value)).filter()) ) def retrieve(self, request, uid=None, *args, **kwargs): """ Get an ExportRun. Gets the run_uid from the request and returns run data for the associated ExportRun. Args: *request: the http request. *uid: the run uid. *Returns: the serialized run data. """ from eventkit_cloud.tasks.task_factory import InvalidLicense queryset = self.get_queryset().filter(uid=uid) if not request.query_params.get("job_uid"): queryset = queryset.filter(deleted=False) try: self.validate_licenses(queryset, user=request.user) except InvalidLicense as il: raise ValidationError(code="invalid_license", detail=str(il)) serializer = self.get_serializer(queryset, many=True, context={"request": request}) return Response(serializer.data, status=status.HTTP_200_OK) @transaction.atomic def destroy(self, request, *args, **kwargs): """ Destroy a model instance. """ instance = self.get_object() job = instance.job jobs = JobPermission.userjobs(request.user, JobPermissionLevel.ADMIN.value) if not jobs.filter(id=job.id): return Response( [{"detail": "ADMIN permission is required to delete this DataPack."}], status.HTTP_400_BAD_REQUEST, ) permissions = JobPermission.jobpermissions(job) instance.soft_delete(user=request.user, permissions=permissions) return Response(status=status.HTTP_204_NO_CONTENT) def list(self, request, *args, **kwargs): """ List the ExportRuns :param request: the http request :param args: :param kwargs: :return: the serialized runs """ queryset = self.filter_queryset(self.get_queryset()) try: self.validate_licenses(queryset, user=request.user) except InvalidLicense as il: raise ValidationError(code="invalid_license", detail=str(il)) # This is to display deleted runs on the status and download if not request.query_params.get("job_uid"): queryset = queryset.filter(deleted=False) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True, context={"request": request}) return self.get_paginated_response(serializer.data) else: serializer = self.get_serializer(queryset, many=True, context={"request": request}) return Response(serializer.data, status=status.HTTP_200_OK) @action(methods=["post", "get"], detail=False) def filter(self, request, *args, **kwargs): """ Lists the ExportRuns and provides advanced filtering options like search_term, bbox, and geojson geometry. Accepts GET and POST request. POST is required if you want to filter by a geojson geometry contained in the request data :param request: the http request :param args: :param kwargs: :return: the serialized runs """ status_code = status.HTTP_200_OK queryset = self.filter_queryset(self.get_queryset()) if "permissions" in request.data: jobs = get_jobs_via_permissions(request.data["permissions"]) queryset = ExportRun.objects.filter(Q(job__in=jobs)) search_geojson = self.request.data.get("geojson", None) if search_geojson is not None: try: geom = geojson_to_geos(search_geojson, 4326) queryset = queryset.filter(job__the_geom__intersects=geom) except ValidationError as e: logger.debug(e.detail) raise ValidationError(code="validation_error", detail=e.detail) search_bbox = self.request.query_params.get("bbox", None) if search_bbox is not None and len(search_bbox.split(",")) == 4: extents = search_bbox.split(",") data = { "xmin": extents[0], "ymin": extents[1], "xmax": extents[2], "ymax": extents[3], } try: bbox_extents = validate_bbox_params(data) bbox = validate_search_bbox(bbox_extents) queryset = queryset.filter(job__the_geom__within=bbox) except ValidationError as e: logger.debug(e.detail) raise ValidationError(code="validation_error", detail=e.detail) search_term = self.request.query_params.get("search_term", None) if search_term is not None: queryset = queryset.filter( ( Q(job__name__icontains=search_term) | Q(job__description__icontains=search_term) | Q(job__event__icontains=search_term) ) ) if not request.query_params.get("job_uid"): queryset = queryset.filter(deleted=False) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True, context={"request": request, "no_license": True}) response = self.get_paginated_response(serializer.data) response.status_code = status_code return response else: serializer = self.get_serializer(queryset, many=True, context={"request": request, "no_license": True}) return Response(serializer.data, status=status_code) @transaction.atomic def partial_update(self, request, uid=None, *args, **kwargs): """ Update the expiration date for an export run. If the user is a superuser, then any date may be specified. Otherwise the date must be before todays_date + MAX_DATAPACK_EXPIRATION_DAYS where MAX_DATAPACK_EXPIRATION_DAYS is a setting found in prod.py * request: the HTTP request in JSON. Example: { "expiration" : "2019-12-31" } * Returns: a copy of the new expiration value on success Example: { "expiration": "2019-12-31", "success": true } ** returns: 400 on error """ payload = request.data if "expiration" not in payload: return Response({"success": False}, status=status.HTTP_400_BAD_REQUEST) expiration = payload["expiration"] target_date = parser.parse(expiration).replace(tzinfo=None) run = ExportRun.objects.get(uid=uid) if not request.user.is_superuser: max_days = int(getattr(settings, "MAX_DATAPACK_EXPIRATION_DAYS", 30)) now = datetime.today() max_date = now + timedelta(max_days) if target_date > max_date.replace(tzinfo=None): message = "expiration date must be before " + max_date.isoformat() return Response({"success": False, "detail": message}, status=status.HTTP_400_BAD_REQUEST,) if target_date < run.expiration.replace(tzinfo=None): message = "expiration date must be after " + run.expiration.isoformat() return Response({"success": False, "detail": message}, status=status.HTTP_400_BAD_REQUEST,) run.expiration = target_date run.save() return Response({"success": True, "expiration": run.expiration}, status=status.HTTP_200_OK) @staticmethod def validate_licenses(queryset, user=None): for run in queryset.all(): invalid_licenses = get_invalid_licenses(run.job, user=user) if invalid_licenses: raise InvalidLicense( "The user: {0} has not agreed to the following licenses: {1}.\n" "Please use the user account page, or the user api to agree to the " "licenses prior to viewing run data.".format(run.job.user.username, invalid_licenses) ) return True def create(self, request, *args, **kwargs): """ Create a run. * return: The status of the creation. """ return super(ExportRunViewSet, self).create(self, request, *args, **kwargs) def update(self, request, uid=None, *args, **kwargs): """ Update a run. * uid: optional lookup field * return: The status of the update. """ return super(ExportRunViewSet, self).update(self, request, uid, *args, **kwargs) class ExportTaskViewSet(viewsets.ReadOnlyModelViewSet): """ Provides List and Retrieve endpoints for ExportTasks. """ serializer_class = ExportTaskRecordSerializer permission_classes = (permissions.IsAuthenticated,) lookup_field = "uid" def get_queryset(self): return ExportTaskRecord.objects.filter( Q(export_provider_task__run__user=self.request.user) | Q(export_provider_task__run__job__published=True) ).order_by("-started_at") def retrieve(self, request, uid=None, *args, **kwargs): """ GET a single export task. Args: request: the http request. uid: the uid of the export task to GET. Returns: the serialized ExportTaskRecord data. """ queryset = ExportTaskRecord.objects.filter(uid=uid) serializer = self.get_serializer(queryset, many=True, context={"request": request}) return Response(serializer.data, status=status.HTTP_200_OK) def list(self, request, uid=None, *args, **kwargs): """ List all tasks. * uid: optional lookup field * return: A list of all tasks. """ return super(ExportTaskViewSet, self).list(self, request, uid, *args, **kwargs) class DataProviderTaskRecordViewSet(viewsets.ModelViewSet): """ Provides List and Retrieve endpoints for ExportTasks. """ serializer_class = DataProviderTaskRecordSerializer permission_classes = (permissions.IsAuthenticated,) lookup_field = "uid" def get_queryset(self): """Return all objects user can view.""" jobs = JobPermission.userjobs(self.request.user, "READ") return DataProviderTaskRecord.objects.filter( Q(run__job__visibility=VisibilityState.PUBLIC.value) | Q(run__job__in=jobs) ) def retrieve(self, request, uid=None, *args, **kwargs): """ GET a single export task. Args: request: the http request. uid: the uid of the export provider task to GET. Returns: the serialized ExportTaskRecord data """ providers_tasks, filtered_provider_task = attribute_class_filter( self.get_queryset().filter(uid=uid), self.request.user ) if providers_tasks: serializer = DataProviderTaskRecordSerializer(providers_tasks.first(), context={"request": request}) else: serializer = FilteredDataProviderTaskRecordSerializer(filtered_provider_task.first()) return Response(serializer.data, status=status.HTTP_200_OK) def partial_update(self, request, uid=None, *args, **kwargs): """ Cancels an export provider task. * param uid: The uid of the DataProviderTaskRecord (export provider task model) to be canceled. * return: Returns {'success': True} on success. If the user did not have the correct rights (if not superuser, they must be asking for one of their own export provider tasks), then 403 forbidden will be returned. """ providers_tasks, filtered_provider_task = attribute_class_filter( self.get_queryset().filter(uid=uid), self.request.user ) if not providers_tasks: return Response({"success": False}, status=status.HTTP_401_UNAUTHORIZED) data_provider_task_record = providers_tasks.get(uid=uid) if data_provider_task_record.run.user != request.user and not request.user.is_superuser: return Response({"success": False}, status=status.HTTP_403_FORBIDDEN) cancel_export_provider_task.run( data_provider_task_uid=data_provider_task_record.uid, canceling_username=request.user.username, ) return Response({"success": True}, status=status.HTTP_200_OK) def list(self, request, *args, **kwargs): """ * return: A list of data provider task objects. """ providers_tasks, filtered_provider_task = attribute_class_filter(self.get_queryset(), self.request.user) data = DataProviderTaskRecordSerializer(providers_tasks, many=True, context={"request": request}).data data += FilteredDataProviderTaskRecordSerializer(filtered_provider_task, many=True).data return Response(data) def create(self, request, uid=None, *args, **kwargs): """ Create a data provider task object. * uid: optional lookup field * return: The status of the object creation. """ providers_tasks, filtered_provider_task = attribute_class_filter( self.get_queryset().filter(uid=uid), self.request.user ) if not providers_tasks: return Response(status=status.HTTP_401_UNAUTHORIZED) return super(DataProviderTaskRecordViewSet, self).create(self, request, uid, *args, **kwargs) def destroy(self, request, uid=None, *args, **kwargs): """ Delete a data provider task object. * uid: optional lookup field * return: The status of the deletion. """ providers_tasks, filtered_provider_task = attribute_class_filter( self.get_queryset().filter(uid=uid), self.request.user ) if not providers_tasks: return Response(status=status.HTTP_401_UNAUTHORIZED) return super(DataProviderTaskRecordViewSet, self).destroy(self, request, uid, *args, **kwargs) def update(self, request, uid=None, *args, **kwargs): """ Update a data provider task object. * uid: optional lookup field * return: The status of the update. """ providers_tasks, filtered_provider_task = attribute_class_filter( self.get_queryset().filter(uid=uid), self.request.user ) if not providers_tasks: return Response(status=status.HTTP_401_UNAUTHORIZED) return super(DataProviderTaskRecordViewSet, self).update(self, request, uid, *args, **kwargs) class UserDataViewSet(viewsets.GenericViewSet): """ User Data """ serializer_class = UserDataSerializer permission_classes = (permissions.IsAuthenticated, IsOwnerOrReadOnly) parser_classes = (JSONParser,) pagination_class = LinkHeaderPagination filter_class = UserFilter filter_backends = (DjangoFilterBackend, filters.SearchFilter) lookup_field = "username" lookup_value_regex = "[^/]+" search_fields = ("username", "last_name", "first_name", "email") def get_queryset(self): return User.objects.all() def partial_update(self, request, username=None, *args, **kwargs): """ Update user data. User data cannot currently be updated via this API menu however UserLicense data can, by sending a patch message, with the licenses data that the user agrees to. Users will need to agree to all of the licenses prior to being allowed to download data. Request data can be posted as `application/json`. * request: the HTTP request in JSON. Example: {"accepted_licenses": { "odbl": true } } """ queryset = self.get_queryset().get(username=username) serializer = UserDataSerializer(queryset, data=request.data, context={"request": request}) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def list(self, request, *args, **kwargs): """ Get a list of users. * return: A list of all users. """ job = None if request.query_params.get("job_uid"): job = Job.objects.get(uid=request.query_params["job_uid"]) queryset = JobPermission.get_orderable_queryset_for_job(job, User) total = queryset.count() filtered_queryset = self.filter_queryset(queryset) filtered_queryset = annotate_users_restricted(filtered_queryset, job) if request.query_params.get("exclude_self"): filtered_queryset = filtered_queryset.exclude(username=request.user.username) elif request.query_params.get("prepend_self"): if request.user in filtered_queryset: filtered_queryset = filtered_queryset.exclude(username=request.user.username) filtered_queryset = [qs for qs in filtered_queryset] filtered_queryset = [request.user] + filtered_queryset page = None if not request.query_params.get("disable_page"): page = self.paginate_queryset(filtered_queryset) if page is not None: serializer = self.get_serializer(page, many=True, context={"request": request}) response = self.get_paginated_response(serializer.data) else: serializer = self.get_serializer(filtered_queryset, many=True, context={"request": request}) response = Response(serializer.data, status=status.HTTP_200_OK) response["Total-Users"] = total return response def retrieve(self, request, username=None): """ GET a user by username """ queryset = self.get_queryset().get(username=username) serializer = self.get_serializer(queryset, context={"request": request}) return Response(serializer.data, status=status.HTTP_200_OK) @action(detail=False, methods=["post", "get"]) def members(self, request, *args, **kwargs): """ Member list from list of group ids Example : [ 32, 35, 36 ] """ targets = request.data targetnames = [] payload = [] groups = Group.objects.filter(id__in=targets) for group in groups: serializer = GroupSerializer(group) for username in serializer.get_members(group): if username not in targetnames: targetnames.append(username) users = User.objects.filter(username__in=targetnames).all() for u in users: serializer = self.get_serializer(u, context={"request": request}) payload.append(serializer.data) return Response(payload, status=status.HTTP_200_OK) @action(detail=True, methods=["get"]) def job_permissions(self, request, username=None): """ Get user's permission level for a specific job Example: /api/users/job_permissions/admin_user?uid=job-uid-123 Response: { 'permission': USERS_PERMISSION_LEVEL } where USERS_PERMISSION_LEVEL is either READ, ADMIN, or None """ user = User.objects.get(username=username) uid = request.query_params.get("uid", None) if not user or not uid: return Response(status=status.HTTP_400_BAD_REQUEST) permission = JobPermission.get_user_permissions(user, uid) return Response({"permission": permission}, status=status.HTTP_200_OK) class UserJobActivityViewSet(mixins.CreateModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): """ Endpoint to create and retrieve user activity related to jobs. """ serializer_class = UserJobActivitySerializer permission_classes = (permissions.IsAuthenticated,) pagination_class = LinkHeaderPagination filter_class = UserJobActivityFilter def get_queryset(self): activity_type = self.request.query_params.get("activity", "").lower() if self.request.query_params.get("slim"): activities = UserJobActivity.objects.select_related("job", "user") else: activities = UserJobActivity.objects.select_related("job", "user").prefetch_related( "job__provider_tasks__provider", "job__provider_tasks__formats", "job__last_export_run__provider_tasks__tasks__result", "job__last_export_run__provider_tasks__tasks__exceptions", ) if activity_type == "viewed": ids = ( UserJobActivity.objects.filter( user=self.request.user, type=UserJobActivity.VIEWED, job__last_export_run__isnull=False, job__last_export_run__deleted=False, ) .distinct("job") .values_list("id", flat=True) ) return activities.filter(id__in=ids).order_by("-created_at") else: return activities.filter(user=self.request.user).order_by("-created_at") def list(self, request, *args, **kwargs): """ Gets the most recent UserJobActivity objects. """ queryset = self.get_queryset() page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True, context={"request": request}) return self.get_paginated_response(serializer.data) else: serializer = self.get_serializer(queryset, many=True, context={"request": request}) return Response(serializer.data, status=status.HTTP_200_OK) def create(self, request): """ Creates a new UserJobActivity object. """ activity_type = request.query_params.get("activity", "").lower() job_uid = request.data.get("job_uid") # Save a record of the view activity if activity_type == "viewed": queryset = UserJobActivity.objects.filter( user=self.request.user, type=UserJobActivity.VIEWED, job__last_export_run__isnull=False, job__last_export_run__deleted=False, ).order_by("-created_at") if queryset.count() > 0: last_job_viewed = queryset.first() # Don't save consecutive views of the same job. if str(last_job_viewed.job.uid) == job_uid: return Response({"ignored": True}, content_type="application/json", status=status.HTTP_200_OK,) job = Job.objects.get(uid=job_uid) UserJobActivity.objects.create(user=self.request.user, job=job, type=UserJobActivity.VIEWED) else: raise ValidationError(code="invalid_activity_type", detail=f"Activity type {activity_type} is invalid.") return Response({}, content_type="application/json", status=status.HTTP_200_OK) class GroupViewSet(viewsets.ModelViewSet): """ Api components for viewing, creating, and editing groups """ serializer_class = GroupSerializer permission_classes = (permissions.IsAuthenticated,) pagination_class = LinkHeaderPagination parser_classes = (JSONParser,) filter_class = GroupFilter filter_backends = (DjangoFilterBackend, filters.SearchFilter) lookup_field = "id" lookup_value_regex = "[^/]+" search_fields = ("name",) def useradmin(self, group, request): serializer = GroupSerializer(group) user = User.objects.all().filter(username=request.user.username)[0] return user.username in serializer.get_administrators(group) def get_queryset(self): queryset = Group.objects.all() return queryset def update(self, request, *args, **kwargs): """ We don't support calls to PUT for this viewset. * returns: 400 bad request """ return Response("BAD REQUEST", status=status.HTTP_400_BAD_REQUEST) def list(self, request, *args, **kwargs): """ GET all groups Sample result: [ { "id": 54, "name": "Omaha 319", "members": [ "user2", "admin" ], "administrators": [ "admin" ] } ] """ job = None if request.query_params.get("job_uid"): job = Job.objects.get(uid=request.query_params["job_uid"]) queryset = JobPermission.get_orderable_queryset_for_job(job, Group) total = queryset.count() filtered_queryset = self.filter_queryset(queryset) filtered_queryset = annotate_groups_restricted(filtered_queryset, job) page = None if not request.query_params.get("disable_page"): page = self.paginate_queryset(filtered_queryset) if page is not None: serializer = self.get_serializer(page, many=True, context={"request": request}) response = self.get_paginated_response(serializer.data) else: serializer = self.get_serializer(filtered_queryset, many=True, context={"request": request}) response = Response(serializer.data, status=status.HTTP_200_OK) response["Total-Groups"] = total return response @transaction.atomic def create(self, request, *args, **kwargs): """ create a new group and place the current logged in user in the group and its administrators. optionally, provide additional group members Sample input: { "name": "Omaha 319" } """ name = request.data["name"] matches = Group.objects.filter(name__iexact=name.lower()) if len(matches) > 0: error_data = { "errors": [ { "status": status.HTTP_400_BAD_REQUEST, "title": _("Duplicate Group Name"), "detail": _("A group named %s already exists." % name), } ] } return Response(error_data, status=status.HTTP_400_BAD_REQUEST) response = super(GroupViewSet, self).create(request, *args, **kwargs) group_id = response.data["id"] user = User.objects.all().filter(username=request.user.username)[0] group = Group.objects.get(pk=group_id) group.user_set.add(user) groupadmin = GroupPermission.objects.create(user=user, group=group, permission=GroupPermissionLevel.ADMIN.value) groupadmin.save() GroupPermission.objects.create(user=user, group=group, permission=GroupPermissionLevel.MEMBER.value) if "members" in request.data: for member in request.data["members"]: if member != user.username: user = User.objects.all().filter(username=member)[0] if user: GroupPermission.objects.create( user=user, group=group, permission=GroupPermissionLevel.MEMBER.value, ) sendnotification( request.user, user, NotificationVerb.ADDED_TO_GROUP.value, group, None, NotificationLevel.INFO.value, GroupPermissionLevel.MEMBER.value, ) if "administrators" in request.data: for admin in request.data["administrators"]: if admin != request.user.username: user = User.objects.all().filter(username=admin)[0] if user: GroupPermission.objects.create( user=user, group=group, permission=GroupPermissionLevel.ADMIN.value, ) sendnotification( request.user, user, NotificationVerb.SET_AS_GROUP_ADMIN.value, group, None, NotificationLevel.INFO.value, GroupPermissionLevel.ADMIN.value, ) group = Group.objects.filter(id=group_id)[0] serializer = GroupSerializer(group) return Response(serializer.data, status=status.HTTP_200_OK) def retrieve(self, request, id=None): """ * get a group with a specific ID. Return its data, including users in the group """ group = Group.objects.filter(id=id)[0] serializer = GroupSerializer(group) return Response(serializer.data, status=status.HTTP_200_OK) @transaction.atomic def destroy(self, request, id=None, *args, **kwargs): """ Destroy a group """ # Not permitted if the requesting user is not an administrator group = Group.objects.filter(id=id)[0] if not self.useradmin(group, request): return Response("Administative privileges required.", status=status.HTTP_403_FORBIDDEN) super(GroupViewSet, self).destroy(request, *args, **kwargs) return Response("OK", status=status.HTTP_200_OK) # instance = self.get_object() # instance.soft_delete(user=request.user) # return Response(status=status.HTTP_204_NO_CONTENT) @transaction.atomic def partial_update(self, request, id=None, *args, **kwargs): """ Change the group's name, members, and administrators Sample input: { "name": "Omaha 319" "members": [ "user2", "user3", "admin"], "administrators": [ "admin" ] } If a member wishes to remove themselves from a group they can make an patch request with no body. However, this will not work if they are a admin of the group. """ group = Group.objects.filter(id=id)[0] # we are not going anywhere if the requesting user is not an # administrator of the current group or there is an attempt to end up with no administrators if not self.useradmin(group, request): user = User.objects.filter(username=request.user.username)[0] perms = GroupPermission.objects.filter(user=user, group=group, permission=GroupPermissionLevel.MEMBER.value) # if the user is not an admin but is a member we remove them from the group if perms: perms.delete() return Response("OK", status=status.HTTP_200_OK) return Response("Administative privileges required.", status=status.HTTP_403_FORBIDDEN) if "administrators" in request.data: request_admins = request.data["administrators"] if len(request_admins) < 1: error_data = { "errors": [ { "status": status.HTTP_403_FORBIDDEN, "title": _("Not Permitted"), "detail": _( "You must assign another group administator before you can perform this action" ), } ] } return Response(error_data, status=status.HTTP_403_FORBIDDEN) super(GroupViewSet, self).partial_update(request, *args, **kwargs) # if name in request we need to change the group name if "name" in request.data: name = request.data["name"] if name: group.name = name group.save() # examine provided lists of administrators and members. Adjust as needed. for item in [ ("members", GroupPermissionLevel.MEMBER.value), ("administrators", GroupPermissionLevel.ADMIN.value), ]: permissionlabel = item[0] permission = item[1] if permissionlabel not in request.data: continue user_ids = [ perm.user.id for perm in GroupPermission.objects.filter(group=group).filter(permission=permission) ] currentusers = [user.username for user in User.objects.filter(id__in=user_ids).all()] targetusers = request.data[permissionlabel] # Add new users for this permission level newusers = list(set(targetusers) - set(currentusers)) users = User.objects.filter(username__in=newusers).all() verb = NotificationVerb.ADDED_TO_GROUP.value if permissionlabel == "administrators": verb = NotificationVerb.SET_AS_GROUP_ADMIN.value for user in users: GroupPermission.objects.create(user=user, group=group, permission=permission) sendnotification( request.user, user, verb, group, None, NotificationLevel.INFO.value, permission, ) # Remove existing users for this permission level removedusers = list(set(currentusers) - set(targetusers)) users = User.objects.filter(username__in=removedusers).all() verb = NotificationVerb.REMOVED_FROM_GROUP.value if permissionlabel == "administrators": verb = NotificationVerb.REMOVED_AS_GROUP_ADMIN.value for user in users: sendnotification( request.user, user, verb, group, None, NotificationLevel.INFO.value, permission, ) perms = GroupPermission.objects.filter(user=user, group=group, permission=permission).all() for perm in perms: perm.delete() return Response("OK", status=status.HTTP_200_OK) @action(detail=True, methods=["get"]) def users(self, request, id=None, *args, **kwargs): try: group = Group.objects.get(id=id) except Group.DoesNotExist: raise NotFound(code="not_found", detail="Could not find the requested group.") serializer = GroupUserSerializer(group, context={"request": request}) return Response(data=serializer.data, status=status.HTTP_200_OK) class NotificationViewSet(viewsets.ModelViewSet): """ Api components for viewing and working with notifications """ serializer_class = NotificationSerializer filter_backends = (DjangoFilterBackend, filters.SearchFilter) pagination_class = LinkHeaderPagination def get_queryset(self): qs = Notification.objects.filter(recipient_id=self.request.user.id, deleted=False) return qs def list(self, request, *args, **kwargs): """ Get all user notifications that are not deleted """ notifications = self.get_queryset() page = self.paginate_queryset(notifications) if page is not None: serializer = self.get_serializer(page, context={"request": self.request}, many=True) else: serializer = self.get_serializer(notifications, context={"request": self.request}, many=True) return self.get_paginated_response(serializer.data) @action(detail=False, methods=["delete"]) def delete(self, request, *args, **kwargs): """ Delete notifications If request data of { ids: [....ids] } is provided only those ids will be deleted If no request data is included all notifications will be deleted """ notifications = self.get_queryset() if request.data.get("ids", None): for id in request.data.get("ids"): note = notifications.get(id=id) if note: note.deleted = True note.save() else: notifications = self.get_queryset() notifications.mark_all_as_deleted() return Response({"success": True}, status=status.HTTP_200_OK) @action(detail=False, methods=["post"]) def read(self, request, *args, **kwargs): """ Mark notifications as read If request data of { ids: [....ids] } is provided only those ids will be marked If no request data is included all notifications will be marked read """ notifications = self.get_queryset() if request.data.get("ids", None): for id in request.data.get("ids"): note = notifications.get(id=id) if note: note.unread = False note.save() else: notifications = self.get_queryset() notifications.mark_all_as_read() return Response({"success": True}, status=status.HTTP_200_OK) @action(detail=False, methods=["post"]) def unread(self, request, *args, **kwargs): """ Mark notifications as unread If request data of { ids: [....ids] } is provided only those ids will be marked If no request data is included all notifications will be marked unread """ notifications = self.get_queryset() if request.data.get("ids", None): for id in request.data.get("ids"): note = notifications.get(id=id) if note: note.unread = True note.save() else: notifications = self.get_queryset() notifications.mark_all_as_unread() return Response({"success": True}, status=status.HTTP_200_OK) @action(detail=False, methods=["get"]) def counts(self, request, *args, **kwargs): payload = { "read": len(request.user.notifications.read()), "unread": len(request.user.notifications.unread()), } return Response(payload, status=status.HTTP_200_OK) @action(detail=False, methods=["post"]) def mark(self, request, *args, **kwargs): """ Change the status of one or more notifications. **Use if you need to modify in more than one way. Otherwise just use 'delete', 'read', or 'unread'** Args: A list containing one or more records like this: [ {"id": 3, "action": "DELETE" }, {"id": 17, "action": "READ" }, {"id" : 19, "action" "UNREAD" }, ... ] Returns: { "success" : True} or error """ logger.debug(request.data) for row in request.data: qs = Notification.objects.filter(recipient_id=self.request.user.id, id=row["id"]) logger.debug(qs) if row["action"] == "READ": qs.mark_all_as_read() if row["action"] == "DELETE": qs.mark_all_as_deleted() if row["action"] == "UNREAD": qs.mark_all_as_unread() return Response({"success": True}, status=status.HTTP_200_OK) class DataProviderRequestViewSet(viewsets.ModelViewSet): permission_classes = (permissions.IsAuthenticated, IsOwnerOrReadOnly) serializer_class = DataProviderRequestSerializer lookup_field = "uid" def get_queryset(self): """ This view should return a list of all of Data Provider Requests for the currently authenticated user. """ user = self.request.user # Admins and staff should be able to view all requests. if user.is_staff or user.is_superuser: return DataProviderRequest.objects.all() return DataProviderRequest.objects.filter(user=user) class SizeIncreaseRequestViewSet(viewsets.ModelViewSet): permission_classes = (permissions.IsAuthenticated, IsOwnerOrReadOnly) serializer_class = SizeIncreaseRequestSerializer lookup_field = "uid" def get_queryset(self): """ This view should return a list of all of the Data Size Increase Requests for the currently authenticated user. """ user = self.request.user # Admins and staff should be able to view all requests. if user.is_staff or user.is_superuser: return SizeIncreaseRequest.objects.all() return SizeIncreaseRequest.objects.filter(user=user) class EstimatorView(views.APIView): """ Api components for computing size estimates for providers within a specified bounding box """ @action(detail=False, methods=["get"]) def get(self, request, *args, **kwargs): """ Args: slugs: Comma separated list of slugs for provider slugs (e.g. 'osm,some_wms1') bbox: Bounding box as w,s,e,n (e.g. '-130,-45,-100,10) srs: EPSG code for the bbox srs (default=4326) Returns: [{ "slug" : $slug_1, "size": $estimate_1, "unit": "mb"}, ...] or error """ payload = [] logger.debug(request.query_params) bbox = request.query_params.get("bbox", None).split(",") # w, s, e, n bbox = list(map(lambda a: float(a), bbox)) srs = request.query_params.get("srs", "4326") min_zoom = request.query_params.get("min_zoom", None) max_zoom = request.query_params.get("max_zoom", None) if request.query_params.get("slugs", None): estimator = AoiEstimator(bbox=bbox, bbox_srs=srs, min_zoom=min_zoom, max_zoom=max_zoom) for slug in request.query_params.get("slugs").split(","): size = estimator.get_estimate_from_slug(AoiEstimator.Types.SIZE, slug)[0] time = estimator.get_estimate_from_slug(AoiEstimator.Types.TIME, slug)[0] payload += [ {"slug": slug, "size": {"value": size, "unit": "MB"}, "time": {"value": time, "unit": "seconds"}} ] cache_key = get_estimate_cache_key(bbox, srs, min_zoom, max_zoom, slug) cache.set(cache_key, (size, time), ESTIMATE_CACHE_TIMEOUT) else: return Response([{"detail": _("No estimates found")}], status=status.HTTP_400_BAD_REQUEST) return Response(payload, status=status.HTTP_200_OK) def get_models(model_list, model_object, model_index): models = [] if not model_list: return models for model_id in model_list: # TODO: would be good to accept either format slug or uuid here.. try: model = model_object.objects.get(**{model_index: model_id}) models.append(model) except model_object.DoesNotExist: logger.warn(f"{str(model_object)} with {model_index}: {model_id} does not exist.") raise NotFound( code="not_found", detail=f"{str(model_object)} with {model_index}: {model_id} does not exist." ) return models def get_provider_task(export_provider, export_formats): """ Args: export_provider: An DataProvider model for the content provider (i.e. osm or wms service) export_formats: An ExportFormat model for the geospatial data format (i.e. shapefile or geopackage) Returns: """ provider_task = DataProviderTask.objects.create(provider=export_provider) for export_format in export_formats: supported_formats = export_provider.export_provider_type.supported_formats.all() provider_task.formats.add(*supported_formats) provider_task.save() return provider_task def get_user_details(request): """ Gets user data from a request. :param request: View request. :return: A dict with user data. """ logged_in_user = request.user return { "username": logged_in_user.username, "is_superuser": logged_in_user.is_superuser, "is_staff": logged_in_user.is_staff, } def geojson_to_geos(geojson_geom, srid=None): """ :param geojson_geom: A stringified geojson geometry :param srid: The ESPG code of the input data :return: A GEOSGeometry object """ if not geojson_geom: raise ValidationError(code="missing_geojson", detail="No geojson geometry string supplied.") if not srid: srid = 4326 try: geom = GEOSGeometry(geojson_geom, srid=srid) except GEOSException: raise ValidationError( code="invalid_geometry", detail="Could not convert geojson geometry, check that your geometry is valid." ) if not geom.valid: raise ValidationError( code="invalid_geometry", detail="GEOSGeometry invalid, check that your geojson geometry is valid." ) return geom def get_jobs_via_permissions(permissions): groups = Group.objects.filter(name__in=permissions.get("groups", [])) group_query = [ Q(permissions__content_type=ContentType.objects.get_for_model(Group)), Q(permissions__object_id__in=groups), Q(permissions__permission=JobPermissionLevel.READ.value), ] users = User.objects.filter(username__in=permissions.get("members", [])) user_query = [ Q(permissions__content_type=ContentType.objects.get_for_model(User)), Q(permissions__object_id__in=users), Q(permissions__permission=JobPermissionLevel.READ.value), ] return Job.objects.filter(Q(*user_query) | Q(*group_query)) def api_docs_view(request): if request.user.is_authenticated: return render(request, template_name="swagger-ui.html", context={"schema_url": "api:openapi-schema"}) else: return redirect("/api/login?next=/api/docs")
bsd-3-clause
-3,858,344,402,547,503,600
38.382541
120
0.577133
false
dichen001/Go4Jobs
JackChen/linked_list/160. Intersection of Two Linked Lists.py
1
1101
""" Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: A: a1 → a2 ↘ c1 → c2 → c3 ↗ B: b1 → b2 → b3 begin to intersect at node c1. Notes: If the two linked lists have no intersection at all, return null. The linked lists must retain their original structure after the function returns. You may assume there are no cycles anywhere in the entire linked structure. Your code should preferably run in O(n) time and use only O(1) memory. """ # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None import gc class Solution(object): def getIntersectionNode(self, headA, headB): if headA and headB: A, B = headA, headB while A!=B: A = A.next if A else headB B = B.next if B else headA gc.collect() return A
gpl-3.0
-2,618,085,599,512,454,700
25.175
93
0.574057
false
rebelact/mailsync-app
mailsync/views/auth.py
1
2858
from mailsync.views.base import BaseView from mailsync.forms import CreateUserForm from mailsync.models.auth import user_model from formencode.validators import Invalid as InvalidForm class LoginView(BaseView): def initialize(self): super(LoginView, self).initialize() def get(self): # Redirect if there are no users in the database users = user_model.count_users() if users == 0: self.redirect("/create_user") else: message = self.session.get("message",None) errors = self.session.get("errors",None) next = self.get_argument("next", None) self.delete_session_object("errors") self.delete_session_object("message") self.render("auth/login.html", message=message, errors=errors, next=next) def post(self): self.check_xsrf_cookie() form_data = { "username": self.get_argument("username", ""), "password": self.get_argument("password", ""), } user = user_model.check_user(form_data) if not user: self.session["errors"] = "Invalid login details" self.redirect("/login") else: userdata = user.__dict__ self.session["user"] = { "username": userdata["username"], "user_id": userdata["_id"] } self.redirect("/") class LogoutView(BaseView): def initialize(self): super(LogoutView, self).initialize() def get(self): self.delete_session_object("user") self.redirect("/login") class CreateUserView(BaseView): def initialize(self): super(CreateUserView, self).initialize() def get(self): errors = self.session.get("errors", None) form_data = self.session.get("form_data", None) users = user_model.count_users() if users == 0: self.render("auth/create_user.html", errors=errors, form_data=form_data) else: self.redirect("/login") def post(self): self.check_xsrf_cookie() form_data = { "username": self.get_argument("username", ""), "password": self.get_argument("password",""), } try: valid_data = CreateUserForm.to_python(form_data) user_model.create_user(valid_data) self.session["message"] = "Account successfuly created. You can now log in" self.delete_session_object("errors") self.delete_session_object("form_data") self.redirect("/login") except InvalidForm, e: self.session["errors"] = e.unpack_errors() self.session["form_data"] = form_data self.redirect("/create_user")
mit
-3,389,300,913,787,661,000
28.474227
87
0.559832
false
kmollee/2014cdab
wsgi/programs/cdag30/.leo_shadow/xtest.py
1
11341
#@+leo-ver=4-thin #@+node:2014pythonE.20140517034519.1935:@shadow test.py #@@language python import cherrypy # 這是 MAN 類別的定義 ''' # 在 application 中導入子模組 import programs.cdag30.man as cdag30_man # 加入 cdag30 模組下的 man.py 且以子模組 man 對應其 MAN() 類別 root.cdag30.man = cdag30_man.MAN() # 完成設定後, 可以利用 /cdag30/man/assembly # 呼叫 man.py 中 MAN 類別的 assembly 方法 ''' class Test(object): # 各組利用 index 引導隨後的程式執行 @cherrypy.expose def index(self, *args, **kwargs): outstring = ''' 這是 2014CDA 協同專案下的 cdag30 模組下的 MAN 類別.<br /><br /> <!-- 這裡採用相對連結, 而非網址的絕對連結 (這一段為 html 註解) --> <a href="assembly">執行 MAN 類別中的 assembly 方法</a><br /><br /> 請確定下列零件於 V:/home/lego/man 目錄中, 且開啟空白 Creo 組立檔案.<br /> <a href="/static/lego_man.7z">lego_man.7z</a>(滑鼠右鍵存成 .7z 檔案)<br /> ''' return outstring @cherrypy.expose def assembly(self, *args, **kwargs): outstring = ''' <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8"> <script type="text/javascript" src="/static/weblink/examples/jscript/pfcUtils.js"></script> </head> <body> <script language="JavaScript"> /*設計一個零件組立函示*/ /* 軸面接 axis_plane_assembly(session, assembly, transf, featID, constrain_way, part2, axis1, plane1, axis2, plane2) ==================== assembly 組立檔案 transf 座標矩陣 feadID 要組裝的父 part2 要組裝的子 constrain_way 參數 1 對齊 對齊 2 對齊 貼合 else 按照 1 plane1~plane2 要組裝的父 參考面 plane3~plane4 要組裝的子 參考面 */ function axis_plane_assembly(session, assembly, transf, featID, constrain_way, part2, axis1, plane1, axis2, plane2) { var descr = pfcCreate("pfcModelDescriptor").CreateFromFileName("v:/home/lego/man/" + part2); var componentModel = session.GetModelFromDescr(descr); if (componentModel == null) { document.write("在session 取得不到零件" + part2); componentModel = session.RetrieveModel(descr); if (componentModel == null) { throw new Error(0, "Current componentModel is not loaded."); } } if (componentModel != void null) { var asmcomp = assembly.AssembleComponent(componentModel, transf); } var ids = pfcCreate("intseq"); //假如 asm 有零件時候 if (featID != -1) { ids.Append(featID); var subPath = pfcCreate("MpfcAssembly").CreateComponentPath(assembly, ids); var subassembly = subPath.Leaf; } // 假如是第一個零件 asm 就當作父零件 else { var subassembly = assembly; var subPath = pfcCreate("MpfcAssembly").CreateComponentPath(assembly, ids); } var asmDatums = new Array(axis1, plane1); var compDatums = new Array(axis2, plane2); if (constrain_way == 1) { var relation = new Array(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN, pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_MATE); } else if (constrain_way == 2) { var relation = new Array(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN, pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN); } else { var relation = new Array(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN, pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_MATE); } var relationItem = new Array(pfcCreate("pfcModelItemType").ITEM_AXIS, pfcCreate("pfcModelItemType").ITEM_SURFACE); var constrs = pfcCreate("pfcComponentConstraints"); for (var i = 0; i < 2; i++) { var asmItem = subassembly.GetItemByName(relationItem[i], asmDatums[i]); if (asmItem == void null) { interactFlag = true; continue; } var compItem = componentModel.GetItemByName(relationItem[i], compDatums[i]); if (compItem == void null) { interactFlag = true; continue; } var MpfcSelect = pfcCreate("MpfcSelect"); var asmSel = MpfcSelect.CreateModelItemSelection(asmItem, subPath); var compSel = MpfcSelect.CreateModelItemSelection(compItem, void null); var constr = pfcCreate("pfcComponentConstraint").Create(relation[i]); constr.AssemblyReference = asmSel; constr.ComponentReference = compSel; constr.Attributes = pfcCreate("pfcConstraintAttributes").Create(true, false); constrs.Append(constr); } asmcomp.SetConstraints(constrs, void null); return asmcomp.Id; } // 以上為 axis_plane_assembly() 函式 // function three_plane_assembly(session, assembly, transf, featID, constrain_way, part2, plane1, plane2, plane3, plane4, plane5, plane6) { var descr = pfcCreate("pfcModelDescriptor").CreateFromFileName("v:/home/lego/man/" + part2); var componentModel = session.GetModelFromDescr(descr); if (componentModel == null) { document.write("在session 取得不到零件" + part2); componentModel = session.RetrieveModel(descr); if (componentModel == null) { throw new Error(0, "Current componentModel is not loaded."); } } if (componentModel != void null) { var asmcomp = assembly.AssembleComponent(componentModel, transf); } var ids = pfcCreate("intseq"); //假如 asm 有零件時候 if (featID != -1) { ids.Append(featID); var subPath = pfcCreate("MpfcAssembly").CreateComponentPath(assembly, ids); var subassembly = subPath.Leaf; } // 假如是第一個零件 asm 就當作父零件 else { var subassembly = assembly; var subPath = pfcCreate("MpfcAssembly").CreateComponentPath(assembly, ids); } var constrs = pfcCreate("pfcComponentConstraints"); var asmDatums = new Array(plane1, plane2, plane3); var compDatums = new Array(plane4, plane5, plane6); var MpfcSelect = pfcCreate("MpfcSelect"); for (var i = 0; i < 3; i++) { var asmItem = subassembly.GetItemByName(pfcCreate("pfcModelItemType").ITEM_SURFACE, asmDatums[i]); if (asmItem == void null) { interactFlag = true; continue; } var compItem = componentModel.GetItemByName(pfcCreate("pfcModelItemType").ITEM_SURFACE, compDatums[i]); if (compItem == void null) { interactFlag = true; continue; } var asmSel = MpfcSelect.CreateModelItemSelection(asmItem, subPath); var compSel = MpfcSelect.CreateModelItemSelection(compItem, void null); if (constrain_way == 1) { var constr = pfcCreate("pfcComponentConstraint").Create(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN); } else if (constrain_way == 2) { var constr = pfcCreate("pfcComponentConstraint").Create(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_MATE); } else { var constr = pfcCreate("pfcComponentConstraint").Create(pfcCreate("pfcComponentConstraintType").ASM_CONSTRAINT_ALIGN); } constr.AssemblyReference = asmSel; constr.ComponentReference = compSel; constr.Attributes = pfcCreate("pfcConstraintAttributes").Create(false, false); constrs.Append(constr); } asmcomp.SetConstraints(constrs, void null); return asmcomp.Id; } // 以上為 three_plane_assembly() 函式 // // 假如 Creo 所在的操作系統不是 Windows 環境 if (!pfcIsWindows()) { // 則啟動對應的 UniversalXPConnect 執行權限 (等同 Windows 下的 ActiveX) netscape.security.PrivilegeManager.enablePrivilege("UniversalXPConnect"); } // pfcGetProESession() 是位於 pfcUtils.js 中的函式, 確定此 JavaScript 是在嵌入式瀏覽器中執行 var session = pfcGetProESession(); // 設定 config option, 不要使用元件組立流程中內建的假設約束條件 session.SetConfigOption("comp_placement_assumptions", "no"); // 建立擺放零件的位置矩陣, Pro/Web.Link 中的變數無法直接建立, 必須透過 pfcCreate() 建立 var identityMatrix = pfcCreate("pfcMatrix3D"); // 建立 identity 位置矩陣 for (var x = 0; x < 4; x++) { for (var y = 0; y < 4; y++) { if (x == y) { identityMatrix.Set(x, y, 1.0); } else { identityMatrix.Set(x, y, 0.0); } } } // 利用 identityMatrix 建立 transf 座標轉換矩陣 var transf = pfcCreate("pfcTransform3D").Create(identityMatrix); // 取得目前的工作目錄 var currentDir = session.getCurrentDirectory(); // 以目前已開檔的空白組立檔案, 作為 model var model = session.CurrentModel; // 查驗有無 model, 或 model 類別是否為組立件, 若不符合條件則丟出錯誤訊息 if (model == void null || model.Type != pfcCreate("pfcModelType").MDL_ASSEMBLY) throw new Error(0, "Current model is not an assembly."); // 將此模型設為組立物件 var assembly = model; /* three_plane_assembly(session, assembly, transf, featID, constrain_way, part2, plane1, plane2, plane3, plane4, plane5, plane6) ===================== assembly 組立檔案 transf 座標矩陣 feadID 要組裝的父 part2 要組裝的子 constrain_way 參數 1 對齊 2 貼合 else 按照 1 plane1~plane3 要組裝的父 參考面 plane4~plane6 要組裝的子 參考面 axis_plane_assembly(session, assembly, transf, featID, constrain_way, part2, axis1, plane1, axis2, plane2) ==================== assembly 組立檔案 transf 座標矩陣 feadID 要組裝的父 part2 要組裝的子 constrain_way 參數 1 對齊 對齊 2 對齊 貼合 else 按照 1 plane1~plane2 要組裝的父 參考面 plane3~plane4 要組裝的子 參考面 */ var body_id = three_plane_assembly(session, assembly, transf, -1, 1, "LEGO_BODY.prt", "ASM_FRONT", "ASM_TOP", "ASM_RIGHT", "FRONT", "TOP", "RIGHT"); var arm_right_id = axis_plane_assembly(session, assembly, transf, body_id, 2, "LEGO_ARM_RT.prt", "A_14", "DTM1", "A_9", "TOP"); var arm_left_id = axis_plane_assembly(session, assembly, transf, body_id, 2, "lego_arm_lt.prt", "A_15", "DTM2", "A_7", "TOP"); var hand_left_id = axis_plane_assembly(session, assembly, transf, arm_left_id, 1, "lego_hand.prt", "A_8", "DTM1", "A_1", "DTM3"); var hand_right_id = axis_plane_assembly(session, assembly, transf, arm_right_id, 1, "lego_hand.prt", "A_10", "DTM1", "A_1", "DTM3"); var head_id = axis_plane_assembly(session, assembly, transf, body_id, 1, "lego_head.prt", "A_16", "DTM3", "A_2", "DTM1"); var hat_id = axis_plane_assembly(session, assembly, transf, head_id, 1, "lego_hat.prt", "A_2", "TOP", "A_2", "FRONT"); var waist_id = three_plane_assembly(session, assembly, transf, body_id, 1, "LEGO_WAIST.prt", "DTM4", "TOP", "DTM7", "DTM1", "RIGHT", "FRONT"); var leg_left_id = axis_plane_assembly(session, assembly, transf, waist_id, 2, "lego_leg_lt.prt", "A_8", "DTM4", "A_10", "DTM1"); var leg_right_id = axis_plane_assembly(session, assembly, transf, waist_id, 2, "lego_leg_rt.prt", "A_8", "DTM5", "A_10", "DTM1"); assembly.Regenerate(void null); session.GetModelWindow(assembly).Repaint(); </script></body></html>''' return outstring #@nonl #@-node:2014pythonE.20140517034519.1935:@shadow test.py #@-leo
gpl-2.0
202,546,961,501,817,920
35.796429
157
0.667378
false
willemw12/mythcli
src/mythcli.py
1
2591
#!/usr/bin/env python3 # For more information about this program, see https://github.com/willemw12/mythcli import argparse import os import sys from mythcli.services.dvr.controllers import conflicting, expiring, recorded, upcoming def main(): """ For all datetime format codes, see http://docs.python.org/library/datetime.html#strftime-and-strptime-behavior """ #NOTE remove leading zero in day: "%-d" or "%e". This may not be portable. # Create top-level parser parser = argparse.ArgumentParser(description="MythTV Services API command-line interface.") parser.add_argument("-d", "--date-format", default="%a %d %B, %Y", help='examples: "%%Y-%%m-%%d", "%%a %%d %%B, %%Y", "%%x"') parser.add_argument("-m", "--max-items", type=int, default=0, help="limit number of requested items. Default: no limit (0)") parser.add_argument("-t", "--time-format", default="%H:%M", help='examples: "%%H:%%M", "%%I:%%M %%p", "%%X"') #parser.add_argument("--debug", action="store_const", const=True, default=False, help="set log level to debug") #parser.add_argument("--quiet", action="store_const", const=True, default=False, help="set log level to fatal") parser.add_argument("--short-desc", action="store_const", const=True, default=False, help="short descriptions in listings") parser.add_argument("--title-desc", action="store_const", const=True, default=False, help="titles only in listings") #parser.add_argument("--verbose", action="store_const", const=True, default=False, help="set log level to info") #parser.add_argument("--version", action="store_const", const=True, default=False, help="print version") # Register subcommands #subparsers = parser.add_subparsers(title="subcommands", description="<valid subcommands>", help="<additional help>") subparsers = parser.add_subparsers(title="subcommands") conflicting.add_subparser(subparsers) expiring.add_subparser(subparsers) recorded.add_subparser(subparsers) upcoming.add_subparser(subparsers) # Parse the arguments and call whatever function (subcommand) was selected args = parser.parse_args() #TODO? Handle missing subcommand differently. Instead of try/except, configure 'parser' to handle this, e.g. make 'help' the default subcommand try: args.func(args) except AttributeError: parser.print_usage() #parser.exit(2, os.path.basename(__file__) + ": error: missing subcommand\n") parser.exit(2, os.path.basename(sys.argv[0]) + ": error: missing subcommand\n") if __name__ == "__main__": main()
