content
stringlengths 7
1.05M
| fixed_cases
stringlengths 1
1.28M
|
---|---|
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if not prices:
raise Exception("No Available Prices")
low = prices[0] # lowest HISTORICAL price
profit = 0
for i in range(1, len(prices)):
if prices[i] - low > profit:
profit = prices[i] - low
if prices[i] < low:
low = prices[i]
return profit
| class Solution:
def max_profit(self, prices: List[int]) -> int:
if not prices:
raise exception('No Available Prices')
low = prices[0]
profit = 0
for i in range(1, len(prices)):
if prices[i] - low > profit:
profit = prices[i] - low
if prices[i] < low:
low = prices[i]
return profit |
# Create a calculator function
# The function should accept three parameters:
# first_number: a numeric value for the math operation
# second_number: a numeric value for the math operation
# operation: the word 'add' or 'subtract'
# the function should return the result of the two numbers added or subtracted
# based on the value passed in for the operator
#
# Test your function with the values 6,4, add
# Should return 10
#
# Test your function with the values 6,4, subtract
# Should return 2
#
# BONUS: Test your function with the values 6, 4 and divide
# Have your function return an error message when invalid values are received
def calculator(first_number, second_number, operation):
if operation == 'add':
answer = first_number + second_number
elif operation == 'subtract':
answer = first_number - second_number
elif operation == 'divide':
answer = first_number / second_number
return answer
first_number = float(input('Please enter a number: '))
second_number = float(input('Please enter another number: '))
operation = input('Please enter an operation: ').lower()
answer = calculator(first_number, second_number, operation)
print(answer) | def calculator(first_number, second_number, operation):
if operation == 'add':
answer = first_number + second_number
elif operation == 'subtract':
answer = first_number - second_number
elif operation == 'divide':
answer = first_number / second_number
return answer
first_number = float(input('Please enter a number: '))
second_number = float(input('Please enter another number: '))
operation = input('Please enter an operation: ').lower()
answer = calculator(first_number, second_number, operation)
print(answer) |
# Auto generated by web.apps.config module
WXMP_TOKEN='laonabuzhai'
WXMP_APP_ID='wxadf692dbf276c755'
WXMP_APP_KEY='d5d70f3c91578b545de3392c8c758dad '
WXMP_ENCODING_AES_KEY='Y81yOIit1k5GZS9Vhx5L1JCOVaQJc9uXnhvaDVKGq4k'
WXMP_MSG_ENCRYPT_METHOD='clear'
| wxmp_token = 'laonabuzhai'
wxmp_app_id = 'wxadf692dbf276c755'
wxmp_app_key = 'd5d70f3c91578b545de3392c8c758dad '
wxmp_encoding_aes_key = 'Y81yOIit1k5GZS9Vhx5L1JCOVaQJc9uXnhvaDVKGq4k'
wxmp_msg_encrypt_method = 'clear' |
# Find this puzzle at:
# https://adventofcode.com/2020/day/6
with open('input.txt', 'r') as file:
puzzle_input = [i for i in file.read().split('\n\n')]
answered = 0
for group in puzzle_input:
ques_answered = set()
# Add all questions answered to a set.
# Duplicates are avoided by using a set.
for question in group.replace('\n', ''):
ques_answered.add(question)
answered += len(ques_answered)
print(answered)
| with open('input.txt', 'r') as file:
puzzle_input = [i for i in file.read().split('\n\n')]
answered = 0
for group in puzzle_input:
ques_answered = set()
for question in group.replace('\n', ''):
ques_answered.add(question)
answered += len(ques_answered)
print(answered) |
def test_app_is_created(app):
assert app.name == 'joalheria.app'
def test_config_is_loaded(config):
assert config["DEBUG"] is False
| def test_app_is_created(app):
assert app.name == 'joalheria.app'
def test_config_is_loaded(config):
assert config['DEBUG'] is False |
database = {"shuttle":9080590855,"barath":638383877,"hannah":6987237898}
print("\nGreeting\'s from Vigneshwaram")
print("Welcome to phoneBook\n")
while True:
print("Type EDIT to edit the contact number\n CREATE to create a new contact\n SEARCH to search a specific contact\n DELETE to Delete the contact\n VIEW to view all contacts in PhoneBook")
print('')
function = input("Enter the function: ").lower()
def view():
print('')
print("Here is your phoneBook :- ")
print(database)
print('')
def create():
print('')
name = input("Enter the name of the contact: ")
number = int(input("Enter the number of the contact: "))
print('')
database.setdefault(name,number)
print("Contact updated succesfully")
print('')
print(database)
print('')
def delete():
print('')
print(database)
print('')
delete = input("Enter contact to delete: ")
print('')
if delete in database:
database.pop(delete)
print(database)
print('')
print("Contact succesfully deleted !!")
print('')
else:
print("Given contact doesn\'t exist in phoneBook !!")
print('')
def search():
print('')
search = input("Enter contact to search: ")
print('')
if search in database:
print(database[search])
print('')
if search not in database:
print('')
print("Contact doesn't exist in Phonebook !!")
print('')
print("Do you want to create that contact?")
print('')
function1 = input("CREATE to create or EXIT to ignore: ").lower()
if function1 == "create":
print('')
create()
elif function1 == "exit":
print('')
pass
else:
print('')
print("Invalid input from user contact admin(Vignesh)")
print('')
def edit():
print('')
print(database)
print('')
edit = input("Enter the contact which you want to edit: ")
print('')
if edit in database:
editNumber = int(input("Enter the new number: "))
database[edit] = editNumber
print('')
print("Contact updated succesfully")
print('')
print(database)
print('')
else:
print("Given contact doesn't exist in Phonebook")
print('')
sys.exit()
if function == "edit":
edit()
elif function == "create":
create()
elif function == "search":
search()
elif function == "delete":
delete()
elif function == "view":
view()
else:
print('')
print("Invalid user input contact admin(Vignesh)\n")
responce = input("Type \'RUN\' to keep your phoneBook open or \'EXIT\' to close your phoneBook: ").lower()
print('')
if responce == 'run':
print('')
print("Welcome back!!")
continue
elif responce == 'exit':
print('')
print('Hope you had a nice time !!')
break
else:
print('')
print(' Program has been discontinued due to Invalid input from user\n To continue run the file or contact Vignesh ')
print('')
break
| database = {'shuttle': 9080590855, 'barath': 638383877, 'hannah': 6987237898}
print("\nGreeting's from Vigneshwaram")
print('Welcome to phoneBook\n')
while True:
print('Type EDIT to edit the contact number\n CREATE to create a new contact\n SEARCH to search a specific contact\n DELETE to Delete the contact\n VIEW to view all contacts in PhoneBook')
print('')
function = input('Enter the function: ').lower()
def view():
print('')
print('Here is your phoneBook :- ')
print(database)
print('')
def create():
print('')
name = input('Enter the name of the contact: ')
number = int(input('Enter the number of the contact: '))
print('')
database.setdefault(name, number)
print('Contact updated succesfully')
print('')
print(database)
print('')
def delete():
print('')
print(database)
print('')
delete = input('Enter contact to delete: ')
print('')
if delete in database:
database.pop(delete)
print(database)
print('')
print('Contact succesfully deleted !!')
print('')
else:
print("Given contact doesn't exist in phoneBook !!")
print('')
def search():
print('')
search = input('Enter contact to search: ')
print('')
if search in database:
print(database[search])
print('')
if search not in database:
print('')
print("Contact doesn't exist in Phonebook !!")
print('')
print('Do you want to create that contact?')
print('')
function1 = input('CREATE to create or EXIT to ignore: ').lower()
if function1 == 'create':
print('')
create()
elif function1 == 'exit':
print('')
pass
else:
print('')
print('Invalid input from user contact admin(Vignesh)')
print('')
def edit():
print('')
print(database)
print('')
edit = input('Enter the contact which you want to edit: ')
print('')
if edit in database:
edit_number = int(input('Enter the new number: '))
database[edit] = editNumber
print('')
print('Contact updated succesfully')
print('')
print(database)
print('')
else:
print("Given contact doesn't exist in Phonebook")
print('')
sys.exit()
if function == 'edit':
edit()
elif function == 'create':
create()
elif function == 'search':
search()
elif function == 'delete':
delete()
elif function == 'view':
view()
else:
print('')
print('Invalid user input contact admin(Vignesh)\n')
responce = input("Type 'RUN' to keep your phoneBook open or 'EXIT' to close your phoneBook: ").lower()
print('')
if responce == 'run':
print('')
print('Welcome back!!')
continue
elif responce == 'exit':
print('')
print('Hope you had a nice time !!')
break
else:
print('')
print(' Program has been discontinued due to Invalid input from user\n To continue run the file or contact Vignesh ')
print('')
break |
#take a user input
i = input()
print (i)
#int
i = 23
#float
j = 23.5
#bool
k = True
# char
l = 'w'
#string
m = "word"
#input typecasting
print("Try to enter an alphabet")
value1 = input()
value2 = int(value1)
print (value2+1)
print("Please input integers only")
a = int(input())
b = int(input())
#Operator 1
print (a+b);
print (a-b);
print (a*b);
#division later
# Operator 2
print (a>b)
print(a<b)
print(a==b)
print(a>=b)
print(a<=b)
print(a!=b)
#Operator 3
a = True
b = False
print(a or b)
print(a and b)
print(not a)
#Do these operators work outside int
#Yes, but don't really use anything execpt +
a = "hello"
b = "world"
print (a+b);
# - & // don't work
#alphabetical
print (a>b)
print(a<b)
print(a==b)
print(a>=b)
print(a<=b)
print(a!=b)
#complicated, useless, do you really want to know
print(a or b)
print(a and b)
print(not a)
#cool
h = 6
print(a*6)
# division
a = 5
b = 2
c = -5
# // is integer division. It uses the floor value
print(a//b)
print (c//b)
d = 5.0
e = 2.0
f = -5.0
# / is float division
print(d/e)
print(f/e)
# Guess
val1 = 6.0
val2 = 2.0
val3 = 6
val4 = 2
print(val1/val2)
print(val1//val2)
print(val3/val4)
print(val3//val4)
print(val1/val4)
print(val1//val4)
print(val3/val2)
print(val3//val2)
# Guess again
val1 = 5.0
val2 = 2.0
val3 = 5
val4 = 2
print(val1/val2)
print(val1//val2)
print(val3/val4)
print(val3//val4)
print(val1/val4)
print(val1//val4)
print(val3/val2)
print(val3//val2)
# You don't need to remember it. It's just for fun
# But if you want to - // will awlays give the floor, no matter the argument. And if any one argument is float, the answer will be written as float | i = input()
print(i)
i = 23
j = 23.5
k = True
l = 'w'
m = 'word'
print('Try to enter an alphabet')
value1 = input()
value2 = int(value1)
print(value2 + 1)
print('Please input integers only')
a = int(input())
b = int(input())
print(a + b)
print(a - b)
print(a * b)
print(a > b)
print(a < b)
print(a == b)
print(a >= b)
print(a <= b)
print(a != b)
a = True
b = False
print(a or b)
print(a and b)
print(not a)
a = 'hello'
b = 'world'
print(a + b)
print(a > b)
print(a < b)
print(a == b)
print(a >= b)
print(a <= b)
print(a != b)
print(a or b)
print(a and b)
print(not a)
h = 6
print(a * 6)
a = 5
b = 2
c = -5
print(a // b)
print(c // b)
d = 5.0
e = 2.0
f = -5.0
print(d / e)
print(f / e)
val1 = 6.0
val2 = 2.0
val3 = 6
val4 = 2
print(val1 / val2)
print(val1 // val2)
print(val3 / val4)
print(val3 // val4)
print(val1 / val4)
print(val1 // val4)
print(val3 / val2)
print(val3 // val2)
val1 = 5.0
val2 = 2.0
val3 = 5
val4 = 2
print(val1 / val2)
print(val1 // val2)
print(val3 / val4)
print(val3 // val4)
print(val1 / val4)
print(val1 // val4)
print(val3 / val2)
print(val3 // val2) |
def add_native_methods(clazz):
def mapAlternativeName__java_io_File__(a0):
raise NotImplementedError()
clazz.mapAlternativeName__java_io_File__ = staticmethod(mapAlternativeName__java_io_File__)
| def add_native_methods(clazz):
def map_alternative_name__java_io__file__(a0):
raise not_implemented_error()
clazz.mapAlternativeName__java_io_File__ = staticmethod(mapAlternativeName__java_io_File__) |
class Timings(object):
def __init__(self, j):
self.raw = j
if "blocked" in self.raw:
self.blocked = self.raw["blocked"]
else:
self.blocked = -1
if "dns" in self.raw:
self.dns = self.raw["dns"]
else:
self.dns = -1
if "connect" in self.raw:
self.connect = self.raw["connect"]
else:
self.connect = -1
self.send = self.raw["send"]
self.wait = self.raw["wait"]
self.receive = self.raw["receive"]
if "ssl" in self.raw:
self.ssl = self.raw["ssl"]
else:
self.ssl = -1
if "comment" in self.raw:
self.comment = self.raw["comment"]
else:
self.comment = ''
| class Timings(object):
def __init__(self, j):
self.raw = j
if 'blocked' in self.raw:
self.blocked = self.raw['blocked']
else:
self.blocked = -1
if 'dns' in self.raw:
self.dns = self.raw['dns']
else:
self.dns = -1
if 'connect' in self.raw:
self.connect = self.raw['connect']
else:
self.connect = -1
self.send = self.raw['send']
self.wait = self.raw['wait']
self.receive = self.raw['receive']
if 'ssl' in self.raw:
self.ssl = self.raw['ssl']
else:
self.ssl = -1
if 'comment' in self.raw:
self.comment = self.raw['comment']
else:
self.comment = '' |
def splitscore(file_dir):
score = []
Prefix_str = []
f = open(file_dir)
for line in f:
s =line.split()
score.append(float(s[-1]))
s = s[0] + ' ' + s[1] + ' ' + s[2] + ' '
Prefix_str.append(s)
return score,Prefix_str
file_dir1='submission/2019-01-28_15:45:05_fishnet150_52_submission.txt'
score1,Prefix_str = splitscore(file_dir1)
file_dir2 = 'submission/2019-02-13_15:22:05_FeatherNet54-se_69_submission.txt'
score2,Prefix_str = splitscore(file_dir2)
# print(Prefix_str[1])
file_dir3 = 'submission/2019-03-01_22:25:43_fishnet150_27_submission.txt'
score3,Prefix_str = splitscore(file_dir3)
#
file_dir4 = 'submission/2019-02-13_13:30:12_FeatherNet54_41_submission.txt'
score4,Prefix_str = splitscore(file_dir4)
#
file_dir5 = 'submission/2019-02-13_14:13:43_fishnet150_16_submission.txt'
score5,Prefix_str = splitscore(file_dir5)
file_dir6 = 'submission/2019-02-16_19:31:04_moilenetv2_5_submission.txt'
score6,Prefix_str = splitscore(file_dir6)
file_dir7 = 'submission/2019-02-16_19:30:02_moilenetv2_7_submission.txt'
score7,Prefix_str = splitscore(file_dir7)
file_dir8 = 'submission/2019-02-16_19:28:47_moilenetv2_6_submission.txt'
score8,Prefix_str = splitscore(file_dir8)
file_dir9 = 'submission/2019-03-01_17:10:11_mobilelitenetB_48_submission.txt'
score9,Prefix_str = splitscore(file_dir9)
file_dir10 = 'submission/2019-03-01_17:38:27_mobilelitenetA_51_submission.txt'
score10,Prefix_str = splitscore(file_dir10)
# scores =[score1,score2,score3,score4,score5,score6,score7,score8,score9]
scores = [score1,score2,score3,score4,score5,score6,score7,score8,score9,score10]
def Average(lst):
return sum(lst) / len(lst)
def fecth_ensembled_score(scores, threshold):
ensembled_score = []
for i in range(len(score1)):
line_socres = [scores[j][i] for j in range(len(scores))]
mean_socre = Average(line_socres)
if mean_socre > threshold:
ensembled_score.append(max(line_socres))
else:
ensembled_score.append(min(line_socres))
return ensembled_score
def num_err(ensembled_score,threshold,real_scores):
count = 0
for i in range(len(real_scores)):
if real_scores[i] == (ensembled_score[i]>0.5):
pass
else:
count = count + 1
if count < 50:
print('threshold: {:.3f} num_errors is {}'.format(threshold,count))
return count
# submission_ensembled_file_dir='data/val_label.txt'
submission_ensembled_file_dir='data/test_private_list.txt'
real_scores,Prefix_str = splitscore(submission_ensembled_file_dir)
print('img num in test: ',len(real_scores))
def get_best_threshold():
min_count = 10000000
best_threshold = 0.0
for i in range(100):
threshold = i / 100
ensembled_score = fecth_ensembled_score(scores, threshold)
count = num_err(ensembled_score,threshold,real_scores)
if count < min_count:
min_count = count
best_threshold = threshold
return best_threshold
best_threshold = get_best_threshold()
print('best threshold is :',best_threshold)
submission_ensembled_file_dir='submission/final_submission.txt'
ensembled_file = open(submission_ensembled_file_dir,'a')
ensembled_score = fecth_ensembled_score(scores, best_threshold)
for i in range(len(ensembled_score)):
ensembled_file.write(Prefix_str[i]+str(ensembled_score[i])+'\n')
ensembled_file.close()
| def splitscore(file_dir):
score = []
prefix_str = []
f = open(file_dir)
for line in f:
s = line.split()
score.append(float(s[-1]))
s = s[0] + ' ' + s[1] + ' ' + s[2] + ' '
Prefix_str.append(s)
return (score, Prefix_str)
file_dir1 = 'submission/2019-01-28_15:45:05_fishnet150_52_submission.txt'
(score1, prefix_str) = splitscore(file_dir1)
file_dir2 = 'submission/2019-02-13_15:22:05_FeatherNet54-se_69_submission.txt'
(score2, prefix_str) = splitscore(file_dir2)
file_dir3 = 'submission/2019-03-01_22:25:43_fishnet150_27_submission.txt'
(score3, prefix_str) = splitscore(file_dir3)
file_dir4 = 'submission/2019-02-13_13:30:12_FeatherNet54_41_submission.txt'
(score4, prefix_str) = splitscore(file_dir4)
file_dir5 = 'submission/2019-02-13_14:13:43_fishnet150_16_submission.txt'
(score5, prefix_str) = splitscore(file_dir5)
file_dir6 = 'submission/2019-02-16_19:31:04_moilenetv2_5_submission.txt'
(score6, prefix_str) = splitscore(file_dir6)
file_dir7 = 'submission/2019-02-16_19:30:02_moilenetv2_7_submission.txt'
(score7, prefix_str) = splitscore(file_dir7)
file_dir8 = 'submission/2019-02-16_19:28:47_moilenetv2_6_submission.txt'
(score8, prefix_str) = splitscore(file_dir8)
file_dir9 = 'submission/2019-03-01_17:10:11_mobilelitenetB_48_submission.txt'
(score9, prefix_str) = splitscore(file_dir9)
file_dir10 = 'submission/2019-03-01_17:38:27_mobilelitenetA_51_submission.txt'
(score10, prefix_str) = splitscore(file_dir10)
scores = [score1, score2, score3, score4, score5, score6, score7, score8, score9, score10]
def average(lst):
return sum(lst) / len(lst)
def fecth_ensembled_score(scores, threshold):
ensembled_score = []
for i in range(len(score1)):
line_socres = [scores[j][i] for j in range(len(scores))]
mean_socre = average(line_socres)
if mean_socre > threshold:
ensembled_score.append(max(line_socres))
else:
ensembled_score.append(min(line_socres))
return ensembled_score
def num_err(ensembled_score, threshold, real_scores):
count = 0
for i in range(len(real_scores)):
if real_scores[i] == (ensembled_score[i] > 0.5):
pass
else:
count = count + 1
if count < 50:
print('threshold: {:.3f} num_errors is {}'.format(threshold, count))
return count
submission_ensembled_file_dir = 'data/test_private_list.txt'
(real_scores, prefix_str) = splitscore(submission_ensembled_file_dir)
print('img num in test: ', len(real_scores))
def get_best_threshold():
min_count = 10000000
best_threshold = 0.0
for i in range(100):
threshold = i / 100
ensembled_score = fecth_ensembled_score(scores, threshold)
count = num_err(ensembled_score, threshold, real_scores)
if count < min_count:
min_count = count
best_threshold = threshold
return best_threshold
best_threshold = get_best_threshold()
print('best threshold is :', best_threshold)
submission_ensembled_file_dir = 'submission/final_submission.txt'
ensembled_file = open(submission_ensembled_file_dir, 'a')
ensembled_score = fecth_ensembled_score(scores, best_threshold)
for i in range(len(ensembled_score)):
ensembled_file.write(Prefix_str[i] + str(ensembled_score[i]) + '\n')
ensembled_file.close() |
layer_info = \
{1: {'B': 1, 'K': 96, 'C': 3, 'OY': 165, 'OX': 165, 'FY': 3, 'FX': 3, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
2: {'B': 1, 'K': 42, 'C': 96, 'OY': 165, 'OX': 165, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
3: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
4: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
5: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96},
6: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
7: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
8: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
9: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
10: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
11: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96},
12: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
13: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96},
14: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
15: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
16: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
17: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
18: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
19: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
20: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
21: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42},
22: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
23: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
24: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
25: {'B': 1, 'K': 84, 'C': 168, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
26: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
27: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
28: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
29: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
30: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
31: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
32: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
33: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
34: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
35: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
36: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
37: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
38: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
39: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
40: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
41: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
42: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
43: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
44: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84},
45: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
46: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
47: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
48: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
49: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
50: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
51: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
52: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
53: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
54: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
55: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
56: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
57: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
58: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
59: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
60: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
61: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
62: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
63: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
64: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
65: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
66: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
67: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
68: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
69: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
70: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
71: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
72: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
73: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
74: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
75: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
76: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
77: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
78: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
79: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
80: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
81: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
82: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
83: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
84: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
85: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
86: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
87: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
88: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
89: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
90: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
91: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
92: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
93: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
94: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
95: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
96: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
97: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
98: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
99: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
100: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
101: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
102: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
103: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
104: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
105: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
106: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
107: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
108: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
109: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
110: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
111: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
112: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
113: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
114: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
115: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
116: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
117: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
118: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
119: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
120: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
121: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
122: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
123: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
124: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
125: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
126: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
127: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
128: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
129: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
130: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
131: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
132: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
133: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
134: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
135: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
136: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
137: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
138: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
139: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
140: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
141: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
142: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
143: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
144: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
145: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
146: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
147: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
148: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
149: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
150: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
151: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
152: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
153: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
154: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
155: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
156: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
157: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
158: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
159: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
160: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
161: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
162: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
163: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
164: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
165: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
166: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
167: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
168: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
169: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
170: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
171: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
172: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
173: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
174: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
175: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
176: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
177: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168},
178: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
179: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
180: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
181: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
182: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
183: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
184: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
185: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
186: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
187: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
188: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
189: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
190: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
191: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
192: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
193: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
194: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
195: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
196: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
197: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
198: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
199: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
200: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
201: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
202: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
203: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
204: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
205: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
206: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
207: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
208: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
209: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
210: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
211: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
212: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
213: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
214: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
215: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
216: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
217: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
218: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
219: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
220: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
221: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
222: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
223: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
224: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
225: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
226: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
227: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
228: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
229: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
230: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
231: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
232: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
233: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
234: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
235: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
236: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
237: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
238: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
239: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
240: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
241: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
242: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
243: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
244: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
245: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
246: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
247: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
248: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
249: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
250: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
251: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
252: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
253: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
254: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
255: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
256: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
257: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
258: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
259: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
260: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
261: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
262: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
263: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
264: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
265: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
266: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
267: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
268: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
269: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
270: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
271: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
272: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
273: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
274: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
275: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
276: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
277: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
278: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
279: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
280: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
281: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
282: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
283: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
284: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
285: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
286: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
287: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
288: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
289: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
290: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
291: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
292: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
293: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
294: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
295: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
296: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
297: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
298: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
299: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
300: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
301: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
302: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
303: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
304: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
305: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
306: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
307: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
308: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
309: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
310: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
311: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
312: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
313: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
314: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
315: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
316: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
317: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
318: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
319: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
320: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
321: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
322: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
323: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
324: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
325: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
326: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
327: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
328: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
329: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
330: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
331: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
332: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336},
333: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
334: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
335: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
336: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
337: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
338: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
339: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
340: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
341: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
342: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
343: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
344: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
345: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
346: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
347: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
348: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
349: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
350: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
351: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
352: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
353: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
354: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
355: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
356: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
357: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
358: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
359: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
360: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
361: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
362: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
363: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
364: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
365: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
366: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
367: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
368: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
369: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
370: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
371: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
372: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
373: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
374: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
375: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
376: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
377: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
378: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
379: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
380: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
381: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
382: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
383: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
384: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
385: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
386: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
387: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
388: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
389: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
390: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
391: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
392: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
393: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
394: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
395: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
396: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
397: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
398: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
399: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
400: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
401: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
402: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
403: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
404: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
405: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
406: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
407: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
408: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
409: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
410: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
411: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
412: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
413: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
414: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
415: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
416: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
417: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
418: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
419: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
420: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
421: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
422: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
423: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
424: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
425: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
426: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
427: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
428: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
429: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
430: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
431: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
432: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
433: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
434: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
435: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
436: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
437: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
438: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
439: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
440: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
441: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
442: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
443: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
444: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
445: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
446: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
447: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
448: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
449: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
450: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
451: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
452: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
453: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
454: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
455: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
456: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
457: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
458: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
459: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
460: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
461: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
462: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
463: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
464: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
465: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
466: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
467: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
468: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
469: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
470: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
471: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
472: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
473: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
474: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
475: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
476: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
477: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
478: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
479: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
480: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
481: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
482: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
483: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
484: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
485: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
486: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
487: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672},
488: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1},
489: {'B': 1, 'K': 1000, 'C': 4032, 'OY': 1, 'OX': 1, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}}
| layer_info = {1: {'B': 1, 'K': 96, 'C': 3, 'OY': 165, 'OX': 165, 'FY': 3, 'FX': 3, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 2: {'B': 1, 'K': 42, 'C': 96, 'OY': 165, 'OX': 165, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 3: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 4: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 5: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 6: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 7: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 8: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 9: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 10: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 11: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 12: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 13: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 14: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 15: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 16: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 17: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 18: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 19: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 20: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 21: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 22: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 23: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 24: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 25: {'B': 1, 'K': 84, 'C': 168, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 26: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 27: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 28: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 29: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 30: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 31: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 32: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 33: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 34: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 35: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 36: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 37: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 38: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 39: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 40: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 41: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 42: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 43: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 44: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 45: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 46: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 47: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 48: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 49: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 50: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 51: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 52: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 53: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 54: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 55: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 56: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 57: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 58: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 59: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 60: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 61: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 62: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 63: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 64: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 65: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 66: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 67: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 68: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 69: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 70: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 71: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 72: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 73: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 74: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 75: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 76: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 77: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 78: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 79: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 80: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 81: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 82: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 83: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 84: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 85: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 86: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 87: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 88: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 89: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 90: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 91: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 92: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 93: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 94: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 95: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 96: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 97: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 98: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 99: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 100: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 101: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 102: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 103: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 104: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 105: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 106: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 107: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 108: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 109: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 110: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 111: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 112: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 113: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 114: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 115: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 116: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 117: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 118: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 119: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 120: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 121: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 122: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 123: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 124: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 125: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 126: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 127: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 128: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 129: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 130: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 131: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 132: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 133: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 134: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 135: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 136: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 137: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 138: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 139: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 140: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 141: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 142: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 143: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 144: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 145: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 146: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 147: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 148: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 149: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 150: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 151: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 152: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 153: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 154: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 155: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 156: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 157: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 158: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 159: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 160: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 161: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 162: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 163: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 164: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 165: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 166: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 167: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 168: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 169: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 170: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 171: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 172: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 173: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 174: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 175: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 176: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 177: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 178: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 179: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 180: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 181: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 182: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 183: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 184: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 185: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 186: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 187: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 188: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 189: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 190: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 191: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 192: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 193: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 194: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 195: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 196: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 197: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 198: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 199: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 200: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 201: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 202: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 203: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 204: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 205: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 206: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 207: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 208: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 209: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 210: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 211: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 212: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 213: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 214: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 215: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 216: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 217: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 218: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 219: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 220: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 221: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 222: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 223: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 224: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 225: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 226: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 227: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 228: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 229: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 230: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 231: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 232: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 233: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 234: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 235: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 236: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 237: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 238: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 239: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 240: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 241: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 242: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 243: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 244: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 245: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 246: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 247: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 248: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 249: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 250: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 251: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 252: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 253: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 254: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 255: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 256: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 257: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 258: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 259: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 260: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 261: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 262: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 263: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 264: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 265: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 266: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 267: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 268: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 269: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 270: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 271: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 272: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 273: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 274: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 275: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 276: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 277: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 278: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 279: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 280: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 281: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 282: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 283: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 284: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 285: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 286: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 287: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 288: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 289: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 290: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 291: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 292: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 293: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 294: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 295: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 296: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 297: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 298: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 299: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 300: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 301: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 302: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 303: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 304: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 305: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 306: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 307: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 308: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 309: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 310: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 311: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 312: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 313: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 314: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 315: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 316: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 317: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 318: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 319: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 320: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 321: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 322: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 323: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 324: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 325: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 326: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 327: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 328: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 329: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 330: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 331: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 332: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 333: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 334: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 335: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 336: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 337: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 338: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 339: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 340: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 341: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 342: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 343: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 344: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 345: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 346: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 347: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 348: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 349: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 350: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 351: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 352: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 353: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 354: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 355: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 356: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 357: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 358: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 359: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 360: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 361: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 362: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 363: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 364: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 365: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 366: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 367: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 368: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 369: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 370: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 371: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 372: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 373: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 374: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 375: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 376: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 377: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 378: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 379: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 380: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 381: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 382: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 383: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 384: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 385: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 386: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 387: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 388: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 389: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 390: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 391: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 392: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 393: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 394: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 395: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 396: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 397: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 398: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 399: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 400: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 401: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 402: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 403: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 404: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 405: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 406: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 407: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 408: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 409: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 410: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 411: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 412: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 413: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 414: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 415: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 416: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 417: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 418: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 419: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 420: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 421: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 422: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 423: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 424: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 425: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 426: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 427: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 428: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 429: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 430: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 431: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 432: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 433: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 434: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 435: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 436: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 437: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 438: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 439: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 440: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 441: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 442: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 443: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 444: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 445: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 446: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 447: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 448: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 449: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 450: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 451: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 452: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 453: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 454: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 455: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 456: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 457: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 458: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 459: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 460: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 461: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 462: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 463: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 464: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 465: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 466: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 467: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 468: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 469: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 470: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 471: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 472: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 473: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 474: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 475: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 476: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 477: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 478: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 479: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 480: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 481: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 482: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 483: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 484: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 485: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 486: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 487: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 488: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 489: {'B': 1, 'K': 1000, 'C': 4032, 'OY': 1, 'OX': 1, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}} |
shelters = ['MNTG1', 'MNTG']
twitter_api_key = 'k5O4owMpAPDcI7LG7y4fue9Fc'
twitter_api_secret = 'XXXXX' #Edited out
twitter_access_token = '2150117929-qnttvTJW3uvP0QbZr2ZKxaBlrkRPa9FdUUWSxqx'
twitter_access_token_secret = 'XXXXX'
| shelters = ['MNTG1', 'MNTG']
twitter_api_key = 'k5O4owMpAPDcI7LG7y4fue9Fc'
twitter_api_secret = 'XXXXX'
twitter_access_token = '2150117929-qnttvTJW3uvP0QbZr2ZKxaBlrkRPa9FdUUWSxqx'
twitter_access_token_secret = 'XXXXX' |
class LatticeModifier:
object = None
strength = None
vertex_group = None
| class Latticemodifier:
object = None
strength = None
vertex_group = None |
class ModbusException(Exception):
def __init__(self, code):
codes = {
'1': 'Illegal Function',
'2': 'Illegal Data Address',
'3': 'Illegal Data Value',
'4': 'Slave Device Failure',
'5': 'Acknowledge',
'6': 'Slave Device Busy',
'7': 'Negative Acknowledge',
'8': 'Memory Parity Error',
'10': 'Gateway Path Unavailable',
'11': 'Gateway Target Device Failed to Respond',
}
super().__init__(codes.get(str(code), 'Unknown error code {}'.format(code)))
class BadCRCResponse(Exception):
pass
class BadCRCRequest(Exception):
pass
| class Modbusexception(Exception):
def __init__(self, code):
codes = {'1': 'Illegal Function', '2': 'Illegal Data Address', '3': 'Illegal Data Value', '4': 'Slave Device Failure', '5': 'Acknowledge', '6': 'Slave Device Busy', '7': 'Negative Acknowledge', '8': 'Memory Parity Error', '10': 'Gateway Path Unavailable', '11': 'Gateway Target Device Failed to Respond'}
super().__init__(codes.get(str(code), 'Unknown error code {}'.format(code)))
class Badcrcresponse(Exception):
pass
class Badcrcrequest(Exception):
pass |
'''2. Write a Python program to convert all units of time into seconds.'''
def time_conv(ty, tmo, twk, tdy, thr, tmin):
yr = 365 * 24 * 60 * 60 * ty
mont = 30 * 24 * 60 * 60 *tmo
week = 7 * 24 * 60 * 60 * twk
days = 24 * 60 * 60 * tdy
hrs= 60*60 * thr
mins =60* tmin
return f"{ty} year ={yr} seconds\n{tmo} month = {mont} seconds\n{twk} week = {week} seconds\n{tdy}day = {days} seconds\n{thr} hour = {hrs} seconds\n{tmin} minute = {mins} seconds"
print(time_conv(1, 1, 1, 1, 1, 1))
| """2. Write a Python program to convert all units of time into seconds."""