gpl-3.0
1,401,626,688,239,907,800
54.12766
147
0.686222
false
huggingface/transformers
src/transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py
1
2118
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert CANINE checkpoint.""" import argparse from transformers import CanineConfig, CanineModel, CanineTokenizer, load_tf_weights_in_canine from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, pytorch_dump_path): # Initialize PyTorch model config = CanineConfig() model = CanineModel(config) model.eval() print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_canine(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files tokenizer = CanineTokenizer() print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint. Should end with model.ckpt", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to a folder where the PyTorch model will be placed.", ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.pytorch_dump_path)
apache-2.0
1,678,900,075,974,450,400
30.61194
94
0.706327
false
pekrau/Publications
publications/scripts/create_curator.py
1
1211
"Create an account with the 'curator' role." import sys from publications import constants from publications import utils from publications.account import AccountSaver def get_args(): parser = utils.get_command_line_parser( description='Create a new curator account.') return parser.parse_args() def create_curator(db, email, labels): with AccountSaver(db=db) as saver: saver.set_email(email) saver['owner'] = email saver['role'] = constants.CURATOR saver['labels'] = labels print("Created 'curator' role account", email) print('NOTE: No email sent!') if __name__ == '__main__': args = get_args() utils.load_settings(filepath=args.settings) db = utils.get_db() email = input('Email address (=account identifier) > ') if not email: sys.exit('Error: no email address provided') labels = [] while True: label = input('Give label > ') label = label.strip() if not label: break try: doc = utils.get_label(db, label) except KeyError: print('no such label:', label) else: labels.append(label) create_curator(db, email, labels)
mit
-6,509,203,966,159,130,000
27.162791
59
0.618497
false
pombredanne/grab-1
grab/transport/urllib3.py
1
14546
# Copyright: 2015, Grigoriy Petukhov # Author: Grigoriy Petukhov (http://getdata.pro) # License: MIT from __future__ import absolute_import import logging from weblib.http import (normalize_url, normalize_post_data, normalize_http_values) from weblib.encoding import make_str, decode_pairs from urllib3 import PoolManager, ProxyManager, exceptions, make_headers from urllib3.filepost import encode_multipart_formdata from urllib3.fields import RequestField from urllib3.util.retry import Retry from urllib3.util.timeout import Timeout from urllib3.exceptions import ProxySchemeUnknown import six from six.moves.urllib.parse import urlencode, urlsplit import random from six.moves.http_cookiejar import CookieJar from six.moves.urllib.parse import urlparse from grab import error from grab.error import GrabMisuseError from grab.cookie import CookieManager, MockRequest, MockResponse from grab.response import Response from grab.upload import UploadFile, UploadContent from grab.transport.base import BaseTransport from user_agent import generate_user_agent logger = logging.getLogger('grab.transport.urllib3') def make_unicode(val, encoding='utf-8', errors='strict'): if isinstance(val, six.binary_type): return val.decode(encoding, errors) elif isinstance(val, six.text_type): return val else: return make_unicode(str(val)) def process_upload_items(items): result = [] for key, val in items: if isinstance(val, UploadContent): headers = {'Content-Type': val.content_type} field = RequestField(name=key, data=val.content, filename=val.filename, headers=headers) field.make_multipart(content_type=val.content_type) result.append(field) elif isinstance(val, UploadFile): data = open(val.path, 'rb').read() headers = {'Content-Type': val.content_type} field = RequestField(name=key, data=data, filename=val.filename, headers=headers) field.make_multipart(content_type=val.content_type) result.append(field) else: result.append((key, val)) return result class Request(object): def __init__(self, method=None, url=None, data=None, proxy=None, proxy_userpwd=None, proxy_type=None, headers=None, body_maxsize=None): self.url = url self.method = method self.data = data self.proxy = proxy self.proxy_userpwd = proxy_userpwd self.proxy_type = proxy_type self.headers = headers self.body_maxsize = body_maxsize self._response_file = None self._response_path = None def get_full_url(self): return self.url class Urllib3Transport(BaseTransport): """ Grab network transport based on urllib3 library. """ def __init__(self): self.pool = PoolManager(10) logger = logging.getLogger('urllib3.connectionpool') logger.setLevel(logging.WARNING) def reset(self): #self.response_header_chunks = [] #self.response_body_chunks = [] #self.response_body_bytes_read = 0 #self.verbose_logging = False #self.body_file = None #self.body_path = None # Maybe move to super-class??? self.request_head = '' self.request_body = '' self.request_log = '' self._request = None def process_config(self, grab): req = Request(data=None) try: request_url = normalize_url(grab.config['url']) except Exception as ex: raise error.GrabInvalidUrl( u'%s: %s' % (six.text_type(ex), grab.config['url'])) req.url = request_url method = grab.detect_request_method() req.method = make_str(method) req.body_maxsize = grab.config['body_maxsize'] if grab.config['nobody']: req.body_maxsize = 0 req.timeout = grab.config['timeout'] req.connect_timeout = grab.config['connect_timeout'] extra_headers = {} # Body processing if grab.config['body_inmemory']: pass else: if not grab.config['body_storage_dir']: raise GrabMisuseError( 'Option body_storage_dir is not defined') file_, path_ = self.setup_body_file( grab.config['body_storage_dir'], grab.config['body_storage_filename'], create_dir=grab.config['body_storage_create_dir']) req._response_file = file_ req._response_path = path_ if grab.config['multipart_post'] is not None: post_data = grab.config['multipart_post'] if isinstance(post_data, six.binary_type): pass elif isinstance(post_data, six.text_type): raise GrabMisuseError('Option multipart_post data' ' does not accept unicode.') else: post_items = normalize_http_values( grab.config['multipart_post'], charset=grab.config['charset'], ignore_classes=(UploadFile, UploadContent), ) #if six.PY3: post_items = decode_pairs(post_items, grab.config['charset']) post_items = process_upload_items(post_items) post_data, content_type = encode_multipart_formdata(post_items) extra_headers['Content-Type'] = content_type extra_headers['Content-Length'] = len(post_data) req.data = post_data elif grab.config['post'] is not None: post_data = normalize_post_data(grab.config['post'], grab.config['charset']) # py3 hack # if six.PY3: # post_data = smart_unicode(post_data, # grab.config['charset']) extra_headers['Content-Length'] = len(post_data) req.data = post_data if method in ('POST', 'PUT'): if (grab.config['post'] is None and grab.config['multipart_post'] is None): raise GrabMisuseError('Neither `post` or `multipart_post`' ' options was specified for the %s' ' request' % method) # Proxy if grab.config['proxy']: req.proxy = grab.config['proxy'] if grab.config['proxy_userpwd']: req.proxy_userpwd = grab.config['proxy_userpwd'] if grab.config['proxy_type']: req.proxy_type = grab.config['proxy_type'] else: req.proxy_type = 'http' # User-Agent if grab.config['user_agent'] is None: if grab.config['user_agent_file'] is not None: with open(grab.config['user_agent_file']) as inf: lines = inf.read().splitlines() grab.config['user_agent'] = random.choice(lines) else: grab.config['user_agent'] = generate_user_agent() extra_headers['User-Agent'] = grab.config['user_agent'] # Headers headers = extra_headers headers.update(grab.config['common_headers']) if grab.config['headers']: headers.update(grab.config['headers']) req.headers = headers # Cookies self.process_cookie_options(grab, req) self._request = req def request(self): req = self._request if req.proxy: if req.proxy_userpwd: headers = make_headers(proxy_basic_auth=req.proxy_userpwd) else: headers = None proxy_url = '%s://%s' % (req.proxy_type, req.proxy) try: pool = ProxyManager(proxy_url, proxy_headers=headers) except ProxySchemeUnknown: raise GrabMisuseError('Urllib3 transport does ' 'not support %s proxies' % req.proxy_type) else: pool = self.pool try: retry = Retry(redirect=False, connect=False, read=False) timeout = Timeout(connect=req.connect_timeout, read=req.timeout) #req_headers = dict((make_unicode(x), make_unicode(y)) # for (x, y) in req.headers.items()) if six.PY3: req_url = make_unicode(req.url) req_method = make_unicode(req.method) else: req_url = make_str(req.url) req_method = req.method res = pool.urlopen(req_method, req_url, body=req.data, timeout=timeout, retries=retry, headers=req.headers, preload_content=False) except exceptions.ConnectTimeoutError as ex: raise error.GrabConnectionError('Could not create connection') except exceptions.ProtocolError as ex: raise error.GrabConnectionError(ex.args[1][0], ex.args[1][1]) # WTF? self.request_head = '' self.request_body = '' self.request_log = '' self._response = res #raise error.GrabNetworkError(ex.args[0], ex.args[1]) #raise error.GrabTimeoutError(ex.args[0], ex.args[1]) #raise error.GrabConnectionError(ex.args[0], ex.args[1]) #raise error.GrabAuthError(ex.args[0], ex.args[1]) #raise error.GrabTooManyRedirectsError(ex.args[0], # ex.args[1]) #raise error.GrabCouldNotResolveHostError(ex.args[0], # ex.args[1]) #raise error.GrabNetworkError(ex.args[0], ex.args[1]) #six.reraise(error.GrabInternalError, error.GrabInternalError(ex), # sys.exc_info()[2]) def prepare_response(self, grab): #if self.body_file: # self.body_file.close() response = Response() head = '' for key, val in self._response.getheaders().items(): head += '%s: %s\r\n' % (key, val) head += '\r\n' response.head = make_str(head, encoding='latin', errors='ignore') #if self.body_path: # response.body_path = self.body_path #else: # response.body = b''.join(self.response_body_chunks) if self._request._response_path: response.body_path = self._request._response_path # Quick dirty hack, actullay, response is fully read into memory self._request._response_file.write(self._response.read())#data) self._request._response_file.close() else: response.body = self._response.read()#data if self._request.body_maxsize is not None: #if self.response_body_bytes_read > self.config_body_maxsize: # logger.debug('Response body max size limit reached: %s' % # self.config_body_maxsize) response.body = self._response.read(self._request.body_maxsize) # Clear memory #self.response_header_chunks = [] response.code = self._response.status #response.total_time = self.curl.getinfo(pycurl.TOTAL_TIME) #response.connect_time = self.curl.getinfo(pycurl.CONNECT_TIME) #response.name_lookup_time = self.curl.getinfo(pycurl.NAMELOOKUP_TIME) #response.download_size = self.curl.getinfo(pycurl.SIZE_DOWNLOAD) #response.upload_size = self.curl.getinfo(pycurl.SIZE_UPLOAD) #response.download_speed = self.curl.getinfo(pycurl.SPEED_DOWNLOAD) #response.remote_ip = self.curl.getinfo(pycurl.PRIMARY_IP) response.url = self._response.get_redirect_location() or self._request.url import email.message hdr = email.message.Message() for key, val in self._response.getheaders().items(): hdr[key] = val response.parse(charset=grab.config['document_charset'], headers=hdr) jar = self.extract_cookiejar(self._response, self._request) response.cookies = CookieManager(jar) # We do not need anymore cookies stored in the # curl instance so drop them #self.curl.setopt(pycurl.COOKIELIST, 'ALL') return response def extract_cookiejar(self, resp, req): jar = CookieJar() jar.extract_cookies(MockResponse(resp._original_response.msg), MockRequest(req)) return jar def process_cookie_options(self, grab, req): # `cookiefile` option should be processed before `cookies` option # because `load_cookies` updates `cookies` option if grab.config['cookiefile']: # Do not raise exception if cookie file does not exist try: grab.cookies.load_from_file(grab.config['cookiefile']) except IOError as ex: logging.error(ex) request_host = urlsplit(req.url).hostname if request_host: if request_host.startswith('www.'): request_host_no_www = request_host[4:] else: request_host_no_www = request_host # Process `cookies` option that is simple dict i.e. # it provides only `name` and `value` attributes of cookie # No domain, no path, no expires, etc # I pass these no-domain cookies to *each* requested domain # by setting these cookies with corresponding domain attribute # Trying to guess better domain name by removing leading "www." if grab.config['cookies']: if not isinstance(grab.config['cookies'], dict): raise error.GrabMisuseError('cookies option should be a dict') for name, value in grab.config['cookies'].items(): grab.cookies.set( name=name, value=value, domain=request_host_no_www ) cookie_hdr = grab.cookies.get_cookie_header(req) if cookie_hdr: req.headers['Cookie'] = cookie_hdr
mit
-5,214,602,950,276,204,000
38.313514
82
0.566341
false
QTB-HHU/ModelHeatShock
HSM_Reactions.py
1
3798
from HSM_Temperature import * ############ REACTIONS ############ def nuP(Ph, HP, kP0): # P#-->P nuP = kP0 * Ph * HP # //(2000+HP) return nuP def nuPp(P, t, kP0p, n1, T0const, TparamSet, DirectControlnuPp): # P-->P# # the DirectControl optional argument serves to switch between the normal nuPp and the nuPp that we change directly. if DirectControlnuPp[0] == "No": #n1 and T0const are not used anymore R = 8.3144598 # Ideal Gas Constant (J mol^-1 K^-1) Ea = 174440. # (J mol^-1) Activation energy (J mol^-1) B = Ea/R # B = 20980.330 A = kP0p * 9.431831774375398 * pow(10.,28) # 9.27*pow(10,30) (kP0p was 98.28419570824974) KelvinToCelsius = 273.15 TinKelvin = T(t, TparamSet) + KelvinToCelsius nuPp = P * A*math.exp(-B/TinKelvin) # P * (Arrenius Equation for the Temp dependent k) #nuPp = kP0p * P * T(t, TparamSet) ** n1 / (T0const ** n1 + T(t, TparamSet) ** n1) #print( "!!! " + str((t-vorl)/60.) + " " + str(T(t, TparamSet)) + " " + str(nuPp)) #print() #print(DirectControlnuPp[0]+" "+str(nuPp)) elif DirectControlnuPp[0] == "Yes": nuPp = DirectControlnuPp[1] * P #print( "XXXXXXXXXXXXXXXXXXXXXXX " + str((t-vorl)/60.) + " " + str(T(t, TparamSet)) + " " + str(nuPp)) #print() #print(DirectControlnuPp[0]+" "+str(nuPp)) else: print("Error in nuPp in HSM_Reactions.py") return nuPp def nuS(Ss, kS): # S*-->S nuS = kS * Ss return nuS def nuSp(S, Ph, kSp0, n2, P0const): # S-->S* nuSp = kSp0 * S * pow(Ph, n2) / (pow(P0const, n2) + pow(Ph, n2)) return nuSp def nuFp(F, Ss, kFp0): # F-->F* nuFp = kFp0 * F * Ss / (1. + Ss) return nuFp def nuF(I, Fs, kF0): # F*-->F //wird wohl michaelis Menten sein ? nuF = kF0 * I * Fs return nuF def piF(RF, kFpi0): # mRF: F + mRF piF = kFpi0 * RF return piF def nuFGp(FG, kFGp): # FG -> F + G nuFGp = kFGp * FG return nuFGp def nuFG(G, F, kFG): # F +G -> FG //PROBLEM!!! WIE REAKTION (= how reactive) MIT 2 REAKTANTEN? nuFG = kFG * G * F return nuFG def etaF(F, ketaF): # F--> etaF = ketaF * F return etaF def nuFsG(G, Fs, kFsG): # F* + G -> F*G //PROBLEM!!! sehe oben (=see above)!? nuFsG = kFsG * G * Fs return nuFsG def nuFsGp(FsG, kFsGp): # F*G->F* + G nuFsGp = kFsGp * FsG return nuFsGp def nuFsp(FsG, I, kFsp): # F*G->FG nuFsp = kFsp * FsG * I return nuFsp def nuFs(FG, kFs): # FG->F*G nuFs = kFs * FG return nuFs def piRF(FsG, kpiRF): # F*G: mRF piRF = kpiRF * FsG return piRF def piRHP(FsG, kpiRH): # F*G: mRHP piRHP = kpiRH * FsG return piRHP def piRFAddConst(piRFconst): return piRFconst def piRHPAddConst(piRHPconst): return piRHPconst def piHP(RHP, kpiHP): # mRHP: HP + mRHP piHP = kpiHP * RHP return piHP def etaHP(HP, ketaHP): # HP--> etaHP = ketaHP * HP return etaHP def etaRF(RF, ketaRF): # mRF--> etaRF = ketaRF * RF return etaRF def etaRHP(RHP, ketaRHP): # mRHP--> etaRHP = ketaRHP * RHP return etaRHP # The following 4 reactions, not present in the original model by Alexander, can be added to the system # to reproduce the results of the experiments performed in Schroda et al. 2000 def piRHP_ARS(FsG, kpiRH_ARS): # F*G: mRHP_ARS piRHP_ARS = kpiRH_ARS * FsG return piRHP_ARS def piHP_ARS(RHP_ARS, kpiHP_ARS): # mRHP_ARS: HP_ARS + mRHP_ARS piHP_ARS = kpiHP_ARS * RHP_ARS return piHP_ARS def etaHP_ARS(HP_ARS, ketaHP_ARS): # HP_ARS--> etaHP_ARS = ketaHP_ARS * HP_ARS return etaHP_ARS def etaRHP_ARS(RHP_ARS, ketaRHP_ARS): # mRHP_ARS--> etaRHP_ARS = ketaRHP_ARS * RHP_ARS return etaRHP_ARS
gpl-3.0
1,146,378,558,672,577,200
22.7375
120
0.575566
false
RichardTMR/homework
week1/class1_linear_regression.py
1
3290
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model def plot_line(x, y, y_hat,line_color='blue'): # Plot outputs plt.scatter(x, y, color='black') plt.plot(x, y_hat, color=line_color, linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() def linear_grad_func(theta, x, y): # compute gradient m = y.size it = np.ones(shape=(m, 2)) it[:, 1] = x[:, 0] prediction = it.dot(theta.transpose()) grad = ((prediction - y).transpose().dot(it)) / m * 1.0 return grad def linear_val_func(theta, x): # forwarding return np.dot(np.c_[np.ones(x.shape[0]), x], theta.T) def linear_cost_func(theta, x, y): # compute cost (loss) m = len(y) it = np.ones(shape=(m, 2)) it[:, 1] = x[:, 0] predictions = it.dot(theta.transpose()) sqerrors = (predictions - y) ** 2 cost = (1.0 / (2 * m)) * sqerrors.sum() return cost def linear_grad_desc(theta, X_train, Y_train, lr=0.1, max_iter=10000, converge_change=.001): cost_iter = [] cost = linear_cost_func(theta, X_train, Y_train) cost_iter.append([0, cost]) cost_change = 1 i = 1 while cost_change > converge_change and i < max_iter: pre_cost = cost # compute gradient grad = linear_grad_func(theta, X_train, Y_train) # Update gradient theta = theta - lr * grad cost = linear_cost_func(theta, X_train, Y_train) cost_iter.append([i, cost]) cost_change = abs(cost - pre_cost) i += 1 return theta, cost_iter def linear_regression(): # load dataset dataset = datasets.load_diabetes() # Select only 2 dims X = dataset.data[:, 2] Y = dataset.target # split dataset into training and testing X_train = X[:-20, None] X_test = X[-20:, None] Y_train = Y[:-20, None] Y_test = Y[-20:, None] # Linear regression theta = np.random.rand(1, X_train.shape[1]+1) fitted_theta, cost_iter = linear_grad_desc(theta, X_train, Y_train, lr=0.1, max_iter=50000) print('Coefficients: {}'.format(fitted_theta[0,-1])) print('Intercept: {}'.format(fitted_theta[0,-2])) print('MSE: {}'.format(np.sum((linear_val_func(fitted_theta, X_test) - Y_test)**2) / Y_test.shape[0])) plot_line(X_test, Y_test, linear_val_func(fitted_theta, X_test)) def sklearn_linear_regression(): # load dataset dataset = datasets.load_diabetes() # Select only 2 dims X = dataset.data[:, 2] Y = dataset.target # split dataset into training and testing X_train = X[:-20, None] X_test = X[-20:, None] Y_train = Y[:-20, None] Y_test = Y[-20:, None] # Linear regression regressor = linear_model.LinearRegression() regressor.fit(X_train, Y_train) print('Coefficients: {}'.format(regressor.coef_)) print('Intercept: {}'.format(regressor.intercept_)) print('MSE:{}'.format(np.mean((regressor.predict(X_test) - Y_test) ** 2))) plot_line(X_test, Y_test, regressor.predict(X_test),line_color='red') def main(): print('Class 1 Linear Regression Example') linear_regression() print ('') print('sklearn Linear Regression Example') sklearn_linear_regression() if __name__ == "__main__": main()
apache-2.0
-7,782,481,078,116,972,000
24.905512
106
0.59848
false
examachine/pisi
pisi/actionsapi/coreutils.py
1
1995
#-*- coding: utf-8 -*- # # Copyright (C) 2005, TUBITAK/UEKAE # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation; either version 3 of the License, or (at your option) # any later version. # # Please read the COPYING file. # # Author: S. Caglar Onur # Standard Python Modules import re import sys from itertools import izip from itertools import imap from itertools import count from itertools import ifilter from itertools import ifilterfalse # ActionsAPI import pisi.actionsapi def cat(filename): return file(filename).xreadlines() class grep: '''keep only lines that match the regexp''' def __init__(self, pat, flags = 0): self.fun = re.compile(pat, flags).match def __ror__(self, input): return ifilter(self.fun, input) class tr: '''apply arbitrary transform to each sequence element''' def __init__(self, transform): self.tr = transform def __ror__(self, input): return imap(self.tr, input) class printto: '''print sequence elements one per line''' def __init__(self, out = sys.stdout): self.out = out def __ror__(self,input): for line in input: print >> self.out, line printlines = printto(sys.stdout) class terminator: def __init__(self,method): self.process = method def __ror__(self,input): return self.process(input) aslist = terminator(list) asdict = terminator(dict) astuple = terminator(tuple) join = terminator(''.join) enum = terminator(enumerate) class sort: def __ror__(self,input): ll = list(input) ll.sort() return ll sort = sort() class uniq: def __ror__(self,input): for i in input: try: if i == prev: continue except NameError: pass prev = i yield i uniq = uniq()
gpl-3.0
8,104,818,021,379,982,000
23.329268
79
0.622055
false
Technikradio/C3FOCSite
c3shop/test/tools.py
1
1768
from frontpage.models import Article, Profile, Media, ArticleMedia, MediaUpload, Post, Settings from django.contrib.auth.models import User # This function assumes that the create superuser command has already been run. def make_testing_db(): m = Media() m.headline = "Most ugly image" m.lowResFile = "https://example.com/image.jpg" m.highResFile = "https://example.com/image.jpg" m.save() print("media created") u = Profile() u.authuser = User.objects.all()[0] u.active = True u.dect = 5234 u.displayName = "Test Profile 01" u.rights = 0 u.avatarMedia = m u.notes = "<center>This is to test html insertion</center>" u.save() print("Profile created") a = Article() a.cachedText = "<h2>This is a dummy article due to testing purposes</h2>" a.description = "Test article" a.price = "$15.00" a.quantity = 1000 a.size = "XXL" a.type = 1 a.visible = True a.addedByUser = u a.save() print("Article created") am = ArticleMedia() am.AID = a am.MID = m am.save() print("Article media link created") mu = MediaUpload() mu.MID = m mu.UID = u mu.save() print("Media user link created") p = Post() p.title = "Test post 01" p.cacheText = "<p>this is a test post<br/>generated by tools.make_testing_db()</p>" p.createdByUser = u p.visibleLevel = 0 s = Settings() s.changedByUser = u s.property = '''[{ "type":"link", "href":"example.com","text":"Visit example.com" },{"type":"link","text":"Visit the top level website", "href":".."}]''' s.SName = 'frontpage.ui.navbar.content' s.requiredLevel = 0 s.save() print("NavBar setting created")
bsd-3-clause
-6,947,669,652,041,555,000
25.787879
95
0.60181
false
userzimmermann/robotframework-python3
src/robot/output/filelogger.py
1
2129
# Copyright 2008-2014 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from six import PY3 from robot.errors import DataError from .loggerhelper import AbstractLogger class FileLogger(AbstractLogger): def __init__(self, path, level): AbstractLogger.__init__(self, level) self._writer = self._get_writer(path) # unit test hook def _get_writer(self, path): try: return open(path, 'w') except EnvironmentError as err: raise DataError(err.strerror) def message(self, msg): if self._is_logged(msg.level) and not self._writer.closed: entry = '%s | %s | %s\n' % (msg.timestamp, msg.level.ljust(5), msg.message) if PY3 and hasattr(self._writer, 'encoding'): self._writer.write(entry) else: self._writer.write(entry.encode('UTF-8')) def start_suite(self, suite): self.info("Started test suite '%s'" % suite.name) def end_suite(self, suite): self.info("Ended test suite '%s'" % suite.name) def start_test(self, test): self.info("Started test case '%s'" % test.name) def end_test(self, test): self.info("Ended test case '%s'" % test.name) def start_keyword(self, kw): self.debug(lambda: "Started keyword '%s'" % kw.name) def end_keyword(self, kw): self.debug(lambda: "Ended keyword '%s'" % kw.name) def output_file(self, name, path): self.info('%s: %s' % (name, path)) def close(self): self._writer.close()
apache-2.0
8,191,555,460,039,876,000
31.753846
75
0.622828
false
google/dotty
efilter/protocols/iset.py
1
2326
# -*- coding: utf-8 -*- # EFILTER Forensic Query Language # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EFILTER abstract type system.""" from efilter import dispatch from efilter import protocol from efilter.protocols import eq # Declarations: # pylint: disable=unused-argument @dispatch.multimethod def union(x, y): raise NotImplementedError() @dispatch.multimethod def intersection(x, y): raise NotImplementedError() @dispatch.multimethod def difference(x, y): raise NotImplementedError() @dispatch.multimethod def issuperset(x, y): raise NotImplementedError() @dispatch.multimethod def issubset(x, y): return issuperset(y, x) @dispatch.multimethod def isstrictsuperset(x, y): return issuperset(x, y) and eq.ne(x, y) @dispatch.multimethod def isstrictsubset(x, y): return isstrictsuperset(y, x) @dispatch.multimethod def contains(s, e): raise NotImplementedError() class ISet(protocol.Protocol): _required_functions = (union, intersection, difference, issuperset, contains) # Default implementations: ISet.implement( for_types=(set, frozenset), implementations={ union: lambda x, y: x | frozenset(y), intersection: lambda x, y: x & frozenset(y), difference: lambda x, y: x - frozenset(y), issuperset: lambda x, y: x >= frozenset(y), contains: lambda s, e: e in s } ) ISet.implement( for_types=(list, tuple), implementations={ union: lambda x, y: frozenset(x) | frozenset(y), intersection: lambda x, y: frozenset(x) & frozenset(y), difference: lambda x, y: frozenset(x) - frozenset(y), issuperset: lambda x, y: frozenset(x) >= frozenset(y), contains: lambda s, e: e in s } )
apache-2.0
4,413,265,449,356,274,000
22.734694
74
0.689166
false
kusinkay/plugin.offtictor
torhelper.py
1
4925
from resources.lib import tor class TorFeeds: def __init__(self): self.feeds = [] self.time = 0 def add_feeds(self, feeds): ''' Add an array of feeds ''' self.feeds = feeds def add_feed(self, feed): torFeed = TorFeed(feed) self.feeds.append(torFeed) def get_feeds(self): result = [] for tFeed in self.feeds: result.append(tFeed.feed) return result def serialize(self): feeds = [] for feed in self.feeds: feeds.append( feed.serialize()) output = { "time": self.time, "feeds" : feeds } return repr(output) def unserialize(self, object): self.time = object["time"] for oFeed in object["feeds"]: feed = TorFeed(None) feed.unserialize(oFeed) self.add_feed(feed.feed) def __getstate__(self): d = dict(self.__dict__) del d['feeds'] return d def __setstate__(self, d): self.__dict__.update(d) class TorFeed: def __init__(self, feed): self.feed = tor.Subscriptions(None) self.feed = feed def serialize(self): output = { "feed":{ "id": self.feed.id, "matches": self.feed.matches, "title": self.feed.title, "iconUrl": self.feed.iconUrl, "firstitemmsec": self.feed.firstitemmsec, "unread_count": self.feed.unread_count } } return output def unserialize(self, object): self.feed = tor.Subscriptions(None) self.feed.id = object["feed"]["id"] self.feed.matches = object["feed"]["matches"] self.feed.title = object["feed"]["title"] self.feed.iconUrl = object["feed"]["iconUrl"] self.feed.firstitemmsec = object["feed"]["firstitemmsec"] self.feed.unread_count = object["feed"]["unread_count"] def __getstate__(self): d = dict(self.__dict__) #del d['_logger'] return d def __setstate__(self, d): self.__dict__.update(d) class TorList: ''' Helps to save a feed to cache ''' def __init__(self): self.posts = [] self.time = 0 def count(self): return len(self.posts) def add_post(self, post): self.posts.append(post) self.posts = sorted(self.posts, key=lambda TorPost: TorPost.item.published, reverse=True) def get_post_list(self): ''' result = [] for post in self.posts: result.append(post.item.title) return result ''' return self.posts def serialize(self): posts = [] for post in self.posts: posts.append( post.serialize()) output = { "time": self.time, "posts" : posts } return repr(output) def unserialize(self, object): self.time = object["time"] for oPost in object["posts"]: post = TorPost(None) post.unserialize(oPost) self.add_post(post) def __getstate__(self): d = dict(self.__dict__) del d['posts'] return d def __setstate__(self, d): self.__dict__.update(d) class TorPost: def __init__(self, item): self.item = item def __getstate__(self): d = dict(self.__dict__) #del d['_logger'] return d def __setstate__(self, d): self.__dict__.update(d) def serialize(self): output = { "item":{ "item_id": self.item.item_id, "title" : self.item.title, "content" : self.item.content, "href" : self.item.href, "mediaUrl" : self.item.mediaUrl, "source" : self.item.source, "source_id" : self.item.source_id, "published": self.item.published, #"video": self.item.video } } return output def unserialize(self, object): self.item = tor.Item(None, object["item"]["item_id"]) self.item.title = object["item"]["title"] self.item.content = object["item"]["content"] self.item.href = object["item"]["href"] self.item.mediaUrl = object["item"]["mediaUrl"] self.item.source = object["item"]["source"] self.item.source_id = object["item"]["source_id"] self.item.published = object["item"]["published"] #self.item.video = object["item"]["video"]
gpl-2.0
-4,851,109,222,728,168,000
26.519553
97
0.478376
false
SkyTruth/skytruth-automation-hub
gae/pubsub.py
1
5643
""" Publish/Subscribe tool @author Paul Woods <[email protected]> """ import webapp2 from google.appengine.ext import db from google.appengine.api import taskqueue import json import urllib2 import os from taskqueue import TaskQueue class Subscription (db.Model): event = db.StringProperty() url = db.StringProperty() created = db.DateTimeProperty(auto_now_add=True) data = db.StringProperty() #this contains arbitrary content encoded as json class PubSub (): @staticmethod def publish (event, pub_data = None): """Publish an event. This will trigger all subscriptions with a matching event Args: event name of the event pub_data optional dict of params to be passed to the subscriber Returns: the number of subscriptions that were triggered """ #Get all subscriptions with a matching event count = 0 q = db.GqlQuery("SELECT __key__ FROM Subscription WHERE event = :1", event) for key in q.run(): # add a push-queue entry for each notification taskqueue.add(url='/pubsub/notify', params={'key':str(key), 'event': event, 'pub_data': json.dumps(pub_data)}) count = count + 1 #return the number of subscriptions triggered return count @staticmethod def subscribe (event, url, sub_data = None): """Subscribe to an event. Args: event name of the event to subscribe to url url to receive a POST when the specified event is published sub_data optional dict of params to be passed to the subscriber. This can be used to contain a 'secret' key that will identify the post as coming from this source Returns: a subscription id """ sub = Subscription(event=event, url=url, data=json.dumps(sub_data)) return str(sub.put()) @staticmethod def unsubscribe (key): """ Remove an existing subscription. Args: key A subscrption key previously returned by a call to subscribe Returns: True if the subscription was removed, False if it was not found """ sub = Subscription.get(db.Key(encoded=key)) if sub: sub.delete() return sub is not None @staticmethod def notify (key, event, pub_data): """Send notification to the specified subscription. """ sub = Subscription.get(db.Key(encoded=key)) if not sub: return None data = { 'key' : key, 'event': event, 'pub_data': pub_data, 'sub_data': json.loads(sub.data) } if sub.url.startswith ('/'): #Handle local urls through the task queue taskqueue.add( url=sub.url, headers = {'Content-Type':'application/json'}, payload=json.dumps(data)) else: #for external urls use urllib2 req = urllib2.Request(sub.url) req.add_header('Content-Type', 'application/json') response = urllib2.urlopen(req, json.dumps(data)) #handler for notify - called once for each subscription that is triggered by a published event class NotifyHandler(webapp2.RequestHandler): """Handler for pubsub notifications. This gets called from the taskqueue by tasks added by PubSub.publish() """ def post(self): self.response.headers.add_header('Content-Type', 'application/json') r = {'status': 'OK'} try: PubSub.notify( key = self.request.get('key'), event = self.request.get('event'), pub_data = json.loads(self.request.get('pub_data'))) except Exception, e: r['status'] = 'ERR' r['message'] = str(e) self.response.write(json.dumps( r )) #creates a new task in the task queue class TaskHandler(webapp2.RequestHandler): """This handler acts as a subscribe target and creates a new task in the task queue subdata.channel specifies the task queue channel subdata.taskname specifies the name to be assigned to the task OR subdata.pubname specifies the field name in pub data to use for the task name """ def post(self): self.response.headers.add_header('Content-Type', 'application/json') r = {'status': 'OK'} try: data = json.loads(self.request.body) channel = data['sub_data']['channel'] name = data['sub_data'].get('taskname') if not name: name = data['pub_data'].get(data['sub_data'].get('pubname')) r['id'] = TaskQueue.add (channel, name, data) except Exception, e: r['status'] = 'ERR' r['message'] = str(e) self.response.write(json.dumps( r )) class TestHandler(webapp2.RequestHandler): """This handler expects a json POST, and it returns same json it receives. Used for testing.""" def post(self): self.response.headers.add_header('Content-Type', self.request.headers['Content-Type']) self.response.write (self.request.body) app = webapp2.WSGIApplication([ ('/pubsub/notify', NotifyHandler), ('/pubsub/test', TestHandler), ('/pubsub/task', TaskHandler) ],debug=True)
mit
-7,474,916,540,044,112,000
35.173077
122
0.577352
false
eroicaleo/LearningPython
ch20/GeneratorFunctionsandExpressions.py
1
2789
#!/usr/bin/python3.3 def gensquares(N): for i in range(N): yield i ** 2 for i in gensquares(5): print(i, end=":") print() x = gensquares(4) print(x) print(next(x)) print(next(x)) print(next(x)) print(next(x)) # throw exception: StopIteration # print(next(x)) def ups(line): for x in line.split(','): yield x.upper() print(tuple(ups('aaa,bbb,ccc'))) print({i: s for (i, s) in enumerate(ups('aaa,bbb,ccc'))}) G = (x**2 for x in range(4)) print(next(G)) print(next(G)) print(next(G)) print(next(G)) # throw exception: StopIteration # print(next(G)) # Generator expression for x in (x**2 for x in range(4)): print('%s, %s' % (x, x / 2.0)) s = ''.join(x.upper() for x in 'aaa,bbb,ccc'.split(',')) print(s) a, b, c = (x + '\n' for x in 'aaa,bbb,ccc'.split(',')) print(a, c) print(sum(x**2 for x in range(4))) print(sorted(x**2 for x in range(4))) print(sorted((x**2 for x in range(4)), reverse=True)) print(list(map(abs, [-1, -2, 3, 4]))) print(list(abs(x) for x in [-1, -2, 3, 4])) print(list(map(lambda x: x * 2, (1, 2, 3, 4)))) print(list(x * 2 for x in (1, 2, 3, 4))) # Compare between generator expression, list comprehension and map line = "aaa,bbb,ccc" print(''.join([x.upper() for x in line.split(',')])) print(''.join(x.upper() for x in line.split(','))) print(''.join(map(str.upper, line.split(',')))) print(''.join(x*2 for x in line.split(','))) print(''.join(map(lambda x: x * 2, line.split(',')))) # filter v.s. generator expression line = "aa bbb c" print(''.join(x for x in line.split(' ') if len(x) > 1)) print(''.join(filter(lambda x: len(x) > 1, line.split(' ')))) print(''.join(x.upper() for x in line.split(' ') if len(x) > 1)) print(''.join(map(lambda x: x.upper(), filter(lambda x: len(x) > 1, line.split(' '))))) res = '' for x in line.split(): if len(x) > 1: res += x.upper() print(res) # Generator functions Versus Generator expressions G = (c * 4 for c in 'SPAM') print(list(G)) def fourtimes(s): for c in s: yield c * 4 G = fourtimes('spam') print(list(G)) G = (c * 4 for c in 'SPAM') I = iter(G) print(next(I)) print(next(I)) G = fourtimes('spam') I = iter(G) print(next(I)) print(next(I)) print(iter(G) is G) G = (c * 4 for c in 'SPAM') I = iter(G) print(next(I)) print(next(I)) I2 = iter(G) print(next(I2)) def both(N): yield from range(N) yield from (x ** 2 for x in range(N)) print(list(both(5))) print(" : ".join(str(i) for i in both(5))) # Generators in Build-in types, tools and classes import os for (root, subs, files) in os.walk('.'): for name in files: print(name) def f(a, b, c): print("%s, %s, %s" % (a, b, c)) f(1, 2, 3) f(*range(3)) f(*(i for i in range(2)), c=5) D = {'a': 'Bob', 'b': 'dev', 'c': 40.5} print(D) f(**D) f(*D) f(*D.values())
mit
1,515,841,372,151,251,500
19.507353
87
0.580495
false
evancich/apm_motor
modules/waf/waflib/extras/gccdeps.py
1
5955
#!/usr/bin/env python # encoding: utf-8 # Thomas Nagy, 2008-2010 (ita) """ Execute the tasks with gcc -MD, read the dependencies from the .d file and prepare the dependency calculation for the next run. Usage: def configure(conf): conf.load('gccdeps') """ import os, re, threading from waflib import Task, Logs, Utils, Errors from waflib.Tools import c_preproc from waflib.TaskGen import before_method, feature lock = threading.Lock() gccdeps_flags = ['-MD'] if not c_preproc.go_absolute: gccdeps_flags = ['-MMD'] # Third-party tools are allowed to add extra names in here with append() supported_compilers = ['gcc', 'icc', 'clang'] def scan(self): if not self.__class__.__name__ in self.env.ENABLE_GCCDEPS: if not self.env.GCCDEPS: self.generator.bld.fatal('Load gccdeps in configure!') return self.no_gccdeps_scan() nodes = self.generator.bld.node_deps.get(self.uid(), []) names = [] return (nodes, names) re_o = re.compile("\.o$") re_splitter = re.compile(r'(?<!\\)\s+') # split by space, except when spaces are escaped def remove_makefile_rule_lhs(line): # Splitting on a plain colon would accidentally match inside a # Windows absolute-path filename, so we must search for a colon # followed by whitespace to find the divider between LHS and RHS # of the Makefile rule. rulesep = ': ' sep_idx = line.find(rulesep) if sep_idx >= 0: return line[sep_idx + 2:] else: return line def path_to_node(base_node, path, cached_nodes): # Take the base node and the path and return a node # Results are cached because searching the node tree is expensive # The following code is executed by threads, it is not safe, so a lock is needed... if getattr(path, '__hash__'): node_lookup_key = (base_node, path) else: # Not hashable, assume it is a list and join into a string node_lookup_key = (base_node, os.path.sep.join(path)) try: lock.acquire() node = cached_nodes[node_lookup_key] except KeyError: node = base_node.find_resource(path) cached_nodes[node_lookup_key] = node finally: lock.release() return node def post_run(self): # The following code is executed by threads, it is not safe, so a lock is needed... if not self.__class__.__name__ in self.env.ENABLE_GCCDEPS: return self.no_gccdeps_post_run() if getattr(self, 'cached', None): return Task.Task.post_run(self) name = self.outputs[0].abspath() name = re_o.sub('.d', name) txt = Utils.readf(name) #os.remove(name) # Compilers have the choice to either output the file's dependencies # as one large Makefile rule: # # /path/to/file.o: /path/to/dep1.h \ # /path/to/dep2.h \ # /path/to/dep3.h \ # ... # # or as many individual rules: # # /path/to/file.o: /path/to/dep1.h # /path/to/file.o: /path/to/dep2.h # /path/to/file.o: /path/to/dep3.h # ... # # So the first step is to sanitize the input by stripping out the left- # hand side of all these lines. After that, whatever remains are the # implicit dependencies of task.outputs[0] txt = '\n'.join([remove_makefile_rule_lhs(line) for line in txt.splitlines()]) # Now join all the lines together txt = txt.replace('\\\n', '') val = txt.strip() val = [x.replace('\\ ', ' ') for x in re_splitter.split(val) if x] nodes = [] bld = self.generator.bld # Dynamically bind to the cache try: cached_nodes = bld.cached_nodes except AttributeError: cached_nodes = bld.cached_nodes = {} for x in val: node = None if os.path.isabs(x): node = path_to_node(bld.root, x, cached_nodes) else: path = bld.bldnode # when calling find_resource, make sure the path does not contain '..' x = [k for k in Utils.split_path(x) if k and k != '.'] while '..' in x: idx = x.index('..') if idx == 0: x = x[1:] path = path.parent else: del x[idx] del x[idx-1] node = path_to_node(path, x, cached_nodes) if not node: raise ValueError('could not find %r for %r' % (x, self)) if id(node) == id(self.inputs[0]): # ignore the source file, it is already in the dependencies # this way, successful config tests may be retrieved from the cache continue nodes.append(node) Logs.debug('deps: gccdeps for %s returned %s' % (str(self), str(nodes))) bld.node_deps[self.uid()] = nodes bld.raw_deps[self.uid()] = [] try: del self.cache_sig except: pass Task.Task.post_run(self) def sig_implicit_deps(self): if not self.__class__.__name__ in self.env.ENABLE_GCCDEPS: return self.no_gccdeps_sig_implicit_deps() try: return Task.Task.sig_implicit_deps(self) except Errors.WafError: return Utils.SIG_NIL for name in 'c cxx'.split(): try: cls = Task.classes[name] except KeyError: pass else: cls.no_gccdeps_scan = cls.scan cls.no_gccdeps_post_run = cls.post_run cls.no_gccdeps_sig_implicit_deps = cls.sig_implicit_deps cls.scan = scan cls.post_run = post_run cls.sig_implicit_deps = sig_implicit_deps @before_method('process_source') @feature('force_gccdeps') def force_gccdeps(self): self.env.ENABLE_GCCDEPS = ['c', 'cxx'] def configure(conf): # record that the configuration was executed properly conf.env.GCCDEPS = True global gccdeps_flags flags = conf.env.GCCDEPS_FLAGS or gccdeps_flags if conf.env.CC_NAME in supported_compilers: try: conf.check(fragment='int main() { return 0; }', features='c force_gccdeps', cflags=flags, msg='Checking for c flags %r' % ''.join(flags)) except Errors.ConfigurationError: pass else: conf.env.append_value('CFLAGS', gccdeps_flags) conf.env.append_unique('ENABLE_GCCDEPS', 'c') if conf.env.CXX_NAME in supported_compilers: try: conf.check(fragment='int main() { return 0; }', features='cxx force_gccdeps', cxxflags=flags, msg='Checking for cxx flags %r' % ''.join(flags)) except Errors.ConfigurationError: pass else: conf.env.append_value('CXXFLAGS', gccdeps_flags) conf.env.append_unique('ENABLE_GCCDEPS', 'cxx')
gpl-3.0
-6,775,665,167,069,047,000
27.222749
146
0.673048
false
bmazin/SDR
DataReadout/ReadoutControls/lib/LabJackPython-8-26-2011/src/u12.py
2
114714
""" Name: u12.py Desc: Defines the U12 class, which makes working with a U12 much easier. The functions of the U12 class are divided into two categories: UW and low-level. Most of the UW functions are exposed as functions of the U12 class. With the exception of the "e" functions, UW functions are Windows only. The "e" functions will work with both the UW and the Exodriver. Therefore, people wishing to write cross-platform code should restrict themselves to using only the "e" functions. The UW functions are described in Section 4 of the U12 User's Guide: http://labjack.com/support/u12/users-guide/4 All low-level functions of the U12 class begin with the word raw. For example, the low-level function Counter can be called with U12.rawCounter(). Currently, low-level functions are limited to the Exodriver (Linux and Mac OS X). You can find descriptions of the low-level functions in Section 5 of the U12 User's Guide: http://labjack.com/support/u12/users-guide/5 """ import platform import ctypes import os, atexit import math from time import time import struct WINDOWS = "Windows" ON_WINDOWS = (os.name == 'nt') class U12Exception(Exception): """Custom Exception meant for dealing specifically with U12 Exceptions. Error codes are either going to be a LabJackUD error code or a -1. The -1 implies a python wrapper specific error. def __init__(self, ec = 0, errorString = ''): self.errorCode = ec self.errorString = errorString if not self.errorString: #try: self.errorString = getErrorString(ec) #except: # self.errorString = str(self.errorCode) def __str__(self): return self.errorString """ pass class BitField(object): """ Provides a method for working with bit fields. >>> bf = BitField() >>> print bf [ bit7 = 0, bit6 = 0, bit5 = 0, bit4 = 0, bit3 = 0, bit2 = 0, bit1 = 0, bit0 = 0 ] You can use attribute accessing for easy bit flipping: >>> bf.bit4 = 1 >>> bf.bit7 = 1 >>> print bf [ bit7 = 1, bit6 = 0, bit5 = 0, bit4 = 1, bit3 = 0, bit2 = 0, bit1 = 0, bit0 = 0 ] You can also use list-style accessing. Counting starts on the left: >>> print bf[0] # List index 0 is bit7 1 >>> print bf[3] # List index 3 is bit4 1 List-style slicing: >>> print bf[3:] [1, 0, 0, 0, 0] List-style setting bits works as you would expect: >>> bf[1] = 1 >>> print bf [ bit7 = 1, bit6 = 1, bit5 = 0, bit4 = 1, bit3 = 0, bit2 = 0, bit1 = 0, bit0 = 0 ] It provides methods for going to and from bytes: >>> bf = BitField(123) >>> print bf [ bit7 = 0, bit6 = 1, bit5 = 1, bit4 = 1, bit3 = 1, bit2 = 0, bit1 = 1, bit0 = 1 ] >>> bf = BitField() >>> bf.fromByte(123) # Modifies bf in place >>> print bf [ bit7 = 0, bit6 = 1, bit5 = 1, bit4 = 1, bit3 = 1, bit2 = 0, bit1 = 1, bit0 = 1 ] >>> bf.bit4 = 0 >>> print bf.asByte() 107 You can iterate of the raw bits ( 1 and 0 Vs. '1' and '0') easily: >>> for i in bf: ... print i 0 1 1 0 1 0 1 1 You can also iterate over the labels and their data values using items(): >>> for label, data in bf.items(): ... print label, data bit7 0 bit6 1 bit5 1 bit4 0 bit3 1 bit2 0 bit1 1 bit0 1 As an added bonus, it can also be cast as an int or hex: >>> int(bf) 107 >>> hex(bf) '0x6b' See the description of the __init__ method for setting the label parameters. """ def __init__(self, rawByte = None, labelPrefix = "bit", labelList = None, zeroLabel = "0", oneLabel = "1"): """ Name: BitField.__init__(rawByte = None, labelPrefix = "bit", labelList = None, zeroLabel = "0", oneLabel = "1") Args: rawByte, a value to set the bit field values to. labelPrefix, what should go before the labels in labelList labelList, a list of labels to apply to each bit. If None, it gets set to range(7,-1,-1). zeroLabel, bits with a value of 0 will have this label oneLabel, bits with a value of 1 will have this label Desc: Creates a new bitfield and sets up the labels. With out any arguments, you get a bit field that looks like this: >>> bf = BitField() >>> print bf [ bit7 = 0, bit6 = 0, bit5 = 0, bit4 = 0, bit3 = 0, bit2 = 0, bit1 = 0, bit0 = 0 ] To make the labels, it iterates over all the labelList and adds the labelPrefix to them. If you have less than 8 labels, then your bit field will only work up to that many bits. To make a BitField with labels for FIO0-7 you can do the following: >>> bf = BitField(labelPrefix = "FIO") >>> print bf [ FIO7 = 0, FIO6 = 0, FIO5 = 0, FIO4 = 0, FIO3 = 0, FIO2 = 0, FIO1 = 0, FIO0 = 0 ] The labels don't have to be numbers, for example: >>> names = [ "Goodreau", "Jerri", "Selena", "Allan", "Tania", "Kathrine", "Jessie", "Zelma" ] >>> bf = BitField( labelPrefix = "", labelList = names) >>> print bf [ Goodreau = 0, Jerri = 0, Selena = 0, Allan = 0, Tania = 0, Kathrine = 0, Jessie = 0, Zelma = 0 ] You can change the display value of zero and one to be whatever you want. For example, if you have a BitField that represents FIO0-7 directions: >>> dirs = BitField(rawByte = 5, labelPrefix = "FIO", zeroLabel = "Output", oneLabel = "Input") >>> print dirs [ FIO7 = Output, FIO6 = Output, FIO5 = Output, FIO4 = Output, FIO3 = Output, FIO2 = Input, FIO1 = Output, FIO0 = Input ] Note, that when you access the value, you will get 1 or 0, not "Input" or "Output. For example: >>> print dirs.FIO3 0 """ # Do labels first, so that self.something = something works. self.__dict__['labels'] = [] self.labelPrefix = labelPrefix if labelList is None: self.labelList = range(8) else: self.labelList = list(reversed(labelList)) self.zeroLabel = zeroLabel self.oneLabel = oneLabel self.rawValue = 0 self.rawBits = [ 0 ] * 8 self.data = [ self.zeroLabel ] * 8 items = min(8, len(self.labelList)) for i in reversed(range(items)): self.labels.append("%s%s" % (self.labelPrefix, self.labelList[i])) if rawByte is not None: self.fromByte(rawByte) def fromByte(self, raw): """ Name: BitField.fromByte(raw) Args: raw, the raw byte to make the BitField. Desc: Takes a byte, and modifies self to match. >>> bf = BitField() >>> bf.fromByte(123) # Modifies bf in place >>> print bf [ bit7 = 0, bit6 = 1, bit5 = 1, bit4 = 1, bit3 = 1, bit2 = 0, bit1 = 1, bit0 = 1 ] """ self.rawValue = raw self.rawBits = [] self.data = [] items = min(8, len(self.labelList)) for i in reversed(range(items)): self.rawBits.append( ((raw >> (i)) & 1) ) self.data.append(self.oneLabel if bool(((raw >> (i)) & 1)) else self.zeroLabel) def asByte(self): """ Name: BitField.asByte() Args: None Desc: Returns the value of the bitfield as a byte. >>> bf = BitField() >>> bf.fromByte(123) # Modifies bf in place >>> bf.bit4 = 0 >>> print bf.asByte() 107 """ byteVal = 0 for i, v in enumerate(reversed(self.rawBits)): byteVal += ( 1 << i ) * v return byteVal def asBin(self): result = "0b" for i in self.rawBits: result += "%s" % i return result def __len__(self): return len(self.data) def __repr__(self): result = "[" for i in range(len(self.data)): result += " %s = %s (%s)," % (self.labels[i], self.data[i], self.rawBits[i]) result = result.rstrip(',') result += " ]" return "<BitField object: %s >" % result def __str__(self): result = "[" for i in range(len(self.data)): result += " %s = %s," % (self.labels[i], self.data[i]) result = result.rstrip(',') result += " ]" return result def __getattr__(self, label): try: i = self.labels.index(label) return self.rawBits[i] except ValueError: raise AttributeError(label) def __setattr__(self, label, value): try: i = self.labels.index(label) self.rawBits[i] = int(bool(value)) self.data[i] = self.oneLabel if bool(value) else self.zeroLabel except ValueError: self.