def time_conv(ty, tmo, twk, tdy, thr, tmin):
yr = 365 * 24 * 60 * 60 * ty
mont = 30 * 24 * 60 * 60 * tmo
week = 7 * 24 * 60 * 60 * twk
days = 24 * 60 * 60 * tdy
hrs = 60 * 60 * thr
mins = 60 * tmin
return f'{ty} year ={yr} seconds\n{tmo} month = {mont} seconds\n{twk} week = {week} seconds\n{tdy}day = {days} seconds\n{thr} hour = {hrs} seconds\n{tmin} minute = {mins} seconds'
print(time_conv(1, 1, 1, 1, 1, 1)) |
## Single ended filter chain element
#
class FilterElement(object):
## Constructor
def __init__(self):
self.nextelement = None ##! points at next in chain
self.name = "noname" ##! nicename for printing
## Call to input data into the filter
def input(self, data, meta=None):
return self.down.rxup(data, meta)
def output(self, data, meta=None):
return self.nextelement.input(data, meta)
## Call this regularly on blocks which impliment it
def tick(self):
pass
## String classes together with this
def set_next(self, n):
self.nextelement = n
| class Filterelement(object):
def __init__(self):
self.nextelement = None
self.name = 'noname'
def input(self, data, meta=None):
return self.down.rxup(data, meta)
def output(self, data, meta=None):
return self.nextelement.input(data, meta)
def tick(self):
pass
def set_next(self, n):
self.nextelement = n |
class driven_range:
def main(self, inputData):
inputData.sort()
self.inputData = inputData.copy()
return self.generateResult()
def convertDigitalToAnalog(self, digitalValueRange, ADC_Sensor_Type):
# Formula used to convert Digital to Analog:
#
# Analog_Value = ((Scale * Digital_Value) / Max._Digital_Value_permissible) - Offset
#
# For 12 Bit:
# Scale = 10 [10A - 0A = 10]
# Max._Digital_Value_permissible = 4094
# Offset = 0 [As no Negative reading is applicable]
#
# For 10 Bit:
# Scale = 30 [15A - (-15A) = 30]
# Max._Digital_Value_permissible = 1023
# Offset = 15 [As negative values upto -15 are applivale]
#
analogValueRange=[]
maxDigitalValue, scale, offset = self.sensorParameters(ADC_Sensor_Type)
for digitalValue in digitalValueRange:
if (0<=digitalValue and digitalValue<=maxDigitalValue):
analogValue = abs(round((scale*digitalValue/maxDigitalValue)-offset))
analogValueRange.append(analogValue)
return analogValueRange
def sensorParameters(self, ADC_Sensor_Type):
if (ADC_Sensor_Type == '12Bits'):
maxDigitalValue = 4094
scale = 10
offset = 0
else:
maxDigitalValue = 1023
scale = 30
offset = 15
return maxDigitalValue, scale, offset
def getRangeListInfo(self):
cumulativeFrequency = 0
rangeInfoList = []
listCurrentPosition = 0
while (cumulativeFrequency != len(self.inputData)):
rangeOpenerElement = self.inputData[listCurrentPosition]
rangeCloserPosition = self.getRangeCloserPosition(listCurrentPosition)
frequency = rangeCloserPosition - listCurrentPosition + 1
rangeCloserElement = self.inputData[rangeCloserPosition]
rangeInfoList.append((rangeOpenerElement, rangeCloserElement, frequency))
listCurrentPosition = rangeCloserPosition + 1
cumulativeFrequency+=frequency
return rangeInfoList
def getRangeCloserPosition(self, listBeginPosition):
rangeCloserPosition = listBeginPosition
for i in range(listBeginPosition+1, len(self.inputData)):
differenceInValues = (self.inputData[i]-self.inputData[rangeCloserPosition])
if(differenceInValues==0 or differenceInValues==1):
rangeCloserPosition = i
return rangeCloserPosition
def generateResult(self):
self.printOnConsole('Range, Result')
rangeInfoList = self.getRangeListInfo()
rangeResult = {}
for rangeInfo in rangeInfoList:
rangeData = f'{rangeInfo[0]}-{rangeInfo[1]}'
freqData = f'{rangeInfo[2]}'
rangeResult.update({rangeData: freqData})
self.printOnConsole(f'{rangeData}, {freqData}')
self.printOnConsole('\n')
return rangeResult
def printOnConsole(self, rangeResult):
print(rangeResult)
| class Driven_Range:
def main(self, inputData):
inputData.sort()
self.inputData = inputData.copy()
return self.generateResult()
def convert_digital_to_analog(self, digitalValueRange, ADC_Sensor_Type):
analog_value_range = []
(max_digital_value, scale, offset) = self.sensorParameters(ADC_Sensor_Type)
for digital_value in digitalValueRange:
if 0 <= digitalValue and digitalValue <= maxDigitalValue:
analog_value = abs(round(scale * digitalValue / maxDigitalValue - offset))
analogValueRange.append(analogValue)
return analogValueRange
def sensor_parameters(self, ADC_Sensor_Type):
if ADC_Sensor_Type == '12Bits':
max_digital_value = 4094
scale = 10
offset = 0
else:
max_digital_value = 1023
scale = 30
offset = 15
return (maxDigitalValue, scale, offset)
def get_range_list_info(self):
cumulative_frequency = 0
range_info_list = []
list_current_position = 0
while cumulativeFrequency != len(self.inputData):
range_opener_element = self.inputData[listCurrentPosition]
range_closer_position = self.getRangeCloserPosition(listCurrentPosition)
frequency = rangeCloserPosition - listCurrentPosition + 1
range_closer_element = self.inputData[rangeCloserPosition]
rangeInfoList.append((rangeOpenerElement, rangeCloserElement, frequency))
list_current_position = rangeCloserPosition + 1
cumulative_frequency += frequency
return rangeInfoList
def get_range_closer_position(self, listBeginPosition):
range_closer_position = listBeginPosition
for i in range(listBeginPosition + 1, len(self.inputData)):
difference_in_values = self.inputData[i] - self.inputData[rangeCloserPosition]
if differenceInValues == 0 or differenceInValues == 1:
range_closer_position = i
return rangeCloserPosition
def generate_result(self):
self.printOnConsole('Range, Result')
range_info_list = self.getRangeListInfo()
range_result = {}
for range_info in rangeInfoList:
range_data = f'{rangeInfo[0]}-{rangeInfo[1]}'
freq_data = f'{rangeInfo[2]}'
rangeResult.update({rangeData: freqData})
self.printOnConsole(f'{rangeData}, {freqData}')
self.printOnConsole('\n')
return rangeResult
def print_on_console(self, rangeResult):
print(rangeResult) |
# Given 2 arrays, create a function that let's a user know (true/false) whether these two arrays contain any
# common items
# For Example:
# const array1 = ['a', 'b', 'c', 'x'];//const array2 = ['z', 'y', 'i'];
# should return false.
# -----------
# const array1 = ['a', 'b', 'c', 'x'];//const array2 = ['z', 'y', 'x'];
# should return true.
# 2 parameters - arrays - no size limit
# return true or false
# Function Definition
def find_common(list_1, list_2):
for i in list1: # O(m)
for j in list2: # O(n)
if i == j:
print('Common element is :', i)
return True
return False
# Declarations
list1 = ['a', 'b', 'c', 'x']
list2 = ['z', 'y', 'x']
find_common(list1, list2)
# BigO(m*n)
| def find_common(list_1, list_2):
for i in list1:
for j in list2:
if i == j:
print('Common element is :', i)
return True
return False
list1 = ['a', 'b', 'c', 'x']
list2 = ['z', 'y', 'x']
find_common(list1, list2) |
# version_info should conform to PEP 386
# (major, minor, micro, alpha/beta/rc/final, #)
# (1, 1, 2, 'alpha', 0) => "1.1.2.dev"
# (1, 2, 0, 'beta', 2) => "1.2b2"
__version_info__ = (0, 1, 0, 'alpha', 0)
def _get_version(): # pragma: no cover
" Returns a PEP 386-compliant version number from version_info. "
assert len(__version_info__) == 5
assert __version_info__[3] in ('alpha', 'beta', 'rc', 'final')
parts = 2 if __version_info__[2] == 0 else 3
main = '.'.join(map(str, __version_info__[:parts]))
sub = ''
if __version_info__[3] == 'alpha' and __version_info__[4] == 0:
# TODO: maybe append some sort of git info here??
sub = '.dev'
elif __version_info__[3] != 'final':
mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'}
sub = mapping[__version_info__[3]] + str(__version_info__[4])
return str(main + sub)
__version__ = _get_version() | __version_info__ = (0, 1, 0, 'alpha', 0)
def _get_version():
""" Returns a PEP 386-compliant version number from version_info. """
assert len(__version_info__) == 5
assert __version_info__[3] in ('alpha', 'beta', 'rc', 'final')
parts = 2 if __version_info__[2] == 0 else 3
main = '.'.join(map(str, __version_info__[:parts]))
sub = ''
if __version_info__[3] == 'alpha' and __version_info__[4] == 0:
sub = '.dev'
elif __version_info__[3] != 'final':
mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'}
sub = mapping[__version_info__[3]] + str(__version_info__[4])
return str(main + sub)
__version__ = _get_version() |
class Options(object):
def __init__(self, dry_run=False, unoptimized=False, verbose=False, debug=False):
self.dry_run = dry_run
self.unoptimized = unoptimized
self.verbose = verbose
self.debug = debug
| class Options(object):
def __init__(self, dry_run=False, unoptimized=False, verbose=False, debug=False):
self.dry_run = dry_run
self.unoptimized = unoptimized
self.verbose = verbose
self.debug = debug |
# Bubble Sort implementation.
def bubbleSort(array):
for i in range(len(array) - 1, -1, -1):
for j in range(i):
if array[j] > array[j+1]:
array = exchange(array, j, j+1)
print(array)
return array
# Exchange function implementation.
def exchange(array, i, j):
temp = array[i]
array[i] = array[j]
array[j] = temp
return array
# Improved bubble sort implementation.
def improvedBubbleSort(array):
flag = True
for i in range(len(array) - 1, -1, -1):
for j in range(i):
if array[j] > array[j+1]:
array = exchange(array, j, j+1)
flag = False
print(array)
if flag:
break
return array
a = input().split()
nums = []
for i in a:
nums.append(int(i))
answer = bubbleSort(nums)
print(answer)
| def bubble_sort(array):
for i in range(len(array) - 1, -1, -1):
for j in range(i):
if array[j] > array[j + 1]:
array = exchange(array, j, j + 1)
print(array)
return array
def exchange(array, i, j):
temp = array[i]
array[i] = array[j]
array[j] = temp
return array
def improved_bubble_sort(array):
flag = True
for i in range(len(array) - 1, -1, -1):
for j in range(i):
if array[j] > array[j + 1]:
array = exchange(array, j, j + 1)
flag = False
print(array)
if flag:
break
return array
a = input().split()
nums = []
for i in a:
nums.append(int(i))
answer = bubble_sort(nums)
print(answer) |
words = [word.upper() for word in open('gettysburg.txt').read().split()]
theDictionary = {}
for word in words:
theDictionary[word] = theDictionary.get(word,0) + 1
print(theDictionary)
| words = [word.upper() for word in open('gettysburg.txt').read().split()]
the_dictionary = {}
for word in words:
theDictionary[word] = theDictionary.get(word, 0) + 1
print(theDictionary) |
class Mobile:
def __init__(self, brand, price):
print("Inside Constructor")
self.brand = brand
self.price = price
def purchase(self):
print("Purchasing a mobile")
print("The mobile has brand", self.brand, "and price", self.price)
print("Mobile-1")
mob1 = Mobile("Apple", 20000)
mob1.purchase()
print("Mobile-2")
mob2 = Mobile("Samsung", 8000)
mob2.purchase()
# we can invoke one method from another using self:
class Mobile2:
def display(self):
print("Displaying Details")
def purchase(self):
self.display()
print("Calcuating the price")
Mobile2().purchase() | class Mobile:
def __init__(self, brand, price):
print('Inside Constructor')
self.brand = brand
self.price = price
def purchase(self):
print('Purchasing a mobile')
print('The mobile has brand', self.brand, 'and price', self.price)
print('Mobile-1')
mob1 = mobile('Apple', 20000)
mob1.purchase()
print('Mobile-2')
mob2 = mobile('Samsung', 8000)
mob2.purchase()
class Mobile2:
def display(self):
print('Displaying Details')
def purchase(self):
self.display()
print('Calcuating the price')
mobile2().purchase() |
def byte(n):
return bytes([n])
def rlp_encode_bytes(x):
if len(x) == 1 and x < b'\x80':
# For a single byte whose value is in the [0x00, 0x7f] range,
# that byte is its own RLP encoding.
return x
elif len(x) < 56:
# Otherwise, if a string is 0-55 bytes long, the RLP encoding
# consists of a single byte with value 0x80 plus the length of
# the string followed by the string. The range of the first
# byte is thus [0x80, 0xb7].
return byte(len(x) + 0x80) + x
else:
length = to_binary(len(x))
# If a string is more than 55 bytes long, the RLP encoding
# consists of a single byte with value 0xb7 plus the length in
# bytes of the length of the string in binary form, followed by
# the length of the string, followed by the string. For example,
# a length-1024 string would be encoded as \xb9\x04\x00 followed
# by the string. The range of the first byte is thus [0xb8, 0xbf].
return byte(len(length) + 0xb7) + length + x
def rlp_encode_list(xs):
sx = b''.join(rlp_encode(x) for x in xs)
if len(sx) < 56:
# If the total payload of a list (i.e. the combined length of all
# its items being RLP encoded) is 0-55 bytes long, the RLP encoding
# consists of a single byte with value 0xc0 plus the length of the
# list followed by the concatenation of the RLP encodings of the
# items. The range of the first byte is thus [0xc0, 0xf7].
return byte(len(sx) + 0xc0) + sx
else:
length = to_binary(len(sx))
# If the total payload of a list is more than 55 bytes long, the
# RLP encoding consists of a single byte with value 0xf7 plus the
# length in bytes of the length of the payload in binary form,
# followed by the length of the payload, followed by the concatenation
# of the RLP encodings of the items. The range of the first byte is
# thus [0xf8, 0xff].
return byte(len(length) + 0xf7) + length + sx
def rlp_encode(x):
if isinstance(x,bytes):
return rlp_encode_bytes(x)
elif isinstance(x,list):
return rlp_encode_list(x)
else:
return "unknown type "
# encodes an integer as bytes, big-endian
def to_binary(n):
return n.to_bytes((n.bit_length() + 7) // 8, 'big')
assert(rlp_encode(b'dog').hex() == '83646f67')
assert(rlp_encode([[], [[]], [[], [[]]]]).hex() == 'c7c0c1c0c3c0c1c0')
| def byte(n):
return bytes([n])
def rlp_encode_bytes(x):
if len(x) == 1 and x < b'\x80':
return x
elif len(x) < 56:
return byte(len(x) + 128) + x
else:
length = to_binary(len(x))
return byte(len(length) + 183) + length + x
def rlp_encode_list(xs):
sx = b''.join((rlp_encode(x) for x in xs))
if len(sx) < 56:
return byte(len(sx) + 192) + sx
else:
length = to_binary(len(sx))
return byte(len(length) + 247) + length + sx
def rlp_encode(x):
if isinstance(x, bytes):
return rlp_encode_bytes(x)
elif isinstance(x, list):
return rlp_encode_list(x)
else:
return 'unknown type '
def to_binary(n):
return n.to_bytes((n.bit_length() + 7) // 8, 'big')
assert rlp_encode(b'dog').hex() == '83646f67'
assert rlp_encode([[], [[]], [[], [[]]]]).hex() == 'c7c0c1c0c3c0c1c0' |
pm = sm.getChr().getPotentialMan()
pm.addPotential(pm.generateRandomPotential(1))
sm.completeQuestNoRewards(12394)
sm.dispose()
| pm = sm.getChr().getPotentialMan()
pm.addPotential(pm.generateRandomPotential(1))
sm.completeQuestNoRewards(12394)
sm.dispose() |
class UpdateIpExclusionObject:
def __init__(self, filterIp, ipFilterId):
self.filterIp = filterIp
self.ipFilterId = ipFilterId
self.memo = None | class Updateipexclusionobject:
def __init__(self, filterIp, ipFilterId):
self.filterIp = filterIp
self.ipFilterId = ipFilterId
self.memo = None |
class PsKeyCode:
def __init__(self):
pass
def keycode_in_alpha_upper(self, code):
return 65 <= code <= 90
def keycode_in_alpha_lower(self, code):
return 97 <= code <= 122
def keycode_in_alpha(self, code):
return self.keycode_in_alpha_lower(
code
) or self.keycode_in_alpha_upper(code)
def keycode_in_num_neg(self, code):
return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code)
def keycode_in_num_float(self, code):
return self.keycode_in_pure_num(code) or self.keycode_in_dot(code)
def keycode_in_pure_num(self, code):
return 48 <= code <= 57
def keycode_in_num(self, code):
return (
self.keycode_in_pure_num(code)
or self.keycode_in_hyphen(code)
or self.keycode_in_dot(code)
)
def keycode_in_dot(self, code):
return code == 46
def keycode_in_alpha_num(self, code):
return self.keycode_in_num(code) or self.keycode_in_alpha(code)
def keycode_in_space(self, code):
return code == 32
def keycode_in_hyphen(self, code):
return code == 45
def keycode_in_return(self, code):
return code == 0xD
| class Pskeycode:
def __init__(self):
pass
def keycode_in_alpha_upper(self, code):
return 65 <= code <= 90
def keycode_in_alpha_lower(self, code):
return 97 <= code <= 122
def keycode_in_alpha(self, code):
return self.keycode_in_alpha_lower(code) or self.keycode_in_alpha_upper(code)
def keycode_in_num_neg(self, code):
return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code)
def keycode_in_num_float(self, code):
return self.keycode_in_pure_num(code) or self.keycode_in_dot(code)
def keycode_in_pure_num(self, code):
return 48 <= code <= 57
def keycode_in_num(self, code):
return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code) or self.keycode_in_dot(code)
def keycode_in_dot(self, code):
return code == 46
def keycode_in_alpha_num(self, code):
return self.keycode_in_num(code) or self.keycode_in_alpha(code)
def keycode_in_space(self, code):
return code == 32
def keycode_in_hyphen(self, code):
return code == 45
def keycode_in_return(self, code):
return code == 13 |
class AnalysisElement:
def __init__(self, validationResult, validationMessage):
self.validation_result = validationResult
self.validation_message = validationMessage
class AnalysisResult:
def __init__(self):
self.elements = []
def add_element(self, element: AnalysisElement):
self.elements.append(element)
class DataSetEntry:
def __init__(self, index, classification):
self.index = index
self.classification = classification
class DataSetEntries:
def __init__(self):
self.entries = []
def add_element(self, entry: DataSetEntry):
self.entries.append(entry)
| class Analysiselement:
def __init__(self, validationResult, validationMessage):
self.validation_result = validationResult
self.validation_message = validationMessage
class Analysisresult:
def __init__(self):
self.elements = []
def add_element(self, element: AnalysisElement):
self.elements.append(element)
class Datasetentry:
def __init__(self, index, classification):
self.index = index
self.classification = classification
class Datasetentries:
def __init__(self):
self.entries = []
def add_element(self, entry: DataSetEntry):
self.entries.append(entry) |
lim = 10000000
num = [True for _ in range(lim)]
for i in range(4, lim, 2):
num[i] = False
for i in range(3, lim, 2):
if num[i]:
for j in range(i * i, lim, i):
num[j] = False
oa = 0
ob = 0
mnp = 0
size = 1000
for a in range(-size + 1, size):
for b in range(1, size, 2):
np = 0
for n in range(0, lim):
if num[n * n + a * n + b]:
np += 1
else:
break
if np > mnp:
mnp = np
oa = a
ob = b
print(oa * ob) | lim = 10000000
num = [True for _ in range(lim)]
for i in range(4, lim, 2):
num[i] = False
for i in range(3, lim, 2):
if num[i]:
for j in range(i * i, lim, i):
num[j] = False
oa = 0
ob = 0
mnp = 0
size = 1000
for a in range(-size + 1, size):
for b in range(1, size, 2):
np = 0
for n in range(0, lim):
if num[n * n + a * n + b]:
np += 1
else:
break
if np > mnp:
mnp = np
oa = a
ob = b
print(oa * ob) |
STATS = [
{
"num_node_expansions": 0,
"search_time": 0.0260686,
"total_time": 0.161712,
"plan_length": 64,
"plan_cost": 64,
"objects_used": 261,
"objects_total": 379,
"neural_net_time": 0.10646533966064453,
"num_replanning_steps": 3,
"wall_time": 2.435692071914673
},
{
"num_node_expansions": 0,
"search_time": 0.0279492,
"total_time": 0.17491,
"plan_length": 52,
"plan_cost": 52,
"objects_used": 276,
"objects_total": 379,
"neural_net_time": 0.058258056640625,
"num_replanning_steps": 4,
"wall_time": 3.361152410507202
},
{
"num_node_expansions": 0,
"search_time": 0.0313502,
"total_time": 0.245342,
"plan_length": 61,
"plan_cost": 61,
"objects_used": 273,
"objects_total": 379,
"neural_net_time": 0.06083822250366211,
"num_replanning_steps": 4,
"wall_time": 4.374004602432251
},
{
"num_node_expansions": 0,
"search_time": 0.0462309,
"total_time": 0.237932,
"plan_length": 59,
"plan_cost": 59,
"objects_used": 243,
"objects_total": 379,
"neural_net_time": 0.05759286880493164,
"num_replanning_steps": 3,
"wall_time": 2.5270650386810303
},
{
"num_node_expansions": 0,
"search_time": 0.0368982,
"total_time": 0.233488,
"plan_length": 54,
"plan_cost": 54,
"objects_used": 272,
"objects_total": 379,
"neural_net_time": 0.05734562873840332,
"num_replanning_steps": 4,
"wall_time": 3.6436092853546143
},
{
"num_node_expansions": 0,
"search_time": 0.0155738,
"total_time": 0.0682826,
"plan_length": 73,
"plan_cost": 73,
"objects_used": 117,
"objects_total": 217,
"neural_net_time": 0.029698610305786133,
"num_replanning_steps": 1,
"wall_time": 0.906505823135376
},
{
"num_node_expansions": 0,
"search_time": 0.0171021,
"total_time": 0.0927101,
"plan_length": 63,
"plan_cost": 63,
"objects_used": 122,
"objects_total": 217,
"neural_net_time": 0.05449986457824707,
"num_replanning_steps": 1,
"wall_time": 1.0803697109222412
},
{
"num_node_expansions": 0,
"search_time": 0.020779,
"total_time": 0.09933,
"plan_length": 55,
"plan_cost": 55,
"objects_used": 124,
"objects_total": 217,
"neural_net_time": 0.03200268745422363,
"num_replanning_steps": 1,
"wall_time": 1.2762155532836914
},
{
"num_node_expansions": 0,
"search_time": 0.116974,
"total_time": 0.160087,
"plan_length": 118,
"plan_cost": 118,
"objects_used": 113,
"objects_total": 217,
"neural_net_time": 0.032900094985961914,
"num_replanning_steps": 1,
"wall_time": 0.9846065044403076
},
{
"num_node_expansions": 0,
"search_time": 0.00864599,
"total_time": 0.0618746,
"plan_length": 51,
"plan_cost": 51,
"objects_used": 121,
"objects_total": 217,
"neural_net_time": 0.03256845474243164,
"num_replanning_steps": 1,
"wall_time": 0.9345319271087646
},
{
"num_node_expansions": 0,
"search_time": 0.0150995,
"total_time": 0.139498,
"plan_length": 55,
"plan_cost": 55,
"objects_used": 184,
"objects_total": 320,
"neural_net_time": 0.04656338691711426,
"num_replanning_steps": 1,
"wall_time": 1.576615810394287
},
{
"num_node_expansions": 0,
"search_time": 0.0195704,
"total_time": 0.0776481,
"plan_length": 76,
"plan_cost": 76,
"objects_used": 157,
"objects_total": 320,
"neural_net_time": 0.044793128967285156,
"num_replanning_steps": 1,
"wall_time": 0.9117276668548584
},
{
"num_node_expansions": 0,
"search_time": 0.0218047,
"total_time": 0.0813003,
"plan_length": 91,
"plan_cost": 91,
"objects_used": 169,
"objects_total": 320,
"neural_net_time": 0.0447840690612793,
"num_replanning_steps": 1,
"wall_time": 1.0234675407409668
},
{
"num_node_expansions": 0,
"search_time": 0.0318204,
"total_time": 0.112719,
"plan_length": 82,
"plan_cost": 82,
"objects_used": 168,
"objects_total": 320,
"neural_net_time": 0.048575401306152344,
"num_replanning_steps": 1,
"wall_time": 1.182650089263916
},
{
"num_node_expansions": 0,
"search_time": 0.0214701,
"total_time": 0.12052,
"plan_length": 68,
"plan_cost": 68,
"objects_used": 193,
"objects_total": 305,
"neural_net_time": 0.046851396560668945,
"num_replanning_steps": 1,
"wall_time": 1.3422448635101318
},
{
"num_node_expansions": 0,
"search_time": 0.0238054,
"total_time": 0.0993613,
"plan_length": 53,
"plan_cost": 53,
"objects_used": 214,
"objects_total": 305,
"neural_net_time": 0.04596352577209473,
"num_replanning_steps": 1,
"wall_time": 1.352567434310913
},
{
"num_node_expansions": 0,
"search_time": 0.0134198,
"total_time": 0.0667924,
"plan_length": 86,
"plan_cost": 86,
"objects_used": 169,
"objects_total": 305,
"neural_net_time": 0.043943166732788086,
"num_replanning_steps": 1,
"wall_time": 0.9647877216339111
},
{
"num_node_expansions": 0,
"search_time": 0.231443,
"total_time": 0.312803,
"plan_length": 84,
"plan_cost": 84,
"objects_used": 194,
"objects_total": 305,
"neural_net_time": 0.04476618766784668,
"num_replanning_steps": 1,
"wall_time": 1.5609796047210693
},
{
"num_node_expansions": 0,
"search_time": 0.0272906,
"total_time": 0.101185,
"plan_length": 63,
"plan_cost": 63,
"objects_used": 211,
"objects_total": 305,
"neural_net_time": 0.04451155662536621,
"num_replanning_steps": 1,
"wall_time": 1.2499635219573975
},
{
"num_node_expansions": 0,
"search_time": 0.0767934,
"total_time": 0.113212,
"plan_length": 156,
"plan_cost": 156,
"objects_used": 114,
"objects_total": 212,
"neural_net_time": 0.03154778480529785,
"num_replanning_steps": 1,
"wall_time": 0.8447625637054443
},
{
"num_node_expansions": 0,
"search_time": 0.665671,
"total_time": 0.694063,
"plan_length": 92,
"plan_cost": 92,
"objects_used": 109,
"objects_total": 212,
"neural_net_time": 0.029831647872924805,
"num_replanning_steps": 0,
"wall_time": 1.1394996643066406
},
{
"num_node_expansions": 0,
"search_time": 0.0104928,
"total_time": 0.0622191,
"plan_length": 68,
"plan_cost": 68,
"objects_used": 159,
"objects_total": 365,
"neural_net_time": 0.05487489700317383,
"num_replanning_steps": 1,
"wall_time": 0.8508009910583496
},
{
"num_node_expansions": 0,
"search_time": 0.0328946,
"total_time": 0.126837,
"plan_length": 89,
"plan_cost": 89,
"objects_used": 203,
"objects_total": 365,
"neural_net_time": 0.053848981857299805,
"num_replanning_steps": 2,
"wall_time": 1.7260208129882812
},
{
"num_node_expansions": 0,
"search_time": 0.0234049,
"total_time": 0.0851975,
"plan_length": 75,
"plan_cost": 75,
"objects_used": 168,
"objects_total": 365,
"neural_net_time": 0.053121328353881836,
"num_replanning_steps": 1,
"wall_time": 1.030031681060791
},
{
"num_node_expansions": 0,
"search_time": 0.013401,
"total_time": 0.0713078,
"plan_length": 59,
"plan_cost": 59,
"objects_used": 169,
"objects_total": 365,
"neural_net_time": 0.05536675453186035,
"num_replanning_steps": 1,
"wall_time": 1.1071906089782715
},
{
"num_node_expansions": 0,
"search_time": 0.104847,
"total_time": 0.195061,
"plan_length": 52,
"plan_cost": 52,
"objects_used": 167,
"objects_total": 302,
"neural_net_time": 0.04499459266662598,
"num_replanning_steps": 1,
"wall_time": 1.4144911766052246
},
{
"num_node_expansions": 0,
"search_time": 0.0765767,
"total_time": 0.131634,
"plan_length": 66,
"plan_cost": 66,
"objects_used": 159,
"objects_total": 302,
"neural_net_time": 0.0444490909576416,
"num_replanning_steps": 1,
"wall_time": 1.1225917339324951
},
{
"num_node_expansions": 0,
"search_time": 0.0633749,
"total_time": 0.159814,
"plan_length": 70,
"plan_cost": 70,
"objects_used": 163,
"objects_total": 302,
"neural_net_time": 0.044997453689575195,
"num_replanning_steps": 1,
"wall_time": 1.3655714988708496
},
{
"num_node_expansions": 0,
"search_time": 0.134185,
"total_time": 0.447814,
"plan_length": 68,
"plan_cost": 68,
"objects_used": 230,
"objects_total": 365,
"neural_net_time": 0.05536222457885742,
"num_replanning_steps": 3,
"wall_time": 4.771425485610962
},
{
"num_node_expansions": 0,
"search_time": 0.0165639,
"total_time": 0.0940178,
"plan_length": 62,
"plan_cost": 62,
"objects_used": 183,
"objects_total": 365,
"neural_net_time": 0.05884861946105957,
"num_replanning_steps": 1,
"wall_time": 1.2651619911193848
},
{
"num_node_expansions": 0,
"search_time": 0.124357,
"total_time": 0.248529,
"plan_length": 81,
"plan_cost": 81,
"objects_used": 214,
"objects_total": 365,
"neural_net_time": 0.05655694007873535,
"num_replanning_steps": 3,
"wall_time": 2.9309194087982178
},
{
"num_node_expansions": 0,
"search_time": 0.0150311,
"total_time": 0.101787,
"plan_length": 63,
"plan_cost": 63,
"objects_used": 192,
"objects_total": 365,
"neural_net_time": 0.0555422306060791,
"num_replanning_steps": 2,
"wall_time": 1.666846752166748
},
{
"num_node_expansions": 0,
"search_time": 0.0150945,
"total_time": 0.0514842,
"plan_length": 90,
"plan_cost": 90,
"objects_used": 175,
"objects_total": 365,
"neural_net_time": 0.05377364158630371,
"num_replanning_steps": 1,
"wall_time": 0.8902196884155273
},
{
"num_node_expansions": 0,
"search_time": 0.0176192,
"total_time": 0.0796522,
"plan_length": 92,
"plan_cost": 92,
"objects_used": 178,
"objects_total": 362,
"neural_net_time": 0.05463862419128418,
"num_replanning_steps": 1,
"wall_time": 1.0109508037567139
},
{
"num_node_expansions": 0,
"search_time": 0.0104213,
"total_time": 0.0470441,
"plan_length": 77,
"plan_cost": 77,
"objects_used": 160,
"objects_total": 362,
"neural_net_time": 0.054520368576049805,
"num_replanning_steps": 1,
"wall_time": 0.7542357444763184
},
{
"num_node_expansions": 0,
"search_time": 0.00448661,
"total_time": 0.0177422,
"plan_length": 84,
"plan_cost": 84,
"objects_used": 136,
"objects_total": 362,
"neural_net_time": 0.05472111701965332,
"num_replanning_steps": 0,
"wall_time": 0.4157280921936035
},
{
"num_node_expansions": 0,
"search_time": 0.045955,
"total_time": 0.190108,
"plan_length": 74,
"plan_cost": 74,
"objects_used": 221,
"objects_total": 322,
"neural_net_time": 0.047133445739746094,
"num_replanning_steps": 1,
"wall_time": 1.6114940643310547
},
{
"num_node_expansions": 0,
"search_time": 0.0459863,
"total_time": 0.178842,
"plan_length": 103,
"plan_cost": 103,
"objects_used": 215,
"objects_total": 441,
"neural_net_time": 0.06811332702636719,
"num_replanning_steps": 1,
"wall_time": 1.7026808261871338
},
{
"num_node_expansions": 0,
"search_time": 0.0375162,
"total_time": 0.17094,
"plan_length": 71,
"plan_cost": 71,
"objects_used": 216,
"objects_total": 441,
"neural_net_time": 0.06928086280822754,
"num_replanning_steps": 1,
"wall_time": 3.0769970417022705
},
{
"num_node_expansions": 0,
"search_time": 0.15904,
"total_time": 0.361705,
"plan_length": 123,
"plan_cost": 123,
"objects_used": 224,
"objects_total": 441,
"neural_net_time": 0.06914591789245605,
"num_replanning_steps": 2,
"wall_time": 2.922773838043213
},
{
"num_node_expansions": 0,
"search_time": 0.127007,
"total_time": 0.591304,
"plan_length": 97,
"plan_cost": 97,
"objects_used": 249,
"objects_total": 441,
"neural_net_time": 0.06865596771240234,
"num_replanning_steps": 2,
"wall_time": 5.019821643829346
},
{
"num_node_expansions": 0,
"search_time": 0.0700383,
"total_time": 0.268587,
"plan_length": 95,
"plan_cost": 95,
"objects_used": 227,
"objects_total": 441,
"neural_net_time": 0.06840014457702637,
"num_replanning_steps": 1,
"wall_time": 2.3747305870056152
},
{
"num_node_expansions": 0,
"search_time": 0.0111234,
"total_time": 0.0605018,
"plan_length": 76,
"plan_cost": 76,
"objects_used": 171,
"objects_total": 417,
"neural_net_time": 0.06322216987609863,
"num_replanning_steps": 1,
"wall_time": 1.0112266540527344
},
{
"num_node_expansions": 0,
"search_time": 0.0183385,
"total_time": 0.106249,
"plan_length": 87,
"plan_cost": 87,
"objects_used": 194,
"objects_total": 417,
"neural_net_time": 0.0725412368774414,
"num_replanning_steps": 1,
"wall_time": 1.364563226699829
},
{
"num_node_expansions": 0,
"search_time": 0.0190809,
"total_time": 0.111638,
"plan_length": 58,
"plan_cost": 58,
"objects_used": 216,
"objects_total": 417,
"neural_net_time": 0.06367969512939453,
"num_replanning_steps": 3,
"wall_time": 2.054568290710449
},
{
"num_node_expansions": 0,
"search_time": 0.210535,
"total_time": 0.334857,
"plan_length": 123,
"plan_cost": 123,
"objects_used": 203,
"objects_total": 417,
"neural_net_time": 0.06560730934143066,
"num_replanning_steps": 2,
"wall_time": 2.3334832191467285
},
{
"num_node_expansions": 0,
"search_time": 0.0219698,
"total_time": 0.130103,
"plan_length": 62,
"plan_cost": 62,
"objects_used": 197,
"objects_total": 417,
"neural_net_time": 0.06369471549987793,
"num_replanning_steps": 1,
"wall_time": 1.6010661125183105
},
{
"num_node_expansions": 0,
"search_time": 0.0101631,
"total_time": 0.0415831,
"plan_length": 76,
"plan_cost": 76,
"objects_used": 112,
"objects_total": 232,
"neural_net_time": 0.03584003448486328,
"num_replanning_steps": 1,
"wall_time": 0.7372550964355469
},
{
"num_node_expansions": 0,
"search_time": 0.0111653,
"total_time": 0.0418656,
"plan_length": 53,
"plan_cost": 53,
"objects_used": 110,
"objects_total": 232,
"neural_net_time": 0.032355308532714844,
"num_replanning_steps": 0,
"wall_time": 0.5313618183135986
},
{
"num_node_expansions": 0,
"search_time": 0.00524832,
"total_time": 0.0220788,
"plan_length": 56,
"plan_cost": 56,
"objects_used": 106,
"objects_total": 232,
"neural_net_time": 0.03553891181945801,
"num_replanning_steps": 1,
"wall_time": 0.7103500366210938
},
{
"num_node_expansions": 0,
"search_time": 0.0136476,
"total_time": 0.0672117,
"plan_length": 78,
"plan_cost": 78,
"objects_used": 130,
"objects_total": 212,
"neural_net_time": 0.02926468849182129,
"num_replanning_steps": 1,
"wall_time": 0.8608791828155518
},
{
"num_node_expansions": 0,
"search_time": 0.016218,
"total_time": 0.0887494,
"plan_length": 75,
"plan_cost": 75,
"objects_used": 133,
"objects_total": 212,
"neural_net_time": 0.029755353927612305,
"num_replanning_steps": 1,
"wall_time": 1.1875898838043213
},
{
"num_node_expansions": 0,
"search_time": 0.0276188,
"total_time": 0.0960435,
"plan_length": 87,
"plan_cost": 87,
"objects_used": 132,
"objects_total": 212,
"neural_net_time": 0.04944968223571777,
"num_replanning_steps": 2,
"wall_time": 1.4252169132232666
},
{
"num_node_expansions": 0,
"search_time": 0.00914205,
"total_time": 0.0572312,
"plan_length": 60,
"plan_cost": 60,
"objects_used": 125,
"objects_total": 212,
"neural_net_time": 0.05208992958068848,
"num_replanning_steps": 1,
"wall_time": 0.8581404685974121
}
] | stats = [{'num_node_expansions': 0, 'search_time': 0.0260686, 'total_time': 0.161712, 'plan_length': 64, 'plan_cost': 64, 'objects_used': 261, 'objects_total': 379, 'neural_net_time': 0.10646533966064453, 'num_replanning_steps': 3, 'wall_time': 2.435692071914673}, {'num_node_expansions': 0, 'search_time': 0.0279492, 'total_time': 0.17491, 'plan_length': 52, 'plan_cost': 52, 'objects_used': 276, 'objects_total': 379, 'neural_net_time': 0.058258056640625, 'num_replanning_steps': 4, 'wall_time': 3.361152410507202}, {'num_node_expansions': 0, 'search_time': 0.0313502, 'total_time': 0.245342, 'plan_length': 61, 'plan_cost': 61, 'objects_used': 273, 'objects_total': 379, 'neural_net_time': 0.06083822250366211, 'num_replanning_steps': 4, 'wall_time': 4.374004602432251}, {'num_node_expansions': 0, 'search_time': 0.0462309, 'total_time': 0.237932, 'plan_length': 59, 'plan_cost': 59, 'objects_used': 243, 'objects_total': 379, 'neural_net_time': 0.05759286880493164, 'num_replanning_steps': 3, 'wall_time': 2.5270650386810303}, {'num_node_expansions': 0, 'search_time': 0.0368982, 'total_time': 0.233488, 'plan_length': 54, 'plan_cost': 54, 'objects_used': 272, 'objects_total': 379, 'neural_net_time': 0.05734562873840332, 'num_replanning_steps': 4, 'wall_time': 3.6436092853546143}, {'num_node_expansions': 0, 'search_time': 0.0155738, 'total_time': 0.0682826, 'plan_length': 73, 'plan_cost': 73, 'objects_used': 117, 'objects_total': 217, 'neural_net_time': 0.029698610305786133, 'num_replanning_steps': 1, 'wall_time': 0.906505823135376}, {'num_node_expansions': 0, 'search_time': 0.0171021, 'total_time': 0.0927101, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 122, 'objects_total': 217, 'neural_net_time': 0.05449986457824707, 'num_replanning_steps': 1, 'wall_time': 1.0803697109222412}, {'num_node_expansions': 0, 'search_time': 0.020779, 'total_time': 0.09933, 'plan_length': 55, 'plan_cost': 55, 'objects_used': 124, 'objects_total': 217, 'neural_net_time': 0.03200268745422363, 'num_replanning_steps': 1, 'wall_time': 1.2762155532836914}, {'num_node_expansions': 0, 'search_time': 0.116974, 'total_time': 0.160087, 'plan_length': 118, 'plan_cost': 118, 'objects_used': 113, 'objects_total': 217, 'neural_net_time': 0.032900094985961914, 'num_replanning_steps': 1, 'wall_time': 0.9846065044403076}, {'num_node_expansions': 0, 'search_time': 0.00864599, 'total_time': 0.0618746, 'plan_length': 51, 'plan_cost': 51, 'objects_used': 121, 'objects_total': 217, 'neural_net_time': 0.03256845474243164, 'num_replanning_steps': 1, 'wall_time': 0.9345319271087646}, {'num_node_expansions': 0, 'search_time': 0.0150995, 'total_time': 0.139498, 'plan_length': 55, 'plan_cost': 55, 'objects_used': 184, 'objects_total': 320, 'neural_net_time': 0.04656338691711426, 'num_replanning_steps': 1, 'wall_time': 1.576615810394287}, {'num_node_expansions': 0, 'search_time': 0.0195704, 'total_time': 0.0776481, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 157, 'objects_total': 320, 'neural_net_time': 0.044793128967285156, 'num_replanning_steps': 1, 'wall_time': 0.9117276668548584}, {'num_node_expansions': 0, 'search_time': 0.0218047, 'total_time': 0.0813003, 'plan_length': 91, 'plan_cost': 91, 'objects_used': 169, 'objects_total': 320, 'neural_net_time': 0.0447840690612793, 'num_replanning_steps': 1, 'wall_time': 1.0234675407409668}, {'num_node_expansions': 0, 'search_time': 0.0318204, 'total_time': 0.112719, 'plan_length': 82, 'plan_cost': 82, 'objects_used': 168, 'objects_total': 320, 'neural_net_time': 0.048575401306152344, 'num_replanning_steps': 1, 'wall_time': 1.182650089263916}, {'num_node_expansions': 0, 'search_time': 0.0214701, 'total_time': 0.12052, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 193, 'objects_total': 305, 'neural_net_time': 0.046851396560668945, 'num_replanning_steps': 1, 'wall_time': 1.3422448635101318}, {'num_node_expansions': 0, 'search_time': 0.0238054, 'total_time': 0.0993613, 'plan_length': 53, 'plan_cost': 53, 'objects_used': 214, 'objects_total': 305, 'neural_net_time': 0.04596352577209473, 'num_replanning_steps': 1, 'wall_time': 1.352567434310913}, {'num_node_expansions': 0, 'search_time': 0.0134198, 'total_time': 0.0667924, 'plan_length': 86, 'plan_cost': 86, 'objects_used': 169, 'objects_total': 305, 'neural_net_time': 0.043943166732788086, 'num_replanning_steps': 1, 'wall_time': 0.9647877216339111}, {'num_node_expansions': 0, 'search_time': 0.231443, 'total_time': 0.312803, 'plan_length': 84, 'plan_cost': 84, 'objects_used': 194, 'objects_total': 305, 'neural_net_time': 0.04476618766784668, 'num_replanning_steps': 1, 'wall_time': 1.5609796047210693}, {'num_node_expansions': 0, 'search_time': 0.0272906, 'total_time': 0.101185, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 211, 'objects_total': 305, 'neural_net_time': 0.04451155662536621, 'num_replanning_steps': 1, 'wall_time': 1.2499635219573975}, {'num_node_expansions': 0, 'search_time': 0.0767934, 'total_time': 0.113212, 'plan_length': 156, 'plan_cost': 156, 'objects_used': 114, 'objects_total': 212, 'neural_net_time': 0.03154778480529785, 'num_replanning_steps': 1, 'wall_time': 0.8447625637054443}, {'num_node_expansions': 0, 'search_time': 0.665671, 'total_time': 0.694063, 'plan_length': 92, 'plan_cost': 92, 'objects_used': 109, 'objects_total': 212, 'neural_net_time': 0.029831647872924805, 'num_replanning_steps': 0, 'wall_time': 1.1394996643066406}, {'num_node_expansions': 0, 'search_time': 0.0104928, 'total_time': 0.0622191, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 159, 'objects_total': 365, 'neural_net_time': 0.05487489700317383, 'num_replanning_steps': 1, 'wall_time': 0.8508009910583496}, {'num_node_expansions': 0, 'search_time': 0.0328946, 'total_time': 0.126837, 'plan_length': 89, 'plan_cost': 89, 'objects_used': 203, 'objects_total': 365, 'neural_net_time': 0.053848981857299805, 'num_replanning_steps': 2, 'wall_time': 1.7260208129882812}, {'num_node_expansions': 0, 'search_time': 0.0234049, 'total_time': 0.0851975, 'plan_length': 75, 'plan_cost': 75, 'objects_used': 168, 'objects_total': 365, 'neural_net_time': 0.053121328353881836, 'num_replanning_steps': 1, 'wall_time': 1.030031681060791}, {'num_node_expansions': 0, 'search_time': 0.013401, 'total_time': 0.0713078, 'plan_length': 59, 'plan_cost': 59, 'objects_used': 169, 'objects_total': 365, 'neural_net_time': 0.05536675453186035, 'num_replanning_steps': 1, 'wall_time': 1.1071906089782715}, {'num_node_expansions': 0, 'search_time': 0.104847, 'total_time': 0.195061, 'plan_length': 52, 'plan_cost': 52, 'objects_used': 167, 'objects_total': 302, 'neural_net_time': 0.04499459266662598, 'num_replanning_steps': 1, 'wall_time': 1.4144911766052246}, {'num_node_expansions': 0, 'search_time': 0.0765767, 'total_time': 0.131634, 'plan_length': 66, 'plan_cost': 66, 'objects_used': 159, 'objects_total': 302, 'neural_net_time': 0.0444490909576416, 'num_replanning_steps': 1, 'wall_time': 1.1225917339324951}, {'num_node_expansions': 0, 'search_time': 0.0633749, 'total_time': 0.159814, 'plan_length': 70, 'plan_cost': 70, 'objects_used': 163, 'objects_total': 302, 'neural_net_time': 0.044997453689575195, 'num_replanning_steps': 1, 'wall_time': 1.3655714988708496}, {'num_node_expansions': 0, 'search_time': 0.134185, 'total_time': 0.447814, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 230, 'objects_total': 365, 'neural_net_time': 0.05536222457885742, 'num_replanning_steps': 3, 'wall_time': 4.771425485610962}, {'num_node_expansions': 0, 'search_time': 0.0165639, 'total_time': 0.0940178, 'plan_length': 62, 'plan_cost': 62, 'objects_used': 183, 'objects_total': 365, 'neural_net_time': 0.05884861946105957, 'num_replanning_steps': 1, 'wall_time': 1.2651619911193848}, {'num_node_expansions': 0, 'search_time': 0.124357, 'total_time': 0.248529, 'plan_length': 81, 'plan_cost': 81, 'objects_used': 214, 'objects_total': 365, 'neural_net_time': 0.05655694007873535, 'num_replanning_steps': 3, 'wall_time': 2.9309194087982178}, {'num_node_expansions': 0, 'search_time': 0.0150311, 'total_time': 0.101787, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 192, 'objects_total': 365, 'neural_net_time': 0.0555422306060791, 'num_replanning_steps': 2, 'wall_time': 1.666846752166748}, {'num_node_expansions': 0, 'search_time': 0.0150945, 'total_time': 0.0514842, 'plan_length': 90, 'plan_cost': 90, 'objects_used': 175, 'objects_total': 365, 'neural_net_time': 0.05377364158630371, 'num_replanning_steps': 1, 'wall_time': 0.8902196884155273}, {'num_node_expansions': 0, 'search_time': 0.0176192, 'total_time': 0.0796522, 'plan_length': 92, 'plan_cost': 92, 'objects_used': 178, 'objects_total': 362, 'neural_net_time': 0.05463862419128418, 'num_replanning_steps': 1, 'wall_time': 1.0109508037567139}, {'num_node_expansions': 0, 'search_time': 0.0104213, 'total_time': 0.0470441, 'plan_length': 77, 'plan_cost': 77, 'objects_used': 160, 'objects_total': 362, 'neural_net_time': 0.054520368576049805, 'num_replanning_steps': 1, 'wall_time': 0.7542357444763184}, {'num_node_expansions': 0, 'search_time': 0.00448661, 'total_time': 0.0177422, 'plan_length': 84, 'plan_cost': 84, 'objects_used': 136, 'objects_total': 362, 'neural_net_time': 0.05472111701965332, 'num_replanning_steps': 0, 'wall_time': 0.4157280921936035}, {'num_node_expansions': 0, 'search_time': 0.045955, 'total_time': 0.190108, 'plan_length': 74, 'plan_cost': 74, 'objects_used': 221, 'objects_total': 322, 'neural_net_time': 0.047133445739746094, 'num_replanning_steps': 1, 'wall_time': 1.6114940643310547}, {'num_node_expansions': 0, 'search_time': 0.0459863, 'total_time': 0.178842, 'plan_length': 103, 'plan_cost': 103, 'objects_used': 215, 'objects_total': 441, 'neural_net_time': 0.06811332702636719, 'num_replanning_steps': 1, 'wall_time': 1.7026808261871338}, {'num_node_expansions': 0, 'search_time': 0.0375162, 'total_time': 0.17094, 'plan_length': 71, 'plan_cost': 71, 'objects_used': 216, 'objects_total': 441, 'neural_net_time': 0.06928086280822754, 'num_replanning_steps': 1, 'wall_time': 3.0769970417022705}, {'num_node_expansions': 0, 'search_time': 0.15904, 'total_time': 0.361705, 'plan_length': 123, 'plan_cost': 123, 'objects_used': 224, 'objects_total': 441, 'neural_net_time': 0.06914591789245605, 'num_replanning_steps': 2, 'wall_time': 2.922773838043213}, {'num_node_expansions': 0, 'search_time': 0.127007, 'total_time': 0.591304, 'plan_length': 97, 'plan_cost': 97, 'objects_used': 249, 'objects_total': 441, 'neural_net_time': 0.06865596771240234, 'num_replanning_steps': 2, 'wall_time': 5.019821643829346}, {'num_node_expansions': 0, 'search_time': 0.0700383, 'total_time': 0.268587, 'plan_length': 95, 'plan_cost': 95, 'objects_used': 227, 'objects_total': 441, 'neural_net_time': 0.06840014457702637, 'num_replanning_steps': 1, 'wall_time': 2.3747305870056152}, {'num_node_expansions': 0, 'search_time': 0.0111234, 'total_time': 0.0605018, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 171, 'objects_total': 417, 'neural_net_time': 0.06322216987609863, 'num_replanning_steps': 1, 'wall_time': 1.0112266540527344}, {'num_node_expansions': 0, 'search_time': 0.0183385, 'total_time': 0.106249, 'plan_length': 87, 'plan_cost': 87, 'objects_used': 194, 'objects_total': 417, 'neural_net_time': 0.0725412368774414, 'num_replanning_steps': 1, 'wall_time': 1.364563226699829}, {'num_node_expansions': 0, 'search_time': 0.0190809, 'total_time': 0.111638, 'plan_length': 58, 'plan_cost': 58, 'objects_used': 216, 'objects_total': 417, 'neural_net_time': 0.06367969512939453, 'num_replanning_steps': 3, 'wall_time': 2.054568290710449}, {'num_node_expansions': 0, 'search_time': 0.210535, 'total_time': 0.334857, 'plan_length': 123, 'plan_cost': 123, 'objects_used': 203, 'objects_total': 417, 'neural_net_time': 0.06560730934143066, 'num_replanning_steps': 2, 'wall_time': 2.3334832191467285}, {'num_node_expansions': 0, 'search_time': 0.0219698, 'total_time': 0.130103, 'plan_length': 62, 'plan_cost': 62, 'objects_used': 197, 'objects_total': 417, 'neural_net_time': 0.06369471549987793, 'num_replanning_steps': 1, 'wall_time': 1.6010661125183105}, {'num_node_expansions': 0, 'search_time': 0.0101631, 'total_time': 0.0415831, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 112, 'objects_total': 232, 'neural_net_time': 0.03584003448486328, 'num_replanning_steps': 1, 'wall_time': 0.7372550964355469}, {'num_node_expansions': 0, 'search_time': 0.0111653, 'total_time': 0.0418656, 'plan_length': 53, 'plan_cost': 53, 'objects_used': 110, 'objects_total': 232, 'neural_net_time': 0.032355308532714844, 'num_replanning_steps': 0, 'wall_time': 0.5313618183135986}, {'num_node_expansions': 0, 'search_time': 0.00524832, 'total_time': 0.0220788, 'plan_length': 56, 'plan_cost': 56, 'objects_used': 106, 'objects_total': 232, 'neural_net_time': 0.03553891181945801, 'num_replanning_steps': 1, 'wall_time': 0.7103500366210938}, {'num_node_expansions': 0, 'search_time': 0.0136476, 'total_time': 0.0672117, 'plan_length': 78, 'plan_cost': 78, 'objects_used': 130, 'objects_total': 212, 'neural_net_time': 0.02926468849182129, 'num_replanning_steps': 1, 'wall_time': 0.8608791828155518}, {'num_node_expansions': 0, 'search_time': 0.016218, 'total_time': 0.0887494, 'plan_length': 75, 'plan_cost': 75, 'objects_used': 133, 'objects_total': 212, 'neural_net_time': 0.029755353927612305, 'num_replanning_steps': 1, 'wall_time': 1.1875898838043213}, {'num_node_expansions': 0, 'search_time': 0.0276188, 'total_time': 0.0960435, 'plan_length': 87, 'plan_cost': 87, 'objects_used': 132, 'objects_total': 212, 'neural_net_time': 0.04944968223571777, 'num_replanning_steps': 2, 'wall_time': 1.4252169132232666}, {'num_node_expansions': 0, 'search_time': 0.00914205, 'total_time': 0.0572312, 'plan_length': 60, 'plan_cost': 60, 'objects_used': 125, 'objects_total': 212, 'neural_net_time': 0.05208992958068848, 'num_replanning_steps': 1, 'wall_time': 0.8581404685974121}] |
# Numbers are not stored in the written representation, so they can't be
# treated like strings.
a = 123
print(a[1])
| a = 123
print(a[1]) |
def get_reversed_string(word):
return word[::-1]
while True:
string = input()
if string == 'end':
break
rev_str = get_reversed_string(string)
print(f'{string} = {rev_str}')
| def get_reversed_string(word):
return word[::-1]
while True:
string = input()
if string == 'end':
break
rev_str = get_reversed_string(string)
print(f'{string} = {rev_str}') |
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrderBottom(self, root: 'TreeNode') -> 'List[List[int]]':
if not root:
return
stack = [(root,0)]
rst = []
while stack:
n, level = stack.pop(0)
if len(rst) < level + 1:
rst.insert(0,[])
rst[-(level+1)].append(n.val)
if n.left:
stack.append((n.left,level+1))
if n.right:
stack.append((n.right, level+1))
return rst | class Solution:
def level_order_bottom(self, root: 'TreeNode') -> 'List[List[int]]':
if not root:
return
stack = [(root, 0)]
rst = []
while stack:
(n, level) = stack.pop(0)
if len(rst) < level + 1:
rst.insert(0, [])
rst[-(level + 1)].append(n.val)
if n.left:
stack.append((n.left, level + 1))
if n.right:
stack.append((n.right, level + 1))
return rst |
# def function_name_print(a,b,c,d):
#
# print(a,b,c,d)
def funargs(normal,*args, **kwargs):
print(normal)
for item in args:
print(item)
print("\nNow I would like to introduce some of our heroes")
for key,value in kwargs.items():
print(f"{key} is a {value}")
# As a tuple
# function_name_print("Jiggu","g","f","dd")
list = ["Jiggu","g","f","dd"]
normal = "Yhis is normal"
kw = {"Rohan":"Monitor", "Jiggu":"Sports coach","Him":"Programmer"}
funargs(normal,*list,**kw) | def funargs(normal, *args, **kwargs):
print(normal)
for item in args:
print(item)
print('\nNow I would like to introduce some of our heroes')
for (key, value) in kwargs.items():
print(f'{key} is a {value}')
list = ['Jiggu', 'g', 'f', 'dd']
normal = 'Yhis is normal'
kw = {'Rohan': 'Monitor', 'Jiggu': 'Sports coach', 'Him': 'Programmer'}
funargs(normal, *list, **kw) |
class MonoDevelopSvnPackage (Package):
def __init__ (self):
Package.__init__ (self, 'monodevelop', 'trunk')
def svn_co_or_up (self):
self.cd ('..')
if os.path.isdir ('svn'):
self.cd ('svn')
self.sh ('svn up')
else:
self.sh ('svn co http://anonsvn.mono-project.com/source/trunk/monodevelop svn')
self.cd ('svn')
self.cd ('..')
def prep (self):
self.svn_co_or_up ()
self.sh ('cp -r svn _build')
self.cd ('_build/svn')
def build (self):
self.sh (
'echo "main --disable-update-mimedb --disable-update-desktopdb --disable-gnomeplatform --enable-macplatform --disable-tests" > profiles/mac',
'./configure --prefix="%{prefix}" --profile=mac',
'make'
)
def install (self):
self.sh ('%{makeinstall}')
MonoDevelopSvnPackage ()
| class Monodevelopsvnpackage(Package):
def __init__(self):
Package.__init__(self, 'monodevelop', 'trunk')
def svn_co_or_up(self):
self.cd('..')
if os.path.isdir('svn'):
self.cd('svn')
self.sh('svn up')
else:
self.sh('svn co http://anonsvn.mono-project.com/source/trunk/monodevelop svn')
self.cd('svn')
self.cd('..')
def prep(self):
self.svn_co_or_up()
self.sh('cp -r svn _build')
self.cd('_build/svn')
def build(self):
self.sh('echo "main --disable-update-mimedb --disable-update-desktopdb --disable-gnomeplatform --enable-macplatform --disable-tests" > profiles/mac', './configure --prefix="%{prefix}" --profile=mac', 'make')
def install(self):
self.sh('%{makeinstall}')
mono_develop_svn_package() |
#
# PySNMP MIB module CISCOSB-UDP (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCOSB-UDP
# Produced by pysmi-0.3.4 at Wed May 1 12:24:02 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion")
switch001, = mibBuilder.importSymbols("CISCOSB-MIB", "switch001")
InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType")
ipCidrRouteTos, ipCidrRouteDest, ipCidrRouteMask, ipCidrRouteNextHop, ipCidrRouteEntry = mibBuilder.importSymbols("IP-FORWARD-MIB", "ipCidrRouteTos", "ipCidrRouteDest", "ipCidrRouteMask", "ipCidrRouteNextHop", "ipCidrRouteEntry")
ipAddrEntry, = mibBuilder.importSymbols("IP-MIB", "ipAddrEntry")
rip2IfConfEntry, = mibBuilder.importSymbols("RFC1389-MIB", "rip2IfConfEntry")
ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup")
Counter32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity, NotificationType, Unsigned32, Bits, IpAddress, Counter64, Integer32, Gauge32, MibIdentifier, ModuleIdentity, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity", "NotificationType", "Unsigned32", "Bits", "IpAddress", "Counter64", "Integer32", "Gauge32", "MibIdentifier", "ModuleIdentity", "TimeTicks")
DisplayString, RowStatus, TruthValue, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TruthValue", "TextualConvention")
rsUDP = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42))
rsUDP.setRevisions(('2004-06-01 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts: rsUDP.setRevisionsDescriptions(('Initial version of this MIB.',))
if mibBuilder.loadTexts: rsUDP.setLastUpdated('200406010000Z')
if mibBuilder.loadTexts: rsUDP.setOrganization('Cisco Small Business')
if mibBuilder.loadTexts: rsUDP.setContactInfo('Postal: 170 West Tasman Drive San Jose , CA 95134-1706 USA Website: Cisco Small Business Home http://www.cisco.com/smb>;, Cisco Small Business Support Community <http://www.cisco.com/go/smallbizsupport>')
if mibBuilder.loadTexts: rsUDP.setDescription('The private MIB module definition for switch001 UDP MIB.')
rsUdpRelayTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1), )
if mibBuilder.loadTexts: rsUdpRelayTable.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayTable.setDescription('This table contains the udp relay configuration per port.')
rsUdpRelayEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1), ).setIndexNames((0, "CISCOSB-UDP", "rsUdpRelayDstPort"), (0, "CISCOSB-UDP", "rsUdpRelaySrcIpInf"), (0, "CISCOSB-UDP", "rsUdpRelayDstIpAddr"))
if mibBuilder.loadTexts: rsUdpRelayEntry.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayEntry.setDescription(' The row definition for this table.')
rsUdpRelayDstPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 1), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: rsUdpRelayDstPort.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayDstPort.setDescription('The UDP port number in the UDP message header.')
rsUdpRelaySrcIpInf = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 2), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setDescription('The source interface IP that receives UDP message. 255.255.255.255 from all IP interface. 0.0.0.0 - 0.255.255.255 and 127.0.0.0 - 127.255.255.255 not relevant addresses.')
rsUdpRelayDstIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 3), IpAddress()).setMaxAccess("readonly")
if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setDescription('The destination IP address the UDP message will be forward. 0.0.0.0 does not forward, 255.255.255.255 broadcasts to all addresses.')
rsUdpRelayStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 4), RowStatus()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: rsUdpRelayStatus.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayStatus.setDescription('The status of a table entry. It is used to delete an entry from this table.')
rsUdpRelayUserInfo = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 5), Integer32()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: rsUdpRelayUserInfo.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayUserInfo.setDescription('The information used for implementation purposes')
rsUdpRelayMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 2), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: rsUdpRelayMibVersion.setStatus('current')
if mibBuilder.loadTexts: rsUdpRelayMibVersion.setDescription('Mib version. The current version is 1.')
rlUdpSessionTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3), )
if mibBuilder.loadTexts: rlUdpSessionTable.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionTable.setDescription('This table contains the udp sessions information')
rlUdpSessionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1), ).setIndexNames((0, "CISCOSB-UDP", "rlUdpSessionLocalAddrType"), (0, "CISCOSB-UDP", "rlUdpSessionLocalAddr"), (0, "CISCOSB-UDP", "rlUdpSessionLocalPort"), (0, "CISCOSB-UDP", "rlUdpSessionAppInst"))
if mibBuilder.loadTexts: rlUdpSessionEntry.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionEntry.setDescription(' The row definition for this table.')
rlUdpSessionLocalAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 1), InetAddressType())
if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setDescription('The type of the rlUdpSessionLocalAddress address')
rlUdpSessionLocalAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 2), InetAddress())
if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setDescription('The UDP port session number.')
rlUdpSessionLocalPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 3), Integer32())
if mibBuilder.loadTexts: rlUdpSessionLocalPort.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionLocalPort.setDescription('The UDP port local IP address.')
rlUdpSessionAppInst = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535)))
if mibBuilder.loadTexts: rlUdpSessionAppInst.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionAppInst.setDescription('The instance ID for the application on the port (for future use).')
rlUdpSessionAppName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 12))).setMaxAccess("readonly")
if mibBuilder.loadTexts: rlUdpSessionAppName.setStatus('current')
if mibBuilder.loadTexts: rlUdpSessionAppName.setDescription('The name of the application that created the session.')
mibBuilder.exportSymbols("CISCOSB-UDP", rsUdpRelayStatus=rsUdpRelayStatus, rlUdpSessionAppInst=rlUdpSessionAppInst, rsUdpRelayTable=rsUdpRelayTable, rlUdpSessionLocalPort=rlUdpSessionLocalPort, rsUdpRelayDstIpAddr=rsUdpRelayDstIpAddr, rlUdpSessionTable=rlUdpSessionTable, rlUdpSessionAppName=rlUdpSessionAppName, rlUdpSessionLocalAddrType=rlUdpSessionLocalAddrType, rsUdpRelayDstPort=rsUdpRelayDstPort, rsUDP=rsUDP, rsUdpRelayMibVersion=rsUdpRelayMibVersion, rsUdpRelaySrcIpInf=rsUdpRelaySrcIpInf, rsUdpRelayEntry=rsUdpRelayEntry, PYSNMP_MODULE_ID=rsUDP, rlUdpSessionLocalAddr=rlUdpSessionLocalAddr, rsUdpRelayUserInfo=rsUdpRelayUserInfo, rlUdpSessionEntry=rlUdpSessionEntry)
| (integer, octet_string, object_identifier) = mibBuilder.importSymbols('ASN1', 'Integer', 'OctetString', 'ObjectIdentifier')
(named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')
(single_value_constraint, value_range_constraint, constraints_intersection, value_size_constraint, constraints_union) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ValueRangeConstraint', 'ConstraintsIntersection', 'ValueSizeConstraint', 'ConstraintsUnion')
(switch001,) = mibBuilder.importSymbols('CISCOSB-MIB', 'switch001')
(inet_address, inet_address_type) = mibBuilder.importSymbols('INET-ADDRESS-MIB', 'InetAddress', 'InetAddressType')
(ip_cidr_route_tos, ip_cidr_route_dest, ip_cidr_route_mask, ip_cidr_route_next_hop, ip_cidr_route_entry) = mibBuilder.importSymbols('IP-FORWARD-MIB', 'ipCidrRouteTos', 'ipCidrRouteDest', 'ipCidrRouteMask', 'ipCidrRouteNextHop', 'ipCidrRouteEntry')
(ip_addr_entry,) = mibBuilder.importSymbols('IP-MIB', 'ipAddrEntry')
(rip2_if_conf_entry,) = mibBuilder.importSymbols('RFC1389-MIB', 'rip2IfConfEntry')
(module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup')
(counter32, iso, mib_scalar, mib_table, mib_table_row, mib_table_column, object_identity, notification_type, unsigned32, bits, ip_address, counter64, integer32, gauge32, mib_identifier, module_identity, time_ticks) = mibBuilder.importSymbols('SNMPv2-SMI', 'Counter32', 'iso', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'ObjectIdentity', 'NotificationType', 'Unsigned32', 'Bits', 'IpAddress', 'Counter64', 'Integer32', 'Gauge32', 'MibIdentifier', 'ModuleIdentity', 'TimeTicks')
(display_string, row_status, truth_value, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'RowStatus', 'TruthValue', 'TextualConvention')
rs_udp = module_identity((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42))
rsUDP.setRevisions(('2004-06-01 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts:
rsUDP.setRevisionsDescriptions(('Initial version of this MIB.',))
if mibBuilder.loadTexts:
rsUDP.setLastUpdated('200406010000Z')
if mibBuilder.loadTexts:
rsUDP.setOrganization('Cisco Small Business')
if mibBuilder.loadTexts:
rsUDP.setContactInfo('Postal: 170 West Tasman Drive San Jose , CA 95134-1706 USA Website: Cisco Small Business Home http://www.cisco.com/smb>;, Cisco Small Business Support Community <http://www.cisco.com/go/smallbizsupport>')
if mibBuilder.loadTexts:
rsUDP.setDescription('The private MIB module definition for switch001 UDP MIB.')
rs_udp_relay_table = mib_table((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1))
if mibBuilder.loadTexts:
rsUdpRelayTable.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayTable.setDescription('This table contains the udp relay configuration per port.')
rs_udp_relay_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1)).setIndexNames((0, 'CISCOSB-UDP', 'rsUdpRelayDstPort'), (0, 'CISCOSB-UDP', 'rsUdpRelaySrcIpInf'), (0, 'CISCOSB-UDP', 'rsUdpRelayDstIpAddr'))
if mibBuilder.loadTexts:
rsUdpRelayEntry.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayEntry.setDescription(' The row definition for this table.')
rs_udp_relay_dst_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 1), integer32()).setMaxAccess('readonly')
if mibBuilder.loadTexts:
rsUdpRelayDstPort.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayDstPort.setDescription('The UDP port number in the UDP message header.')
rs_udp_relay_src_ip_inf = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 2), ip_address()).setMaxAccess('readonly')
if mibBuilder.loadTexts:
rsUdpRelaySrcIpInf.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelaySrcIpInf.setDescription('The source interface IP that receives UDP message. 255.255.255.255 from all IP interface. 0.0.0.0 - 0.255.255.255 and 127.0.0.0 - 127.255.255.255 not relevant addresses.')
rs_udp_relay_dst_ip_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 3), ip_address()).setMaxAccess('readonly')
if mibBuilder.loadTexts:
rsUdpRelayDstIpAddr.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayDstIpAddr.setDescription('The destination IP address the UDP message will be forward. 0.0.0.0 does not forward, 255.255.255.255 broadcasts to all addresses.')
rs_udp_relay_status = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 4), row_status()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
rsUdpRelayStatus.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayStatus.setDescription('The status of a table entry. It is used to delete an entry from this table.')
rs_udp_relay_user_info = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 5), integer32()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
rsUdpRelayUserInfo.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayUserInfo.setDescription('The information used for implementation purposes')
rs_udp_relay_mib_version = mib_scalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 2), integer32()).setMaxAccess('readonly')
if mibBuilder.loadTexts:
rsUdpRelayMibVersion.setStatus('current')
if mibBuilder.loadTexts:
rsUdpRelayMibVersion.setDescription('Mib version. The current version is 1.')
rl_udp_session_table = mib_table((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3))
if mibBuilder.loadTexts:
rlUdpSessionTable.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionTable.setDescription('This table contains the udp sessions information')
rl_udp_session_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1)).setIndexNames((0, 'CISCOSB-UDP', 'rlUdpSessionLocalAddrType'), (0, 'CISCOSB-UDP', 'rlUdpSessionLocalAddr'), (0, 'CISCOSB-UDP', 'rlUdpSessionLocalPort'), (0, 'CISCOSB-UDP', 'rlUdpSessionAppInst'))
if mibBuilder.loadTexts:
rlUdpSessionEntry.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionEntry.setDescription(' The row definition for this table.')
rl_udp_session_local_addr_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 1), inet_address_type())
if mibBuilder.loadTexts:
rlUdpSessionLocalAddrType.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionLocalAddrType.setDescription('The type of the rlUdpSessionLocalAddress address')
rl_udp_session_local_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 2), inet_address())
if mibBuilder.loadTexts:
rlUdpSessionLocalAddr.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionLocalAddr.setDescription('The UDP port session number.')
rl_udp_session_local_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 3), integer32())
if mibBuilder.loadTexts:
rlUdpSessionLocalPort.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionLocalPort.setDescription('The UDP port local IP address.')
rl_udp_session_app_inst = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 4), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535)))
if mibBuilder.loadTexts:
rlUdpSessionAppInst.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionAppInst.setDescription('The instance ID for the application on the port (for future use).')
rl_udp_session_app_name = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 5), display_string().subtype(subtypeSpec=value_size_constraint(0, 12))).setMaxAccess('readonly')
if mibBuilder.loadTexts:
rlUdpSessionAppName.setStatus('current')
if mibBuilder.loadTexts:
rlUdpSessionAppName.setDescription('The name of the application that created the session.')
mibBuilder.exportSymbols('CISCOSB-UDP', rsUdpRelayStatus=rsUdpRelayStatus, rlUdpSessionAppInst=rlUdpSessionAppInst, rsUdpRelayTable=rsUdpRelayTable, rlUdpSessionLocalPort=rlUdpSessionLocalPort, rsUdpRelayDstIpAddr=rsUdpRelayDstIpAddr, rlUdpSessionTable=rlUdpSessionTable, rlUdpSessionAppName=rlUdpSessionAppName, rlUdpSessionLocalAddrType=rlUdpSessionLocalAddrType, rsUdpRelayDstPort=rsUdpRelayDstPort, rsUDP=rsUDP, rsUdpRelayMibVersion=rsUdpRelayMibVersion, rsUdpRelaySrcIpInf=rsUdpRelaySrcIpInf, rsUdpRelayEntry=rsUdpRelayEntry, PYSNMP_MODULE_ID=rsUDP, rlUdpSessionLocalAddr=rlUdpSessionLocalAddr, rsUdpRelayUserInfo=rsUdpRelayUserInfo, rlUdpSessionEntry=rlUdpSessionEntry) |
def entry_id(entry):
for field in ['id', 'link']:
ret = getattr(entry, field, None)
if ret:
return ret
raise Exception('no id field found in entry: {}'.format(entry))
| def entry_id(entry):
for field in ['id', 'link']:
ret = getattr(entry, field, None)
if ret:
return ret
raise exception('no id field found in entry: {}'.format(entry)) |
print("~" * 60)
print("Tower of Hanoi")
def hanoi(n, src, dst, tmp):
if n > 0:
hanoi(n - 1, src, tmp, dst)
print(f"Move disk {n} from {src} to {dst}")
hanoi(n - 1, tmp, dst, src)
hanoi(4, "A", "B", "C")
print("~" * 60)
print("8 Queens Problem")
queen = [0 for _ in range(8)]
rfree = [True for _ in range(8)]
du = [True for _ in range(15)]
dd = [True for _ in range(15)]
def solve(c):
global solutions
if c == 8:
solutions += 1
print(solutions, end=": ")
for r in range(8):
print(queen[r] + 1, end=" " if r < 7 else "\n")
else:
for r in range(8):
if rfree[r] and dd[c + r] and du[c + 7 - r]:
queen[c] = r
rfree[r] = dd[c + r] = du[c + 7 - r] = False
solve(c + 1)
rfree[r] = dd[c + r] = du[c + 7 - r] = True
solutions = 0
solve(0)
print(f"\nThere are {solutions} solutions")
| print('~' * 60)
print('Tower of Hanoi')
def hanoi(n, src, dst, tmp):
if n > 0:
hanoi(n - 1, src, tmp, dst)
print(f'Move disk {n} from {src} to {dst}')
hanoi(n - 1, tmp, dst, src)
hanoi(4, 'A', 'B', 'C')
print('~' * 60)
print('8 Queens Problem')
queen = [0 for _ in range(8)]
rfree = [True for _ in range(8)]
du = [True for _ in range(15)]
dd = [True for _ in range(15)]
def solve(c):
global solutions
if c == 8:
solutions += 1
print(solutions, end=': ')
for r in range(8):
print(queen[r] + 1, end=' ' if r < 7 else '\n')
else:
for r in range(8):
if rfree[r] and dd[c + r] and du[c + 7 - r]:
queen[c] = r
rfree[r] = dd[c + r] = du[c + 7 - r] = False
solve(c + 1)
rfree[r] = dd[c + r] = du[c + 7 - r] = True
solutions = 0
solve(0)
print(f'\nThere are {solutions} solutions') |
class Function:
def __init__(self, name, param_types, return_type, line=0):
self.name = name
self.param_types = param_types
self.return_type = return_type
self.line = line
def __str__(self):
return Function.__qualname__
def getattr(self, name):
raise AttributeError("Invalid attribute or method access")
| class Function:
def __init__(self, name, param_types, return_type, line=0):
self.name = name
self.param_types = param_types
self.return_type = return_type
self.line = line
def __str__(self):
return Function.__qualname__
def getattr(self, name):
raise attribute_error('Invalid attribute or method access') |
class Solution:
def minStartValue(self, nums: List[int]) -> int:
total = minSum = 0
for num in nums:
total += num
minSum = min(minSum, total)
return 1 - minSum
| class Solution:
def min_start_value(self, nums: List[int]) -> int:
total = min_sum = 0
for num in nums:
total += num
min_sum = min(minSum, total)
return 1 - minSum |
def conduit_login(driver):
driver.find_element_by_xpath('//a[@href="#/login"]').click()
driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys("[email protected]")
driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys("Testpass1")
driver.find_element_by_xpath('//*[@id="app"]//form/button').click()
def conduit_logout(driver):
driver.find_element_by_xpath('//*[@id="app"]/nav/div/ul/li[5]/a').click()
| def conduit_login(driver):
driver.find_element_by_xpath('//a[@href="#/login"]').click()
driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys('[email protected]')
driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys('Testpass1')
driver.find_element_by_xpath('//*[@id="app"]//form/button').click()
def conduit_logout(driver):
driver.find_element_by_xpath('//*[@id="app"]/nav/div/ul/li[5]/a').click() |
class Node():
def __init__(self, val):
self.val = val
self.adjacent_nodes = []
self.visited = False
# O(E^d) where d is depth
def word_transform(w1, w2, dictionary):
# make dictionary into linked list
start_node = Node(w1)
end_node = Node(w2)
nodes = [start_node, end_node]
nodes_dict = {start_node.val: start_node, end_node.val: end_node}
while nodes:
node = nodes.pop()
word = node.val
for w in dictionary:
if w == word:
continue
diff = 0
for i in range(len(word)):
if w[i] != word[i]:
diff += 1
diff += abs(len(word) - len(w))
if diff == 1:
if w not in nodes_dict:
nodes_dict[w] = Node(w)
nodes.append(nodes_dict[w])
node.adjacent_nodes.append(nodes_dict[w])
nodes = [start_node]
path = []
while nodes:
node = nodes.pop()
if node == end_node:
path.append(node.val)
return ''.join(path)
path.append(node.val + ' -> ')
node.visited = True
for c in node.adjacent_nodes:
if not c.visited:
nodes.append(c)
return None | class Node:
def __init__(self, val):
self.val = val
self.adjacent_nodes = []
self.visited = False
def word_transform(w1, w2, dictionary):
start_node = node(w1)
end_node = node(w2)
nodes = [start_node, end_node]
nodes_dict = {start_node.val: start_node, end_node.val: end_node}
while nodes:
node = nodes.pop()
word = node.val
for w in dictionary:
if w == word:
continue
diff = 0
for i in range(len(word)):
if w[i] != word[i]:
diff += 1
diff += abs(len(word) - len(w))
if diff == 1:
if w not in nodes_dict:
nodes_dict[w] = node(w)
nodes.append(nodes_dict[w])
node.adjacent_nodes.append(nodes_dict[w])
nodes = [start_node]
path = []
while nodes:
node = nodes.pop()
if node == end_node:
path.append(node.val)
return ''.join(path)
path.append(node.val + ' -> ')
node.visited = True
for c in node.adjacent_nodes:
if not c.visited:
nodes.append(c)
return None |
# leetcode
class Solution:
def mincostTickets(self, days: List[int], costs: List[int]) -> int:
num = 366
one, seven, thirty = costs
dp = [0] * num
idx = 0
for i in range(1, num):
dp[i] = dp[i-1]
if i == days[idx]:
dp[i] = min(
one+dp[i-1 if i-1>0 else 0],
seven+dp[i-7 if i-7>0 else 0],
thirty+dp[i-30 if i-30>0 else 0]
)
if idx != len(days)-1:
idx += 1
else:
break
return dp[days[idx]]
| class Solution:
def mincost_tickets(self, days: List[int], costs: List[int]) -> int:
num = 366
(one, seven, thirty) = costs
dp = [0] * num
idx = 0
for i in range(1, num):
dp[i] = dp[i - 1]
if i == days[idx]:
dp[i] = min(one + dp[i - 1 if i - 1 > 0 else 0], seven + dp[i - 7 if i - 7 > 0 else 0], thirty + dp[i - 30 if i - 30 > 0 else 0])
if idx != len(days) - 1:
idx += 1
else:
break
return dp[days[idx]] |
'''
The Python repository "AA" contains the scripts, data,
figures, and text for nudged Arctic Amplification (AA) and
Upper-troposphere Tropical Warming (UTW). The model is SC-WACCM4.