__dict__[label] = value def __getitem__(self, key): return self.rawBits[key] def __setitem__(self, key, value): self.rawBits[key] = int(bool(value)) self.data[key] = self.oneLabel if bool(value) else self.zeroLabel def __iter__(self): return iter(self.rawBits) def items(self): """ Name: BitField.items() Args: None Desc: Returns a list of tuples where the first item is the label and the second is the string value, like "High" or "Input" >>> dirs = BitField(rawByte = 5, labelPrefix = "FIO", zeroLabel = "Output", oneLabel = "Input") >>> print dirs [ FIO7 = Output, FIO6 = Output, FIO5 = Output, FIO4 = Output, FIO3 = Output, FIO2 = Input, FIO1 = Output, FIO0 = Input ] >>> for label, data in dirs.items(): ... print label, data ... FIO7 Output FIO6 Output FIO5 Output FIO4 Output FIO3 Output FIO2 Input FIO1 Output FIO0 Input """ return zip(self.labels, self.data) def __int__(self): return self.asByte() def __hex__(self): return hex(self.asByte()) def __add__(self, other): """ A helper to prevent having to test if a variable is a bitfield or int. """ return other + self.asByte() def errcheck(ret, func, args): if ret == -1: try: ec = ctypes.get_errno() raise U12Exception("Exodriver returned error number %s" % ec) except AttributeError: raise U12Exception("Exodriver returned an error, but LabJackPython is unable to read the error code. Upgrade to Python 2.6 for this functionality.") else: return ret def _loadLinuxSo(): try: l = ctypes.CDLL("liblabjackusb.so", use_errno=True) except TypeError: l = ctypes.CDLL("liblabjackusb.so") l.LJUSB_Stream.errcheck = errcheck l.LJUSB_Read.errcheck = errcheck return l def _loadMacDylib(): try: l = ctypes.CDLL("liblabjackusb.dylib", use_errno=True) except TypeError: l = ctypes.CDLL("liblabjackusb.dylib") l.LJUSB_Stream.errcheck = errcheck l.LJUSB_Read.errcheck = errcheck return l staticLib = None if os.name == 'posix': try: staticLib = _loadLinuxSo() except OSError, e: pass # We may be on Mac. except Exception, e: raise U12Exception("Could not load the Linux SO for some reason other than it not being installed. Ethernet connectivity only.\n\n The error was: %s" % e) try: if staticLib is None: staticLib = _loadMacDylib() except OSError, e: raise U12Exception("Could not load the Exodriver driver. Ethernet connectivity only.\n\nCheck that the Exodriver is installed, and the permissions are set correctly.\nThe error message was: %s" % e) except Exception, e: raise U12Exception("Could not load the Mac Dylib for some reason other than it not being installed. Ethernet connectivity only.\n\n The error was: %s" % e) else: try: staticLib = ctypes.windll.LoadLibrary("ljackuw") except: raise Exception, "Could not load LabJack UW driver." class U12(object): """ U12 Class for all U12 specific commands. u12 = U12() """ def __init__(self, id = -1, serialNumber = None, debug = False): self.id = id self.serialNumber = serialNumber self.deviceName = "U12" self.streaming = False self.handle = None self.debug = debug self._autoCloseSetup = False if not ON_WINDOWS: # Save some variables to save state. self.pwmAVoltage = 0 self.pwmBVoltage = 0 self.open(id, serialNumber) def open(self, id = -1, serialNumber = None): """ Opens the U12. The Windows UW driver opens the device every time a function is called. The Exodriver, however, works like the UD family of devices and returns a handle. On Windows, this method does nothing. On Mac OS X and Linux, this method acquires a device handle and saves it to the U12 object. """ if ON_WINDOWS: pass else: if self.debug: print "open called" devType = ctypes.c_ulong(1) openDev = staticLib.LJUSB_OpenDevice openDev.restype = ctypes.c_void_p if serialNumber is not None: numDevices = staticLib.LJUSB_GetDevCount(devType) for i in range(numDevices): handle = openDev(i+1, 0, devType) if handle != 0 and handle is not None: self.handle = ctypes.c_void_p(handle) try: serial = self.rawReadSerial() except Exception: serial = self.rawReadSerial() if serial == int(serialNumber): break else: self.close() if self.handle is None: raise U12Exception("Couldn't find a U12 with a serial number matching %s" % serialNumber) elif id != -1: numDevices = staticLib.LJUSB_GetDevCount(devType) for i in range(numDevices): handle = openDev(i+1, 0, devType) if handle != 0 and handle is not None: self.handle = ctypes.c_void_p(handle) try: unitId = self.rawReadLocalId() except Exception: unitId = self.rawReadLocalId() if unitId == int(id): break else: self.close() if self.handle is None: raise U12Exception("Couldn't find a U12 with a local ID matching %s" % id) elif id == -1: handle = openDev(1, 0, devType) if handle == 0 or handle is None: raise Exception("Couldn't open a U12. Check that one is connected and try again.") else: self.handle = ctypes.c_void_p(handle) # U12 ignores first command, so let's write a command. command = [ 0 ] * 8 command[5] = 0x57 # 0b01010111 try: self.write(command) self.read() except: pass self.id = self.rawReadLocalId() else: raise Exception("Invalid combination of parameters.") if not self._autoCloseSetup: # Only need to register auto-close once per device. atexit.register(self.close) self._autoCloseSetup = True def close(self): if ON_WINDOWS: pass else: staticLib.LJUSB_CloseDevice(self.handle) self.handle = None def write(self, writeBuffer): if ON_WINDOWS: pass else: if self.handle is None: raise U12Exception("The U12's handle is None. Please open a U12 with open()") if self.debug: print "Writing:", hexWithoutQuotes(writeBuffer) newA = (ctypes.c_byte*len(writeBuffer))(0) for i in range(len(writeBuffer)): newA[i] = ctypes.c_byte(writeBuffer[i]) writeBytes = staticLib.LJUSB_Write(self.handle, ctypes.byref(newA), len(writeBuffer)) if(writeBytes != len(writeBuffer)): raise U12Exception( "Could only write %s of %s bytes." % (writeBytes, len(writeBuffer) ) ) return writeBuffer def read(self, numBytes = 8): if ON_WINDOWS: pass else: if self.handle is None: raise U12Exception("The U12's handle is None. Please open a U12 with open()") newA = (ctypes.c_byte*numBytes)() readBytes = staticLib.LJUSB_Read(self.handle, ctypes.byref(newA), numBytes) # return a list of integers in command/response mode result = [(newA[i] & 0xff) for i in range(readBytes)] if self.debug: print "Received:", hexWithoutQuotes(result) return result # Low-level helpers def rawReadSerial(self): """ Name: U12.rawReadSerial() Args: None Desc: Reads the serial number from internal memory. Returns: The U12's serial number as an integer. Example: >>> import u12 >>> d = u12.U12() >>> print d.rawReadSerial() 10004XXXX """ results = self.rawReadRAM() return struct.unpack(">I", struct.pack("BBBB", results['DataByte3'], results['DataByte2'], results['DataByte1'], results['DataByte0']))[0] def rawReadLocalId(self): """ Name: U12.rawReadLocalId() Args: None Desc: Reads the Local ID from internal memory. Returns: The U12's Local ID as an integer. Example: >>> import u12 >>> d = u12.U12() >>> print d.rawReadLocalId() 0 """ results = self.rawReadRAM(0x08) return results['DataByte0'] # Begin Section 5 Functions def rawAISample(self, channel0PGAMUX = 8, channel1PGAMUX = 9, channel2PGAMUX = 10, channel3PGAMUX = 11, UpdateIO = False, LEDState = True, IO3toIO0States = 0, EchoValue = 0): """ Name: U12.rawAISample(channel0PGAMUX = 8, channel1PGAMUX = 9, channel2PGAMUX = 10, channel3PGAMUX = 11, UpdateIO = False, LEDState = True, IO3toIO0States = 0, EchoValue = 0) Args: channel0PGAMUX, A byte that contains channel0 information channel1PGAMUX, A byte that contains channel1 information channel2PGAMUX, A byte that contains channel2 information channel3PGAMUX, A byte that contains channel3 information IO3toIO0States, A byte that represents the states of IO0 to IO3 UpdateIO, If true, set IO0 to IO 3 to match IO3toIO0States LEDState, Turns the status LED on or off. EchoValue, Sometimes, you want what you put in. Desc: Collects readings from 4 analog inputs. It can also toggle the status LED and update the state of the IOs. See Section 5.1 of the User's Guide. By default it will read AI0-3 (single-ended). Returns: A dictionary with the following keys: PGAOvervoltage, A bool representing if the U12 detected overvoltage IO3toIO0States, a BitField representing the state of IO0 to IO3 Channel0-3, the analog voltage for the channel EchoValue, a repeat of the value passed in. Example: >>> import u12 >>> d = u12.U12() >>> d.rawAISample() { 'IO3toIO0States': <BitField object: [ IO3 = Low (0), IO2 = Low (0), IO1 = Low (0), IO0 = Low (0) ] >, 'Channel0': 1.46484375, 'Channel1': 1.4501953125, 'Channel2': 1.4599609375, 'Channel3': 1.4306640625, 'PGAOvervoltage': False, 'EchoValue': 0 } """ command = [ 0 ] * 8 # Bits 6-4: PGA for 1st Channel # Bits 3-0: MUX command for 1st Channel command[0] = int(channel0PGAMUX) tempNum = command[0] & 7 # 7 = 0b111 channel0Number = tempNum if (command[0] & 0xf) > 7 else tempNum+8 channel0Gain = (command[0] >> 4) & 7 # 7 = 0b111 command[1] = int(channel1PGAMUX) tempNum = command[1] & 7 # 7 = 0b111 channel1Number = tempNum if (command[1] & 0xf) > 7 else tempNum+8 channel1Gain = (command[1] >> 4) & 7 # 7 = 0b111 command[2] = int(channel2PGAMUX) tempNum = command[2] & 7 # 7 = 0b111 channel2Number = tempNum if (command[2] & 0xf) > 7 else tempNum+8 channel2Gain = (command[2] >> 4) & 7 # 7 = 0b111 command[3] = int(channel3PGAMUX) tempNum = command[3] & 7 # 7 = 0b111 channel3Number = tempNum if (command[3] & 0xf) > 7 else tempNum+8 channel3Gain = (command[3] >> 4) & 7 # 7 = 0b111 # Bit 1: Update IO # Bit 0: LED State bf = BitField() bf.bit1 = int(UpdateIO) bf.bit0 = int(LEDState) command[4] = int(bf) # Bit 7-4: 1100 (Command/Response) # Bit 3-0: Bits for IO3 through IO0 States bf.fromByte(0) bf.bit7 = 1 bf.bit6 = 1 bf.fromByte( int(bf) | int(IO3toIO0States) ) command[5] = int(bf) command[7] = EchoValue self.write(command) results = self.read() bf = BitField() bf.fromByte(results[0]) if bf.bit7 != 1 or bf.bit6 != 0: raise U12Exception("Expected a AIStream response, got %s instead." % results[0]) returnDict = {} returnDict['EchoValue'] = results[1] returnDict['PGAOvervoltage'] = bool(bf.bit4) returnDict['IO3toIO0States'] = BitField(results[0], "IO", range(3, -1, -1), "Low", "High") channel0 = (results[2] >> 4) & 0xf channel1 = (results[2] & 0xf) channel2 = (results[5] >> 4) & 0xf channel3 = (results[5] & 0xf) channel0 = (channel0 << 8) + results[3] returnDict['Channel0'] = self.bitsToVolts(channel0Number, channel0Gain, channel0) channel1 = (channel1 << 8) + results[4] returnDict['Channel1'] = self.bitsToVolts(channel1Number, channel1Gain, channel1) channel2 = (channel2 << 8) + results[6] returnDict['Channel2'] = self.bitsToVolts(channel2Number, channel2Gain, channel2) channel3 = (channel3 << 8) + results[7] returnDict['Channel3'] = self.bitsToVolts(channel3Number, channel3Gain, channel3) return returnDict def rawDIO(self, D15toD8Directions = 0, D7toD0Directions = 0, D15toD8States = 0, D7toD0States = 0, IO3toIO0DirectionsAndStates = 0, UpdateDigital = False): """ Name: U12.rawDIO(D15toD8Directions = 0, D7toD0Directions = 0, D15toD8States = 0, D7toD0States = 0, IO3toIO0DirectionsAndStates = 0, UpdateDigital = 1) Args: D15toD8Directions, A byte where 0 = Output, 1 = Input for D15-8 D7toD0Directions, A byte where 0 = Output, 1 = Input for D7-0 D15toD8States, A byte where 0 = Low, 1 = High for D15-8 D7toD0States, A byte where 0 = Low, 1 = High for D7-0 IO3toIO0DirectionsAndStates, Bits 7-4: Direction, 3-0: State UpdateDigital, True if you want to update the IO/D line. False to False to just read their values. Desc: This commands reads the direction and state of all the digital I/O. See Section 5.2 of the U12 User's Guide. By default, it just reads the directions and states. Returns: A dictionary with the following keys: D15toD8Directions, a BitField representing the directions of D15-D8 D7toD0Directions, a BitField representing the directions of D7-D0. D15toD8States, a BitField representing the states of D15-D8. D7toD0States, a BitField representing the states of D7-D0. IO3toIO0States, a BitField representing the states of IO3-IO0. D15toD8OutputLatchStates, BitField of output latch states for D15-8 D7toD0OutputLatchStates, BitField of output latch states for D7-0 Example: >>> import u12 >>> d = u12.U12() >>> d.rawDIO() { 'D15toD8Directions': <BitField object: [ D15 = Input (1), D14 = Input (1), D13 = Input (1), D12 = Input (1), D11 = Input (1), D10 = Input (1), D9 = Input (1), D8 = Input (1) ] >, 'D7toD0Directions': <BitField object: [ D7 = Input (1), D6 = Input (1), D5 = Input (1), D4 = Input (1), D3 = Input (1), D2 = Input (1), D1 = Input (1), D0 = Input (1) ] >, 'D15toD8States': <BitField object: [ D15 = Low (0), D14 = Low (0), D13 = Low (0), D12 = Low (0), D11 = Low (0), D10 = Low (0), D9 = Low (0), D8 = Low (0) ] >, 'D7toD0States': <BitField object: [ D7 = Low (0), D6 = Low (0), D5 = Low (0), D4 = Low (0), D3 = Low (0), D2 = Low (0), D1 = Low (0), D0 = Low (0) ] >, 'IO3toIO0States': <BitField object: [ IO3 = Low (0), IO2 = Low (0), IO1 = Low (0), IO0 = Low (0) ] >, 'D15toD8OutputLatchStates': <BitField object: [ D15 = 0 (0), D14 = 0 (0), D13 = 0 (0), D12 = 0 (0), D11 = 0 (0), D10 = 0 (0), D9 = 0 (0), D8 = 0 (0) ] >, 'D7toD0OutputLatchStates': <BitField object: [ D7 = 0 (0), D6 = 0 (0), D5 = 0 (0), D4 = 0 (0), D3 = 0 (0), D2 = 0 (0), D1 = 0 (0), D0 = 0 (0) ] > } """ command = [ 0 ] * 8 # Bits for D15 through D8 Direction command[0] = int(D15toD8Directions) # Bits for D7 through D0 Direction ( 0 = Output, 1 = Input) command[1] = int(D7toD0Directions) # Bits for D15 through D8 State ( 0 = Low, 1 = High) command[2] = int(D15toD8States) # Bits for D7 through D0 State ( 0 = Low, 1 = High) command[3] = int(D7toD0States) # Bits 7-4: Bits for IO3 through IO0 Direction # Bits 3-0: Bits for IO3 through IO0 State command[4] = int(IO3toIO0DirectionsAndStates) # 01X10111 (DIO) command[5] = 0x57 # 0b01010111 # Bit 0: Update Digital command[6] = int(bool(UpdateDigital)) #XXXXXXXX # command[7] = XXXXXXXX self.write(command) results = self.read() returnDict = {} if results[0] != 87: raise U12Exception("Expected a DIO response, got %s instead." % results[0]) returnDict['D15toD8States'] = BitField(results[1], "D", range(15, 7, -1), "Low", "High") returnDict['D7toD0States'] = BitField(results[2], "D", range(7, -1, -1), "Low", "High") returnDict['D15toD8Directions'] = BitField(results[4], "D", range(15, 7, -1), "Output", "Input") returnDict['D7toD0Directions'] = BitField(results[5], "D", range(7, -1, -1), "Output", "Input") returnDict['D15toD8OutputLatchStates'] = BitField(results[6], "D", range(15, 7, -1)) returnDict['D7toD0OutputLatchStates'] = BitField(results[7], "D", range(7, -1, -1)) returnDict['IO3toIO0States'] = BitField((results[3] >> 4), "IO", range(3, -1, -1), "Low", "High") return returnDict def rawCounter(self, StrobeEnabled = False, ResetCounter = False): """ Name: U12.rawCounter(StrobeEnabled = False, ResetCounter = False) Args: StrobeEnable, set to True to enable strobe. ResetCounter, set to True to reset the counter AFTER reading. Desc: This command controls and reads the 32-bit counter. See Section 5.3 of the User's Guide. Returns: A dictionary with the following keys: D15toD8States, a BitField representing the states of D15-D8. D7toD0States, a BitField representing the states of D7-D0. IO3toIO0States, a BitField representing the states of IO3-IO0. Counter, the value of the counter Example: >>> import u12 >>> d = u12.U12() >>> d.rawCounter() { 'D15toD8States': <BitField object: [ D15 = Low (0), D14 = Low (0), D13 = Low (0), D12 = Low (0), D11 = Low (0), D10 = Low (0), D9 = Low (0), D8 = Low (0) ] >, 'D7toD0States': <BitField object: [ D7 = Low (0), D6 = Low (0), D5 = Low (0), D4 = Low (0), D3 = Low (0), D2 = Low (0), D1 = Low (0), D0 = Low (0) ] >, 'IO3toIO0States': <BitField object: [ IO3 = Low (0), IO2 = Low (0), IO1 = Low (0), IO0 = Low (0) ] >, 'Counter': 0 } """ command = [ 0 ] * 8 bf = BitField() bf.bit1 = int(StrobeEnabled) bf.bit0 = int(ResetCounter) command[0] = int(bf) bf.fromByte(0) bf.bit6 = 1 bf.bit4 = 1 bf.bit1 = 1 command[5] = int(bf) self.write(command) results = self.read() returnDict = {} if results[0] != command[5]: raise U12Exception("Expected a Counter response, got %s instead." % results[0]) returnDict['D15toD8States'] = BitField(results[1], "D", range(15, 7, -1), "Low", "High") returnDict['D7toD0States'] = BitField(results[2], "D", range(7, -1, -1), "Low", "High") returnDict['IO3toIO0States'] = BitField((results[3] >> 4), "IO", range(3, -1, -1), "Low", "High") counter = results[7] counter += results[6] << 8 counter += results[5] << 16 counter += results[4] << 24 returnDict['Counter'] = counter return returnDict def rawCounterPWMDIO(self, D15toD8Directions = 0, D7toD0Directions = 0, D15toD8States = 0, D7toD0States = 0, IO3toIO0DirectionsAndStates = 0, ResetCounter = False, UpdateDigital = 0, PWMA = 0, PWMB = 0): """ Name: U12.rawCounterPWMDIO( D15toD8Directions = 0, D7toD0Directions = 0, D15toD8States = 0, D7toD0States = 0, IO3toIO0DirectionsAndStates = 0, ResetCounter = False, UpdateDigital = 0, PWMA = 0, PWMB = 0) Args: D15toD8Directions, A byte where 0 = Output, 1 = Input for D15-8 D7toD0Directions, A byte where 0 = Output, 1 = Input for D7-0 D15toD8States, A byte where 0 = Low, 1 = High for D15-8 D7toD0States, A byte where 0 = Low, 1 = High for D7-0 IO3toIO0DirectionsAndStates, Bits 7-4: Direction, 3-0: State ResetCounter, If True, reset the counter after reading. UpdateDigital, True if you want to update the IO/D line. False to False to just read their values. PWMA, Voltage to set AO0 to output. PWMB, Voltage to set AO1 to output. Desc: This command controls all 20 digital I/O, and the 2 PWM outputs. The response provides the state of all I/O and the current count. See Section 5.4 of the User's Guide. By default, sets the AOs to 0 and reads the states and counters. Returns: A dictionary with the following keys: D15toD8States, a BitField representing the states of D15-D8. D7toD0States, a BitField representing the states of D7-D0. IO3toIO0States, a BitField representing the states of IO3-IO0. Counter, the value of the counter Example: >>> import u12 >>> d = u12.U12() >>> d.rawCounterPWMDIO() { 'D15toD8States': <BitField object: [ D15 = Low (0), D14 = Low (0), D13 = Low (0), D12 = Low (0), D11 = Low (0), D10 = Low (0), D9 = Low (0), D8 = Low (0) ] >, 'D7toD0States': <BitField object: [ D7 = Low (0), D6 = Low (0), D5 = Low (0), D4 = Low (0), D3 = Low (0), D2 = Low (0), D1 = Low (0), D0 = Low (0) ] >, 'IO3toIO0States': <BitField object: [ IO3 = Low (0), IO2 = Low (0), IO1 = Low (0), IO0 = Low (0) ] >, 'Counter': 0 } """ command = [ 0 ] * 8 # Bits for D15 through D8 Direction command[0] = int(D15toD8Directions) # Bits for D7 through D0 Direction ( 0 = Output, 1 = Input) command[1] = int(D7toD0Directions) # Bits for D15 through D8 State ( 0 = Low, 1 = High) command[2] = int(D15toD8States) # Bits for D7 through D0 State ( 0 = Low, 1 = High) command[3] = int(D7toD0States) # Bits 7-4: Bits for IO3 through IO0 Direction # Bits 3-0: Bits for IO3 through IO0 State command[4] = int(IO3toIO0DirectionsAndStates) bf = BitField() bf.bit5 = int(ResetCounter) bf.bit4 = int(UpdateDigital) binPWMA = int((1023 * (float(PWMA)/5.0))) binPWMB = int((1023 * (float(PWMB)/5.0))) bf2 = BitField() bf2.fromByte( binPWMA & 3 ) # 3 = 0b11 bf.bit3 = bf2.bit1 bf.bit2 = bf2.bit0 bf2.fromByte( binPWMB & 3 ) # 3 = 0b11 bf.bit1 = bf2.bit1 bf.bit0 = bf2.bit0 command[5] = int(bf) command[6] = (binPWMA >> 2) & 0xff command[7] = (binPWMB >> 2) & 0xff self.write(command) results = self.read() returnDict = {} returnDict['D15toD8States'] = BitField(results[1], "D", range(15, 7, -1), "Low", "High") returnDict['D7toD0States'] = BitField(results[2], "D", range(7, -1, -1), "Low", "High") returnDict['IO3toIO0States'] = BitField((results[3] >> 4), "IO", range(3, -1, -1), "Low", "High") counter = results[7] counter += results[6] << 8 counter += results[5] << 16 counter += results[4] << 24 returnDict['Counter'] = counter return returnDict def rawAIBurst(self, channel0PGAMUX = 8, channel1PGAMUX = 9, channel2PGAMUX = 10, channel3PGAMUX = 11, NumberOfScans = 8, TriggerIONum = 0, TriggerState = 0, UpdateIO = False, LEDState = True, IO3ToIO0States = 0, FeatureReports = False, TriggerOn = False, SampleInterval = 15000): """ Name: U12.rawAIBurst( channel0PGAMUX = 8, channel1PGAMUX = 9, channel2PGAMUX = 10, channel3PGAMUX = 11, NumberOfScans = 8, TriggerIONum = 0, TriggerState = 0, UpdateIO = False, LEDState = True, IO3ToIO0States = 0, FeatureReports = False, TriggerOn = False, SampleInterval = 15000 ) Args: channel0PGAMUX, A byte that contains channel0 information channel1PGAMUX, A byte that contains channel1 information channel2PGAMUX, A byte that contains channel2 information channel3PGAMUX, A byte that contains channel3 information NumberOfScans, The number of scans you wish to take. Rounded up to a power of 2. TriggerIONum, IO to trigger burst on. TriggerState, State to trigger on. UpdateIO, True if you want to update the IO/D line. False to False to just read their values. LEDState, Turns the status LED on or off. IO3ToIO0States, 4 bits for IO3-0 states FeatureReports, Use feature reports, or not. TriggerOn, Use trigger to start acquisition. SampleInterval, = int(6000000.0/(ScanRate * NumberOfChannels)) must be greater than (or equal to) 733. Desc: After receiving a AIBurst command, the LabJack collects 4 channels at the specified data rate, and puts data in the buffer. This continues until the buffer is full, at which time the LabJack starts sending the data to the host. Data is sent to the host 1 scan at a time while checking for a command from the host. If a command is received the burst operation is canceled and the command is executed normally. If the LED is enabled, it blinks at 4 Hz while waiting for a trigger, is off during acquisition, blinks at about 8 Hz during data delivery, and is set on when done or stopped. See Section 5.5 of the User's Guide. This function sends the AIBurst command, then reads all the responses. Separating the write and read is not currently supported (like in the UW driver). By default, it does single-ended readings on AI0-4 at 100Hz for 8 scans. Returns: A dictionary with the following keys: Channel0-3, A list of the readings on the channels PGAOvervoltages, A list of the over-voltage flags IO3toIO0State, A list of the IO states IterationCounters, A list of the values of the iteration counter Backlogs, value*256 = number of packets in the backlog. BufferOverflowOrChecksumErrors, If True and Backlog = 31, then a buffer overflow occurred. If True and Backlog = 0, then Checksum error occurred. Example: >>> import u12 >>> d = u12.U12() >>> d.rawAIBurst() { 'Channel0': [1.484375, 1.513671875, ... , 1.46484375], 'Channel1': [1.455078125, 1.455078125, ... , 1.455078125], 'Channel2': [1.46484375, 1.474609375, ... , 1.46484375], 'Channel3': [1.435546875, 1.42578125, ... , 1.435546875], 'PGAOvervoltages': [False, False, ..., False], 'IO3toIO0States': [<BitField object: [ IO3 = Low (0), IO2 = Low (0), IO1 = Low (0), IO0 = Low (0) ] >, ... ], 'IterationCounters': [0, 1, 2, 3, 4, 5, 6, 0], 'Backlogs': [0, 0, 0, 0, 0, 0, 0, 0], 'BufferOverflowOrChecksumErrors': [False, False, ... , False] } """ command = [ 0 ] * 8 # Bits 6-4: PGA for 1st Channel # Bits 3-0: MUX command for 1st Channel command[0] = int(channel0PGAMUX) tempNum = command[0] & 7 # 7 = 0b111 channel0Number = tempNum if (command[0] & 0xf) > 7 else tempNum+8 channel0Gain = (command[0] >> 4) & 7 # 7 = 0b111 command[1] = int(channel1PGAMUX) tempNum = command[1] & 7 # 7 = 0b111 channel1Number = tempNum if (command[1] & 0xf) > 7 else tempNum+8 channel1Gain = (command[1] >> 4) & 7 # 7 = 0b111 command[2] = int(channel2PGAMUX) tempNum = command[2] & 7 # 7 = 0b111 channel2Number = tempNum if (command[2] & 0xf) > 7 else tempNum+8 channel2Gain = (command[2] >> 4) & 7 # 7 = 0b111 command[3] = int(channel3PGAMUX) tempNum = command[3] & 7 # 7 = 0b111 channel3Number = tempNum if (command[3] & 0xf) > 7 else tempNum+8 channel3Gain = (command[3] >> 4) & 7 # 7 = 0b111 if NumberOfScans > 1024 or NumberOfScans < 8: raise U12Exception("The number of scans must be between 1024 and 8 (inclusive)") NumScansExponentMod = 10 - int(math.ceil(math.log(NumberOfScans, 2))) NumScans = 2 ** (10 - NumScansExponentMod) bf = BitField( rawByte = (NumScansExponentMod << 5) ) # bits 4-3: IO to Trigger on bf.bit2 = 0 bf.bit1 = int(bool(UpdateIO)) bf.bit0 = int(bool(LEDState)) command[4] = int(bf) bf2 = BitField(rawByte = int(IO3ToIO0States)) #Bits 7-4: 1010 (Start Burst) bf2.bit7 = 1 bf2.bit5 = 1 command[5] = int(bf2) if SampleInterval < 733: raise U12Exception("SampleInterval must be greater than 733.") bf3 = BitField( rawByte = ((SampleInterval >> 8) & 0xf) ) bf3.bit7 = int(bool(FeatureReports)) bf3.bit6 = int(bool(TriggerOn)) command[6] = int(bf3) command[7] = SampleInterval & 0xff self.write(command) resultsList = [] for i in range(NumScans): resultsList.append(self.read()) returnDict = {} returnDict['BufferOverflowOrChecksumErrors'] = list() returnDict['PGAOvervoltages'] = list() returnDict['IO3toIO0States'] = list() returnDict['IterationCounters'] = list() returnDict['Backlogs'] = list() returnDict['Channel0'] = list() returnDict['Channel1'] = list() returnDict['Channel2'] = list() returnDict['Channel3'] = list() for results in resultsList: bf = BitField(rawByte = results[0]) if bf.bit7 != 1 or bf.bit6 != 0: raise U12Exception("Expected a AIBurst response, got %s instead." % results[0]) returnDict['BufferOverflowOrChecksumErrors'].append(bool(bf.bit5)) returnDict['PGAOvervoltages'].append(bool(bf.bit4)) returnDict['IO3toIO0States'].append(BitField(results[0], "IO", range(3, -1, -1), "Low", "High")) returnDict['IterationCounters'].append((results[1] >> 5)) returnDict['Backlogs'].append(results[1] & 0xf) channel0 = (results[2] >> 4) & 0xf channel1 = (results[2] & 0xf) channel2 = (results[5] >> 4) & 0xf channel3 = (results[5] & 0xf) channel0 = (channel0 << 8) + results[3] returnDict['Channel0'].append(self.bitsToVolts(channel0Number, channel0Gain, channel0)) channel1 = (channel1 << 8) + results[4] returnDict['Channel1'].append(self.bitsToVolts(channel1Number, channel1Gain, channel1)) channel2 = (channel2 << 8) + results[6] returnDict['Channel2'].append(self.bitsToVolts(channel2Number, channel2Gain, channel2)) channel3 = (channel3 << 8) + results[7] returnDict['Channel3'].append(self.bitsToVolts(channel3Number, channel3Gain, channel3)) return returnDict def rawAIContinuous(self, channel0PGAMUX = 8, channel1PGAMUX = 9, channel2PGAMUX = 10, channel3PGAMUX = 11, FeatureReports = False, CounterRead = False, UpdateIO = False, LEDState = True, IO3ToIO0States = 0, SampleInterval = 15000): """ Currently in development. The function is mostly implemented, but is currently too slow to be useful. """ command = [ 0 ] * 8 # Bits 6-4: PGA for 1st Channel # Bits 3-0: MUX command for 1st Channel command[0] = int(channel0PGAMUX) tempNum = command[0] & 7 # 7 = 0b111 channel0Number = tempNum if (command[0] & 0xf) > 7 else tempNum+8 channel0Gain = (command[0] >> 4) & 7 # 7 = 0b111 command[1] = int(channel1PGAMUX) tempNum = command[1] & 7 # 7 = 0b111 channel1Number = tempNum if (command[1] & 0xf) > 7 else tempNum+8 channel1Gain = (command[1] >> 4) & 7 # 7 = 0b111 command[2] = int(channel2PGAMUX) tempNum = command[2] & 7 # 7 = 0b111 channel2Number = tempNum if (command[2] & 0xf) > 7 else tempNum+8 channel2Gain = (command[2] >> 4) & 7 # 7 = 0b111 command[3] = int(channel3PGAMUX) tempNum = command[3] & 7 # 7 = 0b111 channel3Number = tempNum if (command[3] & 0xf) > 7 else tempNum+8 channel3Gain = (command[3] >> 4) & 7 # 7 = 0b111 bf = BitField() bf.bit7 = int(bool(FeatureReports)) bf.bit6 = int(bool(CounterRead)) bf.bit1 = int(bool(UpdateIO)) bf.bit0 = int(bool(LEDState)) command[4] = int(bf) # Bits 7-4: 1001 (Start Continuous) bf2 = BitField( rawByte = int(IO3ToIO0States) ) bf2.bit7 = 1 bf2.bit4 = 1 command[5] = int(bf2) command[6] = ( SampleInterval >> 8) command[7] = SampleInterval & 0xff byte0bf = BitField() returnDict = dict() self.write(command) while True: results = self.read() byte0bf.fromByte(results[0]) returnDict['Byte0'] = byte0bf returnDict['IterationCounter'] = (results[1] >> 5) returnDict['Backlog'] = results[1] & 0xf yield returnDict def rawPulseout(self, B1 = 10, C1 = 2, B2 = 10, C2 = 2, D7ToD0PulseSelection = 1, ClearFirst = False, NumberOfPulses = 5): """ Name: U12.rawPulseout( B1 = 10, C1 = 2, B2 = 10, C2 = 2, D7ToD0PulseSelection = 1, ClearFirst = False, NumberOfPulses = 5) Args: B1, the B component of the first half cycle C1, the C component of the first half cycle B2, the B component of the second half cycle C2, the C component of the second half cycle D7ToD0PulseSelection, which D lines to pulse. ClearFirst, True = Start Low. NumberOfPulses, the number of pulses Desc: This command creates pulses on any, or all, of D0-D7. The desired D lines must be set to output with some other function. See Section 5.7 of the User's Guide. By default, pulses D0 5 times at 400us high, then 400 us low. Returns: None Example: Have a jumper wire connected from D0 to CNT. >>> import u12 >>> d = u12.U12() >>> d.rawDIO(D7toD0Directions = 0, UpdateDigital = True) >>> d.rawCounter(ResetCounter = True) >>> d.rawPulseout(ClearFirst = True) >>> print d.rawCounter() { 'IO3toIO0States': ... , 'Counter': 5, 'D7toD0States': ... , 'D15toD8States': ... } """ command = [ 0 ] * 8 command[0] = B1 command[1] = C1 command[2] = B2 command[3] = C2 command[4] = int(D7ToD0PulseSelection) # 01100100 (Pulseout) bf = BitField() bf.bit6 = 1 bf.bit5 = 1 bf.bit2 = 1 command[5] = int(bf) bf2 = BitField( rawByte = ( NumberOfPulses >> 8 ) ) bf2.bit7 = int(bool(ClearFirst)) command[6] = int(bf2) command[7] = NumberOfPulses & 0xff self.write(command) results = self.read() if command[5] != results[5]: raise U12Exception("Expected Pulseout response, got %s instead." % results[5]) if results[4] != 0: errors = BitField(rawByte = command[4], labelPrefix = "D", zeroLabel = "Ok", oneLabel = "Error") raise U12Exception("D7-D0 Direction error detected: %s" % errors) return None def rawReset(self): """ Name: U12.rawReset() Desc: Sits in an infinite loop until micro watchdog timeout after about 2 seconds. See Section 5.8 of the User's Guide. Note: The function will close the device after it has written the command. Returns: None Example: >>> import u12 >>> d = u12.U12() >>> d.rawReset() """ command = [ 0 ] * 8 # 0b01011111 ( Reset ) bf = BitField() bf.bit6 = 1 bf.bit4 = 1 bf.bit3 = 1 bf.bit2 = 1 bf.bit1 = 1 bf.bit0 = 1 command[5] = int(bf) self.write(command) self.close() def rawReenumerate(self): """ Name: U12.rawReenumerate() Desc: Detaches from the USB, reloads config parameters, and then reattaches so the device can be re-enumerated. See Section 5.9 of the User's Guide. Note: The function will close the device after it has written the command. Returns: None Example: >>> import u12 >>> d = u12.U12() >>> d.rawReenumerate() """ command = [ 0 ] * 8 # 0b01000000 (Re-Enumerate) bf = BitField() bf.bit6 = 1 command[5] = int(bf) self.write(command) self.close() def rawWatchdog(self, IgnoreCommands = False, D0Active = False, D0State = False, D1Active = False, D1State = False, D8Active = False, D8State = False, ResetOnTimeout = False, WatchdogActive = False, Timeout = 60): """ Name: U12.rawWatchdog( IgnoreCommands = False, D0Active = False, D0State = False, D1Active = False, D1State = False, D8Active = False, D8State = False, ResetOnTimeout = False, WatchdogActive = False, Timeout = 60) Desc: Sets the settings for the watchdog, or just reads the firmware version of the U12. See section 5.10 of the User's Guide. By defaults, just reads the firmware version. Returns: A dictionary with the following keys: FirmwareVersion, the firmware version of the U12. Example: >>> import u12 >>> d = u12.U12() >>> print d.rawWatchdog() {'FirmwareVersion': '1.10'} """ command = [ 0 ] * 8 command[0] = int(bool(IgnoreCommands)) bf = BitField() bf.bit7 = int(D0Active) bf.bit6 = int(D0State) bf.bit5 = int(D1Active) bf.bit4 = int(D1State) bf.bit3 = int(D8Active) bf.bit2 = int(D8State) bf.bit1 = int(ResetOnTimeout) bf.bit0 = int(WatchdogActive) command[4] = int(bf) # 01X1X011 (Watchdog) bf2 = BitField() bf2.bit6 = 1 bf2.bit4 = 1 bf2.bit1 = 1 bf2.bit0 = 1 command[5] = int(bf2) # Timeout is increments of 2^16 cycles. # 2^16 cycles is about 0.01 seconds. binTimeout = int((float(Timeout) / 0.01)) command[6] = ( binTimeout >> 8 ) & 0xff command[7] = binTimeout & 0xff self.write(command) results = self.read() returnDict = dict() returnDict['FirmwareVersion'] = "%s.%.2d" % (results[0], results[1]) return returnDict def rawReadRAM(self, Address = 0): """ Name: U12.rawReadRAM(Address = 0) Args: Address, the starting address to read from Desc: Reads 4 bytes out of the U12's internal memory. See section 5.11 of the User's Guide. By default, reads the bytes that make up the serial number. Returns: A dictionary with the following keys: DataByte0, the data byte at Address - 0 DataByte1, the data byte at Address - 1 DataByte2, the data byte at Address - 2 DataByte3, the data byte at Address - 3 Example: >>> import u12, struct >>> d = u12.U12() >>> r = d.rawReadRAM() >>> print r {'DataByte3': 5, 'DataByte2': 246, 'DataByte1': 139, 'DataByte0': 170} >>> bytes = [ r['DataByte3'], r['DataByte2'], r['DataByte1'], r['DataByte0'] ] >>> print struct.unpack(">I", struct.pack("BBBB", *bytes))[0] 100043690 """ command = [ 0 ] * 8 # 01010000 (Read RAM) bf = BitField() bf.bit6 = 1 bf.bit4 = 1 command[5] = int(bf) command[6] = (Address >> 8) & 0xff command[7] = Address & 0xff self.write(command) results = self.read() if results[0] != int(bf): raise U12Exception("Expected ReadRAM response, got %s" % results[0]) if (results[6] != command[6]) or (results[7] != command[7]): receivedAddress = (results[6] << 8) + results[7] raise U12Exception("Wanted address %s got address %s" % (Address, receivedAddress)) returnDict = dict() returnDict['DataByte3'] = results[1] returnDict['DataByte2'] = results[2] returnDict['DataByte1'] = results[3] returnDict['DataByte0'] = results[4] return returnDict def rawWriteRAM(self, Data, Address): """ Name: U12.rawWriteRAM(Data, Address) Args: Data, a list of 4 bytes to write to memory. Address, the starting address to write to. Desc: Writes 4 bytes to the U12's internal memory. See section 5.13 of the User's Guide. No default behavior, you must pass Data and Address. Returns: A dictionary with the following keys: DataByte0, the data byte at Address - 0 DataByte1, the data byte at Address - 1 DataByte2, the data byte at Address - 2 DataByte3, the data byte at Address - 3 Example: >>> import u12 >>> d = u12.U12() >>> print d.rawWriteRAM([1, 2, 3, 4], 0x200) {'DataByte3': 4, 'DataByte2': 3, 'DataByte1': 2, 'DataByte0': 1} """ command = [ 0 ] * 8 if not isinstance(Data, list) or len(Data) > 4: raise U12Exception("Data wasn't a list, or was too long.") Data.reverse() command[:len(Data)] = Data # 01010001 (Write RAM) bf = BitField() bf.bit6 = 1 bf.bit4 = 1 bf.bit0 = 1 command[5] = int(bf) command[6] = (Address >> 8) & 0xff command[7] = Address & 0xff self.write(command) results = self.read() if results[0] != int(bf): raise U12Exception("Expected ReadRAM response, got %s" % results[0]) if (results[6] != command[6]) or (results[7] != command[7]): receivedAddress = (results[6] << 8) + results[7] raise U12Exception("Wanted address %s got address %s" % (Address, receivedAddress)) returnDict = dict() returnDict['DataByte3'] = results[1] returnDict['DataByte2'] = results[2] returnDict['DataByte1'] = results[3] returnDict['DataByte0'] = results[4] return returnDict def rawAsynch(self, Data, AddDelay = False, TimeoutActive = False, SetTransmitEnable = False, PortB = False, NumberOfBytesToWrite = 0, NumberOfBytesToRead = 0): """ Name: U12.rawAsynch(Data, AddDelay = False, TimeoutActive = False, SetTransmitEnable = False, PortB = False, NumberOfBytesToWrite = 0, NumberOfBytesToRead = 0) Args: Data, A list of bytes to write. AddDelay, True to add a 1 bit delay between each transmit byte. TimeoutActive, True to enable timeout for the receive phase. SetTransmitEnable, True to set Transmit Enable to high during transmit and low during receive. PortB, True to use PortB instead of PortA. NumberOfBytesToWrite, Number of bytes to write. NumberOfBytesToRead, Number of bytes to read. Desc: Requires firmware V1.1 or higher. This function writes and then reads half-duplex asynchronous data on 1 of two pairs of D lines. See section 5.13 of the User's Guide. Returns: A dictionary with the following keys, DataByte0-3, the first four data bytes read over the RX line ErrorFlags, a BitField representing the error flags. Example: >>> import u12 >>> d = u12.U12() >>> # Set the full and half A,B,C to 9600 >>> d.rawWriteRAM([0, 1, 1, 200], 0x073) >>> d.rawWriteRAM([5, 1, 2, 48], 0x076) >>> print d.rawAsynch([1, 2, 3, 4], NumberOfBytesToWrite = 4, NumberOfBytesToRead = 4) { 'DataByte3': 4, 'DataByte2': 3, 'DataByte1': 2, 'DataByte0': 1, 'ErrorFlags': <BitField object: [ Timeout Error Flag = 0 (0), ... ] > } """ command = [ 0 ] * 8 if not isinstance(Data, list) or len(Data) > 4: raise U12Exception("Data wasn't a list, or was too long.") NumberOfBytesToWrite = NumberOfBytesToRead & 0xff NumberOfBytesToRead = NumberOfBytesToRead & 0xff if NumberOfBytesToWrite > 18: raise U12Exception("Can only write 18 or fewer bytes at a time.") if NumberOfBytesToRead > 18: raise U12Exception("Can only read 18 or fewer bytes at a time.") Data.reverse() command[:len(Data)] = Data bf = BitField() bf.bit3 = int(bool(AddDelay)) bf.bit2 = int(bool(TimeoutActive)) bf.bit1 = int(bool(SetTransmitEnable)) bf.bit0 = int(bool(PortB)) command[4] = int(bf) #01100001 (Asynch) bf2 = BitField() bf2.bit6 = 1 bf2.bit5 = 1 bf2.bit0 = 1 command[5] = int(bf2) command[6] = NumberOfBytesToWrite command[7] = NumberOfBytesToRead self.write(command) results = self.read() if command[5] != results[5]: raise U12Exception("Expected Asynch response, got %s instead." % results[5]) returnDict = dict() returnDict['DataByte3'] = results[0] returnDict['DataByte2'] = results[1] returnDict['DataByte1'] = results[2] returnDict['DataByte0'] = results[3] bfLabels = ["Timeout Error Flag", "STRT Error Flag", "FRM Error Flag", "RXTris Error Flag", "TETris Error Flag", "TXTris Error Flag"] bf = BitField( rawByte = results[4], labelPrefix = "", labelList = bfLabels ) returnDict["ErrorFlags"] = bf return returnDict SPIModes = ['A', 'B', 'C', 'D'] def rawSPI(self, Data, AddMsDelay = False, AddHundredUsDelay = False, SPIMode = 'A', NumberOfBytesToWriteRead = 0, ControlCS = False, StateOfActiveCS = False, CSLineNumber = 0): """ Name: U12.rawSPI( Data, AddMsDelay = False, AddHundredUsDelay = False, SPIMode = 'A', NumberOfBytesToWriteRead = 0, ControlCS = False, StateOfActiveCS = False, CSLineNumber = 0) Args: Data, A list of four bytes to write using SPI AddMsDelay, If True, a 1 ms delay is added between each bit AddHundredUsDelay, if True, 100us delay is added SPIMode, 'A', 'B', 'C', or 'D' NumberOfBytesToWriteRead, number of bytes to write and read. ControlCS, D0-D7 is automatically controlled as CS. The state and direction of CS is only tested if control is enabled. StateOfActiveCS, Active state for CS line. CSLineNumber, D line to use as CS if enabled (0-7). Desc: This function performs SPI communication. See Section 5.14 of the User's Guide. Returns: A dictionary with the following keys, DataByte0-3, the first four data bytes read ErrorFlags, a BitField representing the error flags. Example: >>> import u12 >>> d = u12.U12() >>> d.rawSPI([1,2,3,4], NumberOfBytesToWriteRead = 4) { 'DataByte3': 4, 'DataByte2': 3, 'DataByte1': 2, 'DataByte0': 1, 'ErrorFlags': <BitField object: [ CSStateTris Error Flag = 0 (0), ... ] > } """ command = [ 0 ] * 8 if not isinstance(Data, list) or len(Data) > 4: raise U12Exception("Data wasn't a list, or was too long.") NumberOfBytesToWriteRead = NumberOfBytesToWriteRead & 0xff if NumberOfBytesToWriteRead == 0: NumberOfBytesToWriteRead = len(Data) if NumberOfBytesToWriteRead > 18 or NumberOfBytesToWriteRead < 1: raise U12Exception("Can only read/write 1 to 18 bytes at a time.") Data.reverse() command[:len(Data)] = Data bf = BitField() bf.bit7 = int(bool(AddMsDelay)) bf.bit6 = int(bool(AddHundredUsDelay)) modeIndex = self.SPIModes.index(SPIMode) bf[7-modeIndex] = 1 command[4] = int(bf) # 01100010 (SPI) bf2 = BitField() bf2.bit6 = 1 bf2.bit5 = 1 bf2.bit1 = 1 command[5] = int(bf2) command[6] = NumberOfBytesToWriteRead bf3 = BitField(rawByte = CSLineNumber) bf3.bit7 = int(bool(ControlCS)) bf3.bit6 = int(bool(StateOfActiveCS)) command[7] = int(bf3) self.write(command) results = self.read() if results[5] != command[5]: raise U12Exception("Expected SPI response, got %s instead." % results[5]) returnDict = dict() returnDict['DataByte3'] = results[0] returnDict['DataByte2'] = results[1] returnDict['DataByte1'] = results[2] returnDict['DataByte0'] = results[3] bfLabels = ["CSStateTris Error Flag", "SCKTris Error Flag", "MISOTris Error Flag", "MOSITris Error Flag"] bf = BitField( rawByte = results[4], labelPrefix = "", labelList = bfLabels ) returnDict["ErrorFlags"] = bf return returnDict def rawSHT1X(self, Data = [3,0,0,0], WaitForMeasurementReady = True, IssueSerialReset = False, Add1MsDelay = False, Add300UsDelay = False, IO3State = 1, IO2State = 1, IO3Direction = 1, IO2Direction = 1, NumberOfBytesToWrite = 1, NumberOfBytesToRead = 3): """ Name: U12.rawSHT1X( Data = [3, 0, 0, 0], WaitForMeasurementReady = True, IssueSerialReset = False, Add1MsDelay = False, Add300UsDelay = False, IO3State = 1, IO2State = 1, IO3Direction = 1, IO2Direction = 1, NumberOfBytesToWrite = 1, NumberOfBytesToRead = 3) Args: Data, a list of bytes to write to the SHT. WaitForMeasurementReady, Wait for the measurement ready signal. IssueSerialReset, perform a serial reset Add1MsDelay, adds 1ms delay Add300UsDelay, adds a 300us delay IO3State, sets the state of IO3 IO2State, sets the state of IO2 IO3Direction, sets the direction of IO3 ( 1 = Output ) IO2Direction, sets the direction of IO3 ( 1 = Output ) NumberOfBytesToWrite, how many bytes to write NumberOfBytesToRead, how may bytes to read back Desc: Sends and receives data from a SHT1X T/RH sensor from Sensirion. See Section 5.15 of the User's Guide. By default, reads the temperature from the SHT. Returns: A dictionary with the following keys, DataByte0-3, the four data bytes read ErrorFlags, a BitField representing the error flags. Example: Uses an EI-1050 Temp/Humidity probe wired as follows: Data ( Green ) -> IO0 Clock ( White ) -> IO1 Ground ( Black ) -> GND Power ( Red ) -> +5V Enable ( Brown ) -> IO2 >>> import u12 >>> d = u12.U12() >>> results = d.rawSHT1X() >>> print results { 'DataByte3': 0, 'DataByte2': 69, 'DataByte1': 48, 'DataByte0': 25, 'ErrorFlags': <BitField object: [ Serial Reset Error Flag = 0 (0), ... ] > } >>> tempC = (results['DataByte0'] * 256 ) + results['DataByte1'] >>> tempC = (tempC * 0.01) - 40 >>> print tempC 24.48 >>> results = d.rawSHT1X(Data = [5,0,0,0]) >>> print results { 'DataByte3': 0, 'DataByte2': 200, 'DataByte1': 90, 'DataByte0': 2, 'ErrorFlags': <BitField object: [ Serial Reset Error Flag = 0 (0), ... ] > } >>> sorh = (results['DataByte0'] * 256 ) + results['DataByte1'] >>> rhlinear = (-0.0000028*sorh*sorh)+(0.0405*sorh)-4.0 >>> rh = ((tempC-25.0)*(0.01+(0.00008*sorh)))+rhlinear >>> print rh 19.3360256 """ command = [ 0 ] * 8 if NumberOfBytesToWrite != 0: if not isinstance(Data, list) or len(Data) > 4: raise U12Exception("Data wasn't a list, or was too long.") Data.reverse() command[:len(Data)] = Data if max(NumberOfBytesToWrite, NumberOfBytesToRead) > 4: raise U12Exception("Can only read/write up to 4 bytes at a time.") bf = BitField() bf.bit7 = int(bool(WaitForMeasurementReady)) bf.bit6 = int(bool(IssueSerialReset)) bf.bit5 = int(bool(Add1MsDelay)) bf.bit4 = int(bool(Add300UsDelay)) bf.bit3 = int(bool(IO3State)) bf.bit2 = int(bool(IO2State)) bf.bit1 = int(bool(IO3Direction)) bf.bit0 = int(bool(IO2Direction)) command[4] = int(bf) # 01101000 (SHT1X) bf2 = BitField() bf2.bit6 = 1 bf2.bit5 = 1 bf2.bit3 = 1 command[5] = int(bf2) command[6] = NumberOfBytesToWrite command[7] = NumberOfBytesToRead self.write(command) results = self.read() if results[5] != command[5]: raise U12Exception("Expected SHT1x response, got %s instead." % results[5]) returnDict = dict() returnDict['DataByte3'] = results[0] returnDict['DataByte2'] = results[1] returnDict['DataByte1'] = results[2] returnDict['DataByte0'] = results[3] bfLabels = ["Serial Reset Error Flag", "Measurement Ready Error Flag", "Ack Error Flag"] bf = BitField( rawByte = results[4], labelPrefix = "", labelList = bfLabels ) returnDict["ErrorFlags"] = bf return returnDict def eAnalogIn(self, channel, idNum = None, demo=0, gain=0): """ Name: U12.eAnalogIn(channel, idNum = None, demo=0, gain=0) Args: See section 4.1 of the User's Guide Desc: This is a simplified version of AISample. Reads the voltage from 1 analog input >>> import u12 >>> d = u12.U12() >>> d.eAnalogIn(0) {'overVoltage': 0, 'idnum': 1, 'voltage': 1.435546875} """ if idNum is None: idNum = self.id if ON_WINDOWS: ljid = ctypes.c_long(idNum) ad0 = ctypes.c_long(999) ad1 = ctypes.c_float(999) ecode = staticLib.EAnalogIn(ctypes.byref(ljid), demo, channel, gain, ctypes.byref(ad0), ctypes.byref(ad1)) if ecode != 0: raise U12Exception(ecode) return {"idnum":ljid.value, "overVoltage":ad0.value, "voltage":ad1.value} else: # Bits 6-4: PGA for 1st Channel # Bits 3-0: MUX command for 1st Channel channel0PGAMUX = ( ( gain & 7 ) << 4) channel0PGAMUX += channel-8 if channel > 7 else channel+8 results = self.rawAISample(channel0PGAMUX = channel0PGAMUX) return {"idnum" : self.id, "overVoltage" : int(results['PGAOvervoltage']), 'voltage' : results['Channel0']} def eAnalogOut(self, analogOut0, analogOut1, idNum = None, demo=0): """ Name: U12.eAnalogOut(analogOut0, analogOut1, idNum = None, demo=0) Args: See section 4.2 of the User's Guide Desc: This is a simplified version of AOUpdate. Sets the voltage of both analog outputs. >>> import u12 >>> d = u12.U12() >>> d.eAnalogOut(2, 2) {'idnum': 1} """ if idNum is None: idNum = self.id if ON_WINDOWS: ljid = ctypes.c_long(idNum) ecode = staticLib.EAnalogOut(ctypes.byref(ljid), demo, ctypes.c_float(analogOut0), ctypes.c_float(analogOut1)) if ecode != 0: raise U12Exception(ecode) return {"idnum":ljid.value} else: if analogOut0 < 0: analogOut0 = self.pwmAVoltage if analogOut1 < 0: analogOut1 = self.pwmBVoltage self.rawCounterPWMDIO(PWMA = analogOut0, PWMB = analogOut1) self.pwmAVoltage = analogOut0 self.pwmBVoltage = analogOut1 return {"idnum": self.id} def eCount(self, idNum = None, demo = 0, resetCounter = 0): """ Name: U12.eCount(idNum = None, demo = 0, resetCounter = 0) Args: See section 4.3 of the User's Guide Desc: This is a simplified version of Counter. Reads & resets the counter (CNT). >>> import u12 >>> d = u12.U12() >>> d.eCount() {'count': 1383596032.0, 'ms': 251487257.0} """ # Check id num if idNum is None: idNum = self.id if ON_WINDOWS: ljid = ctypes.c_long(idNum) count = ctypes.c_double() ms = ctypes.c_double() ecode = staticLib.ECount(ctypes.byref(ljid), demo, resetCounter, ctypes.byref(count), ctypes.byref(ms)) if ecode != 0: raise U12Exception(ecode) return {"idnum":ljid.value, "count":count.value, "ms":ms.value} else: results = self.rawCounter( ResetCounter = resetCounter) return {"idnum":self.id, "count":results['Counter'], "ms": (time() * 1000)} def eDigitalIn(self, channel, idNum = None, demo = 0, readD=0): """ Name: U12.eDigitalIn(channel, idNum = None, demo = 0, readD=0) Args: See section 4.4 of the User's Guide Desc: This is a simplified version of DigitalIO that reads the state of one digital input. Also configures the requested pin to input and leaves it that way. >>> import u12 >>> d = u12.U12() >>> d.eDigitalIn(0) {'state': 0, 'idnum': 1} """ # Check id num if idNum is None: idNum = self.id if ON_WINDOWS: ljid = ctypes.c_long(idNum) state = ctypes.c_long(999) ecode = staticLib.EDigitalIn(ctypes.byref(ljid), demo, channel, readD, ctypes.byref(state)) if ecode != 0: raise U12Exception(ecode) return {"idnum":ljid.value, "state":state.value} else: oldstate = self.rawDIO() if readD: if channel > 7: channel = channel-7 direction = BitField(rawByte = oldstate['D15toD8Directions']) direction[7-channel] = 1 results = self.rawDIO(D15toD8Directions = direction, UpdateDigital = True) state = results["D15toD8States"][7-channel] else: direction = BitField(rawByte = oldstate['D7toD0Directions']) direction[7-channel] = 1 results = self.rawDIO(D7ToD0Directions = direction, UpdateDigital = True) state = results["D15toD8States"][7-channel] else: results = self.rawDIO(IO3toIO0DirectionsAndStates = 255, UpdateDigital = True) state = results["IO3toIO0States"][3-channel] return {"idnum" : self.id, "state" : state} def eDigitalOut(self, channel, state, idNum = None, demo = 0, writeD=0): """ Name: U12.eDigitalOut(channel, state, idNum = None, demo = 0, writeD=0) Args: See section 4.5 of the User's Guide Desc: This is a simplified version of DigitalIO that sets/clears the state of one digital output. Also configures the requested pin to output and leaves it that way. >>> import u12 >>> d = u12.U12() >>> d.eDigitalOut(0, 1) {idnum': 1} """ # Check id num if idNum is None: idNum = self.id if ON_WINDOWS: ljid = ctypes.c_long(idNum) ecode = staticLib.EDigitalOut(ctypes.byref(ljid), demo, channel, writeD, state) if ecode != 0: raise U12Exception(ecode) return {"idnum":ljid.value} else: oldstate = self.rawDIO() if writeD: if channel > 7: channel = channel-7 direction = BitField(rawByte = int(oldstate['D15toD8Directions'])) direction[7-channel] = 0 states = BitField(rawByte = int(oldstate['D15toD8States'])) states[7-channel] = state self.rawDIO(D15toD8Directions = direction, D15toD8States = state, UpdateDigital = True) else: direction = BitField(rawByte = int(oldstate['D7toD0Directions'])) direction[7-channel] = 0 states = BitField(rawByte = int(oldstate['D7toD0States'])) states[7-channel] = state self.rawDIO(D7toD0Directions = direction, D7toD0States = states, UpdateDigital = True) else: bf = BitField() bf[7-(channel+4)] = 0 bf[7-channel] = state self.rawDIO(IO3toIO0DirectionsAndStates = bf, UpdateDigital = True) return {"idnum" : self.id} def aiSample(self, numChannels, channels, idNum=None, demo=0, stateIOin=0, updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0): """ Name: U12.aiSample(channels, idNum=None, demo=0, stateIOin=0, updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0) Args: See section 4.6 of the User's Guide Desc: Reads the voltages from 1,2, or 4 analog inputs. Also controls/reads the 4 IO ports. >>> dev = U12() >>> dev.aiSample(2, [0, 1]) {'stateIO': [0, 0, 0, 0], 'overVoltage': 0, 'idnum': 1, 'voltages': [1.4208984375, 1.4306640625]} """ # Check id num if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Check to make sure that everything is checked if not isIterable(channels): raise TypeError("channels must be iterable") if not isIterable(gains): raise TypeError("gains must be iterable") if len(channels) < numChannels: raise ValueError("channels must have atleast numChannels elements") if len(gains) < numChannels: raise ValueError("gains must have atleast numChannels elements") # Convert lists to arrays and create other ctypes channelsArray = listToCArray(channels, ctypes.c_long) gainsArray = listToCArray(gains, ctypes.c_long) overVoltage = ctypes.c_long(999) longArrayType = (ctypes.c_long * 4) floatArrayType = (ctypes.c_float * 4) voltages = floatArrayType(0, 0, 0, 0) stateIOin = ctypes.c_long(stateIOin) ecode = staticLib.AISample(ctypes.byref(idNum), demo, ctypes.byref(stateIOin), updateIO, ledOn, numChannels, ctypes.byref(channelsArray), ctypes.byref(gainsArray), disableCal, ctypes.byref(overVoltage), ctypes.byref(voltages)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "stateIO":stateIOin.value, "overVoltage":overVoltage.value, "voltages":voltages[0:numChannels]} def aiBurst(self, numChannels, channels, scanRate, numScans, idNum=None, demo=0, stateIOin=0, updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0, triggerIO=0, triggerState=0, timeout=1, transferMode=0): """ Name: U12.aiBurst(numChannels, channels, scanRate, numScans, idNum=None, demo=0, stateIOin=[0, 0, 0, 0], updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0, triggerIO=0, triggerState=0, timeout=1, transferMode=0) Args: See section 4.7 of the User's Guide Desc: Reads a specified number of scans (up to 4096) at a specified scan rate (up to 8192 Hz) from 1,2, or 4 analog inputs >>> dev = U12() >>> dev.aiBurst(1, [0], 400, 10) {'overVoltage': 0, 'scanRate': 400.0, 'stateIOout': <u12.c_long_Array_4096 object at 0x00DB4BC0>, 'idnum': 1, 'voltages': <u12.c_float_Array_4096_Array_4 object at 0x00DB4B70>} """ # Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # check list sizes if len(channels) < numChannels: raise ValueError("channels must have atleast numChannels elements") if len(gains) < numChannels: raise ValueError("gains must have atleast numChannels elements") # Convert lists to arrays and create other ctypes channelsArray = listToCArray(channels, ctypes.c_long) gainsArray = listToCArray(gains, ctypes.c_long) scanRate = ctypes.c_float(scanRate) pointerArray = (ctypes.c_void_p * 4) arr4096_type = ctypes.c_float * 4096 voltages_type = arr4096_type * 4 voltages = voltages_type() stateIOout = (ctypes.c_long * 4096)() overVoltage = ctypes.c_long(999) ecode = staticLib.AIBurst(ctypes.byref(idNum), demo, stateIOin, updateIO, ledOn, numChannels, ctypes.byref(channelsArray), ctypes.byref(gainsArray), ctypes.byref(scanRate), disableCal, triggerIO, triggerState, numScans, timeout, ctypes.byref(voltages), ctypes.byref(stateIOout), ctypes.byref(overVoltage), transferMode) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "scanRate":scanRate.value, "voltages":voltages, "stateIOout":stateIOout, "overVoltage":overVoltage.value} def aiStreamStart(self, numChannels, channels, scanRate, idNum=None, demo=0, stateIOin=0, updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0, readCount=0): """ Name: U12.aiStreamStart(numChannels, channels, scanRate, idNum=None, demo=0, stateIOin=0, updateIO=0, ledOn=0, gains=[0, 0, 0, 0], disableCal=0, readCount=0) Args: See section 4.8 of the User's Guide Desc: Starts a hardware timed continuous acquisition >>> dev = U12() >>> dev.aiStreamStart(1, [0], 200) {'scanRate': 200.0, 'idnum': 1} """ # Configure return type staticLib.AIStreamStart.restype = ctypes.c_long # check list sizes if len(channels) < numChannels: raise ValueError("channels must have atleast numChannels elements") if len(gains) < numChannels: raise ValueError("gains must have atleast numChannels elements") #if len(stateIOin) < 4: raise ValueError("stateIOin must have atleast 4 elements") # Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Convert lists to arrays and create other ctypes channelsArray = listToCArray(channels, ctypes.c_long) gainsArray = listToCArray(gains, ctypes.c_long) scanRate = ctypes.c_float(scanRate) ecode = staticLib.AIStreamStart(ctypes.byref(idNum), demo, stateIOin, updateIO, ledOn, numChannels, ctypes.byref(channelsArray), ctypes.byref(gainsArray), ctypes.byref(scanRate), disableCal, 0, readCount) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception # The ID number must be saved for AIStream self.id = idNum.value self.streaming = True return {"idnum":idNum.value, "scanRate":scanRate.value} def aiStreamRead(self, numScans, localID=None, timeout=1): """ Name: U12.aiStreamRead(numScans, localID=None, timeout=1) Args: See section 4.9 of the User's Guide Desc: Waits for a specified number of scans to be available and reads them. >>> dev = U12() >>> dev.aiStreamStart(1, [0], 200) >>> dev.aiStreamRead(10) {'overVoltage': 0, 'ljScanBacklog': 0, 'stateIOout': <u12.c_long_Array_4096 object at 0x00DF4AD0>, 'reserved': 0, 'voltages': <u12.c_float_Array_4096_Array_4 object at 0x00DF4B20>} """ # Check to make sure that we are streaming if not self.streaming: raise U12Exception(-1, "Streaming has not started") # Check id number if localID is None: localID = self.id # Create arrays and other ctypes arr4096_type = ctypes.c_float * 4096 voltages_type = arr4096_type * 4 voltages = voltages_type() stateIOout = (ctypes.c_long * 4096)() reserved = ctypes.c_long(0) ljScanBacklog = ctypes.c_long(99999) overVoltage = ctypes.c_long(999) ecode = staticLib.AIStreamRead(localID, numScans, timeout, ctypes.byref(voltages), ctypes.byref(stateIOout), ctypes.byref(reserved), ctypes.byref(ljScanBacklog), ctypes.byref(overVoltage)) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception return {"voltages":voltages, "stateIOout":stateIOout, "reserved":reserved.value, "ljScanBacklog":ljScanBacklog.value, "overVoltage":overVoltage.value} def aiStreamClear(self, localID=None): """ Name: U12.aiClear() Args: See section 4.10 of the User's Guide Desc: This function stops the continuous acquisition. It should be called once when finished with the stream. >>> dev = U12() >>> dev.aiStreamStart(1, [0], 200) >>> dev.aiStreamRead(10) >>> dev.aiStreamClear() """ # Check to make sure that we are streaming if not self.streaming: raise U12Exception(-1, "Streaming has not started") # Check id number if localID is None: localID = self.id ecode = staticLib.AIStreamClear(localID) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception def aoUpdate(self, idNum=None, demo=0, trisD=None, trisIO=None, stateD=None, stateIO=None, updateDigital=0, resetCounter=0, analogOut0=0, analogOut1=0): """ Name: U12.aoUpdate() Args: See section 4.11 of the User's Guide Desc: Sets the voltages of the analog outputs. Also controls/reads all 20 digital I/O and the counter. >>> dev = U12() >>> dev.aoUpdate() >>> {'count': 2, 'stateIO': 3, 'idnum': 1, 'stateD': 0} """ # Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Check tris and state arguments if updateDigital > 0: if trisD is None: raise ValueError("keyword argument trisD must be set") if trisIO is None: raise ValueError("keyword argument trisIO must be set") if stateD is None: raise ValueError("keyword argument stateD must be set") if stateIO is None: raise ValueError("keyword argument stateIO must be set") # Create ctypes if stateD is None: stateD = ctypes.c_long(0) else: stateD = ctypes.c_long(stateD) if stateIO is None: stateIO = ctypes.c_long(0) else: stateIO = ctypes.c_long(stateIO) count = ctypes.c_ushort(999) # Create arrays and other ctypes ecode = staticLib.AOUpdate(ctypes.byref(idNum), demo, trisD, trisIO, ctypes.byref(stateD), ctypes.byref(stateIO), updateDigital, resetCounter, ctypes.byref(count), ctypes.c_float(analogOut0), ctypes.c_float(analogOut1)) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception return {"idnum":idNum.value, "stateD":stateD.value, "stateIO":stateIO.value, "count":count.value} def asynchConfig(self, fullA, fullB, fullC, halfA, halfB, halfC, idNum=None, demo=None, timeoutMult=1, configA=0, configB=0, configTE=0): """ Name: U12.asynchConfig(fullA, fullB, fullC, halfA, halfB, halfC, idNum=None, demo=None, timeoutMult=1, configA=0, configB=0, configTE=0) Args: See section 4.12 of the User's Guide Desc: Requires firmware V1.1 or higher. This function writes to the asynch registers and sets the direction of the D lines (input/output) as needed. >>> dev = U12() >>> dev.asynchConfig(96,1,1,22,2,1) >>> {'idNum': 1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.AsynchConfig(ctypes.byref(idNum), demo, timeoutMult, configA, configB, configTE, fullA, fullB, fullC, halfA, halfB, halfC) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception return {"idNum":idNum.value} def asynch(self, baudrate, data, idNum=None, demo=0, portB=0, enableTE=0, enableTO=0, enableDel=0, numWrite=0, numRead=0): """ Name: U12.asynchConfig(fullA, fullB, fullC, halfA, halfB, halfC, idNum=None, demo=None, timeoutMult=1, configA=0, configB=0, configTE=0) Args: See section 4.13 of the User's Guide Desc: Requires firmware V1.1 or higher. This function writes to the asynch registers and sets the direction of the D lines (input/output) as needed. >>> dev = U12() >>> dev.asynch(96,1,1,22,2,1) >>> dev.asynch(19200, [0, 0]) >>> {'data': <u12.c_long_Array_18 object at 0x00DEFB70>, 'idnum': <type 'long'>} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Check size of data if len(data) > 18: raise ValueError("data can not be larger than 18 elements") # Make data 18 elements large dataArray = [0] * 18 for i in range(0, len(data)): dataArray[i] = data[i] print dataArray dataArray = listToCArray(dataArray, ctypes.c_long) ecode = staticLib.Asynch(ctypes.byref(idNum), demo, portB, enableTE, enableTO, enableDel, baudrate, numWrite, numRead, ctypes.byref(dataArray)) if ecode != 0: raise U12Exception(ecode) # TODO: Switch this out for exception return {"idnum":long, "data":dataArray} GainMapping = [ 1.0, 2.0, 4.0, 5.0, 8.0, 10.0, 16.0, 20.0 ] def bitsToVolts(self, chnum, chgain, bits): """ Name: U12.bitsToVolts(chnum, chgain, bits) Args: See section 4.14 of the User's Guide Desc: Converts a 12-bit (0-4095) binary value into a LabJack voltage. No hardware communication is involved. >>> dev = U12() >>> dev.bitsToVolts(0, 0, 2662) >>> {'volts': 2.998046875} """ if ON_WINDOWS: volts = ctypes.c_float() ecode = staticLib.BitsToVolts(chnum, chgain, bits, ctypes.byref(volts)) if ecode != 0: print ecode return volts.value else: if chnum < 8: return ( float(bits) * 20.0 / 4096.0 ) - 10.0 else: volts = ( float(bits) * 40.0 / 4096.0 ) - 20.0 return volts / self.GainMapping[chgain] def voltsToBits(self, chnum, chgain, volts): """ Name: U12.voltsToBits(chnum, chgain, bits) Args: See section 4.15 of the User's Guide Desc: Converts a voltage to it's 12-bit (0-4095) binary representation. No hardware communication is involved. >>> dev = U12() >>> dev.voltsToBits(0, 0, 3) >>> {'bits': 2662} """ if ON_WINDOWS: bits = ctypes.c_long(999) ecode = staticLib.VoltsToBits(chnum, chgain, ctypes.c_float(volts), ctypes.byref(bits)) if ecode != 0: raise U12Exception(ecode) return bits.value else: pass #*bits = RoundFL((volts+10.0F)/(20.0F/4096.0F)); def counter(self, idNum=None, demo=0, resetCounter=0, enableSTB=1): """ Name: U12.counter(idNum=None, demo=0, resetCounter=0, enableSTB=1) Args: See section 4.15 of the User's Guide Desc: Converts a voltage to it's 12-bit (0-4095) binary representation. No hardware communication is involved. >>> dev = U12() >>> dev.counter(0, 0, 3) >>> {'bits': 2662} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Create ctypes stateD = ctypes.c_long(999) stateIO = ctypes.c_long(999) count = ctypes.c_ulong(999) print idNum ecode = staticLib.Counter(ctypes.byref(idNum), demo, ctypes.byref(stateD), ctypes.byref(stateIO), resetCounter, enableSTB, ctypes.byref(count)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "stateD": stateD.value, "stateIO":stateIO.value, "count":count.value} def digitalIO(self, idNum=None, demo=0, trisD=None, trisIO=None, stateD=None, stateIO=None, updateDigital=0): """ Name: U12.digitalIO(idNum=None, demo=0, trisD=None, trisIO=None, stateD=None, stateIO=None, updateDigital=0) Args: See section 4.17 of the User's Guide Desc: Reads and writes to all 20 digital I/O. >>> dev = U12() >>> dev.digitalIO() >>> {'stateIO': 0, 'stateD': 0, 'idnum': 1, 'outputD': 0, 'trisD': 0} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Check tris and state parameters if updateDigital > 0: if trisD is None: raise ValueError("keyword argument trisD must be set") if trisIO is None: raise ValueError("keyword argument trisIO must be set") if stateD is None: raise ValueError("keyword argument stateD must be set") if stateIO is None: raise ValueError("keyword argument stateIO must be set") # Create ctypes if trisD is None: trisD = ctypes.c_long(999) else:trisD = ctypes.c_long(trisD) if stateD is None:stateD = ctypes.c_long(999) else: stateD = ctypes.c_long(stateD) if stateIO is None: stateIO = ctypes.c_long(0) else: stateIO = ctypes.c_long(stateIO) outputD = ctypes.c_long(999) # Check trisIO if trisIO is None: trisIO = 0 ecode = staticLib.DigitalIO(ctypes.byref(idNum), demo, ctypes.byref(trisD), trisIO, ctypes.byref(stateD), ctypes.byref(stateIO), updateDigital, ctypes.byref(outputD)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "trisD":trisD.value, "stateD":stateD.value, "stateIO":stateIO.value, "outputD":outputD.value} def getDriverVersion(self): """ Name: U12.getDriverVersion() Args: See section 4.18 of the User's Guide Desc: Returns the version number of ljackuw.dll. No hardware communication is involved. >>> dev = U12() >>> dev.getDriverVersion() >>> 1.21000003815 """ staticLib.GetDriverVersion.restype = ctypes.c_float return staticLib.GetDriverVersion() def getFirmwareVersion(self, idNum=None): """ Name: U12.getErrorString(idnum=None) Args: See section 4.20 of the User's Guide Desc: Retrieves the firmware version from the LabJack's processor >>> dev = U12() >>> dev.getFirmwareVersion() >>> Unkown error """ # Check ID number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) staticLib.GetFirmwareVersion.restype = ctypes.c_float firmware = staticLib.GetFirmwareVersion(ctypes.byref(idNum)) if firmware > 512: raise U12Exception(firmware-512) return {"idnum" : idNum.value, "firmware" : firmware} def getWinVersion(self): """ Name: U12.getErrorString() Args: See section 4.21 of the User's Guide Desc: Uses a Windows API function to get the OS version >>> dev = U12() >>> dev.getWinVersion() >>> {'majorVersion': 5L, 'minorVersion': 1L, 'platformID': 2L, 'buildNumber': 2600L, 'servicePackMajor': 2L, 'servicePackMinor': 0L} """ # Create ctypes majorVersion = ctypes.c_ulong() minorVersion = ctypes.c_ulong() buildNumber = ctypes.c_ulong() platformID = ctypes.c_ulong() servicePackMajor = ctypes.c_ulong() servicePackMinor = ctypes.c_ulong() ecode = staticLib.GetWinVersion(ctypes.byref(majorVersion), ctypes.byref(minorVersion), ctypes.byref(buildNumber), ctypes.byref(platformID), ctypes.byref(servicePackMajor), ctypes.byref(servicePackMinor)) if ecode != 0: raise U12Exception(ecode) return {"majorVersion":majorVersion.value, "minorVersion":minorVersion.value, "buildNumber":buildNumber.value, "platformID":platformID.value, "servicePackMajor":servicePackMajor.value, "servicePackMinor":servicePackMinor.value} def listAll(self): """ Name: U12.listAll() Args: See section 4.22 of the User's Guide Desc: Searches the USB for all LabJacks, and returns the serial number and local ID for each >>> dev = U12() >>> dev.listAll() >>> {'serialnumList': <u12.c_long_Array_127 object at 0x00E2AD50>, 'numberFound': 1, 'localIDList': <u12.c_long_Array_127 object at 0x00E2ADA0>} """ # Create arrays and ctypes productIDList = listToCArray([0]*127, ctypes.c_long) serialnumList = listToCArray([0]*127, ctypes.c_long) localIDList = listToCArray([0]*127, ctypes.c_long) powerList = listToCArray([0]*127, ctypes.c_long) arr127_type = ctypes.c_long * 127 calMatrix_type = arr127_type * 20 calMatrix = calMatrix_type() reserved = ctypes.c_long() numberFound = ctypes.c_long() ecode = staticLib.ListAll(ctypes.byref(productIDList), ctypes.byref(serialnumList), ctypes.byref(localIDList), ctypes.byref(powerList), ctypes.byref(calMatrix), ctypes.byref(numberFound), ctypes.byref(reserved), ctypes.byref(reserved)) if ecode != 0: raise U12Exception(ecode) return {"serialnumList": serialnumList, "localIDList":localIDList, "numberFound":numberFound.value} def localID(self, localID, idNum=None): """ Name: U12.localID(localID, idNum=None) Args: See section 4.23 of the User's Guide Desc: Changes the local ID of a specified LabJack >>> dev = U12() >>> dev.localID(1) >>> {'idnum':1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.LocalID(ctypes.byref(idNum), localID) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def noThread(self, noThread, idNum=None): """ Name: U12.localID(noThread, idNum=None) Args: See section 4.24 of the User's Guide Desc: This function is needed when interfacing TestPoint to the LabJack DLL on Windows 98/ME >>> dev = U12() >>> dev.noThread(1) >>> {'idnum':1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.NoThread(ctypes.byref(idNum), noThread) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def pulseOut(self, bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2, idNum=None, demo=0, lowFirst=0): """ Name: U12.pulseOut(bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2, idNum=None, demo=0, lowFirst=0) Args: See section 4.25 of the User's Guide Desc: This command creates pulses on any/all of D0-D7 >>> dev = U12() >>> dev.pulseOut(0, 1, 1, 1, 1, 1) >>> {'idnum':1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.PulseOut(ctypes.byref(idNum), demo, lowFirst, bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def pulseOutStart(self, bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2, idNum=None, demo=0, lowFirst=0): """ Name: U12.pulseOutStart(bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2, idNum=None, demo=0, lowFirst=0) Args: See section 4.26 of the User's Guide Desc: PulseOutStart and PulseOutFinish are used as an alternative to PulseOut (See PulseOut for more information) >>> dev = U12() >>> dev.pulseOutStart(0, 1, 1, 1, 1, 1) >>> {'idnum':1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.PulseOutStart(ctypes.byref(idNum), demo, lowFirst, bitSelect, numPulses, timeB1, timeC1, timeB2, timeC2) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def pulseOutFinish(self, timeoutMS, idNum=None, demo=0): """ Name: U12.pulseOutFinish(timeoutMS, idNum=None, demo=0) Args: See section 4.27 of the User's Guide Desc: See PulseOutStart for more information >>> dev = U12() >>> dev.pulseOutStart(0, 1, 1, 1, 1, 1) >>> dev.pulseOutFinish(100) >>> {'idnum':1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.PulseOutFinish(ctypes.byref(idNum), demo, timeoutMS) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def pulseOutCalc(self, frequency): """ Name: U12.pulseOutFinish(frequency) Args: See section 4.28 of the User's Guide Desc: This function can be used to calculate the cycle times for PulseOut or PulseOutStart. >>> dev = U12() >>> dev.pulseOutCalc(100) >>> {'frequency': 100.07672882080078, 'timeB': 247, 'timeC': 1} """ # Create ctypes frequency = ctypes.c_float(frequency) timeB = ctypes.c_long(0) timeC = ctypes.c_long(0) ecode = staticLib.PulseOutCalc(ctypes.byref(frequency), ctypes.byref(timeB), ctypes.byref(timeC)) if ecode != 0: raise U12Exception(ecode) return {"frequency":frequency.value, "timeB":timeB.value, "timeC":timeC.value} def reEnum(self, idNum=None): """ Name: U12.reEnum(idNum=None) Args: See section 4.29 of the User's Guide Desc: Causes the LabJack to electrically detach from and re-attach to the USB so it will re-enumerate >>> dev = U12() >>> dev.reEnum() >>> {'idnum': 1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.ReEnum(ctypes.byref(idNum)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def reset(self, idNum=None): """ Name: U12.reset(idNum=None) Args: See section 4.30 of the User's Guide Desc: Causes the LabJack to reset after about 2 seconds >>> dev = U12() >>> dev.reset() >>> {'idnum': 1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) ecode = staticLib.Reset(ctypes.byref(idNum)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def resetLJ(self, idNum=None): """ Name: U12.resetLJ(idNum=None) Args: See section 4.30 of the User's Guide Desc: Causes the LabJack to reset after about 2 seconds >>> dev = U12() >>> dev.resetLJ() >>> {'idnum': 1} """ return reset(idNum) def sht1X(self, idNum=None, demo=0, softComm=0, mode=0, statusReg=0): """ Name: U12.sht1X(idNum=None, demo=0, softComm=0, mode=0, statusReg=0) Args: See section 4.31 of the User's Guide Desc: This function retrieves temperature and/or humidity readings from an SHT1X sensor. >>> dev = U12() >>> dev.sht1X() >>> {'tempC': 24.69999885559082, 'rh': 39.724445343017578, 'idnum': 1, 'tempF': 76.459999084472656} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Create ctypes tempC = ctypes.c_float(0) tempF = ctypes.c_float(0) rh = ctypes.c_float(0) ecode = staticLib.SHT1X(ctypes.byref(idNum), demo, softComm, mode, statusReg, ctypes.byref(tempC), ctypes.byref(tempF), ctypes.byref(rh)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "tempC":tempC.value, "tempF":tempF.value, "rh":rh.value} def shtComm(self, numWrite, numRead, datatx, idNum=None, softComm=0, waitMeas=0, serialReset=0, dataRate=0): """ Name: U12.shtComm(numWrite, numRead, datatx, idNum=None, softComm=0, waitMeas=0, serialReset=0, dataRate=0) Args: See section 4.32 of the User's Guide Desc: Low-level public function to send and receive up to 4 bytes to from an SHT1X sensor """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) # Check size of datatx if len(datatx) != 4: raise ValueError("datatx must have exactly 4 elements") # Create ctypes datatx = listToCArray(datatx, ctypes.c_ubyte) datarx = (ctypes.c_ubyte * 4)((0) * 4) ecode = staticLib.SHTComm(ctypes.byref(idNum), softComm, waitMeas, serialReset, dataRate, numWrite, numRead, ctypes.byref(datatx), ctypes.byref(datarx)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "datarx":datarx} def shtCRC(self, numWrite, numRead, datatx, datarx, statusReg=0): """ Name: U12.shtCRC(numWrite, numRead, datatx, datarx, statusReg=0) Args: See section 4.33 of the User's Guide Desc: Checks the CRC on an SHT1X communication """ # Create ctypes datatx = listToCArray(datatx, ctypes.c_ubyte) datarx = listToCArray(datarx, ctypes.c_ubyte) return staticLib.SHTCRC(statusReg, numWrite, numRead, ctypes.byref(datatx), ctypes.byref(datarx)) def synch(self, mode, numWriteRead, data, idNum=None, demo=0, msDelay=0, husDelay=0, controlCS=0, csLine=None, csState=0, configD=0): """ Name: U12.synch(mode, numWriteRead, data, idNum=None, demo=0, msDelay=0, husDelay=0, controlCS=0, csLine=None, csState=0, configD=0) Args: See section 4.35 of the User's Guide Desc: This function retrieves temperature and/or humidity readings from an SHT1X sensor. """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) if controlCS > 0 and csLine is None: raise ValueError("csLine must be specified") # Make sure data is 18 elements cData = [0] * 18 for i in range(0, len(data)): cData[i] = data[i] cData = listToCArray(cData, ctypes.c_long) ecode = staticLib.Synch(ctypes.byref(idNum), demo, mode, msDelay, husDelay, controlCS, csLine, csState, configD, numWriteRead, ctypes.byref(cData)) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value, "data":cData} def watchdog(self, active, timeout, activeDn, stateDn, idNum=None, demo=0, reset=0): """ Name: U12.watchdog(active, timeout, activeDn, stateDn, idNum=None, demo=0, reset=0) Args: See section 4.35 of the User's Guide Desc: Controls the LabJack watchdog function. >>> dev = U12() >>> dev.watchdog(1, 1, [0, 0, 0], [0, 0, 0]) >>> {'idnum': 1} """ #Check id number if idNum is None: idNum = self.id idNum = ctypes.c_long(idNum) if len(activeDn) is not 3: raise ValueError("activeDn must have 3 elements") if len(stateDn) is not 3: raise Value("stateDn must have 3 elements") ecode = staticLib.Watchdog(ctypes.byref(idNum), demo, active, timeout, reset, activeDn[0], activeDn[1], activeDn[2], stateDn[0], stateDn[1], stateDn[2]) if ecode != 0: raise U12Exception(ecode) return {"idnum":idNum.value} def readMem(self, address, idnum = None): """ Name: U12.readMem(address, idnum=None) Args: See section 4.36 of the User's Guide Desc: Reads 4 bytes from a specified address in the LabJack's nonvolatile memory >>> dev = U12() >>> dev.readMem(0) >>> [5, 246, 16, 59] """ if address is None: raise Exception, "Must give an Address." if idnum is None: idnum = self.id ljid = ctypes.c_ulong(idnum) ad0 = ctypes.c_ulong() ad1 = ctypes.c_ulong() ad2 = ctypes.c_ulong() ad3 = ctypes.c_ulong() ec = staticLib.ReadMem(ctypes.byref(ljid), ctypes.c_long(address), ctypes.byref(ad3), ctypes.byref(ad2), ctypes.byref(ad1), ctypes.byref(ad0)) if ec != 0: raise U12Exception(ec) addr = [0] * 4 addr[0] = int(ad3.value & 0xff) addr[1] = int(ad2.value & 0xff) addr[2] = int(ad1.value & 0xff) addr[3] = int(ad0.value & 0xff) return addr def writeMem(self, address, data, idnum=None, unlocked=False): """ Name: U12.writeMem(self, address, data, idnum=None, unlocked=False) Args: See section 4.37 of the User's Guide Desc: Writes 4 bytes to the LabJack's 8,192 byte nonvolatile memory at a specified address. >>> dev = U12() >>> dev.writeMem(0, [5, 246, 16, 59]) >>> 1 """ if address is None or data is None: raise Exception, "Must give both an Address and data." if type(data) is not list or len(data) != 4: raise Exception, "Data must be a list and have a length of 4" if idnum is None: idnum = self.id ljid = ctypes.c_ulong(idnum) ec = staticLib.WriteMem(ctypes.byref(ljid), int(unlocked), address, data[3] & 0xff, data[2] & 0xff, data[1] & 0xff, data[0] & 0xff) if ec != 0: raise U12Exception(ec) return ljid.value def LJHash(self, hashStr, size): outBuff = (ctypes.c_char * 16)() retBuff = '' staticLib = ctypes.windll.LoadLibrary("ljackuw") ec = staticLib.LJHash(ctypes.cast(hashStr, ctypes.POINTER(ctypes.c_char)), size, ctypes.cast(outBuff, ctypes.POINTER(ctypes.c_char)), 0) if ec != 0: raise U12Exception(ec) for i in range(16): retBuff += outBuff[i] return retBuff def isIterable(var): try: iter(var) return True except: return False def listToCArray(list, dataType): arrayType = dataType * len(list) array = arrayType() for i in range(0,len(list)): array[i] = list[i] return array def cArrayToList(array): list = [] for item in array: list.append(item) return list def getErrorString(errorcode): """ Name: U12.getErrorString(errorcode) Args: See section 4.19 of the User's Guide Desc: Converts a LabJack errorcode, returned by another function, into a string describing the error. No hardware communication is involved. >>> dev = U12() >>> dev.getErrorString(1) >>> Unkown error """ errorString = ctypes.c_char_p(" "*50) staticLib.GetErrorString(errorcode, errorString) return errorString.value def hexWithoutQuotes(l): """ Return a string listing hex without all the single quotes. >>> l = range(10) >>> print hexWithoutQuotes(l) [0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9] """ return str([hex (i) for i in l]).replace("'", "")
gpl-2.0
4,888,426,049,671,642,000
37.468813
327
0.540318
false
osonwanne/virgilglobal
portfolio/models.py
1
1641
from __future__ import unicode_literals from django.db import models # Create your models here. from modelcluster.fields import ParentalKey from wagtail.wagtailcore.models import Page, Orderable from wagtail.wagtailcore.fields import RichTextField from wagtail.wagtailadmin.edit_handlers import FieldPanel, InlinePanel from wagtail.wagtailimages.edit_handlers import ImageChooserPanel from wagtail.wagtailsearch import index class PortfolioIndexPage(Page): intro = RichTextField(blank=True) content_panels = Page.content_panels + [ FieldPanel('intro', classname="full") ] class PortfolioPage(Page): date = models.DateField("Post date") intro = models.CharField(max_length=250) body = RichTextField(blank=True) def main_image(self): gallery_item = self.gallery_images.first() if gallery_item: return gallery_item.image else: return None search_fields = Page.search_fields + [ index.SearchField('intro'), index.SearchField('body'), ] content_panels = Page.content_panels + [ FieldPanel('date'), FieldPanel('intro'), FieldPanel('body', classname="full"), InlinePanel('gallery_images', label="Gallery images"), ] class PortfolioPageGalleryImage(Orderable): page = ParentalKey(PortfolioPage, related_name='gallery_images') image = models.ForeignKey( 'wagtailimages.Image', on_delete=models.CASCADE, related_name='+' ) caption = models.CharField(blank=True, max_length=250) panels = [ ImageChooserPanel('image'), FieldPanel('caption'), ]
gpl-3.0
-8,844,760,692,456,477,000
27.310345
73
0.687386
false
brownrout/EECS-337-Recipes
Team4/chinese_transformations.py
1
3471
chinese_spicy_list = { 'jalapeno' : ['curry paste', 'chili sauce', 'curry paste'], 'wasabi': ['curry paste', 'chili sauce', 'curry paste'], 'tobasco': ['curry paste', 'chili sauce', 'curry paste'], 'hot sauce': ['curry paste', 'chili sauce', 'curry paste'], 'habanero pepper' : ['curry paste', 'chili sauce', 'curry paste'], } chinese_spicy_stopwords = ['paste', 'sauce', 'ground', 'canadian-style', 'canadian'] chinese_spices = [ 'soy sauce powder', 'five spice', 'ground ginger', 'ground fennel seed', 'ground canelia', 'ground star anise', 'szechuan peppercorns', 'cracked fennel seed', 'whole fennel seed', 'ginger root', 'lemongrass', 'tumeric', 'cloves', 'hot mustard', 'birds eye chili pepper', 'cinnamon sticks', 'kaffir lime leaves' ] chinese_cheeses = { 'mozzerella': 'rushan', 'cheddar' : 'rushan', 'anejo enchilado' :'rushan', 'asiago':'rushan', 'blue': 'rushan', 'cotija' : 'rushan', 'gruyere' : 'rushan', 'parmesan': 'rushan', 'romano' : 'rushan', 'gouda' : 'rushan', 'raclette': 'rushan', 'swiss': 'rushan', 'cheddar' : 'rushan', 'chevres' : 'rushan', 'edam' : 'rushan', 'monterey jack': 'rushan', 'provolone' : 'rushan', 'butterkase' : 'rushan', 'colby': 'rushan', 'fontina val daosta':'rushan', 'havarti': 'rushan', 'brie' : 'rushan', 'camembert de normandie' :'rushan', 'gorgonzola' : 'rushan', 'limburger' : 'rushan', 'feta': 'rushan', 'munster' : 'rushan', 'neufchatel' : 'rushan', 'queso' : 'rushan', 'burrata' : 'rushan', 'curd' : 'rushan', 'chechil' : 'rushan', 'chura kampo' : 'rushan', 'american cheese' : 'rushan', 'roquefort': 'rushan', 'camembert': 'rushan', 'cotija': 'rushan', 'chevre': 'rushan', 'emmental': 'rushan', 'taleggio': 'rushan', 'parmigiano-reggiano': 'rushan', 'manchego': 'rushan', 'cream cheese' : 'rubing' } chinese_sauce_list = { 'yogurt' : 'nai lao', 'gravy' : 'chinese brown gravy' } chinese_sauces = [ 'soy sauce', 'light soy sauce', 'dark soy sauce', 'mushroom-flavored dark soy sauce', 'seasoned soy sauce', 'kikkoman soy sauce', 'tamari', 'sesame oil', 'rice wine' ] chinese_meats = { 'steak': ['duck', 'chicken'], 'beef': ['duck', 'chicken'], 'sausage':['duck', 'chicken'], 'tuna' : ['shrimp', 'oyster'], 'anchovies' : ['shrimp', 'salmon'], 'pork' : ['chicken', 'duck'], 'eel' : ['chicken', 'duck'], 'tofu' : ['seitan', 'seitan'], 'bacon' : ['chicken', 'chicken'] } chinese_vegetables_list = { 'okra' : 'bok choy', 'asparagus' : 'bok choy', 'squash' : 'choy sum', 'corn' : 'baby corn', 'refried beans' : 'green beans', 'chick peas' : 'peking chick peas', 'butternut squash' : 'oriental squash', 'lettuce' : 'celtuce', 'broccoli' : 'kai-lan', 'blueberries' : 'chinese blueberries', 'watermelon' : 'wax gourd', 'arugula' : 'chinese cabbage', 'olives' : 'chinese olives', 'spaghetti squash' : 'string beans', 'penne pasta' : 'noodles', 'spaghetti' :'noodles', 'elbow macaroni' : 'rice', 'farfalle pasta': 'rice', 'macaroni pasta': 'rice', 'macaroni': 'rice', 'elbow pasta' : 'rice', 'pasta' :'rice', 'saucepan': 'wok', 'pan' : 'wok', 'olive oil': 'peanut oil', }
mit
-1,479,469,051,572,116,500
23.443662
84
0.551426
false
wrightflyer/test
avrread.py
1
27950
######################################################################################################### # AVRRead # # A utility to read the XML files (probably .atdf in fact) in a Studio 6/7 installation and use # # the data within to define one big structure to overlay the SFR area of any AVR. Just use: # # # # python avrread.py -i ATmgea16.atdf # # # # or any other .atdf to generat an ATmega16.h (or whatever) header file for use in programming the # # AVR. In this case don't use "#include <avr/io.h>" but instead just do something like this: # # # # #include "ATmega16.h" # # # # USE_SFRS(pSFR); # # # # int main(void) # # { # # pSFR->_DDRB.byte = 0xFF; # # pSFR->_UCSRB.bit._TXEN = 1; # # while (1) # # { # # pSFR->_PORTB.byte ^= (1 << 3); # # } # # } # # # # Use the USE_SFR() macro to name a struct pointer variable (like "pSFR") that you then want to # # use to access the registers in the code. # # # # by Cliff Lawson # # # # Licence: I need beer - see what you can do! # ######################################################################################################### # following ("from...") line is useful if you are trying to make Python 3 code run in Python 2 # (however things like "argparse" here means this program is 3.2+ anyway. # from __future__ import print_function import sys import os import argparse import xml.etree.ElementTree as et from collections import namedtuple # found this on StackOverflow - it simply returns the lowest bit that is set in a byte def lowestSet(int_type): low = (int_type & -int_type) lowBit = -1 while (low): low >>= 1 lowBit += 1 return(lowBit) # often find this useful to check the raw command line args # for n in range(0, len(sys.argv)): # print(n, sys.argv[n]) # I like argparse - it makes for very clean command line interfaces parser = argparse.ArgumentParser(description='Read Atmel XML (version 1.3)') parser.add_argument("-i", "--input", dest='in_fname', help="name of .XML file to read as input") parser.add_argument("-o", "--output", dest='out_name', help="Name of output file (overides default)") parser.add_argument("-q", "--quiet", dest='quiet', action="store_true", help="Don't print to console") parser.add_argument("-v", "--verbose", dest='verbose', action="store_true", help="Show developer info") parser.add_argument("-a", "--anonymous", dest='anon', action="store_true", help="Use anonymous structs (GCC only)") parser.add_argument("-n", "--no_union", dest='nounion', action="store_true", help="No unions - just one entry per register") parser.add_argument("-m", "--multiple", dest='multiple', action="store_true", help="process multiple files") # my one argument with argparse is that if you run the app without args it doesn't show help info, so # this will achieve that... if len(sys.argv) == 1: parser.print_help() sys.exit(1) # this actually runs the argument parser on sys.argv args = parser.parse_args() flist = [] if args.in_fname is not None and os.path.isfile(args.in_fname): flist.append(args.in_fname) elif args.multiple is True and args.in_fname is None: for f in os.listdir("."): if ".atdf" in f: flist.append(f) if len(flist) >= 1: for fname in flist: # The following creates an empty list. As the XML is parsed this will be appened()'d too to build a complete # picture of the AVR layout as a list of dictionaries mainlist = [] # Assuming the user has given a name then do our thing! if fname is not None and os.path.isfile(fname): # the user has the opportunity to use -o to set an output filename but if they haven't used that this # takes the input .atdf/.xml filename and replaces the extension with ".h" to create the output name if args.out_name is None: out_name = os.path.splitext(fname)[0]+".h" if args.multiple is True or args.quiet is not True: print("Creating:", out_name) # ===================================== PART 1 (process the XML) ====================================== # following two lines are the classic way to invoke ElementTree to read an XML then get access to the # root from which access to all other data then occurs tree = et.parse(fname) root = tree.getroot() # So the first thing I search for is the "memory-segment" entry with attribute name='MAPPED_IO' # this has the start/length of the SFRs (start is bound to be 0x20, it's the length I need to # later build the struct that covers the entire SFR region) io_node = root.find(".//memory-segment[@name='MAPPED_IO']") sfr_start = io_node.attrib['start'] sfr_size = io_node.attrib['size'] # The "interesting stuff" (as far as this program is concerned) is then the "modules" which are things # like "UART", "TIMER_COUNTER_1" and so on. modules = root.find("modules") # this then iterates over each module found... for mod in modules.findall("module"): # rather curiously there are two "modules" called "FUSE" and "LOCKBIT" - I want to ignore them... if mod.attrib['name'] in ['FUSE', 'LOCKBIT']: continue # To keep the user entertained with some output - print the name of each module as I find it... if not args.quiet: print("===============", mod.attrib['name'], "===============") # Now there's a load of data for each "module" that I'm not interested in. All I want are the registers # and bits and these appear under one or more "register-groups" rg = mod.find("register-group") # then in each register group iterate through the individual registers.. for reg in rg.findall("register"): # for each register pick out the useful bits of information addr = int(reg.attrib['offset'], 0) name = reg.attrib['name'] capt = reg.attrib['caption'] if capt is None: capt = "missing caption" sz = int(reg.attrib['size']) # only used for whole registers - some are not full 8 or 16 bits try: main_mask = int(reg.attrib['mask'], 0) except KeyError: if sz == 1: main_mask = 0xFF elif sz == 2: main_mask = 0xFFFF # use the following to add extra detail if more than one byte involved xtra = "" if sz != 1: xtra = str(sz) + " bytes" if not args.quiet: print(name, "addr=", hex(addr), xtra, "// ", capt) # Have a look to see if there is a "bitfield" defined for this register bits = reg.findall("bitfield") # going to create a list of tuples (eventually sorted and duplicates removed) for any groups of bits bitlist = [] if len(bits) != 0: # if there is/are bitfields then work through each entry in turn for bit in bits: # int(x, 0) converts "0xNN" into an integer value - unfortunately the XML only holds these # as a "mask" so if it's bits 3,4,5,6 the mask will be 0x78 and so on - need to process this # later to get the lowest bit (3 in this example) and the starting bit position. For the # lowest bit set I found something useful on StackOverflow which is at the start of this file # for the number of bits set in a mask I found a very clever technique in another answer # on StackOverflow - you use bit() to convert the mask to a "10101.." string then use count('1') # on this to find out how many bits there are (as it happens they're always adjacent in fact) mask = int(bit.attrib['mask'], 0) try: captn = bit.attrib['caption'] except KeyError: captn = "caption missing" try: lsb = int(bit.attrib['lsb']) except KeyError: lsb = 0 numbits = bin(mask).count('1') # @@@ need to consider non-adjacent bits in a mask such as 0xB0 (10110000) - e.g. mega16 SM bits # <thinks> - split the bits in a "multi-mask" at this stage and make multiple 1 bit appends # rather than trying to unwind this later. # OK change of plan - because entries like the SM bits have a mask of 0xB0 (10110000) with non- # adjacent bits then don't just store the low bit and numbits, but iterate through the bitmask now # and add individual :1 entries for multiple bits (adding the lsb suffix and an incrementing count) if numbits == 1: bitinfo = namedtuple("bitinfo", "bitpos name caption") bitinfo.bitpos = lowestSet(mask) bitinfo.name = bit.attrib['name'] bitinfo.caption = captn bitlist.append(bitinfo) else: suffix = lsb # this starts at 0 if there is no lsb= bitpos = 0 while numbits: while mask & (1 << bitpos) == 0: bitpos += 1 bitinfo = namedtuple("bitinfo", "bitpos name caption") bitinfo.bitpos = bitpos bitpos += 1 bitinfo.name = bit.attrib['name'] + str(suffix) suffix += 1 bitinfo.caption = captn bitlist.append(bitinfo) numbits -= 1 if not args.quiet: for n in sorted(bitlist, key=lambda x: x.bitpos): print(n.name, "bit=" + str(n.bitpos), n.caption) # now we assume we are going to this register/bits as a whole new entry in mainlist[]. However it turns # out the XML may have several different register/bit definitions in different places for the same # register - but you can spot this because you have already seen the address used. (BTW this all occurs # with a register like TIMSK that may have some TMR_0 bits defined under the section for "TIMER 0" but # then has some more bits defined later under "TIMER 1" and so on) do_add = 1 # so now we check to see if the address of the register we're currently looking at was already seen # and recorded in mainlist[]. If it has been then what we need to do is extract the existing "bitlist" # (which is a list of tuples), then append each new tuple we've just found to this. However that may # lead to duplicates. for n in mainlist: if n['addr'] == addr: # so pull the "bits" from the existing entry that was found to have the same address updated_bits = n['bits'] # then append each new bit entry tuple to this.. for entry in bitlist: do_add = 1 for eb in updated_bits: if entry.bitpos == eb.bitpos: do_add = 0 if do_add: updated_bits.append(entry) # I'll leave this (one of my development print()s as I found it MOST useful!) # print("YOIKS!", "now=", sorted(nodups)) # now search the entrie mainlist[] again to find the index (i) of the one where we found the # existing entry for the same address for i in range(0, len(mainlist)): # and when we stumble upon it.. if mainlist[i]['addr'] == addr: # replace what was there with new details including the sorted, duplicate removed list of bits mainlist[i] = {'addr': addr, 'name': name, 'size': sz, 'main_mask': main_mask, 'caption': capt, 'bits': sorted(updated_bits, key=lambda x: x.bitpos)} # as we've updated an existing entry we don't want to add the data as a new one so.. do_add = 0 # if the address has not occurred before then just add the details including the sorted list of bits - # it sort by default on the first item in the tuple which is the bit position if do_add: mainlist.append({'addr': addr, 'name': name, 'size': sz, 'main_mask': main_mask, 'caption': capt, 'bits': sorted(bitlist, key=lambda x: x.bitpos)}) # The order of the "modules" in the XML is arbitrary and does not follow address order so now we sort the mainlist # of dictionaries using the 'addr' field in each one. Again this clever technique came from Stack Overflow mainlist = sorted(mainlist, key=lambda k: k['addr']) # finally entertain the user with something interesting looking (good for debugging too!) if args.verbose: print("\n++++++++++ All of that data from XML now stored as.... +++++++++++\n") for ent in mainlist: print(hex(ent['addr']), ent) # ===================================== PART 2 (generate the output) ====================================== # So we arrive here with mainlist[] fully populated with the complete info of all registers/bits stripped # from the XMLso and the list now ordered by address. Now it's time to generate some output regidx = 0 # remember the "MAPPED_IO" which was the first thing taken from the XML - this is where we use the sfr_start/size # we pulled from it at that time addr = int(sfr_start, 0) # this is just standard Python file IO - open xxx.h as a writable text file.. hdr = open(out_name, "wt") # the preamble is a fixed text so write that now... hdr.write("#include <stdint.h>\n\ntypedef struct {\n") # now we build a struct that will span sfr_start to sfr_start+sfr_size (remember int(x,0) converts "0xNN" to int) # Oh and if you are wondering why this is a while() loop and not a for() loop it's because in Python (I found # out the hard way!) you cannot use "for x in range(start,end)" and the modify x within the loop to skip some values # the range() builds a list at the very start and x will be set to every member in that list for each iteration # of the loop - updates to the iteration variable are over-written! while addr < (int(sfr_start, 0) + int(sfr_size,0)): # now for each address in the SFR range we see if the next mainlist[] entry has something for it # first pull the mainlist entries into more readable varaible names: main_addr = mainlist[regidx]['addr'] byts = int(mainlist[regidx]['size']) uint_sz = byts * 8 main_mask = int(mainlist[regidx]['main_mask']) regbits = bin(main_mask).count('1') name = mainlist[regidx]['name'] # .lower() caption = mainlist[regidx]['caption'] if main_addr == addr: # if here then this address has an entry in mainlist[] so now the question is "is it a whole register or # is it a group of bits?". Whole registers are things like PORTB, ADC, OCR0 and so on, while registers with # (named) bits are things like UCSRA, TWCR and so on. For a whole register with anonymous bits then # just generate something like: # # union { # uint8_t reg; // (@ 0x32) Port D Data Register # struct { # unsigned int b0:1; # unsigned int b1:1; # unsigned int b2:1; # unsigned int b3:1; # unsigned int b4:1; # unsigned int b5:1; # unsigned int b6:1; # unsigned int b7:1; # } bit; # } _PORTD; # # while for a register with named bits generate something like: # # union { # uint8_t reg; // (@ 0x2e) SPI Status Register # struct { # int _SPI2X:1; // b0 Double SPI Speed Bit # int :5; // b1 - unused # int _WCOL:1; // b6 Write Collision Flag # int _SPIF:1; // b7 SPI Interrupt Flag # } bit; # } _SPSR; # # # If it is a whole register then it might be more than one byte so need to decide to uint8_t, uint16_t # and so on (I'm hoping they haven't got one defined as 'size':3 because that would lead to uint24_t # as I just multiply by 8!!) whole_reg = len(mainlist[regidx]['bits']) == 0 if args.nounion: if whole_reg: if regbits == 8 or regbits == 16: hdr.write("\tuint" + str(uint_sz) + "_t " + name + "; // (@ " + str(hex(addr)) + ") " + caption) else: hdr.write("\tunsigned int " + name + ":" + str(regbits) + "; // (@ " + str(hex(addr)) + ") " + caption) else: hdr.write("\tstruct { // (@ " + str(hex(addr)) + ") " + caption + "\n") else: if regbits == 8 or regbits == 16: hdr.write("\tunion {\n\t\tuint" + str(uint_sz) + "_t reg; // (@ " + str(hex(addr)) + ") " + caption + "\n\t\tstruct {\n") else: hdr.write("\tunion {\n\t\tunsigned int reg:" + str(regbits) + "; // (@ " + str(hex(addr)) + ") " + caption + " (range: 0.." + str((1 << regbits) - 1) + ") \n\t\tstruct {\n") # now for a whole register just write bN fields for the number of bits there are if whole_reg and not args.nounion: for b in range(0, bin(main_mask).count('1')): hdr.write("\t\t\tunsigned int b" + str(b) + ":1;\n") else: # So this is the complicated bit when there are named bits defined bitpos = 0 for b in mainlist[regidx]['bits']: # We have tuples like (2, 5, 'FOO') which means FOO is at bit position 2 and spans 5 bits but # some of the structs have "gaps" that are unused and we need to fill these with padding # the gap is padded using the following... if b.bitpos > bitpos: nskip = b.bitpos - bitpos hdr.write("\t\t\tunsigned int :" + str(b.bitpos - bitpos) + "; // b" + str(bitpos)) if nskip > 1: hdr.write("...b" + str(b.bitpos - 1)) hdr.write(" - unused\n") # and step bitpos on to the bit position of the enrty we're about to write bitpos = b.bitpos # then the actual named "FOO:5" entry is created by this... hdr.write("\t\t\tunsigned int _" + b.name + ":1; // b" + str(b.bitpos) + " " + b.caption + "\n") bitpos += 1 # b.numbits if args.nounion: if not whole_reg: hdr.write("\t} " + name + ";\n") else: hdr.write("\n") else: if args.anon: hdr.write("\t\t};\n\t} _" + name + ";\n") else: if uint_sz == 8: hdr.write("\t\t} bit;\n\t} _" + name + ";\n") else: # just assume/handle uint16_t for now.. hdr.write("\t\t} bit;\n") hdr.write("\t\tstruct {\n") hdr.write("\t\t\tuint8_t low;\n") if regbits == 16: hdr.write("\t\t\tuint8_t high;\n") else: hdr.write("\t\t\tunsigned int high:" + str(regbits - 8) + ";\n") hdr.write("\t\t} halves;\n") hdr.write("\t} _" + name + ";\n") # following adds 0 for size:1 entries but is mainly here for multi-byte entries so that addr can be # stepped on for uint16_t registers and so on addr += byts - 1 # now step the mainlist[] index on to the next entry regidx += 1 # this may look "odd" but it prevents regidx trying to index beyond the end of mainlist and setting it # to 1 is benign as "addr" has already moved on so there's no chance of it matching as it's now "behind" # (hope that makes sense!) if regidx >= len(mainlist): regidx = 1 else: # this just writes an unused0xNN entry for each byte that has nothing in mainlist[] hdr.write("\tuint8_t unused" + str(hex(addr)) + ";\n") addr += 1 # then just finish with the closing part of the struct{} definition and we're all done! :-) # BTW I wanted to call the whole thing "AVR" not "SFRS" but the compiler alredy defines "AVR" hdr.write("} SFRS_t;\n\n#define USE_SFRS() volatile SFRS_t * const pSFR = (SFRS_t *)" + sfr_start + "\n\n") # now to make some easier to type/read symbols that actually hide some of that implementation for entry in mainlist: name = entry['name'] hdr.write("/* ================= (" + name + ") " + entry['caption'] + " ================ */\n") hdr.write("#define " + name.lower() + " pSFR->_" + name + ".reg\n") if len(entry['bits']) == 0: for n in range(0, bin(entry['main_mask']).count('1')): hdr.write("#define " + name.lower() + "_b" + str(n) + " pSFR->_" + name + ".bit.b" + str(n) + "\n") # assume it's uint16_t so there are two "halves" too: if int(entry['size']) > 1: hdr.write("#define " + name.lower() + "l pSFR->_" + name + ".halves.low\n") hdr.write("#define " + name.lower() + "h pSFR->_" + name + ".halves.high\n") else: for bit in entry['bits']: bitname = bit.name.lower() hdr.write("#define " + name.lower() + "_" + bitname + " pSFR->_" + name + ".bit._" + bitname.upper() + "\n") for bit in entry['bits']: bitname = bit.name.lower() suffix = "" if name == "SREG": suffix = "_flag" hdr.write("#define " + bitname + suffix + " (1 << " + str(bit.bitpos) + ")\n") for bit in entry['bits']: bitname = bit.name.lower() hdr.write("#define " + bitname + "_bp " + str(bit.bitpos) + "\n") hdr.write("\n") hdr.close() else: print("No valid input file")
mit
-7,481,435,471,951,080,000
61.111111
201
0.443971
false
sorrison/django-pbs
django_pbs/jobs/views.py
1
1355
# Copyright 2008 VPAC # # This file is part of django-pbs. # # django-pbs is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # django-pbs is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with django-pbs If not, see <http://www.gnu.org/licenses/>. from django.shortcuts import render_to_response from django.template import RequestContext from django.http import HttpResponse, Http404 from django_pbs.jobs.models import Job from django_pbs.servers.models import Server from django_pbs import serializers def job_detail(request, job_id, server_id=None, xml=False): id, server = job_id.split('.', 1) try: job = Job(Server(server), id) except: raise Http404 if xml: return HttpResponse(serializers.serialize('xml', [job], indent=True), mimetype='text/xml') return render_to_response('pbs_jobs/job_detail.html', locals(), context_instance=RequestContext(request))
gpl-3.0
-4,826,663,300,770,279,000
34.657895
109
0.739483
false