We are interested in the large-scale atmospheric response to
Arctic sea ice loss in AA simulations compared to sea-ice forcing.
See Peings, Cattiaux, and Magnusdottir, GRL (2019) for model set-up.
Author: Zachary Labe ([email protected])
'''
| """
The Python repository "AA" contains the scripts, data,
figures, and text for nudged Arctic Amplification (AA) and
Upper-troposphere Tropical Warming (UTW). The model is SC-WACCM4.
We are interested in the large-scale atmospheric response to
Arctic sea ice loss in AA simulations compared to sea-ice forcing.
See Peings, Cattiaux, and Magnusdottir, GRL (2019) for model set-up.
Author: Zachary Labe ([email protected])
""" |
# employees = {'marge': 3, 'mag': 2}
# employees['phil'] = '5'
# print(employees.values())
# new_list = list(iter(employees))
# for key, value in employees.iteritems():
# print(key,value)
# print(new_list)
# t = ('a', 'b', 'c', 'd')
# print(t.index('c'))
# print(1 > 2)
# myfile = open('test_file.txt')
# read = myfile.read()
# print(read)
# with open('test_file.txt') as myfile:
# read = myfile.read()
# print(read)
f = open('second_file.txt')
lines = f.read()
print(lines) | f = open('second_file.txt')
lines = f.read()
print(lines) |
sample_pos_100_circle = {
(0, 12, 14, 28, 61, 76) : (0.6606687940575429, 0.12955294286970329, 0.1392231402857147),
(0, 14, 26, 28, 61, 76) : (0.6775622847685568, 0.0898623709846611, 0.14956067316950022),
(0, 11, 12, 14, 23, 28, 42, 44, 76, 79, 89) : (0.6065886283561139, 0.20320288122581232, 0.14005207871339437),
(0, 11, 12, 14, 23, 42, 44, 76, 79, 89, 98) : (0.5656826490913177, 0.22945537874500058, 0.14709530367632542),
(0, 12, 14, 23, 42, 44, 89, 90, 98) : (0.49723213477453154, 0.23278842941402605, 0.14874812754801625),
(0, 12, 14, 42, 43, 44, 89, 90, 98) : (0.4531982657491745, 0.21474447325341245, 0.14781957286366254),
(0, 12, 14, 42, 44, 60, 89, 90, 98) : (0.4269561884232388, 0.19727225941604984, 0.1493885409990972),
(1, 8, 15, 22, 27, 28, 51, 53, 62, 74, 76) : (0.846301261746641, 0.18166537169350574, 0.14397835552200322),
(1, 8, 13, 15, 27, 28, 39, 51, 53, 62, 74, 76) : (0.8485490407639608, 0.26577545830529575, 0.14237104291986868),
(1, 8, 13, 15, 27, 39, 51, 53, 55, 62, 74) : (0.8598700336382776, 0.2936319361757566, 0.14316008940627623),
(8, 13, 15, 27, 39, 51, 53, 55, 62, 74, 76) : (0.848475421386148, 0.2979123559117623, 0.1495723404911163),
(8, 15, 22, 27, 28, 51, 53, 61, 74, 76) : (0.8313716731911684, 0.15951059780677493, 0.14984734652985005),
(1, 15, 22, 26, 27, 28, 51, 53, 61, 74) : (0.8707649166253553, 0.12603886971740247, 0.14915740644860379),
(15, 22, 26, 27, 28, 51, 53, 61, 74, 76) : (0.8365094688174124, 0.15377823301715582, 0.1482384443600522),
(1, 8, 15, 27, 39, 51, 53, 55, 57, 62, 74) : (0.8744674026914928, 0.32488477158328966, 0.14993334330995228),
(8, 13, 27, 39, 51, 53, 55, 57, 62, 74, 76) : (0.8394379542077309, 0.3149880381645896, 0.14976819860224347),
(2, 7, 46, 54, 57, 77) : (0.8345091660588192, 0.583756096334454, 0.12229815996364714),
(2, 39, 46, 55, 57, 77) : (0.9084352576938933, 0.5098903011547264, 0.14572090388150585),
(2, 7, 46, 54, 67, 77, 78) : (0.812411509094655, 0.6641080591492242, 0.14888487099965556),
(2, 7, 35, 46, 54, 67, 77, 82, 95) : (0.8518389325402812, 0.6847232482307565, 0.14327587769420472),
(2, 7, 35, 54, 67, 77, 82, 93, 95) : (0.9204975034212663, 0.7431093346713038, 0.14939837995538113),
(3, 29, 30, 34, 45, 65, 86, 94, 97) : (0.1004320333187312, 0.25448500386219897, 0.13457985828835478),
(3, 30, 34, 45, 52, 65, 70, 86, 94, 97) : (0.13232166150446328, 0.1787966932430779, 0.14148065167771823),
(3, 30, 33, 45, 52, 65, 70, 86, 94, 97) : (0.10213454221898952, 0.158512554500736, 0.14562465660768442),
(3, 30, 34, 45, 52, 60, 65, 86, 94, 97) : (0.16328756540749167, 0.2126428426271769, 0.14578456301618062),
(3, 34, 45, 52, 60, 65, 70, 86, 94, 97) : (0.17797832456706061, 0.19683196747732873, 0.14011636481529072),
(3, 30, 34, 45, 50, 60, 65, 86, 94, 97) : (0.1553910862561932, 0.23765246912401705, 0.14827548821813938),
(29, 30, 34, 45, 50, 60, 65, 86, 94, 97) : (0.15000102162768236, 0.30018732583286084, 0.14984415048071437),
(4, 9, 10, 20, 38, 75, 81) : (0.4003130616293591, 0.8285844456813044, 0.1480307501034011),
(4, 9, 10, 38, 48, 75, 81) : (0.38580428031766406, 0.8561990999547606, 0.14870245579695562),
(4, 9, 17, 20, 21, 38, 48, 75, 81, 85) : (0.3287611424267173, 0.7727174414557608, 0.14875929774485536),
(4, 9, 21, 38, 48, 68, 75, 81) : (0.35085609036236404, 0.829788163067764, 0.14875398876294763),
(4, 10, 18, 48, 68, 75, 81) : (0.37649547612262557, 0.8951760847630872, 0.14919996648688127),
(4, 9, 19, 20, 21, 38, 49, 75, 85) : (0.41640100306849537, 0.705093150372995, 0.14015996098823705),
(4, 9, 17, 20, 21, 38, 64, 75, 81, 85) : (0.33085298603236063, 0.7418399215994397, 0.14487972439785962),
(4, 17, 20, 21, 38, 48, 64, 75, 81, 85) : (0.3193974850937622, 0.7680632820869213, 0.1474266580607778),
(4, 9, 17, 20, 21, 38, 49, 64, 75, 85) : (0.34114170574087294, 0.6969174305624999, 0.14405921509093017),
(9, 19, 20, 38, 49, 75, 87) : (0.5006885871277305, 0.7412338818491877, 0.1451388894436533),
(4, 9, 10, 75, 80, 81) : (0.4019264767473983, 0.8734149403352809, 0.14482927195072062),
(4, 10, 18, 48, 75, 80, 81) : (0.3830407940310534, 0.8944881167840582, 0.14681390420878215),
(4, 18, 32, 48, 56, 68, 69, 75, 81) : (0.3229807880040072, 0.8650666484497739, 0.14809708296773283),
(4, 10, 18, 48, 56, 68, 80, 81) : (0.37683713029076393, 0.911312260609274, 0.14832443190916603),
(4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81, 85) : (0.28091256649751173, 0.7845716212169753, 0.141585496443792),
(4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81) : (0.28070798853230206, 0.8090664742306333, 0.14931465362464058),
(4, 17, 20, 21, 38, 64, 66, 75, 81, 85) : (0.29785238436809, 0.7234263474491083, 0.1490540650472151),
(4, 18, 21, 32, 48, 56, 66, 68, 69, 81, 96) : (0.26699140597300897, 0.8495296776189856, 0.14875348880939057),
(4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 81, 96) : (0.25527949109936104, 0.8106316384539816, 0.1445317451825426),
(4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 81, 85, 96) : (0.23217561230891856, 0.7805372979198325, 0.14511838625757928),
(4, 9, 10, 19, 20, 38, 71, 75, 87) : (0.4775129839401001, 0.7927769793318314, 0.14462380860637297),
(4, 9, 10, 20, 71, 75, 80, 87) : (0.4747088359878572, 0.8297948931425277, 0.14678768577566298),
(9, 10, 19, 20, 71, 75, 80, 87) : (0.502030117116463, 0.8236087646816392, 0.14943676014695212),
(4, 18, 32, 48, 56, 58, 66, 68, 69, 72, 81, 96) : (0.21696064154531802, 0.874101533075222, 0.13041150648755526),
(4, 18, 21, 32, 48, 58, 64, 66, 68, 69, 72, 81, 96) : (0.20114669372366326, 0.8301128240778305, 0.1493335313715823),
(4, 17, 21, 38, 64, 66, 69, 81, 85, 99) : (0.21769657381971141, 0.7313388234347639, 0.14701057273298804),
(4, 17, 21, 32, 48, 64, 66, 69, 81, 85, 96, 99) : (0.2015477050911515, 0.7529044317010726, 0.1494589238432731),
(20, 25, 31, 49, 59, 84) : (0.4258087319921411, 0.5401043228214542, 0.14745116571790448),
(5, 24, 25, 31, 41, 43, 49, 59, 84, 90) : (0.37662482838264727, 0.4751123959489456, 0.1496946360540124),
(5, 17, 20, 24, 25, 31, 38, 41, 49, 85) : (0.3622865226400378, 0.5612057389900295, 0.14877040889503995),
(5, 17, 21, 24, 25, 31, 38, 41, 49, 85) : (0.3397797027650458, 0.5662701001128034, 0.14899731011520068),
(17, 20, 21, 24, 25, 31, 38, 41, 49, 85) : (0.3529122532222511, 0.5772058553558765, 0.145641194646832),
(5, 24, 25, 31, 41, 43, 50, 84, 90) : (0.36744835703496576, 0.44513805791935623, 0.149017727518376),
(5, 17, 24, 25, 41, 50) : (0.25238459020708376, 0.49714842367609063, 0.14920289957040228),
(5, 24, 25, 31, 43, 50, 59, 83, 84, 90) : (0.3742525826195432, 0.4225237020811445, 0.14492114513872695),
(5, 11, 23, 31, 43, 44, 59, 63, 84, 89, 90) : (0.46586820074056295, 0.38692285503826956, 0.14938930201395317),
(5, 25, 31, 43, 50, 59, 60, 83, 84, 90) : (0.37465236999713214, 0.3967343268979738, 0.14793274615561394),
(5, 24, 25, 31, 43, 50, 60, 83, 84, 90) : (0.3666595366409718, 0.4029451066437212, 0.14935861884170346),
(5, 24, 25, 31, 41, 43, 50, 60, 83, 90) : (0.3374953446014549, 0.40768326591677895, 0.14271109555895584),
(5, 11, 23, 31, 43, 44, 59, 84, 89, 90, 98) : (0.46179357379075087, 0.37130700578519776, 0.14959106548201262),
(5, 31, 43, 44, 50, 59, 60, 83, 84, 89, 90, 98) : (0.3992944529514407, 0.34835251138844014, 0.14481894164813303),
(5, 24, 25, 34, 41, 43, 50, 60, 83, 86, 90) : (0.2643514690001076, 0.38046461029115597, 0.13200682283744283),
(5, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98) : (0.4251496043395029, 0.314317932764338, 0.14818426431967247),
(5, 42, 43, 44, 50, 60, 83, 89, 90, 98) : (0.3896204611486524, 0.2884476340796184, 0.14766772614257698),
(5, 34, 43, 50, 60, 65, 83, 89, 90, 98) : (0.35484204032889544, 0.28298632126058126, 0.14896339447527998),
(5, 24, 34, 41, 43, 50, 60, 65, 83, 86, 90) : (0.24186208866496334, 0.35381703763650374, 0.147248332994493),
(42, 43, 50, 60, 65, 83, 89, 90, 98) : (0.3648226358119667, 0.2529208238960593, 0.14563258715152547),
(5, 17, 21, 24, 25, 41, 64, 85) : (0.26509967721642796, 0.5547482058021883, 0.1467474135798299),
(17, 20, 21, 24, 25, 38, 41, 49, 64, 85) : (0.3204205925258258, 0.6110698164118312, 0.1433963240190826),
(5, 24, 34, 41, 50, 60, 65, 83, 86, 94) : (0.1963459614878132, 0.354221443943041, 0.1499119871156634),
(5, 34, 43, 50, 60, 65, 83, 86, 90, 97, 98) : (0.2786672893971936, 0.2764212575028138, 0.148038361569061),
(6, 8, 13, 36, 39, 46, 57, 79, 91) : (0.7812938642651628, 0.40869196155963294, 0.1483179196387932),
(6, 11, 13, 36, 39, 46, 57, 63, 79, 91) : (0.7400403080009023, 0.4149028417553895, 0.14959527944822024),
(6, 11, 13, 23, 36, 40, 46, 57, 63, 79, 91) : (0.6955733914381548, 0.4466149890794219, 0.14332938261511524),
(6, 11, 23, 36, 40, 46, 59, 63, 91) : (0.661799803852757, 0.47465268914249026, 0.14990023270177139),
(6, 11, 13, 23, 36, 40, 57, 59, 63, 79, 91) : (0.6674444223364877, 0.44592897980175666, 0.1493799596176158),
(6, 8, 11, 13, 23, 36, 39, 57, 63, 76, 79, 91) : (0.7479505156724652, 0.3543364256041871, 0.14504949210030488),
(6, 36, 40, 46, 57, 78) : (0.6989923716784051, 0.5550188424375802, 0.14881436260536204),
(6, 11, 13, 23, 36, 40, 44, 59, 63, 79, 84, 91) : (0.6121508102053388, 0.4160214927121739, 0.13919367839740476),
(6, 11, 23, 31, 36, 40, 44, 59, 63, 79, 84, 91) : (0.5840006753840745, 0.425262952856729, 0.13453194363310325),
(6, 7, 40, 46, 54, 57, 78) : (0.7359758275738826, 0.5714274758487573, 0.1459224915245561),
(6, 19, 40, 46, 54, 78) : (0.6804138212873839, 0.6024152093385852, 0.14958356907798287),
(7, 19, 40, 46, 54, 78) : (0.7001663606329307, 0.6736530749126453, 0.145581886573751),
(6, 11, 12, 23, 31, 36, 44, 59, 63, 79, 84, 89, 91) : (0.5546692350232861, 0.3748947382581936, 0.1404608810549469),
(6, 11, 12, 13, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91) : (0.6158471277538801, 0.33210754135354276, 0.13695160632128495),
(6, 19, 40, 49, 78) : (0.5898959630882554, 0.5849837349401764, 0.1395478206848745),
(6, 19, 31, 40, 49, 59, 84) : (0.5508159716065527, 0.5507115624444804, 0.13320543730746362),
(6, 31, 40, 49, 59, 63, 84) : (0.5334868035040657, 0.4969112537149139, 0.13520536905611247),
(6, 11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 91) : (0.5248341660288149, 0.3695285456138079, 0.14898478769694384),
(16, 19, 40, 54, 78) : (0.648734030229264, 0.69772769100568, 0.14566639395175016),
(7, 16, 19, 54, 78, 92) : (0.7017301747157373, 0.7018096583710086, 0.14788217314648738),
(7, 35, 46, 54, 67, 77, 78, 92, 95) : (0.8016668768331154, 0.7050427315864585, 0.14885954882353508),
(7, 35, 54, 67, 77, 78, 82, 92, 95) : (0.8126860837487624, 0.7390030277575786, 0.14963827070744815),
(7, 35, 54, 67, 77, 82, 92, 93, 95) : (0.8541983606053255, 0.7617510039302191, 0.13551854101469707),
(7, 16, 35, 54, 67, 78, 92, 93, 95) : (0.7835123617757969, 0.7940004134527878, 0.14850931037307125),
(7, 35, 54, 67, 73, 82, 92, 93, 95) : (0.8680257488645291, 0.8105733497073806, 0.14461010599432164),
(16, 35, 54, 67, 73, 92, 93, 95) : (0.8039052049993555, 0.8358136241307832, 0.1460176815171897),
(8, 13, 27, 28, 36, 39, 51, 62, 74, 76, 79) : (0.7864858215585857, 0.29075158032698684, 0.14961460741813482),
(8, 13, 27, 28, 36, 39, 62, 74, 76, 79, 91) : (0.7851472504933936, 0.30671346343945144, 0.14266494791580994),
(8, 13, 27, 36, 39, 57, 62, 74, 76, 79, 91) : (0.7947045059120503, 0.31997763795542744, 0.14446794140299074),
(8, 11, 13, 23, 27, 28, 36, 74, 76, 79, 91) : (0.7372472238258292, 0.2715103777107627, 0.14815884891492234),
(8, 11, 13, 23, 36, 39, 57, 74, 76, 79, 91) : (0.7536701632685218, 0.3264131965382456, 0.1499762709695208),
(8, 11, 13, 23, 28, 36, 39, 63, 74, 76, 79, 91) : (0.7432076014100258, 0.3161679754031407, 0.14735220435952692),
(8, 13, 36, 39, 55, 57, 62, 74) : (0.8270244719636314, 0.3463770009824643, 0.14816894016641344),
(8, 13, 36, 39, 46, 55, 57) : (0.8315524471930096, 0.4208862595245414, 0.14308143530640893),
(9, 19, 20, 49, 75, 78, 87) : (0.526255574364575, 0.7284182151763334, 0.1445142284421115),
(9, 10, 16, 19, 20, 71, 75, 78, 87) : (0.5503029395762983, 0.7725028563327712, 0.1379855198507884),
(9, 19, 20, 40, 49, 75, 78) : (0.5308236138060022, 0.6654717052596012, 0.14166070888466),
(9, 16, 19, 40, 78) : (0.6152792270448181, 0.7022038051249079, 0.14724540705027672),
(9, 19, 20, 31, 38, 49, 75, 85) : (0.4397878732528429, 0.6157549414177731, 0.1379389073709895),
(9, 19, 20, 31, 40, 49, 75) : (0.48958920540021267, 0.6234521812075917, 0.14685558331482343),
(9, 10, 16, 19, 71, 75, 80, 87) : (0.5310332240866265, 0.8284058748099863, 0.14651673216295627),
(9, 10, 16, 19, 71, 78, 87, 92) : (0.6106510896880954, 0.7958501908923952, 0.1430714723104721),
(10, 16, 71, 80, 87, 92) : (0.6264282483677088, 0.9079762183947514, 0.1358534990005984),
(11, 12, 23, 31, 42, 43, 44, 59, 63, 84, 89, 90, 98) : (0.4776061998845129, 0.3308921514293687, 0.14948378198882384),
(11, 12, 14, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 98) : (0.5190100909516181, 0.3024309974602939, 0.1461597643756266),
(11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 98) : (0.5167680750767972, 0.3408073723414071, 0.1494775277829455),
(11, 12, 14, 23, 42, 44, 59, 63, 79, 84, 89, 90, 91, 98) : (0.5353432225094631, 0.3092813311287071, 0.14961247846229375),
(11, 12, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 91, 98) : (0.5269080789204658, 0.3272778263063749, 0.1492860996243205),
(11, 12, 14, 23, 42, 44, 63, 76, 79, 89, 98) : (0.5651889224135658, 0.24974452994663424, 0.1481860442866704),
(11, 12, 13, 14, 23, 42, 44, 59, 63, 76, 79, 84, 89, 91) : (0.5810248153025497, 0.297301468717096, 0.14553280939641036),
(11, 12, 13, 14, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91) : (0.59020808374762, 0.30242702351356676, 0.14518706205274268),
(11, 12, 13, 14, 23, 28, 42, 44, 63, 76, 79, 89, 91) : (0.6206933635449503, 0.24682154651736443, 0.14397395607960825),
(11, 12, 13, 14, 23, 28, 36, 44, 63, 76, 79, 89, 91) : (0.6443421994012091, 0.27263136238807373, 0.1418464361759105),
(11, 12, 13, 14, 23, 28, 74, 76, 79, 91) : (0.6865690251676432, 0.23557064983017745, 0.1497576533972519),
(11, 12, 13, 23, 28, 36, 63, 74, 76, 79, 91) : (0.7095105226389335, 0.27798372862136267, 0.145811382266761),
(12, 13, 27, 28, 74, 76, 79) : (0.7163112725430478, 0.21385230043077974, 0.14778176906674004),
(12, 14, 28, 61, 74, 76) : (0.692614694039914, 0.15857646831069733, 0.14455379460889162),
(12, 23, 42, 43, 44, 59, 83, 84, 89, 90, 98) : (0.4563543195907547, 0.31480881243674935, 0.14922880337038014),
(12, 23, 31, 43, 44, 59, 83, 84, 89, 90, 98) : (0.45419723615723284, 0.32960642809424645, 0.1499761920887504),
(12, 14, 42, 43, 44, 60, 83, 89, 90, 98) : (0.42955231039420116, 0.2226100668877384, 0.14110959536132095),
(12, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98) : (0.4402325483015652, 0.3046223156987031, 0.14721181227676056),
(14, 22, 28, 61, 74, 76) : (0.7017172984423354, 0.12325899188468137, 0.14999980732453855),
(14, 22, 26, 28, 61, 76) : (0.6912503728261168, 0.10016189310233165, 0.14784082552996525),
(16, 19, 54, 71, 78, 87, 92) : (0.6703761804849702, 0.7581413028998242, 0.13727248723415264),
(16, 54, 71, 78, 87, 92, 95) : (0.7055796088125853, 0.8042768799273943, 0.13751533041746666),
(16, 71, 92, 93, 95) : (0.748680649656, 0.8792981719129548, 0.14810534432725672),
(16, 35, 47, 73, 92, 93, 95) : (0.7973963974798904, 0.8730772012592461, 0.14251677211486202),
(17, 20, 21, 25, 38, 49, 64, 75, 85) : (0.33122073385849954, 0.6424372081216861, 0.140272333871763),
(17, 20, 21, 25, 31, 38, 49, 75, 85) : (0.3899560099849434, 0.6080529827711362, 0.14686618715840474),
(17, 21, 24, 25, 38, 41, 64, 66, 85, 99) : (0.2324845209042679, 0.6381836480533993, 0.14541606090517503),
(17, 21, 24, 25, 41, 64, 66, 85, 88, 99) : (0.17759327332460764, 0.6154216464660676, 0.14680527616816053),
(17, 21, 64, 66, 69, 85, 88, 99) : (0.1700753673132927, 0.7010807602993253, 0.14829695794446568),
(17, 21, 64, 66, 69, 88, 96, 99) : (0.14057040165146145, 0.7404980045079362, 0.14458712542500857),
(21, 32, 64, 66, 69, 88, 96, 99) : (0.13589958287585685, 0.7521082386304109, 0.14938908416349977),
(32, 37, 48, 58, 64, 66, 68, 69, 72, 81, 96) : (0.1587853817899879, 0.8265085757585824, 0.14669323412266905),
(18, 32, 37, 48, 56, 58, 66, 68, 69, 72, 81, 96) : (0.1565898330981594, 0.900576785386657, 0.14039118879912008),
(19, 20, 31, 40, 49, 59, 84) : (0.4955100051053224, 0.5592196556545426, 0.13807852710419102),
(29, 88) : (0.021898984551369127, 0.498905674871803, 0.14491984926943427),
(24, 29, 34, 41, 50, 86, 94) : (0.15186115338348286, 0.38521837733842534, 0.14484075712621175),
(29, 30, 34, 41, 50, 86, 94) : (0.1318289821876929, 0.3907884062675565, 0.14663186091122857),
(30, 34, 45, 50, 60, 65, 83, 86, 94, 97) : (0.17218506307174686, 0.2745348904559653, 0.13778262145170894),
(34, 45, 52, 60, 65, 70, 83, 86, 94, 97) : (0.1946945060242287, 0.20205232918260238, 0.14600384549982623),
(34, 45, 50, 60, 65, 70, 83, 86, 94, 97) : (0.1984942686851189, 0.20938746372536046, 0.14945353002055525),
(32, 37, 48, 64, 66, 69, 81, 96, 99) : (0.13998817052833173, 0.7858689353702485, 0.14814097529549805),
(32, 37, 64, 66, 69, 88, 96, 99) : (0.111022615751386, 0.7676327866502684, 0.1464828433048606),
(34, 60, 65, 70, 83, 86, 97, 98) : (0.27881170846041564, 0.18823061782622416, 0.14535381423478827),
(35, 47, 67, 73, 82, 92, 93, 95) : (0.8668407448339298, 0.8654424303052715, 0.12317143039084451),
}
| sample_pos_100_circle = {(0, 12, 14, 28, 61, 76): (0.6606687940575429, 0.12955294286970329, 0.1392231402857147), (0, 14, 26, 28, 61, 76): (0.6775622847685568, 0.0898623709846611, 0.14956067316950022), (0, 11, 12, 14, 23, 28, 42, 44, 76, 79, 89): (0.6065886283561139, 0.20320288122581232, 0.14005207871339437), (0, 11, 12, 14, 23, 42, 44, 76, 79, 89, 98): (0.5656826490913177, 0.22945537874500058, 0.14709530367632542), (0, 12, 14, 23, 42, 44, 89, 90, 98): (0.49723213477453154, 0.23278842941402605, 0.14874812754801625), (0, 12, 14, 42, 43, 44, 89, 90, 98): (0.4531982657491745, 0.21474447325341245, 0.14781957286366254), (0, 12, 14, 42, 44, 60, 89, 90, 98): (0.4269561884232388, 0.19727225941604984, 0.1493885409990972), (1, 8, 15, 22, 27, 28, 51, 53, 62, 74, 76): (0.846301261746641, 0.18166537169350574, 0.14397835552200322), (1, 8, 13, 15, 27, 28, 39, 51, 53, 62, 74, 76): (0.8485490407639608, 0.26577545830529575, 0.14237104291986868), (1, 8, 13, 15, 27, 39, 51, 53, 55, 62, 74): (0.8598700336382776, 0.2936319361757566, 0.14316008940627623), (8, 13, 15, 27, 39, 51, 53, 55, 62, 74, 76): (0.848475421386148, 0.2979123559117623, 0.1495723404911163), (8, 15, 22, 27, 28, 51, 53, 61, 74, 76): (0.8313716731911684, 0.15951059780677493, 0.14984734652985005), (1, 15, 22, 26, 27, 28, 51, 53, 61, 74): (0.8707649166253553, 0.12603886971740247, 0.14915740644860379), (15, 22, 26, 27, 28, 51, 53, 61, 74, 76): (0.8365094688174124, 0.15377823301715582, 0.1482384443600522), (1, 8, 15, 27, 39, 51, 53, 55, 57, 62, 74): (0.8744674026914928, 0.32488477158328966, 0.14993334330995228), (8, 13, 27, 39, 51, 53, 55, 57, 62, 74, 76): (0.8394379542077309, 0.3149880381645896, 0.14976819860224347), (2, 7, 46, 54, 57, 77): (0.8345091660588192, 0.583756096334454, 0.12229815996364714), (2, 39, 46, 55, 57, 77): (0.9084352576938933, 0.5098903011547264, 0.14572090388150585), (2, 7, 46, 54, 67, 77, 78): (0.812411509094655, 0.6641080591492242, 0.14888487099965556), (2, 7, 35, 46, 54, 67, 77, 82, 95): (0.8518389325402812, 0.6847232482307565, 0.14327587769420472), (2, 7, 35, 54, 67, 77, 82, 93, 95): (0.9204975034212663, 0.7431093346713038, 0.14939837995538113), (3, 29, 30, 34, 45, 65, 86, 94, 97): (0.1004320333187312, 0.25448500386219897, 0.13457985828835478), (3, 30, 34, 45, 52, 65, 70, 86, 94, 97): (0.13232166150446328, 0.1787966932430779, 0.14148065167771823), (3, 30, 33, 45, 52, 65, 70, 86, 94, 97): (0.10213454221898952, 0.158512554500736, 0.14562465660768442), (3, 30, 34, 45, 52, 60, 65, 86, 94, 97): (0.16328756540749167, 0.2126428426271769, 0.14578456301618062), (3, 34, 45, 52, 60, 65, 70, 86, 94, 97): (0.17797832456706061, 0.19683196747732873, 0.14011636481529072), (3, 30, 34, 45, 50, 60, 65, 86, 94, 97): (0.1553910862561932, 0.23765246912401705, 0.14827548821813938), (29, 30, 34, 45, 50, 60, 65, 86, 94, 97): (0.15000102162768236, 0.30018732583286084, 0.14984415048071437), (4, 9, 10, 20, 38, 75, 81): (0.4003130616293591, 0.8285844456813044, 0.1480307501034011), (4, 9, 10, 38, 48, 75, 81): (0.38580428031766406, 0.8561990999547606, 0.14870245579695562), (4, 9, 17, 20, 21, 38, 48, 75, 81, 85): (0.3287611424267173, 0.7727174414557608, 0.14875929774485536), (4, 9, 21, 38, 48, 68, 75, 81): (0.35085609036236404, 0.829788163067764, 0.14875398876294763), (4, 10, 18, 48, 68, 75, 81): (0.37649547612262557, 0.8951760847630872, 0.14919996648688127), (4, 9, 19, 20, 21, 38, 49, 75, 85): (0.41640100306849537, 0.705093150372995, 0.14015996098823705), (4, 9, 17, 20, 21, 38, 64, 75, 81, 85): (0.33085298603236063, 0.7418399215994397, 0.14487972439785962), (4, 17, 20, 21, 38, 48, 64, 75, 81, 85): (0.3193974850937622, 0.7680632820869213, 0.1474266580607778), (4, 9, 17, 20, 21, 38, 49, 64, 75, 85): (0.34114170574087294, 0.6969174305624999, 0.14405921509093017), (9, 19, 20, 38, 49, 75, 87): (0.5006885871277305, 0.7412338818491877, 0.1451388894436533), (4, 9, 10, 75, 80, 81): (0.4019264767473983, 0.8734149403352809, 0.14482927195072062), (4, 10, 18, 48, 75, 80, 81): (0.3830407940310534, 0.8944881167840582, 0.14681390420878215), (4, 18, 32, 48, 56, 68, 69, 75, 81): (0.3229807880040072, 0.8650666484497739, 0.14809708296773283), (4, 10, 18, 48, 56, 68, 80, 81): (0.37683713029076393, 0.911312260609274, 0.14832443190916603), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81, 85): (0.28091256649751173, 0.7845716212169753, 0.141585496443792), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81): (0.28070798853230206, 0.8090664742306333, 0.14931465362464058), (4, 17, 20, 21, 38, 64, 66, 75, 81, 85): (0.29785238436809, 0.7234263474491083, 0.1490540650472151), (4, 18, 21, 32, 48, 56, 66, 68, 69, 81, 96): (0.26699140597300897, 0.8495296776189856, 0.14875348880939057), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 81, 96): (0.25527949109936104, 0.8106316384539816, 0.1445317451825426), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 81, 85, 96): (0.23217561230891856, 0.7805372979198325, 0.14511838625757928), (4, 9, 10, 19, 20, 38, 71, 75, 87): (0.4775129839401001, 0.7927769793318314, 0.14462380860637297), (4, 9, 10, 20, 71, 75, 80, 87): (0.4747088359878572, 0.8297948931425277, 0.14678768577566298), (9, 10, 19, 20, 71, 75, 80, 87): (0.502030117116463, 0.8236087646816392, 0.14943676014695212), (4, 18, 32, 48, 56, 58, 66, 68, 69, 72, 81, 96): (0.21696064154531802, 0.874101533075222, 0.13041150648755526), (4, 18, 21, 32, 48, 58, 64, 66, 68, 69, 72, 81, 96): (0.20114669372366326, 0.8301128240778305, 0.1493335313715823), (4, 17, 21, 38, 64, 66, 69, 81, 85, 99): (0.21769657381971141, 0.7313388234347639, 0.14701057273298804), (4, 17, 21, 32, 48, 64, 66, 69, 81, 85, 96, 99): (0.2015477050911515, 0.7529044317010726, 0.1494589238432731), (20, 25, 31, 49, 59, 84): (0.4258087319921411, 0.5401043228214542, 0.14745116571790448), (5, 24, 25, 31, 41, 43, 49, 59, 84, 90): (0.37662482838264727, 0.4751123959489456, 0.1496946360540124), (5, 17, 20, 24, 25, 31, 38, 41, 49, 85): (0.3622865226400378, 0.5612057389900295, 0.14877040889503995), (5, 17, 21, 24, 25, 31, 38, 41, 49, 85): (0.3397797027650458, 0.5662701001128034, 0.14899731011520068), (17, 20, 21, 24, 25, 31, 38, 41, 49, 85): (0.3529122532222511, 0.5772058553558765, 0.145641194646832), (5, 24, 25, 31, 41, 43, 50, 84, 90): (0.36744835703496576, 0.44513805791935623, 0.149017727518376), (5, 17, 24, 25, 41, 50): (0.25238459020708376, 0.49714842367609063, 0.14920289957040228), (5, 24, 25, 31, 43, 50, 59, 83, 84, 90): (0.3742525826195432, 0.4225237020811445, 0.14492114513872695), (5, 11, 23, 31, 43, 44, 59, 63, 84, 89, 90): (0.46586820074056295, 0.38692285503826956, 0.14938930201395317), (5, 25, 31, 43, 50, 59, 60, 83, 84, 90): (0.37465236999713214, 0.3967343268979738, 0.14793274615561394), (5, 24, 25, 31, 43, 50, 60, 83, 84, 90): (0.3666595366409718, 0.4029451066437212, 0.14935861884170346), (5, 24, 25, 31, 41, 43, 50, 60, 83, 90): (0.3374953446014549, 0.40768326591677895, 0.14271109555895584), (5, 11, 23, 31, 43, 44, 59, 84, 89, 90, 98): (0.46179357379075087, 0.37130700578519776, 0.14959106548201262), (5, 31, 43, 44, 50, 59, 60, 83, 84, 89, 90, 98): (0.3992944529514407, 0.34835251138844014, 0.14481894164813303), (5, 24, 25, 34, 41, 43, 50, 60, 83, 86, 90): (0.2643514690001076, 0.38046461029115597, 0.13200682283744283), (5, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98): (0.4251496043395029, 0.314317932764338, 0.14818426431967247), (5, 42, 43, 44, 50, 60, 83, 89, 90, 98): (0.3896204611486524, 0.2884476340796184, 0.14766772614257698), (5, 34, 43, 50, 60, 65, 83, 89, 90, 98): (0.35484204032889544, 0.28298632126058126, 0.14896339447527998), (5, 24, 34, 41, 43, 50, 60, 65, 83, 86, 90): (0.24186208866496334, 0.35381703763650374, 0.147248332994493), (42, 43, 50, 60, 65, 83, 89, 90, 98): (0.3648226358119667, 0.2529208238960593, 0.14563258715152547), (5, 17, 21, 24, 25, 41, 64, 85): (0.26509967721642796, 0.5547482058021883, 0.1467474135798299), (17, 20, 21, 24, 25, 38, 41, 49, 64, 85): (0.3204205925258258, 0.6110698164118312, 0.1433963240190826), (5, 24, 34, 41, 50, 60, 65, 83, 86, 94): (0.1963459614878132, 0.354221443943041, 0.1499119871156634), (5, 34, 43, 50, 60, 65, 83, 86, 90, 97, 98): (0.2786672893971936, 0.2764212575028138, 0.148038361569061), (6, 8, 13, 36, 39, 46, 57, 79, 91): (0.7812938642651628, 0.40869196155963294, 0.1483179196387932), (6, 11, 13, 36, 39, 46, 57, 63, 79, 91): (0.7400403080009023, 0.4149028417553895, 0.14959527944822024), (6, 11, 13, 23, 36, 40, 46, 57, 63, 79, 91): (0.6955733914381548, 0.4466149890794219, 0.14332938261511524), (6, 11, 23, 36, 40, 46, 59, 63, 91): (0.661799803852757, 0.47465268914249026, 0.14990023270177139), (6, 11, 13, 23, 36, 40, 57, 59, 63, 79, 91): (0.6674444223364877, 0.44592897980175666, 0.1493799596176158), (6, 8, 11, 13, 23, 36, 39, 57, 63, 76, 79, 91): (0.7479505156724652, 0.3543364256041871, 0.14504949210030488), (6, 36, 40, 46, 57, 78): (0.6989923716784051, 0.5550188424375802, 0.14881436260536204), (6, 11, 13, 23, 36, 40, 44, 59, 63, 79, 84, 91): (0.6121508102053388, 0.4160214927121739, 0.13919367839740476), (6, 11, 23, 31, 36, 40, 44, 59, 63, 79, 84, 91): (0.5840006753840745, 0.425262952856729, 0.13453194363310325), (6, 7, 40, 46, 54, 57, 78): (0.7359758275738826, 0.5714274758487573, 0.1459224915245561), (6, 19, 40, 46, 54, 78): (0.6804138212873839, 0.6024152093385852, 0.14958356907798287), (7, 19, 40, 46, 54, 78): (0.7001663606329307, 0.6736530749126453, 0.145581886573751), (6, 11, 12, 23, 31, 36, 44, 59, 63, 79, 84, 89, 91): (0.5546692350232861, 0.3748947382581936, 0.1404608810549469), (6, 11, 12, 13, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91): (0.6158471277538801, 0.33210754135354276, 0.13695160632128495), (6, 19, 40, 49, 78): (0.5898959630882554, 0.5849837349401764, 0.1395478206848745), (6, 19, 31, 40, 49, 59, 84): (0.5508159716065527, 0.5507115624444804, 0.13320543730746362), (6, 31, 40, 49, 59, 63, 84): (0.5334868035040657, 0.4969112537149139, 0.13520536905611247), (6, 11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 91): (0.5248341660288149, 0.3695285456138079, 0.14898478769694384), (16, 19, 40, 54, 78): (0.648734030229264, 0.69772769100568, 0.14566639395175016), (7, 16, 19, 54, 78, 92): (0.7017301747157373, 0.7018096583710086, 0.14788217314648738), (7, 35, 46, 54, 67, 77, 78, 92, 95): (0.8016668768331154, 0.7050427315864585, 0.14885954882353508), (7, 35, 54, 67, 77, 78, 82, 92, 95): (0.8126860837487624, 0.7390030277575786, 0.14963827070744815), (7, 35, 54, 67, 77, 82, 92, 93, 95): (0.8541983606053255, 0.7617510039302191, 0.13551854101469707), (7, 16, 35, 54, 67, 78, 92, 93, 95): (0.7835123617757969, 0.7940004134527878, 0.14850931037307125), (7, 35, 54, 67, 73, 82, 92, 93, 95): (0.8680257488645291, 0.8105733497073806, 0.14461010599432164), (16, 35, 54, 67, 73, 92, 93, 95): (0.8039052049993555, 0.8358136241307832, 0.1460176815171897), (8, 13, 27, 28, 36, 39, 51, 62, 74, 76, 79): (0.7864858215585857, 0.29075158032698684, 0.14961460741813482), (8, 13, 27, 28, 36, 39, 62, 74, 76, 79, 91): (0.7851472504933936, 0.30671346343945144, 0.14266494791580994), (8, 13, 27, 36, 39, 57, 62, 74, 76, 79, 91): (0.7947045059120503, 0.31997763795542744, 0.14446794140299074), (8, 11, 13, 23, 27, 28, 36, 74, 76, 79, 91): (0.7372472238258292, 0.2715103777107627, 0.14815884891492234), (8, 11, 13, 23, 36, 39, 57, 74, 76, 79, 91): (0.7536701632685218, 0.3264131965382456, 0.1499762709695208), (8, 11, 13, 23, 28, 36, 39, 63, 74, 76, 79, 91): (0.7432076014100258, 0.3161679754031407, 0.14735220435952692), (8, 13, 36, 39, 55, 57, 62, 74): (0.8270244719636314, 0.3463770009824643, 0.14816894016641344), (8, 13, 36, 39, 46, 55, 57): (0.8315524471930096, 0.4208862595245414, 0.14308143530640893), (9, 19, 20, 49, 75, 78, 87): (0.526255574364575, 0.7284182151763334, 0.1445142284421115), (9, 10, 16, 19, 20, 71, 75, 78, 87): (0.5503029395762983, 0.7725028563327712, 0.1379855198507884), (9, 19, 20, 40, 49, 75, 78): (0.5308236138060022, 0.6654717052596012, 0.14166070888466), (9, 16, 19, 40, 78): (0.6152792270448181, 0.7022038051249079, 0.14724540705027672), (9, 19, 20, 31, 38, 49, 75, 85): (0.4397878732528429, 0.6157549414177731, 0.1379389073709895), (9, 19, 20, 31, 40, 49, 75): (0.48958920540021267, 0.6234521812075917, 0.14685558331482343), (9, 10, 16, 19, 71, 75, 80, 87): (0.5310332240866265, 0.8284058748099863, 0.14651673216295627), (9, 10, 16, 19, 71, 78, 87, 92): (0.6106510896880954, 0.7958501908923952, 0.1430714723104721), (10, 16, 71, 80, 87, 92): (0.6264282483677088, 0.9079762183947514, 0.1358534990005984), (11, 12, 23, 31, 42, 43, 44, 59, 63, 84, 89, 90, 98): (0.4776061998845129, 0.3308921514293687, 0.14948378198882384), (11, 12, 14, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 98): (0.5190100909516181, 0.3024309974602939, 0.1461597643756266), (11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 98): (0.5167680750767972, 0.3408073723414071, 0.1494775277829455), (11, 12, 14, 23, 42, 44, 59, 63, 79, 84, 89, 90, 91, 98): (0.5353432225094631, 0.3092813311287071, 0.14961247846229375), (11, 12, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 91, 98): (0.5269080789204658, 0.3272778263063749, 0.1492860996243205), (11, 12, 14, 23, 42, 44, 63, 76, 79, 89, 98): (0.5651889224135658, 0.24974452994663424, 0.1481860442866704), (11, 12, 13, 14, 23, 42, 44, 59, 63, 76, 79, 84, 89, 91): (0.5810248153025497, 0.297301468717096, 0.14553280939641036), (11, 12, 13, 14, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91): (0.59020808374762, 0.30242702351356676, 0.14518706205274268), (11, 12, 13, 14, 23, 28, 42, 44, 63, 76, 79, 89, 91): (0.6206933635449503, 0.24682154651736443, 0.14397395607960825), (11, 12, 13, 14, 23, 28, 36, 44, 63, 76, 79, 89, 91): (0.6443421994012091, 0.27263136238807373, 0.1418464361759105), (11, 12, 13, 14, 23, 28, 74, 76, 79, 91): (0.6865690251676432, 0.23557064983017745, 0.1497576533972519), (11, 12, 13, 23, 28, 36, 63, 74, 76, 79, 91): (0.7095105226389335, 0.27798372862136267, 0.145811382266761), (12, 13, 27, 28, 74, 76, 79): (0.7163112725430478, 0.21385230043077974, 0.14778176906674004), (12, 14, 28, 61, 74, 76): (0.692614694039914, 0.15857646831069733, 0.14455379460889162), (12, 23, 42, 43, 44, 59, 83, 84, 89, 90, 98): (0.4563543195907547, 0.31480881243674935, 0.14922880337038014), (12, 23, 31, 43, 44, 59, 83, 84, 89, 90, 98): (0.45419723615723284, 0.32960642809424645, 0.1499761920887504), (12, 14, 42, 43, 44, 60, 83, 89, 90, 98): (0.42955231039420116, 0.2226100668877384, 0.14110959536132095), (12, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98): (0.4402325483015652, 0.3046223156987031, 0.14721181227676056), (14, 22, 28, 61, 74, 76): (0.7017172984423354, 0.12325899188468137, 0.14999980732453855), (14, 22, 26, 28, 61, 76): (0.6912503728261168, 0.10016189310233165, 0.14784082552996525), (16, 19, 54, 71, 78, 87, 92): (0.6703761804849702, 0.7581413028998242, 0.13727248723415264), (16, 54, 71, 78, 87, 92, 95): (0.7055796088125853, 0.8042768799273943, 0.13751533041746666), (16, 71, 92, 93, 95): (0.748680649656, 0.8792981719129548, 0.14810534432725672), (16, 35, 47, 73, 92, 93, 95): (0.7973963974798904, 0.8730772012592461, 0.14251677211486202), (17, 20, 21, 25, 38, 49, 64, 75, 85): (0.33122073385849954, 0.6424372081216861, 0.140272333871763), (17, 20, 21, 25, 31, 38, 49, 75, 85): (0.3899560099849434, 0.6080529827711362, 0.14686618715840474), (17, 21, 24, 25, 38, 41, 64, 66, 85, 99): (0.2324845209042679, 0.6381836480533993, 0.14541606090517503), (17, 21, 24, 25, 41, 64, 66, 85, 88, 99): (0.17759327332460764, 0.6154216464660676, 0.14680527616816053), (17, 21, 64, 66, 69, 85, 88, 99): (0.1700753673132927, 0.7010807602993253, 0.14829695794446568), (17, 21, 64, 66, 69, 88, 96, 99): (0.14057040165146145, 0.7404980045079362, 0.14458712542500857), (21, 32, 64, 66, 69, 88, 96, 99): (0.13589958287585685, 0.7521082386304109, 0.14938908416349977), (32, 37, 48, 58, 64, 66, 68, 69, 72, 81, 96): (0.1587853817899879, 0.8265085757585824, 0.14669323412266905), (18, 32, 37, 48, 56, 58, 66, 68, 69, 72, 81, 96): (0.1565898330981594, 0.900576785386657, 0.14039118879912008), (19, 20, 31, 40, 49, 59, 84): (0.4955100051053224, 0.5592196556545426, 0.13807852710419102), (29, 88): (0.021898984551369127, 0.498905674871803, 0.14491984926943427), (24, 29, 34, 41, 50, 86, 94): (0.15186115338348286, 0.38521837733842534, 0.14484075712621175), (29, 30, 34, 41, 50, 86, 94): (0.1318289821876929, 0.3907884062675565, 0.14663186091122857), (30, 34, 45, 50, 60, 65, 83, 86, 94, 97): (0.17218506307174686, 0.2745348904559653, 0.13778262145170894), (34, 45, 52, 60, 65, 70, 83, 86, 94, 97): (0.1946945060242287, 0.20205232918260238, 0.14600384549982623), (34, 45, 50, 60, 65, 70, 83, 86, 94, 97): (0.1984942686851189, 0.20938746372536046, 0.14945353002055525), (32, 37, 48, 64, 66, 69, 81, 96, 99): (0.13998817052833173, 0.7858689353702485, 0.14814097529549805), (32, 37, 64, 66, 69, 88, 96, 99): (0.111022615751386, 0.7676327866502684, 0.1464828433048606), (34, 60, 65, 70, 83, 86, 97, 98): (0.27881170846041564, 0.18823061782622416, 0.14535381423478827), (35, 47, 67, 73, 82, 92, 93, 95): (0.8668407448339298, 0.8654424303052715, 0.12317143039084451)} |
# -*- coding: utf-8 -*-
'''Top-level package for lico.'''
__author__ = '''Sjoerd Kerkstra'''
__email__ = '[email protected]'
__version__ = '0.1.1'
| """Top-level package for lico."""
__author__ = 'Sjoerd Kerkstra'
__email__ = '[email protected]'
__version__ = '0.1.1' |
# Author: zhao-zh10
# -----------
# User Instructions:
#
# Modify the the search function so that it becomes
# an A* search algorithm as defined in the previous
# lectures.
#
# Your function should return the expanded grid
# which shows, for each element, the count when
# it was expanded or -1 if the element was never expanded.
#
# If there is no path from init to goal,
# the function should return the string 'fail'
# ----------
grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0]]
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]
init = [0, 0]
goal = [len(grid) - 1, len(grid[0]) - 1]
cost = 1
delta = [[-1, 0], # go up
[0, -1], # go left
[1, 0], # go down
[0, 1]] # go right
delta_name = ['^', '<', 'v', '>']
def search(grid, init, goal, cost, heuristic, debug_flag = False):
# ----------------------------------------
# modify the code below
# ----------------------------------------
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]
closed[init[0]][init[1]] = 1
expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
policy = [[' ' for col in range(len(grid[0]))] for row in range(len(grid))]
x = init[0]
y = init[1]
g = 0
h = heuristic[x][y]
f = g + h
open = [[f, g, h, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
count = 0
if debug_flag:
print('initial open list:')
for i in range(len(open)):
print(" ", open[i])
print("----")
while not found and not resign:
if len(open) == 0:
resign = True
if debug_flag:
print('Fail')
print('###### Search terminated without success')
return "Fail"
else:
# remove node from list
open.sort()
open.reverse()
next = open.pop()
if debug_flag:
print('take list item')
print(next)
x = next[3]
y = next[4]
g = next[1]
expand[x][y] = count
count += 1
if x == goal[0] and y == goal[1]:
if debug_flag:
print(next)
print('###### Search successful')
found = True
else:
# expand winning element and add to new open list
for i in range(len(delta)):
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if 0 <= x2 < len(grid) and 0 <= y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
h2 = heuristic[x2][y2]
f2 = g2 + h2
open.append([f2, g2, h2, x2, y2])
if debug_flag:
print('append list item')
print([f2, g2, h2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
if debug_flag:
print('---'*10)
print('new open list:')
for i in range(len(open)):
print(' ', open[i])
print('---'*10)
if found:
x = goal[0]
y = goal[1]
policy[x][y] = '*'
while x != init[0] or y != init[0]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
policy[x2][y2] = delta_name[action[x][y]]
x = x2
y = y2
if debug_flag:
print('---'*10)
print('The path policy is:')
for m in range(len(policy)):
print(policy[m])
print('---'*10)
print('The expanded table is :')
for k in range(len(expand)):
print(expand[k])
return expand
search(grid, init, goal, cost, heuristic) | grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]]
heuristic = [[9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], [7, 6, 5, 4, 3, 2], [6, 5, 4, 3, 2, 1], [5, 4, 3, 2, 1, 0]]
init = [0, 0]
goal = [len(grid) - 1, len(grid[0]) - 1]
cost = 1
delta = [[-1, 0], [0, -1], [1, 0], [0, 1]]
delta_name = ['^', '<', 'v', '>']
def search(grid, init, goal, cost, heuristic, debug_flag=False):
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]
closed[init[0]][init[1]] = 1
expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
policy = [[' ' for col in range(len(grid[0]))] for row in range(len(grid))]
x = init[0]
y = init[1]
g = 0
h = heuristic[x][y]
f = g + h
open = [[f, g, h, x, y]]
found = False
resign = False
count = 0
if debug_flag:
print('initial open list:')
for i in range(len(open)):
print(' ', open[i])
print('----')
while not found and (not resign):
if len(open) == 0:
resign = True
if debug_flag:
print('Fail')
print('###### Search terminated without success')
return 'Fail'
else:
open.sort()
open.reverse()
next = open.pop()
if debug_flag:
print('take list item')
print(next)
x = next[3]
y = next[4]
g = next[1]
expand[x][y] = count
count += 1
if x == goal[0] and y == goal[1]:
if debug_flag:
print(next)
print('###### Search successful')
found = True
else:
for i in range(len(delta)):
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if 0 <= x2 < len(grid) and 0 <= y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
h2 = heuristic[x2][y2]
f2 = g2 + h2
open.append([f2, g2, h2, x2, y2])
if debug_flag:
print('append list item')
print([f2, g2, h2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
if debug_flag:
print('---' * 10)
print('new open list:')
for i in range(len(open)):
print(' ', open[i])
print('---' * 10)
if found:
x = goal[0]
y = goal[1]
policy[x][y] = '*'
while x != init[0] or y != init[0]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
policy[x2][y2] = delta_name[action[x][y]]
x = x2
y = y2
if debug_flag:
print('---' * 10)
print('The path policy is:')
for m in range(len(policy)):
print(policy[m])
print('---' * 10)
print('The expanded table is :')
for k in range(len(expand)):
print(expand[k])
return expand
search(grid, init, goal, cost, heuristic) |
# python3
class HeapBuilder:
def __init__(self):
self._swaps = []
self._data = []
def ReadData(self):
global n
n = int(input())
self._data = [int(s) for s in input().split()]
assert n == len(self._data)
def WriteResponse(self):
print(len(self._swaps))
for swap in self._swaps:
print(swap[0], swap[1])
def SiftDown(self, i):
minIndex = i
left = 2 * i + 1
if left < n and self._data[left] < self._data[minIndex]:
minIndex = left
right = 2 * i + 2
if right < n and self._data[right] < self._data[minIndex]:
minIndex = right
if i != minIndex:
self._data[i], self._data[minIndex] = self._data[minIndex], self._data[i]
self._swaps.append([i, minIndex])
self.SiftDown(minIndex)
def GenerateSwaps(self):
for i in range(n // 2, -1, -1):
self.SiftDown(i)
def Solve(self):
self.ReadData()
self.GenerateSwaps()
self.WriteResponse()
if __name__ == '__main__':
heap_builder = HeapBuilder()
heap_builder.Solve() | class Heapbuilder:
def __init__(self):
self._swaps = []
self._data = []
def read_data(self):
global n
n = int(input())
self._data = [int(s) for s in input().split()]
assert n == len(self._data)
def write_response(self):
print(len(self._swaps))
for swap in self._swaps:
print(swap[0], swap[1])
def sift_down(self, i):
min_index = i
left = 2 * i + 1
if left < n and self._data[left] < self._data[minIndex]:
min_index = left
right = 2 * i + 2
if right < n and self._data[right] < self._data[minIndex]:
min_index = right
if i != minIndex:
(self._data[i], self._data[minIndex]) = (self._data[minIndex], self._data[i])
self._swaps.append([i, minIndex])
self.SiftDown(minIndex)
def generate_swaps(self):
for i in range(n // 2, -1, -1):
self.SiftDown(i)
def solve(self):
self.ReadData()
self.GenerateSwaps()
self.WriteResponse()
if __name__ == '__main__':
heap_builder = heap_builder()
heap_builder.Solve() |
# python dict of naming overrides
GENE_NAME_OVERRIDE = {
# pmmo Genes
'EQU24_RS19315':'pmoC',
'EQU24_RS19310':'pmoA',
'EQU24_RS19305':'pmoB',
# smmo Genes
'EQU24_RS05930':'mmoR',
'EQU24_RS05925':'mmoG',
'EQU24_RS05910':'mmoC',
'EQU24_RS05900':'mmoZ',
'EQU24_RS05895':'mmoB',
'EQU24_RS05890':'mmoY',
'EQU24_RS05885':'mmoX',
# groEL/groES genes
'EQU24_RS17825':'groS',
'EQU24_RS08650':'groS',
# mxaF genes (mxa and mox)
'EQU24_RS18155':'mxaD',
'EQU24_RS18140':'moxF',
'EQU24_RS18125':'moxI',
'EQU24_RS18120':'moxR',
'EQU24_RS18115':'mxaP', # via blast
'EQU24_RS18110':'mxaS',
'EQU24_RS18105':'mxaA',
'EQU24_RS18100':'mxaC',
'EQU24_RS18095':'mxaK',
'EQU24_RS18090':'mxaL',
'EQU24_RS18145':'mxaB',
# Xox
'EQU24_RS18610':'xoxJ',
'EQU24_RS18605':'xoxF'
}
GENE_PRODUCT_OVERRIDE = {
'EQU24_RS05925':'likely chaperone for smmo',
}
SYS_LOOKUP = {
#pmo
'EQU24_RS19315':'pmo',
'EQU24_RS19310':'pmo',
'EQU24_RS19305':'pmo',
# smo
'EQU24_RS05910':'smo',
'EQU24_RS05905':'smo',
'EQU24_RS05900':'smo',
'EQU24_RS05895':'smo',
'EQU24_RS05890':'smo',
'EQU24_RS05885':'smo',
'EQU24_RS05930':'smo',
'EQU24_RS05925':'smo',
# mxa
'EQU24_RS18145':'mox',
'EQU24_RS18140':'mox',
'EQU24_RS18135':'mox',
'EQU24_RS18130':'mox',
'EQU24_RS18125':'mox',
'EQU24_RS18120':'mox',
'EQU24_RS18115':'mox',
'EQU24_RS18110':'mox',
'EQU24_RS18105':'mox',
'EQU24_RS18100':'mox',
'EQU24_RS18095':'mox',
'EQU24_RS18090':'mox',
# xox
'EQU24_RS18605':'xox',
'EQU24_RS18610':'xox',
#groEL/ES
# 'EQU24_RS17825':'gro',
# 'EQU24_RS17820':'gro',
# 'EQU24_RS08655':'gro',
# 'EQU24_RS08650':'gro',
#pilin
'EQU24_RS04275':'pilin',
'EQU24_RS01095':'pilin',
'EQU24_RS16035':'pilin',
'EQU24_RS03345':'pilin',
'EQU24_RS16020':'pilin',
'EQU24_RS19380':'pilin',
'EQU24_RS00705':'pilin',
'EQU24_RS04470':'pilin',
'EQU24_RS12830':'pilin',
'EQU24_RS04480':'pilin',
'EQU24_RS12835':'pilin',
'EQU24_RS04490':'pilin',
'EQU24_RS04485':'pilin',
'EQU24_RS03355':'pilin',
'EQU24_RS00710':'pilin',
'EQU24_RS05130':'pilin',
'EQU24_RS19585':'pilin',
'EQU24_RS04615':'pilin',
'EQU24_RS05525':'pilin',
'EQU24_RS16025':'pilin',
'EQU24_RS05135':'pilin',
'EQU24_RS12840':'pilin',
'EQU24_RS04585':'pilin',
'EQU24_RS04610':'pilin',
'EQU24_RS04595':'pilin',
'EQU24_RS04600':'pilin',
# secretion
'EQU24_RS19520':'secretion',
'EQU24_RS11235':'secretion',
'EQU24_RS15565':'secretion',
'EQU24_RS06345':'secretion',
'EQU24_RS05115':'secretion',
'EQU24_RS15560':'secretion',
'EQU24_RS11240':'secretion',
'EQU24_RS11280':'secretion',
'EQU24_RS11210':'secretion',
'EQU24_RS11245':'secretion',
'EQU24_RS11180':'secretion',
'EQU24_RS20155':'secretion',
'EQU24_RS15945':'secretion',
'EQU24_RS05120':'secretion',
'EQU24_RS11270':'secretion',
'EQU24_RS11275':'secretion',
'EQU24_RS11250':'secretion',
'EQU24_RS11260':'secretion',
'EQU24_RS20160':'secretion',
'EQU24_RS05110':'secretion',
'EQU24_RS04490':'secretion',
'EQU24_RS03350':'secretion',
'EQU24_RS11255':'secretion',
'EQU24_RS15930':'secretion',
'EQU24_RS16015':'secretion',
'EQU24_RS11215':'secretion',
'EQU24_RS11220':'secretion',
'EQU24_RS11205':'secretion',
'EQU24_RS11190':'secretion',
'EQU24_RS19490':'secretion',
'EQU24_RS05160':'secretion',
'EQU24_RS05105':'secretion',
'EQU24_RS16000':'secretion',
'EQU24_RS19465':'secretion',
'EQU24_RS15995':'secretion',
'EQU24_RS01525':'secretion',
'EQU24_RS05405':'secretion',
'EQU24_RS11175':'secretion',
'EQU24_RS10950':'secretion',
#toxin
'EQU24_RS11700':'toxin',
'EQU24_RS14175':'toxin',
'EQU24_RS18440':'toxin',
'EQU24_RS20880':'toxin',
'EQU24_RS07550':'toxin',
'EQU24_RS11705':'toxin',
'EQU24_RS07535':'toxin',
'EQU24_RS08075':'toxin',
'EQU24_RS02930':'toxin',
'EQU24_RS21185':'toxin',
'EQU24_RS21860':'toxin',
'EQU24_RS17985':'toxin',
'EQU24_RS07545':'toxin',
'EQU24_RS18405':'toxin',
'EQU24_RS00235':'toxin',
'EQU24_RS19535':'toxin',
'EQU24_RS10190':'toxin',
'EQU24_RS08220':'toxin',
'EQU24_RS21865':'toxin',
'EQU24_RS15430':'toxin',
'EQU24_RS20925':'toxin',
'EQU24_RS04285':'toxin',
'EQU24_RS10850':'toxin',
'EQU24_RS20920':'toxin',
'EQU24_RS08175':'toxin',
'EQU24_RS08180':'toxin',
'EQU24_RS08210':'toxin',
'EQU24_RS13090':'toxin',
'EQU24_RS20735':'toxin',
'EQU24_RS04320':'toxin',
'EQU24_RS20730':'toxin',
'EQU24_RS01855':'toxin',
'EQU24_RS10855':'toxin',
'EQU24_RS19540':'toxin',
'EQU24_RS20010':'toxin',
'EQU24_RS20725':'toxin',
'EQU24_RS08130':'toxin',
'EQU24_RS15455':'toxin',
'EQU24_RS13520':'toxin',
'EQU24_RS08065':'toxin',
'EQU24_RS04325':'toxin',
'EQU24_RS01485':'toxin',
'EQU24_RS05330':'toxin',
'EQU24_RS20720':'toxin',
'EQU24_RS13725':'toxin',
'EQU24_RS20935':'toxin',
'EQU24_RS08135':'toxin',
'EQU24_RS01930':'toxin',
'EQU24_RS17920':'toxin',
'EQU24_RS20265':'toxin',
'EQU24_RS16915':'toxin',
'EQU24_RS07460':'toxin',
'EQU24_RS01935':'toxin',
'EQU24_RS22115':'toxin',
'EQU24_RS19020':'toxin',
'EQU24_RS04380':'toxin',
'EQU24_RS04110':'toxin',
'EQU24_RS00215':'toxin',
'EQU24_RS01345':'toxin',
'EQU24_RS07575':'toxin',
'EQU24_RS00220':'toxin',
'EQU24_RS20270':'toxin',
'EQU24_RS05325':'toxin',
'EQU24_RS16470':'toxin',
'EQU24_RS17375':'toxin',
'EQU24_RS12475':'toxin',
'EQU24_RS16330':'toxin',
'EQU24_RS12820':'toxin',
'EQU24_RS12825':'toxin',
'EQU24_RS08850':'toxin',
'EQU24_RS08845':'toxin',
# 5152
'EQU24_RS19480':'5152',
'EQU24_RS19490':'5152',
'EQU24_RS19495':'5152',
'EQU24_RS19515':'5152',
'EQU24_RS19510':'5152',
'EQU24_RS19505':'5152',
'EQU24_RS19470':'5152',
'EQU24_RS19460':'5152',
'EQU24_RS19450':'5152',
# repressible no 5152
'EQU24_RS10650':'RepCurCu-no5152',
'EQU24_RS15800':'RepCurCu-no5152',
'EQU24_RS01900':'RepCurCu-no5152',
'EQU24_RS21005':'RepCurCu-no5152',
'EQU24_RS02325':'RepCurCu-no5152',
'EQU24_RS05885':'RepCurCu-no5152',
'EQU24_RS21000':'RepCurCu-no5152',
'EQU24_RS00670':'RepCurCu-no5152',
'EQU24_RS05870':'RepCurCu-no5152',
'EQU24_RS10665':'RepCurCu-no5152',
'EQU24_RS05880':'RepCurCu-no5152',
'EQU24_RS05905':'RepCurCu-no5152',
'EQU24_RS05915':'RepCurCu-no5152',
'EQU24_RS05920':'RepCurCu-no5152',
'EQU24_RS05925':'RepCurCu-no5152'
}
| gene_name_override = {'EQU24_RS19315': 'pmoC', 'EQU24_RS19310': 'pmoA', 'EQU24_RS19305': 'pmoB', 'EQU24_RS05930': 'mmoR', 'EQU24_RS05925': 'mmoG', 'EQU24_RS05910': 'mmoC', 'EQU24_RS05900': 'mmoZ', 'EQU24_RS05895': 'mmoB', 'EQU24_RS05890': 'mmoY', 'EQU24_RS05885': 'mmoX', 'EQU24_RS17825': 'groS', 'EQU24_RS08650': 'groS', 'EQU24_RS18155': 'mxaD', 'EQU24_RS18140': 'moxF', 'EQU24_RS18125': 'moxI', 'EQU24_RS18120': 'moxR', 'EQU24_RS18115': 'mxaP', 'EQU24_RS18110': 'mxaS', 'EQU24_RS18105': 'mxaA', 'EQU24_RS18100': 'mxaC', 'EQU24_RS18095': 'mxaK', 'EQU24_RS18090': 'mxaL', 'EQU24_RS18145': 'mxaB', 'EQU24_RS18610': 'xoxJ', 'EQU24_RS18605': 'xoxF'}
gene_product_override = {'EQU24_RS05925': 'likely chaperone for smmo'}
sys_lookup = {'EQU24_RS19315': 'pmo', 'EQU24_RS19310': 'pmo', 'EQU24_RS19305': 'pmo', 'EQU24_RS05910': 'smo', 'EQU24_RS05905': 'smo', 'EQU24_RS05900': 'smo', 'EQU24_RS05895': 'smo', 'EQU24_RS05890': 'smo', 'EQU24_RS05885': 'smo', 'EQU24_RS05930': 'smo', 'EQU24_RS05925': 'smo', 'EQU24_RS18145': 'mox', 'EQU24_RS18140': 'mox', 'EQU24_RS18135': 'mox', 'EQU24_RS18130': 'mox', 'EQU24_RS18125': 'mox', 'EQU24_RS18120': 'mox', 'EQU24_RS18115': 'mox', 'EQU24_RS18110': 'mox', 'EQU24_RS18105': 'mox', 'EQU24_RS18100': 'mox', 'EQU24_RS18095': 'mox', 'EQU24_RS18090': 'mox', 'EQU24_RS18605': 'xox', 'EQU24_RS18610': 'xox', 'EQU24_RS04275': 'pilin', 'EQU24_RS01095': 'pilin', 'EQU24_RS16035': 'pilin', 'EQU24_RS03345': 'pilin', 'EQU24_RS16020': 'pilin', 'EQU24_RS19380': 'pilin', 'EQU24_RS00705': 'pilin', 'EQU24_RS04470': 'pilin', 'EQU24_RS12830': 'pilin', 'EQU24_RS04480': 'pilin', 'EQU24_RS12835': 'pilin', 'EQU24_RS04490': 'pilin', 'EQU24_RS04485': 'pilin', 'EQU24_RS03355': 'pilin', 'EQU24_RS00710': 'pilin', 'EQU24_RS05130': 'pilin', 'EQU24_RS19585': 'pilin', 'EQU24_RS04615': 'pilin', 'EQU24_RS05525': 'pilin', 'EQU24_RS16025': 'pilin', 'EQU24_RS05135': 'pilin', 'EQU24_RS12840': 'pilin', 'EQU24_RS04585': 'pilin', 'EQU24_RS04610': 'pilin', 'EQU24_RS04595': 'pilin', 'EQU24_RS04600': 'pilin', 'EQU24_RS19520': 'secretion', 'EQU24_RS11235': 'secretion', 'EQU24_RS15565': 'secretion', 'EQU24_RS06345': 'secretion', 'EQU24_RS05115': 'secretion', 'EQU24_RS15560': 'secretion', 'EQU24_RS11240': 'secretion', 'EQU24_RS11280': 'secretion', 'EQU24_RS11210': 'secretion', 'EQU24_RS11245': 'secretion', 'EQU24_RS11180': 'secretion', 'EQU24_RS20155': 'secretion', 'EQU24_RS15945': 'secretion', 'EQU24_RS05120': 'secretion', 'EQU24_RS11270': 'secretion', 'EQU24_RS11275': 'secretion', 'EQU24_RS11250': 'secretion', 'EQU24_RS11260': 'secretion', 'EQU24_RS20160': 'secretion', 'EQU24_RS05110': 'secretion', 'EQU24_RS04490': 'secretion', 'EQU24_RS03350': 'secretion', 'EQU24_RS11255': 'secretion', 'EQU24_RS15930': 'secretion', 'EQU24_RS16015': 'secretion', 'EQU24_RS11215': 'secretion', 'EQU24_RS11220': 'secretion', 'EQU24_RS11205': 'secretion', 'EQU24_RS11190': 'secretion', 'EQU24_RS19490': 'secretion', 'EQU24_RS05160': 'secretion', 'EQU24_RS05105': 'secretion', 'EQU24_RS16000': 'secretion', 'EQU24_RS19465': 'secretion', 'EQU24_RS15995': 'secretion', 'EQU24_RS01525': 'secretion', 'EQU24_RS05405': 'secretion', 'EQU24_RS11175': 'secretion', 'EQU24_RS10950': 'secretion', 'EQU24_RS11700': 'toxin', 'EQU24_RS14175': 'toxin', 'EQU24_RS18440': 'toxin', 'EQU24_RS20880': 'toxin', 'EQU24_RS07550': 'toxin', 'EQU24_RS11705': 'toxin', 'EQU24_RS07535': 'toxin', 'EQU24_RS08075': 'toxin', 'EQU24_RS02930': 'toxin', 'EQU24_RS21185': 'toxin', 'EQU24_RS21860': 'toxin', 'EQU24_RS17985': 'toxin', 'EQU24_RS07545': 'toxin', 'EQU24_RS18405': 'toxin', 'EQU24_RS00235': 'toxin', 'EQU24_RS19535': 'toxin', 'EQU24_RS10190': 'toxin', 'EQU24_RS08220': 'toxin', 'EQU24_RS21865': 'toxin', 'EQU24_RS15430': 'toxin', 'EQU24_RS20925': 'toxin', 'EQU24_RS04285': 'toxin', 'EQU24_RS10850': 'toxin', 'EQU24_RS20920': 'toxin', 'EQU24_RS08175': 'toxin', 'EQU24_RS08180': 'toxin', 'EQU24_RS08210': 'toxin', 'EQU24_RS13090': 'toxin', 'EQU24_RS20735': 'toxin', 'EQU24_RS04320': 'toxin', 'EQU24_RS20730': 'toxin', 'EQU24_RS01855': 'toxin', 'EQU24_RS10855': 'toxin', 'EQU24_RS19540': 'toxin', 'EQU24_RS20010': 'toxin', 'EQU24_RS20725': 'toxin', 'EQU24_RS08130': 'toxin', 'EQU24_RS15455': 'toxin', 'EQU24_RS13520': 'toxin', 'EQU24_RS08065': 'toxin', 'EQU24_RS04325': 'toxin', 'EQU24_RS01485': 'toxin', 'EQU24_RS05330': 'toxin', 'EQU24_RS20720': 'toxin', 'EQU24_RS13725': 'toxin', 'EQU24_RS20935': 'toxin', 'EQU24_RS08135': 'toxin', 'EQU24_RS01930': 'toxin', 'EQU24_RS17920': 'toxin', 'EQU24_RS20265': 'toxin', 'EQU24_RS16915': 'toxin', 'EQU24_RS07460': 'toxin', 'EQU24_RS01935': 'toxin', 'EQU24_RS22115': 'toxin', 'EQU24_RS19020': 'toxin', 'EQU24_RS04380': 'toxin', 'EQU24_RS04110': 'toxin', 'EQU24_RS00215': 'toxin', 'EQU24_RS01345': 'toxin', 'EQU24_RS07575': 'toxin', 'EQU24_RS00220': 'toxin', 'EQU24_RS20270': 'toxin', 'EQU24_RS05325': 'toxin', 'EQU24_RS16470': 'toxin', 'EQU24_RS17375': 'toxin', 'EQU24_RS12475': 'toxin', 'EQU24_RS16330': 'toxin', 'EQU24_RS12820': 'toxin', 'EQU24_RS12825': 'toxin', 'EQU24_RS08850': 'toxin', 'EQU24_RS08845': 'toxin', 'EQU24_RS19480': '5152', 'EQU24_RS19490': '5152', 'EQU24_RS19495': '5152', 'EQU24_RS19515': '5152', 'EQU24_RS19510': '5152', 'EQU24_RS19505': '5152', 'EQU24_RS19470': '5152', 'EQU24_RS19460': '5152', 'EQU24_RS19450': '5152', 'EQU24_RS10650': 'RepCurCu-no5152', 'EQU24_RS15800': 'RepCurCu-no5152', 'EQU24_RS01900': 'RepCurCu-no5152', 'EQU24_RS21005': 'RepCurCu-no5152', 'EQU24_RS02325': 'RepCurCu-no5152', 'EQU24_RS05885': 'RepCurCu-no5152', 'EQU24_RS21000': 'RepCurCu-no5152', 'EQU24_RS00670': 'RepCurCu-no5152', 'EQU24_RS05870': 'RepCurCu-no5152', 'EQU24_RS10665': 'RepCurCu-no5152', 'EQU24_RS05880': 'RepCurCu-no5152', 'EQU24_RS05905': 'RepCurCu-no5152', 'EQU24_RS05915': 'RepCurCu-no5152', 'EQU24_RS05920': 'RepCurCu-no5152', 'EQU24_RS05925': 'RepCurCu-no5152'} |
class Coordinate:
coordX = 0
coordY = 0
def __init__(self, coordX=0, coordY=0):
self.coordX = coordX
self.coordY = coordY
pass
def set(self, coordX, coordY):
self.coordX = coordX
self.coordY = coordY
return coordX, coordY
if __name__ == '__main__':
pass
| class Coordinate:
coord_x = 0
coord_y = 0
def __init__(self, coordX=0, coordY=0):
self.coordX = coordX
self.coordY = coordY
pass
def set(self, coordX, coordY):
self.coordX = coordX
self.coordY = coordY
return (coordX, coordY)
if __name__ == '__main__':
pass |
apiAttachAvailable = u'API Kullanilabilir'
apiAttachNotAvailable = u'Kullanilamiyor'
apiAttachPendingAuthorization = u'Yetkilendirme Bekliyor'
apiAttachRefused = u'Reddedildi'
apiAttachSuccess = u'Basarili oldu'
apiAttachUnknown = u'Bilinmiyor'
budDeletedFriend = u'Arkadas Listesinden Silindi'
budFriend = u'Arkadas'
budNeverBeenFriend = u'Arkadas Listesinde Hi\xe7 Olmadi'
budPendingAuthorization = u'Yetkilendirme Bekliyor'
budUnknown = u'Bilinmiyor'
cfrBlockedByRecipient = u'\xc7agri alici tarafindan engellendi'
cfrMiscError = u'Diger Hata'
cfrNoCommonCodec = u'Genel codec yok'
cfrNoProxyFound = u'Proxy bulunamadi'
cfrNotAuthorizedByRecipient = u'Ge\xe7erli kullanici alici tarafindan yetkilendirilmemis'
cfrRecipientNotFriend = u'Alici bir arkadas degil'
cfrRemoteDeviceError = u'Uzak ses aygitinda problem var'
cfrSessionTerminated = u'Oturum sonlandirildi'
cfrSoundIOError = u'Ses G/\xc7 hatasi'
cfrSoundRecordingError = u'Ses kayit hatasi'
cfrUnknown = u'Bilinmiyor'
cfrUserDoesNotExist = u'Kullanici/telefon numarasi mevcut degil'
cfrUserIsOffline = u'\xc7evrim Disi'
chsAllCalls = u'Eski Diyalog'
chsDialog = u'Diyalog'
chsIncomingCalls = u'\xc7oklu Sohbet Kabul\xfc Gerekli'
chsLegacyDialog = u'Eski Diyalog'
chsMissedCalls = u'Diyalog'
chsMultiNeedAccept = u'\xc7oklu Sohbet Kabul\xfc Gerekli'
chsMultiSubscribed = u'\xc7oklu Abonelik'
chsOutgoingCalls = u'\xc7oklu Abonelik'
chsUnknown = u'Bilinmiyor'
chsUnsubscribed = u'Aboneligi Silindi'
clsBusy = u'Mesgul'
clsCancelled = u'Iptal Edildi'
clsEarlyMedia = u'Early Media y\xfcr\xfct\xfcl\xfcyor'
clsFailed = u'\xdczg\xfcn\xfcz, arama basarisiz!'
clsFinished = u'Bitirildi'
clsInProgress = u'Arama Yapiliyor'
clsLocalHold = u'Yerel Beklemede'
clsMissed = u'Cevapsiz Arama'
clsOnHold = u'Beklemede'
clsRefused = u'Reddedildi'
clsRemoteHold = u'Uzak Beklemede'
clsRinging = u'ariyor'
clsRouting = u'Y\xf6nlendirme'
clsTransferred = u'Bilinmiyor'
clsTransferring = u'Bilinmiyor'
clsUnknown = u'Bilinmiyor'
clsUnplaced = u'Asla baglanmadi'
clsVoicemailBufferingGreeting = u'Selamlama Ara Bellege Aliniyor'
clsVoicemailCancelled = u'Sesli Posta Iptal Edildi'
clsVoicemailFailed = u'Sesli Mesaj Basarisiz'
clsVoicemailPlayingGreeting = u'Selamlama Y\xfcr\xfct\xfcl\xfcyor'
clsVoicemailRecording = u'Sesli Mesaj Kaydediliyor'
clsVoicemailSent = u'Sesli Posta G\xf6nderildi'
clsVoicemailUploading = u'Sesli Posta Karsiya Y\xfckleniyor'
cltIncomingP2P = u'Gelen Esler Arasi Telefon \xc7agrisi'
cltIncomingPSTN = u'Gelen Telefon \xc7agrisi'
cltOutgoingP2P = u'Giden Esler Arasi Telefon \xc7agrisi'
cltOutgoingPSTN = u'Giden Telefon \xc7agrisi'
cltUnknown = u'Bilinmiyor'
cmeAddedMembers = u'Eklenen \xdcyeler'
cmeCreatedChatWith = u'Sohbet Olusturuldu:'
cmeEmoted = u'Bilinmiyor'
cmeLeft = u'Birakilan'
cmeSaid = u'Ifade'
cmeSawMembers = u'G\xf6r\xfclen \xdcyeler'
cmeSetTopic = u'Konu Belirleme'
cmeUnknown = u'Bilinmiyor'
cmsRead = u'Okundu'
cmsReceived = u'Alindi'
cmsSending = u'G\xf6nderiliyor...'
cmsSent = u'G\xf6nderildi'
cmsUnknown = u'Bilinmiyor'
conConnecting = u'Baglaniyor'
conOffline = u'\xc7evrim Disi'
conOnline = u'\xc7evrim I\xe7i'
conPausing = u'Duraklatiliyor'
conUnknown = u'Bilinmiyor'
cusAway = u'Uzakta'
cusDoNotDisturb = u'Rahatsiz Etmeyin'
cusInvisible = u'G\xf6r\xfcnmez'
cusLoggedOut = u'\xc7evrim Disi'
cusNotAvailable = u'Kullanilamiyor'
cusOffline = u'\xc7evrim Disi'
cusOnline = u'\xc7evrim I\xe7i'
cusSkypeMe = u'Skype Me'
cusUnknown = u'Bilinmiyor'
cvsBothEnabled = u'Video G\xf6nderme ve Alma'
cvsNone = u'Video Yok'
cvsReceiveEnabled = u'Video Alma'
cvsSendEnabled = u'Video G\xf6nderme'
cvsUnknown = u''
grpAllFriends = u'T\xfcm Arkadaslar'
grpAllUsers = u'T\xfcm Kullanicilar'
grpCustomGroup = u'\xd6zel'
grpOnlineFriends = u'\xc7evrimi\xe7i Arkadaslar'
grpPendingAuthorizationFriends = u'Yetkilendirme Bekliyor'
grpProposedSharedGroup = u'Proposed Shared Group'
grpRecentlyContactedUsers = u'Son Zamanlarda Iletisim Kurulmus Kullanicilar'
grpSharedGroup = u'Shared Group'
grpSkypeFriends = u'Skype Arkadaslari'
grpSkypeOutFriends = u'SkypeOut Arkadaslari'
grpUngroupedFriends = u'Gruplanmamis Arkadaslar'
grpUnknown = u'Bilinmiyor'
grpUsersAuthorizedByMe = u'Tarafimdan Yetkilendirilenler'
grpUsersBlockedByMe = u'Engellediklerim'
grpUsersWaitingMyAuthorization = u'Yetkilendirmemi Bekleyenler'
leaAddDeclined = u'Ekleme Reddedildi'
leaAddedNotAuthorized = u'Ekleyen Kisinin Yetkisi Olmali'
leaAdderNotFriend = u'Ekleyen Bir Arkadas Olmali'
leaUnknown = u'Bilinmiyor'
leaUnsubscribe = u'Aboneligi Silindi'
leaUserIncapable = u'Kullanicidan Kaynaklanan Yetersizlik'
leaUserNotFound = u'Kullanici Bulunamadi'
olsAway = u'Uzakta'
olsDoNotDisturb = u'Rahatsiz Etmeyin'
olsNotAvailable = u'Kullanilamiyor'
olsOffline = u'\xc7evrim Disi'
olsOnline = u'\xc7evrim I\xe7i'
olsSkypeMe = u'Skype Me'
olsSkypeOut = u'SkypeOut'
olsUnknown = u'Bilinmiyor'
smsMessageStatusComposing = u'Composing'
smsMessageStatusDelivered = u'Delivered'
smsMessageStatusFailed = u'Failed'
smsMessageStatusRead = u'Read'
smsMessageStatusReceived = u'Received'
smsMessageStatusSendingToServer = u'Sending to Server'
smsMessageStatusSentToServer = u'Sent to Server'
smsMessageStatusSomeTargetsFailed = u'Some Targets Failed'
smsMessageStatusUnknown = u'Unknown'
smsMessageTypeCCRequest = u'Confirmation Code Request'
smsMessageTypeCCSubmit = u'Confirmation Code Submit'
smsMessageTypeIncoming = u'Incoming'
smsMessageTypeOutgoing = u'Outgoing'
smsMessageTypeUnknown = u'Unknown'
smsTargetStatusAcceptable = u'Acceptable'
smsTargetStatusAnalyzing = u'Analyzing'
smsTargetStatusDeliveryFailed = u'Delivery Failed'
smsTargetStatusDeliveryPending = u'Delivery Pending'
smsTargetStatusDeliverySuccessful = u'Delivery Successful'
smsTargetStatusNotRoutable = u'Not Routable'
smsTargetStatusUndefined = u'Undefined'
smsTargetStatusUnknown = u'Unknown'
usexFemale = u'Kadin'
usexMale = u'Erkek'
usexUnknown = u'Bilinmiyor'
vmrConnectError = u'Baglanti Hatasi'
vmrFileReadError = u'Dosya Okuma Hatasi'
vmrFileWriteError = u'Dosya Yazma Hatasi'
vmrMiscError = u'Diger Hata'
vmrNoError = u'Hata Yok'
vmrNoPrivilege = u'Sesli Posta \xd6nceligi Yok'
vmrNoVoicemail = u'B\xf6yle Bir Sesli Posta Yok'
vmrPlaybackError = u'Y\xfcr\xfctme Hatasi'
vmrRecordingError = u'Kayit Hatasi'
vmrUnknown = u'Bilinmiyor'
vmsBlank = u'Bos'
vmsBuffering = u'Ara bellege aliniyor'
vmsDeleting = u'Siliniyor'
vmsDownloading = u'Karsidan Y\xfckleniyor'
vmsFailed = u'Basarisiz Oldu'
vmsNotDownloaded = u'Karsidan Y\xfcklenmedi'
vmsPlayed = u'Y\xfcr\xfct\xfcld\xfc'
vmsPlaying = u'Y\xfcr\xfct\xfcl\xfcyor'
vmsRecorded = u'Kaydedildi'
vmsRecording = u'Sesli Mesaj Kaydediliyor'
vmsUnknown = u'Bilinmiyor'
vmsUnplayed = u'Y\xfcr\xfct\xfclmemis'
vmsUploaded = u'Karsiya Y\xfcklendi'
vmsUploading = u'Karsiya Y\xfckleniyor'
vmtCustomGreeting = u'\xd6zel Selamlama'
vmtDefaultGreeting = u'Varsayilan Selamlama'
vmtIncoming = u'gelen sesli mesaj'
vmtOutgoing = u'Giden'
vmtUnknown = u'Bilinmiyor'
vssAvailable = u'Kullanilabilir'
vssNotAvailable = u'Kullanilamiyor'
vssPaused = u'Duraklatildi'
vssRejected = u'Reddedildi'
vssRunning = u'\xc7alisiyor'
vssStarting = u'Basliyor'
vssStopping = u'Durduruluyor'
vssUnknown = u'Bilinmiyor'
| api_attach_available = u'API Kullanilabilir'
api_attach_not_available = u'Kullanilamiyor'
api_attach_pending_authorization = u'Yetkilendirme Bekliyor'
api_attach_refused = u'Reddedildi'
api_attach_success = u'Basarili oldu'
api_attach_unknown = u'Bilinmiyor'
bud_deleted_friend = u'Arkadas Listesinden Silindi'
bud_friend = u'Arkadas'
bud_never_been_friend = u'Arkadas Listesinde Hiç Olmadi'
bud_pending_authorization = u'Yetkilendirme Bekliyor'
bud_unknown = u'Bilinmiyor'
cfr_blocked_by_recipient = u'Çagri alici tarafindan engellendi'
cfr_misc_error = u'Diger Hata'
cfr_no_common_codec = u'Genel codec yok'
cfr_no_proxy_found = u'Proxy bulunamadi'
cfr_not_authorized_by_recipient = u'Geçerli kullanici alici tarafindan yetkilendirilmemis'
cfr_recipient_not_friend = u'Alici bir arkadas degil'
cfr_remote_device_error = u'Uzak ses aygitinda problem var'
cfr_session_terminated = u'Oturum sonlandirildi'
cfr_sound_io_error = u'Ses G/Ç hatasi'
cfr_sound_recording_error = u'Ses kayit hatasi'
cfr_unknown = u'Bilinmiyor'
cfr_user_does_not_exist = u'Kullanici/telefon numarasi mevcut degil'
cfr_user_is_offline = u'Çevrim Disi'
chs_all_calls = u'Eski Diyalog'
chs_dialog = u'Diyalog'
chs_incoming_calls = u'Çoklu Sohbet Kabulü Gerekli'
chs_legacy_dialog = u'Eski Diyalog'
chs_missed_calls = u'Diyalog'
chs_multi_need_accept = u'Çoklu Sohbet Kabulü Gerekli'
chs_multi_subscribed = u'Çoklu Abonelik'
chs_outgoing_calls = u'Çoklu Abonelik'
chs_unknown = u'Bilinmiyor'
chs_unsubscribed = u'Aboneligi Silindi'
cls_busy = u'Mesgul'
cls_cancelled = u'Iptal Edildi'
cls_early_media = u'Early Media yürütülüyor'
cls_failed = u'Üzgünüz, arama basarisiz!'
cls_finished = u'Bitirildi'
cls_in_progress = u'Arama Yapiliyor'
cls_local_hold = u'Yerel Beklemede'
cls_missed = u'Cevapsiz Arama'
cls_on_hold = u'Beklemede'
cls_refused = u'Reddedildi'
cls_remote_hold = u'Uzak Beklemede'
cls_ringing = u'ariyor'
cls_routing = u'Yönlendirme'
cls_transferred = u'Bilinmiyor'
cls_transferring = u'Bilinmiyor'
cls_unknown = u'Bilinmiyor'
cls_unplaced = u'Asla baglanmadi'
cls_voicemail_buffering_greeting = u'Selamlama Ara Bellege Aliniyor'
cls_voicemail_cancelled = u'Sesli Posta Iptal Edildi'
cls_voicemail_failed = u'Sesli Mesaj Basarisiz'
cls_voicemail_playing_greeting = u'Selamlama Yürütülüyor'
cls_voicemail_recording = u'Sesli Mesaj Kaydediliyor'
cls_voicemail_sent = u'Sesli Posta Gönderildi'
cls_voicemail_uploading = u'Sesli Posta Karsiya Yükleniyor'
clt_incoming_p2_p = u'Gelen Esler Arasi Telefon Çagrisi'
clt_incoming_pstn = u'Gelen Telefon Çagrisi'
clt_outgoing_p2_p = u'Giden Esler Arasi Telefon Çagrisi'
clt_outgoing_pstn = u'Giden Telefon Çagrisi'
clt_unknown = u'Bilinmiyor'
cme_added_members = u'Eklenen Üyeler'
cme_created_chat_with = u'Sohbet Olusturuldu:'
cme_emoted = u'Bilinmiyor'
cme_left = u'Birakilan'
cme_said = u'Ifade'
cme_saw_members = u'Görülen Üyeler'
cme_set_topic = u'Konu Belirleme'
cme_unknown = u'Bilinmiyor'
cms_read = u'Okundu'
cms_received = u'Alindi'
cms_sending = u'Gönderiliyor...'
cms_sent = u'Gönderildi'
cms_unknown = u'Bilinmiyor'
con_connecting = u'Baglaniyor'
con_offline = u'Çevrim Disi'
con_online = u'Çevrim Içi'
con_pausing = u'Duraklatiliyor'
con_unknown = u'Bilinmiyor'
cus_away = u'Uzakta'
cus_do_not_disturb = u'Rahatsiz Etmeyin'
cus_invisible = u'Görünmez'
cus_logged_out = u'Çevrim Disi'
cus_not_available = u'Kullanilamiyor'
cus_offline = u'Çevrim Disi'
cus_online = u'Çevrim Içi'
cus_skype_me = u'Skype Me'
cus_unknown = u'Bilinmiyor'
cvs_both_enabled = u'Video Gönderme ve Alma'
cvs_none = u'Video Yok'
cvs_receive_enabled = u'Video Alma'
cvs_send_enabled = u'Video Gönderme'
cvs_unknown = u''
grp_all_friends = u'Tüm Arkadaslar'
grp_all_users = u'Tüm Kullanicilar'
grp_custom_group = u'Özel'
grp_online_friends = u'Çevrimiçi Arkadaslar'
grp_pending_authorization_friends = u'Yetkilendirme Bekliyor'
grp_proposed_shared_group = u'Proposed Shared Group'
grp_recently_contacted_users = u'Son Zamanlarda Iletisim Kurulmus Kullanicilar'
grp_shared_group = u'Shared Group'
grp_skype_friends = u'Skype Arkadaslari'
grp_skype_out_friends = u'SkypeOut Arkadaslari'
grp_ungrouped_friends = u'Gruplanmamis Arkadaslar'
grp_unknown = u'Bilinmiyor'
grp_users_authorized_by_me = u'Tarafimdan Yetkilendirilenler'
grp_users_blocked_by_me = u'Engellediklerim'
grp_users_waiting_my_authorization = u'Yetkilendirmemi Bekleyenler'
lea_add_declined = u'Ekleme Reddedildi'
lea_added_not_authorized = u'Ekleyen Kisinin Yetkisi Olmali'
lea_adder_not_friend = u'Ekleyen Bir Arkadas Olmali'
lea_unknown = u'Bilinmiyor'
lea_unsubscribe = u'Aboneligi Silindi'
lea_user_incapable = u'Kullanicidan Kaynaklanan Yetersizlik'
lea_user_not_found = u'Kullanici Bulunamadi'
ols_away = u'Uzakta'
ols_do_not_disturb = u'Rahatsiz Etmeyin'
ols_not_available = u'Kullanilamiyor'
ols_offline = u'Çevrim Disi'
ols_online = u'Çevrim Içi'
ols_skype_me = u'Skype Me'
ols_skype_out = u'SkypeOut'
ols_unknown = u'Bilinmiyor'
sms_message_status_composing = u'Composing'
sms_message_status_delivered = u'Delivered'
sms_message_status_failed = u'Failed'
sms_message_status_read = u'Read'
sms_message_status_received = u'Received'
sms_message_status_sending_to_server = u'Sending to Server'
sms_message_status_sent_to_server = u'Sent to Server'
sms_message_status_some_targets_failed = u'Some Targets Failed'
sms_message_status_unknown = u'Unknown'
sms_message_type_cc_request = u'Confirmation Code Request'
sms_message_type_cc_submit = u'Confirmation Code Submit'
sms_message_type_incoming = u'Incoming'
sms_message_type_outgoing = u'Outgoing'
sms_message_type_unknown = u'Unknown'
sms_target_status_acceptable = u'Acceptable'
sms_target_status_analyzing = u'Analyzing'
sms_target_status_delivery_failed = u'Delivery Failed'
sms_target_status_delivery_pending = u'Delivery Pending'
sms_target_status_delivery_successful = u'Delivery Successful'
sms_target_status_not_routable = u'Not Routable'
sms_target_status_undefined = u'Undefined'
sms_target_status_unknown = u'Unknown'
usex_female = u'Kadin'
usex_male = u'Erkek'
usex_unknown = u'Bilinmiyor'
vmr_connect_error = u'Baglanti Hatasi'
vmr_file_read_error = u'Dosya Okuma Hatasi'
vmr_file_write_error = u'Dosya Yazma Hatasi'
vmr_misc_error = u'Diger Hata'
vmr_no_error = u'Hata Yok'
vmr_no_privilege = u'Sesli Posta Önceligi Yok'
vmr_no_voicemail = u'Böyle Bir Sesli Posta Yok'
vmr_playback_error = u'Yürütme Hatasi'
vmr_recording_error = u'Kayit Hatasi'
vmr_unknown = u'Bilinmiyor'
vms_blank = u'Bos'
vms_buffering = u'Ara bellege aliniyor'
vms_deleting = u'Siliniyor'
vms_downloading = u'Karsidan Yükleniyor'
vms_failed = u'Basarisiz Oldu'
vms_not_downloaded = u'Karsidan Yüklenmedi'
vms_played = u'Yürütüldü'
vms_playing = u'Yürütülüyor'
vms_recorded = u'Kaydedildi'
vms_recording = u'Sesli Mesaj Kaydediliyor'
vms_unknown = u'Bilinmiyor'
vms_unplayed = u'Yürütülmemis'
vms_uploaded = u'Karsiya Yüklendi'
vms_uploading = u'Karsiya Yükleniyor'
vmt_custom_greeting = u'Özel Selamlama'
vmt_default_greeting = u'Varsayilan Selamlama'
vmt_incoming = u'gelen sesli mesaj'
vmt_outgoing = u'Giden'
vmt_unknown = u'Bilinmiyor'
vss_available = u'Kullanilabilir'
vss_not_available = u'Kullanilamiyor'
vss_paused = u'Duraklatildi'
vss_rejected = u'Reddedildi'
vss_running = u'Çalisiyor'
vss_starting = u'Basliyor'
vss_stopping = u'Durduruluyor'
vss_unknown = u'Bilinmiyor' |
# Copyright (C) 2015-2016 Ammon Smith and Bradley Cai
# Available for use under the terms of the MIT License.
__all__ = [
'print_success',
'print_failure',
]
def print_success(target, usecolor, elapsed):
if usecolor:
start_color = '\033[32;4m'
end_color = '\033[0m'
else:
start_color = ''
end_color = ''
print("%sTarget '%s' ran successfully in %.4f seconds.%s" %
(start_color, target, elapsed, end_color))
def print_failure(target, usecolor, ending):
if usecolor:
start_color = '\033[31;4m'
end_color = '\033[0m'
else:
start_color = ''
end_color = ''
print("%sTarget '%s' was unsuccessful%s%s" %
(start_color, target, ending, end_color))
| __all__ = ['print_success', 'print_failure']
def print_success(target, usecolor, elapsed):
if usecolor:
start_color = '\x1b[32;4m'
end_color = '\x1b[0m'
else:
start_color = ''
end_color = ''
print("%sTarget '%s' ran successfully in %.4f seconds.%s" % (start_color, target, elapsed, end_color))
def print_failure(target, usecolor, ending):
if usecolor:
start_color = '\x1b[31;4m'
end_color = '\x1b[0m'
else:
start_color = ''
end_color = ''
print("%sTarget '%s' was unsuccessful%s%s" % (start_color, target, ending, end_color)) |
#
# PySNMP MIB module IANA-GMPLS-TC-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IANA-GMPLS-TC-MIB
# Produced by pysmi-0.3.4 at Wed May 1 13:19:44 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint")
ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup")
ObjectIdentity, Counter32, Gauge32, TimeTicks, mib_2, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, iso, Integer32, ModuleIdentity, Bits, NotificationType, Unsigned32, IpAddress, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "Counter32", "Gauge32", "TimeTicks", "mib-2", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "iso", "Integer32", "ModuleIdentity", "Bits", "NotificationType", "Unsigned32", "IpAddress", "Counter64")
DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention")
ianaGmpls = ModuleIdentity((1, 3, 6, 1, 2, 1, 152))
ianaGmpls.setRevisions(('2015-11-04 00:00', '2015-09-22 00:00', '2014-05-09 00:00', '2014-03-11 00:00', '2013-12-16 00:00', '2013-11-04 00:00', '2013-10-14 00:00', '2013-10-10 00:00', '2013-10-09 00:00', '2010-04-13 00:00', '2010-02-22 00:00', '2010-02-19 00:00', '2007-02-27 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts: ianaGmpls.setRevisionsDescriptions(('Updated description for Switching Type 151.', 'Added Switching Type 151.', 'Fixed typographical error that interfered with compilation.', 'Added Administrative Status Information Flags 23-24.', 'Added Switching Type 110.', 'Added missing value 40 to IANAGmplsSwitchingTypeTC.', 'Restored names,added comments for G-PIDs 47, 56; updated IANA contact info.', 'Deprecated 2-4 in IANAGmplsSwitchingTypeTC, added registry reference.', 'Added Generalized PIDs 59-70 and changed names for 47, 56.', 'Added LSP Encoding Type tunnelLine(14), Switching Type evpl(30).', 'Added missing Administrative Status Information Flags 25, 26, and 28.', 'Added dcsc(125).', 'Initial version issued as part of RFC 4802.',))
if mibBuilder.loadTexts: ianaGmpls.setLastUpdated('201511040000Z')
if mibBuilder.loadTexts: ianaGmpls.setOrganization('IANA')
if mibBuilder.loadTexts: ianaGmpls.setContactInfo('Internet Assigned Numbers Authority Postal: 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094 Tel: +1 310 301-5800 E-Mail: iana&iana.org')
if mibBuilder.loadTexts: ianaGmpls.setDescription('Copyright (C) The IETF Trust (2007). The initial version of this MIB module was published in RFC 4802. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html')
class IANAGmplsLSPEncodingTypeTC(TextualConvention, Integer32):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.1.'
description = 'This type is used to represent and control the LSP encoding type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the LSP Encoding Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the LSP Encoding Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the LSP Encoding Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14))
namedValues = NamedValues(("tunnelLspNotGmpls", 0), ("tunnelLspPacket", 1), ("tunnelLspEthernet", 2), ("tunnelLspAnsiEtsiPdh", 3), ("tunnelLspSdhSonet", 5), ("tunnelLspDigitalWrapper", 7), ("tunnelLspLambda", 8), ("tunnelLspFiber", 9), ("tunnelLspFiberChannel", 11), ("tunnelDigitalPath", 12), ("tunnelOpticalChannel", 13), ("tunnelLine", 14))
class IANAGmplsSwitchingTypeTC(TextualConvention, Integer32):
reference = '1. Routing Extensions in Support of Generalized Multi-Protocol Label Switching, RFC 4202, section 2.4. 2. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 3. Revised Definition of The GMPLS Switching Capability and Type Fields, RFC7074, section 5.'
description = 'This type is used to represent and control the LSP switching type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Switching Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Switching Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Switching Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 30, 40, 51, 100, 110, 125, 150, 151, 200))
namedValues = NamedValues(("unknown", 0), ("psc1", 1), ("psc2", 2), ("psc3", 3), ("psc4", 4), ("evpl", 30), ("pbb", 40), ("l2sc", 51), ("tdm", 100), ("otntdm", 110), ("dcsc", 125), ("lsc", 150), ("wsonlsc", 151), ("fsc", 200))
class IANAGmplsGeneralizedPidTC(TextualConvention, Integer32):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.3. 3. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control,[RFC7139], sections 4 and 11.'
description = 'This data type is used to represent and control the LSP Generalized Protocol Identifier (G-PID) of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Generalized PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Generalized PIDs (G-PID) sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Generalized PIDs (G-PID) sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70))
namedValues = NamedValues(("unknown", 0), ("asynchE4", 5), ("asynchDS3T3", 6), ("asynchE3", 7), ("bitsynchE3", 8), ("bytesynchE3", 9), ("asynchDS2T2", 10), ("bitsynchDS2T2", 11), ("reservedByRFC3471first", 12), ("asynchE1", 13), ("bytesynchE1", 14), ("bytesynch31ByDS0", 15), ("asynchDS1T1", 16), ("bitsynchDS1T1", 17), ("bytesynchDS1T1", 18), ("vc1vc12", 19), ("reservedByRFC3471second", 20), ("reservedByRFC3471third", 21), ("ds1SFAsynch", 22), ("ds1ESFAsynch", 23), ("ds3M23Asynch", 24), ("ds3CBitParityAsynch", 25), ("vtLovc", 26), ("stsSpeHovc", 27), ("posNoScramble16BitCrc", 28), ("posNoScramble32BitCrc", 29), ("posScramble16BitCrc", 30), ("posScramble32BitCrc", 31), ("atm", 32), ("ethernet", 33), ("sdhSonet", 34), ("digitalwrapper", 36), ("lambda", 37), ("ansiEtsiPdh", 38), ("lapsSdh", 40), ("fddi", 41), ("dqdb", 42), ("fiberChannel3", 43), ("hdlc", 44), ("ethernetV2DixOnly", 45), ("ethernet802dot3Only", 46), ("g709ODUj", 47), ("g709OTUk", 48), ("g709CBRorCBRa", 49), ("g709CBRb", 50), ("g709BSOT", 51), ("g709BSNT", 52), ("gfpIPorPPP", 53), ("gfpEthernetMAC", 54), ("gfpEthernetPHY", 55), ("g709ESCON", 56), ("g709FICON", 57), ("g709FiberChannel", 58), ("framedGFP", 59), ("sTM1", 60), ("sTM4", 61), ("infiniBand", 62), ("sDI", 63), ("sDI1point001", 64), ("dVBASI", 65), ("g709ODU125G", 66), ("g709ODUAny", 67), ("nullTest", 68), ("randomTest", 69), ("sixtyfourB66BGFPFEthernet", 70))
class IANAGmplsAdminStatusInformationTC(TextualConvention, Bits):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 7. 3. GMPLS - Communication of Alarm Information, RFC 4783, section 3.2.1.'
description = 'This data type determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this object to a non-zero value will result in the inclusion of the Admin Status object or TLV on signaling messages. This textual convention is strongly tied to the Administrative Status Information Flags sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Administrative Status Flags sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Administrative Status Information Flags sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
namedValues = NamedValues(("reflect", 0), ("reserved1", 1), ("reserved2", 2), ("reserved3", 3), ("reserved4", 4), ("reserved5", 5), ("reserved6", 6), ("reserved7", 7), ("reserved8", 8), ("reserved9", 9), ("reserved10", 10), ("reserved11", 11), ("reserved12", 12), ("reserved13", 13), ("reserved14", 14), ("reserved15", 15), ("reserved16", 16), ("reserved17", 17), ("reserved18", 18), ("reserved19", 19), ("reserved20", 20), ("reserved21", 21), ("reserved22", 22), ("oamFlowsEnabled", 23), ("oamAlarmsEnabled", 24), ("handover", 25), ("lockout", 26), ("inhibitAlarmCommunication", 27), ("callControl", 28), ("testing", 29), ("administrativelyDown", 30), ("deleteInProgress", 31))
mibBuilder.exportSymbols("IANA-GMPLS-TC-MIB", IANAGmplsSwitchingTypeTC=IANAGmplsSwitchingTypeTC, IANAGmplsLSPEncodingTypeTC=IANAGmplsLSPEncodingTypeTC, IANAGmplsAdminStatusInformationTC=IANAGmplsAdminStatusInformationTC, PYSNMP_MODULE_ID=ianaGmpls, ianaGmpls=ianaGmpls, IANAGmplsGeneralizedPidTC=IANAGmplsGeneralizedPidTC)
| (octet_string, object_identifier, integer) = mibBuilder.importSymbols('ASN1', 'OctetString', 'ObjectIdentifier', 'Integer')
(named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')
(value_size_constraint, single_value_constraint, constraints_union, constraints_intersection, value_range_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueSizeConstraint', 'SingleValueConstraint', 'ConstraintsUnion', 'ConstraintsIntersection', 'ValueRangeConstraint')
(module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup')
(object_identity, counter32, gauge32, time_ticks, mib_2, mib_scalar, mib_table, mib_table_row, mib_table_column, mib_identifier, iso, integer32, module_identity, bits, notification_type, unsigned32, ip_address, counter64) = mibBuilder.importSymbols('SNMPv2-SMI', 'ObjectIdentity', 'Counter32', 'Gauge32', 'TimeTicks', 'mib-2', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'MibIdentifier', 'iso', 'Integer32', 'ModuleIdentity', 'Bits', 'NotificationType', 'Unsigned32', 'IpAddress', 'Counter64')
(display_string, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TextualConvention')
iana_gmpls = module_identity((1, 3, 6, 1, 2, 1, 152))
ianaGmpls.setRevisions(('2015-11-04 00:00', '2015-09-22 00:00', '2014-05-09 00:00', '2014-03-11 00:00', '2013-12-16 00:00', '2013-11-04 00:00', '2013-10-14 00:00', '2013-10-10 00:00', '2013-10-09 00:00', '2010-04-13 00:00', '2010-02-22 00:00', '2010-02-19 00:00', '2007-02-27 00:00'))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts:
ianaGmpls.setRevisionsDescriptions(('Updated description for Switching Type 151.', 'Added Switching Type 151.', 'Fixed typographical error that interfered with compilation.', 'Added Administrative Status Information Flags 23-24.', 'Added Switching Type 110.', 'Added missing value 40 to IANAGmplsSwitchingTypeTC.', 'Restored names,added comments for G-PIDs 47, 56; updated IANA contact info.', 'Deprecated 2-4 in IANAGmplsSwitchingTypeTC, added registry reference.', 'Added Generalized PIDs 59-70 and changed names for 47, 56.', 'Added LSP Encoding Type tunnelLine(14), Switching Type evpl(30).', 'Added missing Administrative Status Information Flags 25, 26, and 28.', 'Added dcsc(125).', 'Initial version issued as part of RFC 4802.'))
if mibBuilder.loadTexts:
ianaGmpls.setLastUpdated('201511040000Z')
if mibBuilder.loadTexts:
ianaGmpls.setOrganization('IANA')
if mibBuilder.loadTexts:
ianaGmpls.setContactInfo('Internet Assigned Numbers Authority Postal: 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094 Tel: +1 310 301-5800 E-Mail: iana&iana.org')
if mibBuilder.loadTexts:
ianaGmpls.setDescription('Copyright (C) The IETF Trust (2007). The initial version of this MIB module was published in RFC 4802. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html')
class Ianagmplslspencodingtypetc(TextualConvention, Integer32):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.1.'
description = 'This type is used to represent and control the LSP encoding type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the LSP Encoding Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the LSP Encoding Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the LSP Encoding Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14))
named_values = named_values(('tunnelLspNotGmpls', 0), ('tunnelLspPacket', 1), ('tunnelLspEthernet', 2), ('tunnelLspAnsiEtsiPdh', 3), ('tunnelLspSdhSonet', 5), ('tunnelLspDigitalWrapper', 7), ('tunnelLspLambda', 8), ('tunnelLspFiber', 9), ('tunnelLspFiberChannel', 11), ('tunnelDigitalPath', 12), ('tunnelOpticalChannel', 13), ('tunnelLine', 14))
class Ianagmplsswitchingtypetc(TextualConvention, Integer32):
reference = '1. Routing Extensions in Support of Generalized Multi-Protocol Label Switching, RFC 4202, section 2.4. 2. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 3. Revised Definition of The GMPLS Switching Capability and Type Fields, RFC7074, section 5.'
description = 'This type is used to represent and control the LSP switching type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Switching Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Switching Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Switching Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 1, 2, 3, 4, 30, 40, 51, 100, 110, 125, 150, 151, 200))
named_values = named_values(('unknown', 0), ('psc1', 1), ('psc2', 2), ('psc3', 3), ('psc4', 4), ('evpl', 30), ('pbb', 40), ('l2sc', 51), ('tdm', 100), ('otntdm', 110), ('dcsc', 125), ('lsc', 150), ('wsonlsc', 151), ('fsc', 200))
class Ianagmplsgeneralizedpidtc(TextualConvention, Integer32):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.3. 3. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control,[RFC7139], sections 4 and 11.'
description = 'This data type is used to represent and control the LSP Generalized Protocol Identifier (G-PID) of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Generalized PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Generalized PIDs (G-PID) sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Generalized PIDs (G-PID) sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70))
named_values = named_values(('unknown', 0), ('asynchE4', 5), ('asynchDS3T3', 6), ('asynchE3', 7), ('bitsynchE3', 8), ('bytesynchE3', 9), ('asynchDS2T2', 10), ('bitsynchDS2T2', 11), ('reservedByRFC3471first', 12), ('asynchE1', 13), ('bytesynchE1', 14), ('bytesynch31ByDS0', 15), ('asynchDS1T1', 16), ('bitsynchDS1T1', 17), ('bytesynchDS1T1', 18), ('vc1vc12', 19), ('reservedByRFC3471second', 20), ('reservedByRFC3471third', 21), ('ds1SFAsynch', 22), ('ds1ESFAsynch', 23), ('ds3M23Asynch', 24), ('ds3CBitParityAsynch', 25), ('vtLovc', 26), ('stsSpeHovc', 27), ('posNoScramble16BitCrc', 28), ('posNoScramble32BitCrc', 29), ('posScramble16BitCrc', 30), ('posScramble32BitCrc', 31), ('atm', 32), ('ethernet', 33), ('sdhSonet', 34), ('digitalwrapper', 36), ('lambda', 37), ('ansiEtsiPdh', 38), ('lapsSdh', 40), ('fddi', 41), ('dqdb', 42), ('fiberChannel3', 43), ('hdlc', 44), ('ethernetV2DixOnly', 45), ('ethernet802dot3Only', 46), ('g709ODUj', 47), ('g709OTUk', 48), ('g709CBRorCBRa', 49), ('g709CBRb', 50), ('g709BSOT', 51), ('g709BSNT', 52), ('gfpIPorPPP', 53), ('gfpEthernetMAC', 54), ('gfpEthernetPHY', 55), ('g709ESCON', 56), ('g709FICON', 57), ('g709FiberChannel', 58), ('framedGFP', 59), ('sTM1', 60), ('sTM4', 61), ('infiniBand', 62), ('sDI', 63), ('sDI1point001', 64), ('dVBASI', 65), ('g709ODU125G', 66), ('g709ODUAny', 67), ('nullTest', 68), ('randomTest', 69), ('sixtyfourB66BGFPFEthernet', 70))
class Ianagmplsadminstatusinformationtc(TextualConvention, Bits):
reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 7. 3. GMPLS - Communication of Alarm Information, RFC 4783, section 3.2.1.'
description = 'This data type determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this object to a non-zero value will result in the inclusion of the Admin Status object or TLV on signaling messages. This textual convention is strongly tied to the Administrative Status Information Flags sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Administrative Status Flags sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Administrative Status Information Flags sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).'
status = 'current'
named_values = named_values(('reflect', 0), ('reserved1', 1), ('reserved2', 2), ('reserved3', 3), ('reserved4', 4), ('reserved5', 5), ('reserved6', 6), ('reserved7', 7), ('reserved8', 8), ('reserved9', 9), ('reserved10', 10), ('reserved11', 11), ('reserved12', 12), ('reserved13', 13), ('reserved14', 14), ('reserved15', 15), ('reserved16', 16), ('reserved17', 17), ('reserved18', 18), ('reserved19', 19), ('reserved20', 20), ('reserved21', 21), ('reserved22', 22), ('oamFlowsEnabled', 23), ('oamAlarmsEnabled', 24), ('handover', 25), ('lockout', 26), ('inhibitAlarmCommunication', 27), ('callControl', 28), ('testing', 29), ('administrativelyDown', 30), ('deleteInProgress', 31))
mibBuilder.exportSymbols('IANA-GMPLS-TC-MIB', IANAGmplsSwitchingTypeTC=IANAGmplsSwitchingTypeTC, IANAGmplsLSPEncodingTypeTC=IANAGmplsLSPEncodingTypeTC, IANAGmplsAdminStatusInformationTC=IANAGmplsAdminStatusInformationTC, PYSNMP_MODULE_ID=ianaGmpls, ianaGmpls=ianaGmpls, IANAGmplsGeneralizedPidTC=IANAGmplsGeneralizedPidTC) |
letters = ["a", "e", "t", "o", "u"]
word = "CreepyNuts"
if (word[1] in letters) and (word[6] in letters):
print(0)
elif (word[1] in letters) or (word[6] in letters):
print(1)
else:
print(2)
| letters = ['a', 'e', 't', 'o', 'u']
word = 'CreepyNuts'
if word[1] in letters and word[6] in letters:
print(0)
elif word[1] in letters or word[6] in letters:
print(1)
else:
print(2) |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2017 - hongzhi.wang <[email protected]>
'''
Author: hongzhi.wang
Create Date: 2019-09-04
Modify Date: 2019-09-04
'''
| """
Author: hongzhi.wang
Create Date: 2019-09-04
Modify Date: 2019-09-04
""" |
def parse_input(file):
return [[int(h) for h in l] for l in open(file).read().splitlines()]
input = parse_input('./day 09/Xavier - Python/input.txt')
example = parse_input('./day 09/Xavier - Python/example.txt')
def get_neighbours(map,i,j):
neighbours = []
if i > 0:
neighbours.append((i-1,j))
if i < len(map)-1:
neighbours.append((i+1,j))
if j > 0:
neighbours.append((i,j-1))
if j < len(map[i])-1:
neighbours.append((i,j+1))
return neighbours
def low_points(map):
low_points = []
for i in range(len(map)):
for j in range(len(map[i])):
if map[i][j] < min([map[i][j] for i,j in get_neighbours(map, i , j)]):
low_points.append((i,j))
return low_points
lp_ex = low_points(example)
lp_in = low_points(input)
assert len(lp_ex)+sum([example[i][j] for i,j in lp_ex]) == 15
print(len(lp_in)+sum([input[i][j] for i,j in lp_in]))
def expand(map, point):
points = {point}
neighbours = get_neighbours(map, *point)
for n in neighbours:
if not map[n[0]][n[1]] == 9 and map[n[0]][n[1]] > map[point[0]][point[1]]:
points = points.union(expand(map, n))
return points
def part_two(map, low_points):
sizes = []
for p in low_points:
basin = expand(map, p)
sizes.append(len(basin))
sizes.sort(reverse=True)
return sizes[0]*sizes[1]*sizes[2]
assert part_two(example, lp_ex) == 1134
print(part_two(input, lp_in)) | def parse_input(file):
return [[int(h) for h in l] for l in open(file).read().splitlines()]
input = parse_input('./day 09/Xavier - Python/input.txt')
example = parse_input('./day 09/Xavier - Python/example.txt')
def get_neighbours(map, i, j):
neighbours = []
if i > 0:
neighbours.append((i - 1, j))
if i < len(map) - 1:
neighbours.append((i + 1, j))
if j > 0:
neighbours.append((i, j - 1))
if j < len(map[i]) - 1:
neighbours.append((i, j + 1))
return neighbours
def low_points(map):
low_points = []
for i in range(len(map)):
for j in range(len(map[i])):
if map[i][j] < min([map[i][j] for (i, j) in get_neighbours(map, i, j)]):
low_points.append((i, j))
return low_points
lp_ex = low_points(example)
lp_in = low_points(input)
assert len(lp_ex) + sum([example[i][j] for (i, j) in lp_ex]) == 15
print(len(lp_in) + sum([input[i][j] for (i, j) in lp_in]))
def expand(map, point):
points = {point}
neighbours = get_neighbours(map, *point)
for n in neighbours:
if not map[n[0]][n[1]] == 9 and map[n[0]][n[1]] > map[point[0]][point[1]]:
points = points.union(expand(map, n))
return points
def part_two(map, low_points):
sizes = []
for p in low_points:
basin = expand(map, p)
sizes.append(len(basin))
sizes.sort(reverse=True)
return sizes[0] * sizes[1] * sizes[2]
assert part_two(example, lp_ex) == 1134
print(part_two(input, lp_in)) |
_base_ = ['./mask_rcnn_r50_8x2_1x.py']
model = dict(roi_head=dict(type='BTRoIHead',
bbox_head=dict(type='Shared2FCCBBoxHeadBT',
loss_cls=dict(type="EQLv2"),
loss_opl=dict(
type='OrthogonalProjectionLoss', loss_weight=0.0),
loss_bt=dict(
type='BarlowTwinLoss', loss_weight=1.0),
)))
data = dict(train=dict(oversample_thr=1e-3))
# test_cfg = dict(rcnn=dict(max_per_img=800))
# train_cfg = dict(rcnn=dict(sampler=dict(pos_fraction=0.5)))
work_dir = 'bt_1x_rfs' | _base_ = ['./mask_rcnn_r50_8x2_1x.py']
model = dict(roi_head=dict(type='BTRoIHead', bbox_head=dict(type='Shared2FCCBBoxHeadBT', loss_cls=dict(type='EQLv2'), loss_opl=dict(type='OrthogonalProjectionLoss', loss_weight=0.0), loss_bt=dict(type='BarlowTwinLoss', loss_weight=1.0))))
data = dict(train=dict(oversample_thr=0.001))
work_dir = 'bt_1x_rfs' |
# -*- coding: utf-8 -*-
# System
SYSTEM_LANGUAGE_KEY = 'System/Language'
SYSTEM_THEME_KEY = 'System/Theme'
SYSTEM_THEME_DEFAULT = 'System'
# File
FILE_SAVE_TO_DIR_KEY = 'File/SaveToDir'
FILE_SAVE_TO_DIR_DEFAULT = ''
FILE_FILENAME_PREFIX_FORMAT_KEY = 'File/FilenamePrefixFormat'
FILE_FILENAME_PREFIX_FORMAT_DEFAULT = '{id}_{year}_{author}_{title}'
FILE_OVERWRITE_EXISTING_FILE_KEY = 'File/OverwriteExistingFile'
FILE_OVERWRITE_EXISTING_FILE_DEFAULT = False
# Network
NETWORK_SCIHUB_URL_KEY = 'Network/SciHubURL'
NETWORK_SCIHUB_URL_DEFAULT = 'https://sci-hub.se'
NETWORK_SCIHUB_URLS_KEY = 'Network/SciHubURLs'
NETWORK_SCIHUB_URLS_DEFAULT = ['https://sci-hub.se', 'https://sci-hub.st']
NETWORK_TIMEOUT_KEY = 'Network/Timeout'
NETWORK_TIMEOUT_DEFAULT = 3000
NETWORK_RETRY_TIMES_KEY = 'Network/RetryTimes'
NETWORK_RETRY_TIMES_DEFAULT = 3
NETWORK_PROXY_ENABLE_KEY = 'Network/ProxyEnable'
NETWORK_PROXY_ENABLE_DEFAULT = False
NETWORK_PROXY_TYPE_KEY = 'Network/ProxyType'
NETWORK_PROXY_TYPE_DEFAULT = 'http'
NETWORK_PROXY_HOST_KEY = 'Network/ProxyHost'
NETWORK_PROXY_HOST_DEFAULT = '127.0.0.1'
NETWORK_PROXY_PORT_KEY = 'Network/ProxyPort'
NETWORK_PROXY_PORT_DEFAULT = '7890'
NETWORK_PROXY_USERNAME_KEY = 'Network/ProxyUsername'
NETWORK_PROXY_USERNAME_DEFAULT = ''
NETWORK_PROXY_PASSWORD_KEY = 'Network/ProxyPassword'
NETWORK_PROXY_PASSWORD_DEFAULT = ''
| system_language_key = 'System/Language'
system_theme_key = 'System/Theme'
system_theme_default = 'System'
file_save_to_dir_key = 'File/SaveToDir'
file_save_to_dir_default = ''
file_filename_prefix_format_key = 'File/FilenamePrefixFormat'
file_filename_prefix_format_default = '{id}_{year}_{author}_{title}'
file_overwrite_existing_file_key = 'File/OverwriteExistingFile'
file_overwrite_existing_file_default = False
network_scihub_url_key = 'Network/SciHubURL'
network_scihub_url_default = 'https://sci-hub.se'
network_scihub_urls_key = 'Network/SciHubURLs'
network_scihub_urls_default = ['https://sci-hub.se', 'https://sci-hub.st']
network_timeout_key = 'Network/Timeout'
network_timeout_default = 3000
network_retry_times_key = 'Network/RetryTimes'
network_retry_times_default = 3
network_proxy_enable_key = 'Network/ProxyEnable'
network_proxy_enable_default = False
network_proxy_type_key = 'Network/ProxyType'
network_proxy_type_default = 'http'
network_proxy_host_key = 'Network/ProxyHost'
network_proxy_host_default = '127.0.0.1'
network_proxy_port_key = 'Network/ProxyPort'
network_proxy_port_default = '7890'
network_proxy_username_key = 'Network/ProxyUsername'
network_proxy_username_default = ''
network_proxy_password_key = 'Network/ProxyPassword'
network_proxy_password_default = '' |
#Get roll numbers, name & marks of the students of a class(get from user) and store these details in a file- marks.txt
count = int(input("How many students are there in class? "))
fileObj = open('marks.txt',"w")
for i in range(count):
print("Enter details for student",(i+1),"below:")
rollNo = int(input("Rollno: "))
name = input("Name: ")
marks = float(input("Marks: "))
records = str(rollNo) + "," + name + "," + str(marks) + '\n'
fileObj.write(records)
fileObj.close() | count = int(input('How many students are there in class? '))
file_obj = open('marks.txt', 'w')
for i in range(count):
print('Enter details for student', i + 1, 'below:')
roll_no = int(input('Rollno: '))
name = input('Name: ')
marks = float(input('Marks: '))
records = str(rollNo) + ',' + name + ',' + str(marks) + '\n'
fileObj.write(records)
fileObj.close() |
# id: 640;Stairs
# title:"Schody",
# about:"",
# robotCol:3,
# robotRow:10,
# robotDir:3,
# subs:[3,3,0,0,0],
# allowedCommands:0,
# board:" ggggggggGG gggggggGGg ggggggGGgg gggggGGggg ggggGGgggg gggGGggggg ggGGgggggg gGGggggggg GGgggggggg gggggggggg "
class Problem:
def __init__(self, parse_str):
gen = self.__lineGenerator(parse_str)
self.id = next(gen)
self.title = next(gen)
self.about = next(gen)
self.robotCol = (int)(next(gen))
self.robotRow = (int)(next(gen))
self.robotDir = (int)(next(gen))
self.subs = next(gen)
self.allowedCommands = (int)(next(gen))
self.board_str = next(gen)
def getBoardCopy(self):
arr = [self.board_str[i:i+16] for i in range(0, 16*12, 16)]
return arr
def getFlowerCount(self):
return self.board_str.count("R") + self.board_str.count("G") + self.board_str.count("B")
def getFirstId(self):
arr = self.id.split(';')
if len(arr) == 1:
return self.id.zfill(4)
else:
return arr[0].zfill(4)
def __lineGenerator(self, parse_str):
for line in parse_str.splitlines():
if len(line) == 0:
continue
line = line.strip()
if line[-1] == ',':
line = line[:-1]
arr = line.split(':')
yield arr[1].strip().replace('"', "")
| class Problem:
def __init__(self, parse_str):
gen = self.__lineGenerator(parse_str)
self.id = next(gen)
self.title = next(gen)
self.about = next(gen)
self.robotCol = int(next(gen))
self.robotRow = int(next(gen))
self.robotDir = int(next(gen))
self.subs = next(gen)
self.allowedCommands = int(next(gen))
self.board_str = next(gen)
def get_board_copy(self):
arr = [self.board_str[i:i + 16] for i in range(0, 16 * 12, 16)]
return arr
def get_flower_count(self):
return self.board_str.count('R') + self.board_str.count('G') + self.board_str.count('B')
def get_first_id(self):
arr = self.id.split(';')
if len(arr) == 1:
return self.id.zfill(4)
else:
return arr[0].zfill(4)
def __line_generator(self, parse_str):
for line in parse_str.splitlines():
if len(line) == 0:
continue
line = line.strip()
if line[-1] == ',':
line = line[:-1]
arr = line.split(':')
yield arr[1].strip().replace('"', '') |
class DSU:
def __init__(self, N):
self.par = list(range(N))
def find(self, U):
if self.par[U] != U:
self.par[U] = self.find(self.par[U])
return self.par[U]
def union(self, U, V):
X, Y = self.find(U), self.find(V)
self.par[X] = Y
class Solution:
def factors(self, n):
for i in range(2, int(math.sqrt(n))+1):
if n % i == 0:
return self.factors(n//i) | set([i])
return set([n])
def largestComponentSize(self, A: List[int]) -> int:
n = len(A)
uf = DSU(n)
factor = defaultdict(list)
for i, num in enumerate(A):
fct = self.factors(num)
for f in fct:
factor[f].append(i)
for k, ind in factor.items():
for i in range(len(ind)-1):
uf.union(ind[i], ind[i+1])
return max(Counter([uf.find(i) for i in range(n)]).values())
| class Dsu:
def __init__(self, N):
self.par = list(range(N))
def find(self, U):
if self.par[U] != U:
self.par[U] = self.find(self.par[U])
return self.par[U]
def union(self, U, V):
(x, y) = (self.find(U), self.find(V))
self.par[X] = Y
class Solution:
def factors(self, n):
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return self.factors(n // i) | set([i])
return set([n])
def largest_component_size(self, A: List[int]) -> int:
n = len(A)
uf = dsu(n)
factor = defaultdict(list)
for (i, num) in enumerate(A):
fct = self.factors(num)
for f in fct:
factor[f].append(i)
for (k, ind) in factor.items():
for i in range(len(ind) - 1):
uf.union(ind[i], ind[i + 1])
return max(counter([uf.find(i) for i in range(n)]).values()) |
#!/usr/bin/python
# -*- coding: utf-8 -*-
# simple dictionary
mybasket = {'apple':2.99,'orange':1.99,'milk':5.8}
print(mybasket['apple'])
# dictionary with list inside
mynestedbasket = {'apple':2.99,'orange':1.99,'milk':['chocolate','stawbery']}
print(mynestedbasket['milk'][1].upper())
# append more key
mybasket['pizza'] = 4.5
print(mybasket)
# get only keys
print(mybasket.keys())
# get only values
print(mybasket.values())
# get pair values
print(mybasket.items()) | mybasket = {'apple': 2.99, 'orange': 1.99, 'milk': 5.8}
print(mybasket['apple'])
mynestedbasket = {'apple': 2.99, 'orange': 1.99, 'milk': ['chocolate', 'stawbery']}
print(mynestedbasket['milk'][1].upper())
mybasket['pizza'] = 4.5
print(mybasket)
print(mybasket.keys())
print(mybasket.values())
print(mybasket.items()) |
class Solution:
def islandPerimeter(self, grid: List[List[int]]) -> int:
if not grid or not grid[0]:
return 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j]:
return self.dfs(grid, i, j)
return 0
def dfs(self, grid, i, j):
if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]):
return 1
if grid[i][j] == -1:
return 0
if grid[i][j]:
grid[i][j] = -1
return self.dfs(grid, i + 1, j) + self.dfs(
grid, i, j + 1) + self.dfs(grid, i - 1, j) + self.dfs(
grid, i, j - 1)
else:
return 1
| class Solution:
def island_perimeter(self, grid: List[List[int]]) -> int:
if not grid or not grid[0]:
return 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j]:
return self.dfs(grid, i, j)
return 0
def dfs(self, grid, i, j):
if i < 0 or i >= len(grid) or j < 0 or (j >= len(grid[0])):
return 1
if grid[i][j] == -1:
return 0
if grid[i][j]:
grid[i][j] = -1
return self.dfs(grid, i + 1, j) + self.dfs(grid, i, j + 1) + self.dfs(grid, i - 1, j) + self.dfs(grid, i, j - 1)
else:
return 1 |
class Solution:
def addBinary(self, a, b):
res, carry = '', 0
i, j = len(a) - 1, len(b) - 1
while i >= 0 or j >= 0 or carry:
curval = (i >= 0 and a[i] == '1') + (j >= 0 and b[j] == '1')
carry, rem = divmod(curval + carry, 2)
res = str(rem) + res
i -= 1
j -= 1
return res
| class Solution:
def add_binary(self, a, b):
(res, carry) = ('', 0)
(i, j) = (len(a) - 1, len(b) - 1)
while i >= 0 or j >= 0 or carry:
curval = (i >= 0 and a[i] == '1') + (j >= 0 and b[j] == '1')
(carry, rem) = divmod(curval + carry, 2)
res = str(rem) + res
i -= 1
j -= 1
return res |
#this function would write data in the database
def write_data(name, phone, pincode, city, resources):
#here we will connect to database
#and write to it
f = open('/Users/mukesht/Mukesh/Github/covid_resource/resource_item.text', 'a')
f.write(name + ', ' + phone + ', ' + pincode + ', ' + city + ', [' + resources + ']\n')
f.close()
write_data("Hello World", "657254762", "232101", "Mughalsarai", "[ Oxygen, Vaccine ]") | def write_data(name, phone, pincode, city, resources):
f = open('/Users/mukesht/Mukesh/Github/covid_resource/resource_item.text', 'a')
f.write(name + ', ' + phone + ', ' + pincode + ', ' + city + ', [' + resources + ']\n')
f.close()
write_data('Hello World', '657254762', '232101', 'Mughalsarai', '[ Oxygen, Vaccine ]') |
def validate(n):
string = str(n)
mod = 0 if len(string) % 2 == 0 else 1 # 0 for even, 1 for odd
total = 0
for i, a in enumerate(string):
current = int(a)
if i % 2 == mod:
double = current * 2
if double > 9:
total += double - 9
else:
total += double
else:
total += current
return total % 10 == 0
| def validate(n):
string = str(n)
mod = 0 if len(string) % 2 == 0 else 1
total = 0
for (i, a) in enumerate(string):
current = int(a)
if i % 2 == mod:
double = current * 2
if double > 9:
total += double - 9
else:
total += double
else:
total += current
return total % 10 == 0 |
expected_output = {
"interfaces": {
"Port-channel1": {
"name": "Port-channel1",
"protocol": "lacp",
"members": {
"GigabitEthernet0/0/1": {
"activity": "Active",
"age": 18,
"aggregatable": True,
"collecting": True,
"defaulted": False,
"distributing": True,
"expired": False,
"flags": "FA",
"interface": "GigabitEthernet0/0/1",
"lacp_port_priority": 100,
"oper_key": 1,
"port_num": 2,
"port_state": 63,
"synchronization": True,
"system_id": "00127,6487.88ff.68ef",
"timeout": "Short",
},
"GigabitEthernet0/0/7": {
"activity": "Active",
"age": 0,
"aggregatable": True,
"collecting": False,
"defaulted": False,
"distributing": False,
"expired": False,
"flags": "FA",
"interface": "GigabitEthernet0/0/7",
"lacp_port_priority": 200,
"oper_key": 1,
"port_num": 1,
"port_state": 15,
"synchronization": True,
"system_id": "00127,6487.88ff.68ef",
"timeout": "Short",
},
},
}
}
}
| expected_output = {'interfaces': {'Port-channel1': {'name': 'Port-channel1', 'protocol': 'lacp', 'members': {'GigabitEthernet0/0/1': {'activity': 'Active', 'age': 18, 'aggregatable': True, 'collecting': True, 'defaulted': False, 'distributing': True, 'expired': False, 'flags': 'FA', 'interface': 'GigabitEthernet0/0/1', 'lacp_port_priority': 100, 'oper_key': 1, 'port_num': 2, 'port_state': 63, 'synchronization': True, 'system_id': '00127,6487.88ff.68ef', 'timeout': 'Short'}, 'GigabitEthernet0/0/7': {'activity': 'Active', 'age': 0, 'aggregatable': True, 'collecting': False, 'defaulted': False, 'distributing': False, 'expired': False, 'flags': 'FA', 'interface': 'GigabitEthernet0/0/7', 'lacp_port_priority': 200, 'oper_key': 1, 'port_num': 1, 'port_state': 15, 'synchronization': True, 'system_id': '00127,6487.88ff.68ef', 'timeout': 'Short'}}}}} |
#!/usr/bin/python
# -*- coding: utf-8 -*-
inputs = [
"LLLRLLULLDDLDUDRDDURLDDRDLRDDRUULRULLLDLUURUUUDLUUDLRUDLDUDURRLDRRRUULUURLUDRURULRLRLRRUULRUUUDRRDDRLLLDDLLUDDDLLRLLULULRRURRRLDRLDLLRURDULLDULRUURLRUDRURLRRDLLDDURLDDLUDLRLUURDRDRDDUURDDLDDDRUDULDLRDRDDURDLUDDDRUDLUDLULULRUURLRUUUDDRLDULLLUDLULDUUDLDLRRLLLRLDUDRUULDLDRDLRRDLDLULUUDRRUDDDRDLRLDLRDUDRULDRDURRUULLUDURURUUDRDRLRRDRRDRDDDDLLRURULDURDLUDLUULDDLLLDULUUUULDUDRDURLURDLDDLDDUULRLUUDLDRUDRURURRDDLURURDRLRLUUUURLLRR",
"UUUUURRRURLLRRDRLLDUUUUDDDRLRRDRUULDUURURDRLLRRRDRLLUDURUDLDURURRLUDLLLDRDUDRDRLDRUDUDDUULLUULLDUDUDDRDUUUDLULUDUULLUUULURRUDUULDUDDRDURRLDDURLRDLULDDRUDUDRDULLRLRLLUUDDURLUUDLRUUDDLLRUURDUDLLDRURLDURDLRDUUDLRLLRLRURRUDRRLRDRURRRUULLUDLDURDLDDDUUDRUUUDULLLRDRRDRLURDDRUUUDRRUUDLUDDDRRRRRLRLDLLDDLRDURRURLLLULURULLULRLLDDLDRLDULLDLDDDRLUDDDUDUDRRLRDLLDULULRLRURDLUDDLRUDRLUURRURDURDRRDRULUDURRLULUURDRLDLRUDLUDRURLUDUUULRRLRRRULRRRLRLRLULULDRUUDLRLLRLLLURUUDLUDLRURUDRRLDLLULUDRUDRLLLRLLDLLDUDRRURRLDLUUUURDDDUURLLRRDRUUURRRDRUDLLULDLLDLUDRRDLLDDLDURLLDLLDLLLDR",
"LRDULUUUDLRUUUDURUUULLURDRURDRRDDDLRLRUULDLRRUDDLLUURLDRLLRUULLUDLUDUDRDRDLUUDULLLLRDDUDRRRURLRDDLRLDRLULLLRUUULURDDLLLLRURUUDDDLDUDDDDLLLURLUUUURLRUDRRLLLUUULRDUURDLRDDDUDLLRDULURURUULUDLLRRURDLUULUUDULLUDUUDURLRULRLLDLUULLRRUDDULRULDURRLRRLULLLRRDLLDDLDUDDDUDLRUURUDUUUDDLRRDLRUDRLLRDRDLURRLUDUULDRRUDRRUDLLLLRURRRRRUULULLLRDRDUDRDDURDLDDUURRURLDRRUDLRLLRRURULUUDDDLLLRDRLULLDLDDULDLUUDRURULLDLLLLDRLRRLURLRULRDLLULUDRDR",
"RURRRUDLURRURLURDDRULLDRDRDRRULRRDLDDLDUUURUULLRRDRLDRRDRULLURRRULLLDULDDDDLULRUULRURUDURDUDRLRULLLRDURDDUDDRDLURRURUURDLDDDDDURURRURLLLDDLDRRDUDDLLLDRRLDDUUULDLLDRUURUDDRRLDUULRRDDUDRUULRLDLRLRUURLLDRDLDRLURULDLULDRULURLLRRLLDDDURLRUURUULULRLLLULUDULUUULDRURUDDDUUDDRDUDUDRDLLLRDULRLDLRRDRRLRDLDDULULRLRUUDDUDRRLUDRDUUUDRLLLRRLRUDRRLRUUDDLDURLDRRRUDRRDUDDLRDDLULLDLURLUUDLUDLUDLDRRLRRRULDRLRDUURLUULRDURUDUUDDURDDLRRRLUUUDURULRURLDRURULDDUDDLUDLDLURDDRRDDUDUUURLDLRDDLDULDULDDDLDRDDLUURDULLUDRRRULRLDDLRDRLRURLULLLDULLUUDURLDDULRRDDUULDRLDLULRRDULUDUUURUURDDDRULRLRDLRRURR",
"UDDDRLDRDULDRLRDUDDLDLLDDLUUURDDDLUDRDUDLDURLUURUDUULUUULDUURLULLRLUDLLURUUUULRLRLLLRRLULLDRUULURRLLUDUDURULLLRRRRLRUULLRDRDRRDDLUDRRUULUDRUULRDLRDRRLRRDRRRLULRULUURRRULLRRRURUDUURRLLDDDUDDULUULRURUDUDUDRLDLUULUDDLLLLDRLLRLDULLLRLLDLUUDURDLLRURUUDDDDLLUDDRLUUDUDRDRLLURURLURRDLDDDULUURURURRLUUDUDLDLDDULLURUDLRLDLRLDLDUDULURDUDRLURRRULLDDDRDRURDDLDLULUDRUULDLULRDUUURLULDRRULLUDLDRLRDDUDURRRURRLRDUULURUUDLULDLRUUULUDRDRRUDUDULLDDRLRDLURDLRLUURDRUDRDRUDLULRUDDRDLLLRLURRURRLDDDUDDLRDRRRULLUUDULURDLDRDDDLDURRLRRDLLDDLULULRRDUDUUDUULRDRRDURDDDDUUDDLUDDUULDRDDULLUUUURRRUUURRULDRRDURRLULLDU"]
x=1
y=1
combination = []
#Internal Use
_keypad = [[1,2,3],[4,5,6],[7,8,9]]
for line in inputs:
for input in line:
#Move
if input == "D":
if y < 2: y+=1
elif input == "U":
if y > 0: y-=1
elif input == "L":
if x > 0: x-=1
elif input == "R":
if x < 2: x+=1
combination.append(_keypad[y][x])
print("Combinaison : {}".format(combination))
| inputs = ['LLLRLLULLDDLDUDRDDURLDDRDLRDDRUULRULLLDLUURUUUDLUUDLRUDLDUDURRLDRRRUULUURLUDRURULRLRLRRUULRUUUDRRDDRLLLDDLLUDDDLLRLLULULRRURRRLDRLDLLRURDULLDULRUURLRUDRURLRRDLLDDURLDDLUDLRLUURDRDRDDUURDDLDDDRUDULDLRDRDDURDLUDDDRUDLUDLULULRUURLRUUUDDRLDULLLUDLULDUUDLDLRRLLLRLDUDRUULDLDRDLRRDLDLULUUDRRUDDDRDLRLDLRDUDRULDRDURRUULLUDURURUUDRDRLRRDRRDRDDDDLLRURULDURDLUDLUULDDLLLDULUUUULDUDRDURLURDLDDLDDUULRLUUDLDRUDRURURRDDLURURDRLRLUUUURLLRR', 'UUUUURRRURLLRRDRLLDUUUUDDDRLRRDRUULDUURURDRLLRRRDRLLUDURUDLDURURRLUDLLLDRDUDRDRLDRUDUDDUULLUULLDUDUDDRDUUUDLULUDUULLUUULURRUDUULDUDDRDURRLDDURLRDLULDDRUDUDRDULLRLRLLUUDDURLUUDLRUUDDLLRUURDUDLLDRURLDURDLRDUUDLRLLRLRURRUDRRLRDRURRRUULLUDLDURDLDDDUUDRUUUDULLLRDRRDRLURDDRUUUDRRUUDLUDDDRRRRRLRLDLLDDLRDURRURLLLULURULLULRLLDDLDRLDULLDLDDDRLUDDDUDUDRRLRDLLDULULRLRURDLUDDLRUDRLUURRURDURDRRDRULUDURRLULUURDRLDLRUDLUDRURLUDUUULRRLRRRULRRRLRLRLULULDRUUDLRLLRLLLURUUDLUDLRURUDRRLDLLULUDRUDRLLLRLLDLLDUDRRURRLDLUUUURDDDUURLLRRDRUUURRRDRUDLLULDLLDLUDRRDLLDDLDURLLDLLDLLLDR', 'LRDULUUUDLRUUUDURUUULLURDRURDRRDDDLRLRUULDLRRUDDLLUURLDRLLRUULLUDLUDUDRDRDLUUDULLLLRDDUDRRRURLRDDLRLDRLULLLRUUULURDDLLLLRURUUDDDLDUDDDDLLLURLUUUURLRUDRRLLLUUULRDUURDLRDDDUDLLRDULURURUULUDLLRRURDLUULUUDULLUDUUDURLRULRLLDLUULLRRUDDULRULDURRLRRLULLLRRDLLDDLDUDDDUDLRUURUDUUUDDLRRDLRUDRLLRDRDLURRLUDUULDRRUDRRUDLLLLRURRRRRUULULLLRDRDUDRDDURDLDDUURRURLDRRUDLRLLRRURULUUDDDLLLRDRLULLDLDDULDLUUDRURULLDLLLLDRLRRLURLRULRDLLULUDRDR', 'RURRRUDLURRURLURDDRULLDRDRDRRULRRDLDDLDUUURUULLRRDRLDRRDRULLURRRULLLDULDDDDLULRUULRURUDURDUDRLRULLLRDURDDUDDRDLURRURUURDLDDDDDURURRURLLLDDLDRRDUDDLLLDRRLDDUUULDLLDRUURUDDRRLDUULRRDDUDRUULRLDLRLRUURLLDRDLDRLURULDLULDRULURLLRRLLDDDURLRUURUULULRLLLULUDULUUULDRURUDDDUUDDRDUDUDRDLLLRDULRLDLRRDRRLRDLDDULULRLRUUDDUDRRLUDRDUUUDRLLLRRLRUDRRLRUUDDLDURLDRRRUDRRDUDDLRDDLULLDLURLUUDLUDLUDLDRRLRRRULDRLRDUURLUULRDURUDUUDDURDDLRRRLUUUDURULRURLDRURULDDUDDLUDLDLURDDRRDDUDUUURLDLRDDLDULDULDDDLDRDDLUURDULLUDRRRULRLDDLRDRLRURLULLLDULLUUDURLDDULRRDDUULDRLDLULRRDULUDUUURUURDDDRULRLRDLRRURR', 'UDDDRLDRDULDRLRDUDDLDLLDDLUUURDDDLUDRDUDLDURLUURUDUULUUULDUURLULLRLUDLLURUUUULRLRLLLRRLULLDRUULURRLLUDUDURULLLRRRRLRUULLRDRDRRDDLUDRRUULUDRUULRDLRDRRLRRDRRRLULRULUURRRULLRRRURUDUURRLLDDDUDDULUULRURUDUDUDRLDLUULUDDLLLLDRLLRLDULLLRLLDLUUDURDLLRURUUDDDDLLUDDRLUUDUDRDRLLURURLURRDLDDDULUURURURRLUUDUDLDLDDULLURUDLRLDLRLDLDUDULURDUDRLURRRULLDDDRDRURDDLDLULUDRUULDLULRDUUURLULDRRULLUDLDRLRDDUDURRRURRLRDUULURUUDLULDLRUUULUDRDRRUDUDULLDDRLRDLURDLRLUURDRUDRDRUDLULRUDDRDLLLRLURRURRLDDDUDDLRDRRRULLUUDULURDLDRDDDLDURRLRRDLLDDLULULRRDUDUUDUULRDRRDURDDDDUUDDLUDDUULDRDDULLUUUURRRUUURRULDRRDURRLULLDU']
x = 1
y = 1
combination = []
_keypad = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for line in inputs:
for input in line:
if input == 'D':
if y < 2:
y += 1
elif input == 'U':
if y > 0:
y -= 1
elif input == 'L':
if x > 0:
x -= 1
elif input == 'R':
if x < 2:
x += 1
combination.append(_keypad[y][x])
print('Combinaison : {}'.format(combination)) |
#!/usr/bin/env python3
def num_sol(n):
if n==1:
return 1
if n==2:
return 2
solu=num_sol(n-1)+num_sol(n-2)
return solu
# def unrank(n, pos, sorting_criterion="loves_long_tiles"):
# return "(" + unrank(n_in_A, (pos-count) // num_B) + ")" + unrank(n - n_in_A -1, (pos-count) % num_B)
def unrank(n):
if num_sol(n)==1:
return ['[]']
if num_sol(n)==2:
return ['[][]', '[--]']
solu1=[]
solu2=[]
for i in range(num_sol(n-1)):
solu1.append('[]' + unrank(n-1)[i])
for j in range(num_sol(n-2)):
solu2.append('[--]' + unrank(n-2)[j])
return solu1 + solu2
def recognize(tiling, TAc, LANG):
#print(f"tiling={tiling}")
pos = 0
n_tiles = 0
char = None
while pos < len(tiling):
if tiling[pos] != '[':
TAc.print(tiling, "yellow", ["underline"])
TAc.print(LANG.render_feedback("wrong-tile-opening", f'No. The tile in position {n_tiles+1} does not start with "[" (it starts with "{tiling[pos]}" instead). Your tiling is not correctly encoded.'), "red", ["bold"])
return False
n_tiles += 1
if tiling[pos+1] == ']':
pos += 2
else:
if pos+3 < len(tiling) and tiling[pos+3] != ']':
TAc.print(tiling, "yellow", ["underline"])
TAc.print(LANG.render_feedback("wrong-tile-closing", f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos+3]}, does not end wih "]" (it ends with "{tiling[pos+3]}" instead). Your tiling is not correctly encoded.'), "red", ["bold"])
return False
for pos_fill in {pos+1,pos+2}:
if tiling[pos_fill] in {'[',']'}:
TAc.print(tiling, "yellow", ["underline"])
TAc.print(LANG.render_feedback("wrong-tile-filling", f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos+4]}, has a forbidden filling character (namely, "{tiling[pos_fill]}"). Your tiling is not correctly encoded.'), "red", ["bold"])
return False
pos += 4
return True
| def num_sol(n):
if n == 1:
return 1
if n == 2:
return 2
solu = num_sol(n - 1) + num_sol(n - 2)
return solu
def unrank(n):
if num_sol(n) == 1:
return ['[]']
if num_sol(n) == 2:
return ['[][]', '[--]']
solu1 = []
solu2 = []
for i in range(num_sol(n - 1)):
solu1.append('[]' + unrank(n - 1)[i])
for j in range(num_sol(n - 2)):
solu2.append('[--]' + unrank(n - 2)[j])
return solu1 + solu2
def recognize(tiling, TAc, LANG):
pos = 0
n_tiles = 0
char = None
while pos < len(tiling):
if tiling[pos] != '[':
TAc.print(tiling, 'yellow', ['underline'])
TAc.print(LANG.render_feedback('wrong-tile-opening', f'No. The tile in position {n_tiles + 1} does not start with "[" (it starts with "{tiling[pos]}" instead). Your tiling is not correctly encoded.'), 'red', ['bold'])
return False
n_tiles += 1
if tiling[pos + 1] == ']':
pos += 2
else:
if pos + 3 < len(tiling) and tiling[pos + 3] != ']':
TAc.print(tiling, 'yellow', ['underline'])
TAc.print(LANG.render_feedback('wrong-tile-closing', f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos + 3]}, does not end wih "]" (it ends with "{tiling[pos + 3]}" instead). Your tiling is not correctly encoded.'), 'red', ['bold'])
return False
for pos_fill in {pos + 1, pos + 2}:
if tiling[pos_fill] in {'[', ']'}:
TAc.print(tiling, 'yellow', ['underline'])
TAc.print(LANG.render_feedback('wrong-tile-filling', f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos + 4]}, has a forbidden filling character (namely, "{tiling[pos_fill]}"). Your tiling is not correctly encoded.'), 'red', ['bold'])
return False
pos += 4
return True |
def check_geneassessment(result, payload, previous_assessment_id=None):
assert result["gene_id"] == payload["gene_id"]
assert result["evaluation"] == payload["evaluation"]
assert result["analysis_id"] == payload.get("analysis_id")
assert result["genepanel_name"] == payload["genepanel_name"]
assert result["genepanel_version"] == payload["genepanel_version"]
assert result["date_superceeded"] is None
assert result["user_id"] == 1
assert result["usergroup_id"] == 1
assert result["previous_assessment_id"] == previous_assessment_id
def test_create_assessment(session, client, test_database):
test_database.refresh()
# Insert new geneassessment with analysis_id
ASSESSMENT1 = {
"gene_id": 1101,
"evaluation": {"comment": "TEST1"},
"analysis_id": 1,
"genepanel_name": "Mendel",
"genepanel_version": "v04",
}
r = client.post("/api/v1/geneassessments/", ASSESSMENT1)
assert r.status_code == 200
ga1 = r.get_json()
check_geneassessment(ga1, ASSESSMENT1)
# Check latest result when loading genepanel (allele_id 1 is in BRCA2)
r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1")
gp = r.get_json()
assert len(gp["geneassessments"]) == 1
check_geneassessment(gp["geneassessments"][0], ASSESSMENT1)
# Insert new geneassessment, without analysis_id
ASSESSMENT2 = {
"gene_id": 1101,
"evaluation": {"comment": "TEST2"},
"genepanel_name": "Mendel",
"genepanel_version": "v04",
"presented_geneassessment_id": ga1["id"],
}
r = client.post("/api/v1/geneassessments/", ASSESSMENT2)
assert r.status_code == 200
ga2 = r.get_json()
check_geneassessment(ga2, ASSESSMENT2, previous_assessment_id=ga1["id"])
r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1")
gp = r.get_json()
assert len(gp["geneassessments"]) == 1
check_geneassessment(gp["geneassessments"][0], ASSESSMENT2, previous_assessment_id=ga1["id"])
# Insert new geneassessment, with wrong presented id (should fail)
ASSESSMENT3 = {
"gene_id": 1101,
"evaluation": {"comment": "TEST3"},
"genepanel_name": "Mendel",
"genepanel_version": "v04",
"presented_geneassessment_id": ga1["id"],
}
r = client.post("/api/v1/geneassessments/", ASSESSMENT3)
assert r.status_code == 500
ga2 = (
r.get_json()["message"]
== "'presented_geneassessment_id': 1 does not match latest existing geneassessment id: 2"
)
# Check that latest is same as before
r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1")
gp = r.get_json()
assert len(gp["geneassessments"]) == 1
check_geneassessment(gp["geneassessments"][0], ASSESSMENT2, previous_assessment_id=ga1["id"])
| def check_geneassessment(result, payload, previous_assessment_id=None):
assert result['gene_id'] == payload['gene_id']
assert result['evaluation'] == payload['evaluation']
assert result['analysis_id'] == payload.get('analysis_id')
assert result['genepanel_name'] == payload['genepanel_name']
assert result['genepanel_version'] == payload['genepanel_version']
assert result['date_superceeded'] is None
assert result['user_id'] == 1
assert result['usergroup_id'] == 1
assert result['previous_assessment_id'] == previous_assessment_id
def test_create_assessment(session, client, test_database):
test_database.refresh()
assessment1 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST1'}, 'analysis_id': 1, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04'}
r = client.post('/api/v1/geneassessments/', ASSESSMENT1)
assert r.status_code == 200
ga1 = r.get_json()
check_geneassessment(ga1, ASSESSMENT1)
r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1')
gp = r.get_json()
assert len(gp['geneassessments']) == 1
check_geneassessment(gp['geneassessments'][0], ASSESSMENT1)
assessment2 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST2'}, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04', 'presented_geneassessment_id': ga1['id']}
r = client.post('/api/v1/geneassessments/', ASSESSMENT2)
assert r.status_code == 200
ga2 = r.get_json()
check_geneassessment(ga2, ASSESSMENT2, previous_assessment_id=ga1['id'])
r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1')
gp = r.get_json()
assert len(gp['geneassessments']) == 1
check_geneassessment(gp['geneassessments'][0], ASSESSMENT2, previous_assessment_id=ga1['id'])
assessment3 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST3'}, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04', 'presented_geneassessment_id': ga1['id']}
r = client.post('/api/v1/geneassessments/', ASSESSMENT3)
assert r.status_code == 500
ga2 = r.get_json()['message'] == "'presented_geneassessment_id': 1 does not match latest existing geneassessment id: 2"
r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1')
gp = r.get_json()
assert len(gp['geneassessments']) == 1
check_geneassessment(gp['geneassessments'][0], ASSESSMENT2, previous_assessment_id=ga1['id']) |
class Edge:
def __init__(self, start, end):
self.start = start
self.end = end
def __str__(self):
return "<" + str(self.start) + " " + str(self.end) + ">"
| class Edge:
def __init__(self, start, end):
self.start = start
self.end = end
def __str__(self):
return '<' + str(self.start) + ' ' + str(self.end) + '>' |
class Solution:
def minOperations(self, boxes: str) -> List[int]:
ans = [0]*len(boxes)
lc = 0
lcost = 0
rc = 0
rcost = 0
for i in range(1,len(boxes)):
if boxes[i-1]=="1": lc+=1
lcost += lc
ans[i] = lcost
for i in range(len(boxes)-2,-1,-1):
if boxes[i+1]=="1": rc+=1
rcost += rc
ans[i] += rcost
return ans | class Solution:
def min_operations(self, boxes: str) -> List[int]:
ans = [0] * len(boxes)
lc = 0
lcost = 0
rc = 0
rcost = 0
for i in range(1, len(boxes)):
if boxes[i - 1] == '1':
lc += 1
lcost += lc
ans[i] = lcost
for i in range(len(boxes) - 2, -1, -1):
if boxes[i + 1] == '1':
rc += 1
rcost += rc
ans[i] += rcost
return ans |
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
stack = []
op = {
"+": lambda x, y: x + y,
"-": lambda x, y: x - y,
"*": lambda x, y: x * y,
"/": lambda x, y: x // y if x * y >= 0 else -(-x // y),
}
for token in tokens:
if token in op:
n2 = stack.pop()
n1 = stack.pop()
stack.append(op[token](n1, n2))
else:
stack.append(int(token))
return stack.pop()
| class Solution:
def eval_rpn(self, tokens: List[str]) -> int:
stack = []
op = {'+': lambda x, y: x + y, '-': lambda x, y: x - y, '*': lambda x, y: x * y, '/': lambda x, y: x // y if x * y >= 0 else -(-x // y)}
for token in tokens:
if token in op:
n2 = stack.pop()
n1 = stack.pop()
stack.append(op[token](n1, n2))
else:
stack.append(int(token))
return stack.pop() |
# Created by MechAviv
# Map ID :: 402000630
# Desert Cavern : Below the Sinkhole
# Update Quest Record EX | Quest ID: [34931] | Data: dir=1;exp=1
sm.curNodeEventEnd(True)
sm.setTemporarySkillSet(0)
sm.setInGameDirectionMode(True, False, False, False)
sm.setStandAloneMode(True)
sm.removeAdditionalEffect()
sm.zoomCamera(0, 2000, 0, -142, -250)
sm.blind(1, 255, 0, 0, 0, 0, 0)
sm.sendDelay(1200)
sm.blind(0, 0, 0, 0, 0, 1000, 0)
sm.sendDelay(1400)
sm.sendDelay(500)
sm.zoomCamera(3000, 1000, 3000, 100, 0)
sm.sendDelay(3500)
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendNext("#face2#So this is what's below the sand.")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#And now we've all been separated.")
sm.setSpeakerID(3001500)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face0#Well...")
sm.blind(1, 150, 0, 0, 0, 500, 0)
sm.playSound("Sound/SoundEff.img/PinkBean/expectation", 100)
sm.OnOffLayer_On(500, "d0", 0, -80, -1, "Effect/Direction17.img/effect/ark/illust/7/1", 4, 1, -1, 0)
sm.sendDelay(1000)
sm.blind(0, 0, 0, 0, 0, 500, 0)
sm.OnOffLayer_Off(500, "d0", 0)
sm.sendDelay(500)
sm.setSpeakerID(3001500)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendNext("#face0#At least we got this.")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face0#Wow! You managed to catch that while we were falling? Impressive!")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#I'm not happy about being this far underground. What was that demolitions dummy thinking?!")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#Now we're going to waste a bunch of time we don't have tracking everyone down.")
sm.showFadeTransition(0, 1000, 3000)
sm.zoomCamera(0, 1000, 2147483647, 2147483647, 2147483647)
sm.moveCamera(True, 0, 0, 0)
sm.sendDelay(300)
sm.removeOverlapScreen(1000)
sm.moveCamera(True, 0, 0, 0)
sm.setStandAloneMode(False)
sm.setTemporarySkillSet(0)
sm.setInGameDirectionMode(False, True, False, False)
| sm.curNodeEventEnd(True)
sm.setTemporarySkillSet(0)
sm.setInGameDirectionMode(True, False, False, False)
sm.setStandAloneMode(True)
sm.removeAdditionalEffect()
sm.zoomCamera(0, 2000, 0, -142, -250)
sm.blind(1, 255, 0, 0, 0, 0, 0)
sm.sendDelay(1200)
sm.blind(0, 0, 0, 0, 0, 1000, 0)
sm.sendDelay(1400)
sm.sendDelay(500)
sm.zoomCamera(3000, 1000, 3000, 100, 0)
sm.sendDelay(3500)
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendNext("#face2#So this is what's below the sand.")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#And now we've all been separated.")
sm.setSpeakerID(3001500)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay('#face0#Well...')
sm.blind(1, 150, 0, 0, 0, 500, 0)
sm.playSound('Sound/SoundEff.img/PinkBean/expectation', 100)
sm.OnOffLayer_On(500, 'd0', 0, -80, -1, 'Effect/Direction17.img/effect/ark/illust/7/1', 4, 1, -1, 0)
sm.sendDelay(1000)
sm.blind(0, 0, 0, 0, 0, 500, 0)
sm.OnOffLayer_Off(500, 'd0', 0)
sm.sendDelay(500)
sm.setSpeakerID(3001500)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendNext('#face0#At least we got this.')
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay('#face0#Wow! You managed to catch that while we were falling? Impressive!')
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#I'm not happy about being this far underground. What was that demolitions dummy thinking?!")
sm.setSpeakerID(3001510)
sm.setSpeakerType(3)
sm.removeEscapeButton()
sm.flipDialogue()
sm.setBoxChat()
sm.boxChatPlayerAsSpeaker()
sm.setBoxOverrideSpeaker()
sm.flipBoxChat()
sm.flipBoxChatPlayerAsSpeaker()
sm.setColor(1)
sm.sendSay("#face2#Now we're going to waste a bunch of time we don't have tracking everyone down.")
sm.showFadeTransition(0, 1000, 3000)
sm.zoomCamera(0, 1000, 2147483647, 2147483647, 2147483647)
sm.moveCamera(True, 0, 0, 0)
sm.sendDelay(300)
sm.removeOverlapScreen(1000)
sm.moveCamera(True, 0, 0, 0)
sm.setStandAloneMode(False)
sm.setTemporarySkillSet(0)
sm.setInGameDirectionMode(False, True, False, False) |
# "directions" are all the ways you can describe going some way;
# they are code-visible names for directions for adventure authors
direction_names = ["NORTH","SOUTH","EAST","WEST","UP","DOWN","RIGHT","LEFT",
"IN","OUT","FORWARD","BACK",
"NORTHWEST","NORTHEAST","SOUTHWEST","SOUTHEAST"]
direction_list = [ NORTH, SOUTH, EAST, WEST, UP, DOWN, RIGHT, LEFT,
IN, OUT, FORWARD, BACK,
NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST] = \
range(len(direction_names))
NOT_DIRECTION = None
# some old names, for backwards compatibility
(NORTH_WEST, NORTH_EAST, SOUTH_WEST, SOUTH_EAST) = \
(NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST)
directions = dir_by_name = dict(zip(direction_names, direction_list))
def define_direction (number, name):
if name in dir_by_name:
exit("%s is already defined as %d" % (name, dir_by_name[name]))
dir_by_name[name] = number
def lookup_dir (name):
return dir_by_name.get(name, NOT_DIRECTION)
# add lower-case versions of all names in direction_names
for name in direction_names:
define_direction(dir_by_name[name], name.lower())
# add common aliases:
# maybe the alias mechanism should be a more general
# (text-based?) mechanism that works for any command?!!!
common_aliases = [
(NORTH, "n"),
(SOUTH, "s"),
(EAST, "e"),
(WEST, "w"),
(UP, "u"),
(DOWN, "d"),
(FORWARD, "fd"),
(FORWARD, "fwd"),
(FORWARD, "f"),
(BACK, "bk"),
(BACK, "b"),
(NORTHWEST,"nw"),
(NORTHEAST,"ne"),
(SOUTHWEST,"sw"),
(SOUTHEAST, "se")
]
for (k,v) in common_aliases:
define_direction(k,v)
# define the pairs of opposite directions
opposite_by_dir = {}
def define_opposite_dirs (d1, d2):
for dir in (d1, d2):
opposite = opposite_by_dir.get(dir)
if opposite is not None:
exit("opposite for %s is already defined as %s" % (dir, opposite))
opposite_by_dir[d1] = d2
opposite_by_dir[d2] = d1
opposites = [(NORTH, SOUTH),
(EAST, WEST),
(UP, DOWN),
(LEFT, RIGHT),
(IN, OUT),
(FORWARD, BACK),
(NORTHWEST, SOUTHEAST),
(NORTHEAST, SOUTHWEST)]
for (d1,d2) in opposites:
define_opposite_dirs(d1,d2)
def opposite_direction (dir):
return opposite_by_dir[dir]
| direction_names = ['NORTH', 'SOUTH', 'EAST', 'WEST', 'UP', 'DOWN', 'RIGHT', 'LEFT', 'IN', 'OUT', 'FORWARD', 'BACK', 'NORTHWEST', 'NORTHEAST', 'SOUTHWEST', 'SOUTHEAST']
direction_list = [north, south, east, west, up, down, right, left, in, out, forward, back, northwest, northeast, southwest, southeast] = range(len(direction_names))
not_direction = None
(north_west, north_east, south_west, south_east) = (NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST)
directions = dir_by_name = dict(zip(direction_names, direction_list))
def define_direction(number, name):
if name in dir_by_name:
exit('%s is already defined as %d' % (name, dir_by_name[name]))
dir_by_name[name] = number
def lookup_dir(name):
return dir_by_name.get(name, NOT_DIRECTION)
for name in direction_names:
define_direction(dir_by_name[name], name.lower())
common_aliases = [(NORTH, 'n'), (SOUTH, 's'), (EAST, 'e'), (WEST, 'w'), (UP, 'u'), (DOWN, 'd'), (FORWARD, 'fd'), (FORWARD, 'fwd'), (FORWARD, 'f'), (BACK, 'bk'), (BACK, 'b'), (NORTHWEST, 'nw'), (NORTHEAST, 'ne'), (SOUTHWEST, 'sw'), (SOUTHEAST, 'se')]
for (k, v) in common_aliases:
define_direction(k, v)
opposite_by_dir = {}
def define_opposite_dirs(d1, d2):
for dir in (d1, d2):
opposite = opposite_by_dir.get(dir)
if opposite is not None:
exit('opposite for %s is already defined as %s' % (dir, opposite))
opposite_by_dir[d1] = d2
opposite_by_dir[d2] = d1
opposites = [(NORTH, SOUTH), (EAST, WEST), (UP, DOWN), (LEFT, RIGHT), (IN, OUT), (FORWARD, BACK), (NORTHWEST, SOUTHEAST), (NORTHEAST, SOUTHWEST)]
for (d1, d2) in opposites:
define_opposite_dirs(d1, d2)
def opposite_direction(dir):
return opposite_by_dir[dir] |
# -*- coding:utf-8 -*-
__author__ = 'zhangzhibo'
__date__ = '202018/5/18 16:56'
| __author__ = 'zhangzhibo'
__date__ = '202018/5/18 16:56' |
#Clases del ciclo de lavado
class lavando:
#Etapa 1. Lavado
def lavado(self):
print("Lavando...")
class enjuagando:
#Etapa 2. Enjuagado
def enjuagado(self):
print("Enjuagando...")
class centrifugando:
#Etapa 3. Centrifugado
def centrifugado(self):
print("Centrifugando...")
class finalizado:
#Etapa 4. Finalizado de ciclo
def finalizar(self):
print("Finalizado!")
class LavadoraFacade:
def __init__(self):
self.lavando = lavando()
self.enjuagando = enjuagando()
self.centrifugando = centrifugando()
self.finalizando = finalizado()
#Lista de ciclos
def ciclo_completo(self):
self.lavando.lavado()
self.enjuagando.enjuagado()
self.centrifugando.centrifugado()
self.finalizando.finalizar()
def solo_centrifugado(self):
self.centrifugando.centrifugado()
self.finalizando.finalizar()
def solo_lavado(self):
self.lavando.lavado()
self.finalizando.finalizar()
def solo_enjuagado(self):
self.enjuagando.enjuagado()
self.finalizando.finalizar()
| class Lavando:
def lavado(self):
print('Lavando...')
class Enjuagando:
def enjuagado(self):
print('Enjuagando...')
class Centrifugando:
def centrifugado(self):
print('Centrifugando...')
class Finalizado:
def finalizar(self):
print('Finalizado!')
class Lavadorafacade:
def __init__(self):
self.lavando = lavando()
self.enjuagando = enjuagando()
self.centrifugando = centrifugando()
self.finalizando = finalizado()
def ciclo_completo(self):
self.lavando.lavado()
self.enjuagando.enjuagado()
self.centrifugando.centrifugado()
self.finalizando.finalizar()
def solo_centrifugado(self):
self.centrifugando.centrifugado()
self.finalizando.finalizar()
def solo_lavado(self):
self.lavando.lavado()
self.finalizando.finalizar()
def solo_enjuagado(self):
self.enjuagando.enjuagado()
self.finalizando.finalizar() |
'''
Date: 01/08/2019
Problem description:
===================
This problem was asked by Google.
Given an array of integers where every integer occurs three times
except for one integer, which only occurs once, find and return the
non-duplicated integer.
For example, given [6, 1, 3, 3, 3, 6, 6], return 1.
Given [13, 19, 13, 13], return 19.
Do this in O(N) time and O(1) space.
Algorithm:
==========
Input: A list of numbers
Output: An integer represeting the non-duplicate value
Psuedo code:
1. Check for valid input
2. Rerurn value from set(list-comprehension) where element
count equals to one
Note: This is why I love Python!!!
'''
def find_non_dup(A=[]):
if len(A) == 0:
return None
non_dup = list(set([x for x in A if A.count(x) == 1]))
return non_dup[-1]
def test_code():
A = [7,3,3,3,7,8,7]
assert find_non_dup(A) == 8
if __name__ == '__main__':
Array = [9,5,5,5,8,9,8,9,3,4,4,4]
non_dup = find_non_dup(Array)
print("Test1:\nGiven a list [{}]\nThe non-duplicate value is {}".format(', '.join(str(i) for i in Array), non_dup))
'''
Run-time output:
===============
(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ python codechallenge_025.py
Test1:
Given a list [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4]
The non-duplicate value is 3
(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ pytest codechallenge_025.py
================================ test session starts =================================
platform linux2 -- Python 2.7.13, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /home/markn/devel/py-src/DailyCodingChallenge, inifile:
collected 1 item
codechallenge_025.py . [100%]
============================== 1 passed in 0.03 seconds ==============================
'''
| """
Date: 01/08/2019
Problem description:
===================
This problem was asked by Google.
Given an array of integers where every integer occurs three times
except for one integer, which only occurs once, find and return the
non-duplicated integer.
For example, given [6, 1, 3, 3, 3, 6, 6], return 1.
Given [13, 19, 13, 13], return 19.
Do this in O(N) time and O(1) space.
Algorithm:
==========
Input: A list of numbers
Output: An integer represeting the non-duplicate value
Psuedo code:
1. Check for valid input
2. Rerurn value from set(list-comprehension) where element
count equals to one
Note: This is why I love Python!!!
"""
def find_non_dup(A=[]):
if len(A) == 0:
return None
non_dup = list(set([x for x in A if A.count(x) == 1]))
return non_dup[-1]
def test_code():
a = [7, 3, 3, 3, 7, 8, 7]
assert find_non_dup(A) == 8
if __name__ == '__main__':
array = [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4]
non_dup = find_non_dup(Array)
print('Test1:\nGiven a list [{}]\nThe non-duplicate value is {}'.format(', '.join((str(i) for i in Array)), non_dup))
'\nRun-time output:\n===============\n(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ python codechallenge_025.py\nTest1:\nGiven a list [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4]\nThe non-duplicate value is 3\n\n(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ pytest codechallenge_025.py\n================================ test session starts =================================\nplatform linux2 -- Python 2.7.13, pytest-3.6.3, py-1.5.4, pluggy-0.6.0\nrootdir: /home/markn/devel/py-src/DailyCodingChallenge, inifile:\ncollected 1 item\n\ncodechallenge_025.py . [100%]\n\n============================== 1 passed in 0.03 seconds ==============================\n\n' |
# Start and end date
gldas_start_date = '2010-01-01'
gldas_end_date = '2014-01-01'
# Location (Latitude and Longitude)
gldas_geo_point = AutoParam([(38, -117), (38, -118)])
# Create data fetcher
gldasdf = GLDASDF([gldas_geo_point],start_date=gldas_start_date,
end_date=gldas_end_date, resample=False)
| gldas_start_date = '2010-01-01'
gldas_end_date = '2014-01-01'
gldas_geo_point = auto_param([(38, -117), (38, -118)])
gldasdf = gldasdf([gldas_geo_point], start_date=gldas_start_date, end_date=gldas_end_date, resample=False) |
def hola():
def bienvenido():
print("hola!")
return bienvenido
# hola()()
def mensaje():
return "Este es un mensaje"
def test(function):
print(mensaje())
test(mensaje)
| def hola():
def bienvenido():
print('hola!')
return bienvenido
def mensaje():
return 'Este es un mensaje'
def test(function):
print(mensaje())
test(mensaje) |
# Getting all PAL : Prime and pallindrome numbers between two given numbers
def pallindrome(n):
temp=n
rev=0
while(n>0):
dig = n % 10
rev=rev*10 +dig
n = n/10
if temp == rev:
return True
else:
return False
def isprime(n):
if n<=1:
return False
if n<=3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
i = 5
while i*i < n:
if n % i == 0 or n % (i+2) == 0:
return False
i=i+6
return True
a=int(input("Enter the number of lower range "))
b=int(input("Enter the number of upper range "))
for i in range(a,b):
if pallindrome(i) and isprime(i):
print(i)
| def pallindrome(n):
temp = n
rev = 0
while n > 0:
dig = n % 10
rev = rev * 10 + dig
n = n / 10
if temp == rev:
return True
else:
return False
def isprime(n):
if n <= 1:
return False
if n <= 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
i = 5
while i * i < n:
if n % i == 0 or n % (i + 2) == 0:
return False
i = i + 6
return True
a = int(input('Enter the number of lower range '))
b = int(input('Enter the number of upper range '))
for i in range(a, b):
if pallindrome(i) and isprime(i):
print(i) |
# buttons
PIN_BUTTON_PROG = 17
PIN_BUTTON_ERASE = 27
# LEDs
PIN_RED = 23
PIN_GREEN = 24
PIN_BLUE = 20
PIN_BLUE2 = 25
# Jumpers
PINS_PROFILES = [5, 6, 13, 19]
# MCU
PIN_RESET_ATMEGA = 16
PIN_MASTER_POWER = 12
PIN_ESP_RESET = 8
PIN_ESP_GPIO_0 = 4
# MISC
PIN_BUZZER = 26
# Interfaces
DEFAULT_SERIAL_SPEED = 9600
DEFAULT_PRGM_COMM_SPEED = 115200
SERIAL_PORT = "/dev/serial0"
| pin_button_prog = 17
pin_button_erase = 27
pin_red = 23
pin_green = 24
pin_blue = 20
pin_blue2 = 25
pins_profiles = [5, 6, 13, 19]
pin_reset_atmega = 16
pin_master_power = 12
pin_esp_reset = 8
pin_esp_gpio_0 = 4
pin_buzzer = 26
default_serial_speed = 9600
default_prgm_comm_speed = 115200
serial_port = '/dev/serial0' |
# -*- coding: utf-8 -*-
smtpserver = "smtp.qq.com" # will be read by smtp fixture
def test_showhelo(smtp_connection):
assert 0, smtp_connection.helo() | smtpserver = 'smtp.qq.com'
def test_showhelo(smtp_connection):
assert 0, smtp_connection.helo() |
# -*- coding: utf-8 -*-
project = 'test'
master_doc = 'index'
| project = 'test'
master_doc = 'index' |
s, n = map(int, input().split())
arr = [0] * n
for i in range(s):
p = int(input())
for j in range(0, len(arr), p):
arr[j] = 1
for i in arr:
print(i, end=" ")
print()
| (s, n) = map(int, input().split())
arr = [0] * n
for i in range(s):
p = int(input())
for j in range(0, len(arr), p):
arr[j] = 1
for i in arr:
print(i, end=' ')
print() |
CHAMP_ID_TO_EMOJI = {'266': '<:champ_266:601909182748164097>', '103': '<:champ_103:601909185243774976>', '84': '<:champ_84:601909188612063233>', '12': '<:champ_12:601909190809878530>', '32': '<:champ_32:601909193456222221>', '34': '<:champ_34:601909195968610356>', '1': '<:champ_1:601909198799896690>', '22': '<:champ_22:601909201564073984>', '136': '<:champ_136:601909204034387986>', '268': '<:champ_268:601909206337191937>', '432': '<:champ_432:601909209348571136>', '53': '<:champ_53:601909212175663129>', '63': '<:champ_63:601909215262408705>', '201': '<:champ_201:601909218072592406>', '51': '<:champ_51:601909220664672275>', '164': '<:champ_164:601909222455640094>', '69': '<:champ_69:601909224213053481>', '31': '<:champ_31:601909227174494208>', '42': '<:champ_42:601909229246218250>', '122': '<:champ_122:601909231268134933>', '131': '<:champ_131:601909232954245122>', '119': '<:champ_119:601909235831406759>', '36': '<:champ_36:601909237928689714>', '245': '<:champ_245:601909241250578462>', '60': '<:champ_60:601909243112718355>', '28': '<:champ_28:601909244823863309>', '81': '<:champ_81:601909247458148353>', '9': '<:champ_9:601909250234646746>', '114': '<:champ_114:601909252642045964>', '105': '<:champ_105:601909255259291648>', '3': '<:champ_3:601909257067298865>', '41': '<:champ_41:601909258963124225>', '86': '<:champ_86:601909261915783188>', '150': '<:champ_150:601909264533028932>', '79': '<:champ_79:601909267032702989>', '104': '<:champ_104:601909269520056352>', '120': '<:champ_120:601909272825298944>', '74': '<:champ_74:601909276398714921>', '420': '<:champ_420:601909278105665588>', '39': '<:champ_39:601909281687732317>', '427': '<:champ_427:601909283675963402>', '40': '<:champ_40:601909286418907137>', '59': '<:champ_59:601909288994340933>', '24': '<:champ_24:601909292534071327>', '126': '<:champ_126:601909294975287325>', '202': '<:champ_202:601909297974083605>', '222': '<:champ_222:601909300687929355>', '145': '<:champ_145:601909302814310437>', '429': '<:champ_429:601909305662504981>', '43': '<:champ_43:601909308183150592>', '30': '<:champ_30:601909340571566080>', '38': '<:champ_38:601909342756929557>', '55': '<:champ_55:601909345663582273>', '10': '<:champ_10:601909347945283584>', '141': '<:champ_141:601909349471748112>', '85': '<:champ_85:601909351523024897>', '121': '<:champ_121:601909353540354061>', '203': '<:champ_203:601909356086296609>', '240': '<:champ_240:601909358258946048>', '96': '<:champ_96:601909360284663808>', '7': '<:champ_7:601909362222432266>', '64': '<:champ_64:601909364881883136>', '89': '<:champ_89:601909366802612236>', '127': '<:champ_127:601909370413907984>', '236': '<:champ_236:601909373194993698>', '117': '<:champ_117:601909375317311488>', '99': '<:champ_99:601909377959460885>', '54': '<:champ_54:601909383433027614>', '90': '<:champ_90:601909385614196767>', '57': '<:champ_57:601909388122390529>', '11': '<:champ_11:601909392623009793>', '21': '<:champ_21:601909395030409235>', '62': '<:champ_62:601909398578659358>', '82': '<:champ_82:601909401506414598>', '25': '<:champ_25:601909403448508437>', '267': '<:champ_267:601909406426333198>', '75': '<:champ_75:601909408628211715>', '111': '<:champ_111:601909410805055488>', '518': '<:champ_518:601909414118686752>', '76': '<:champ_76:601909416110981169>', '56': '<:champ_56:601909419189469185>', '20': '<:champ_20:601909421580484629>', '2': '<:champ_2:601909423983558668>', '61': '<:champ_61:601909426474975263>', '516': '<:champ_516:601909428958003212>', '80': '<:champ_80:601909431747346447>', '78': '<:champ_78:601909434142294086>', '555': '<:champ_555:601909436864397322>', '246': '<:champ_246:601909439876038676>', '133': '<:champ_133:601909442371387395>', '497': '<:champ_497:601909445253005335>', '33': '<:champ_33:601909447320797244>', '421': '<:champ_421:601909449850093579>', '58': '<:champ_58:601909452567871571>', '107': '<:champ_107:601909455478718491>', '92': '<:champ_92:601909458230050816>', '68': '<:champ_68:601909460482654208>', '13': '<:champ_13:601909462776676372>', '113': '<:champ_113:601909465624608777>', '35': '<:champ_35:601909468028207135>', '98': '<:champ_98:601909497539067924>', '102': '<:champ_102:601909500059975685>', '27': '<:champ_27:601909503205834764>', '14': '<:champ_14:601909506074607659>', '15': '<:champ_15:601909508129685504>', '72': '<:champ_72:601909510679953438>', '37': '<:champ_37:601909513066643456>', '16': '<:champ_16:601909515222253582>', '50': '<:champ_50:601909518082899972>', '517': '<:champ_517:601909520939089920>', '134': '<:champ_134:601909523493683213>', '223': '<:champ_223:601909526408724480>', '163': '<:champ_163:601909528652546070>', '91': '<:champ_91:601909531223654439>', '44': '<:champ_44:601909533727653918>', '17': '<:champ_17:601909535929794562>', '412': '<:champ_412:601909538701967370>', '18': '<:champ_18:601909541705089054>', '48': '<:champ_48:601909545056337960>', '23': '<:champ_23:601909548735004723>', '4': '<:champ_4:601909551637200898>', '29': '<:champ_29:601909555810795531>', '77': '<:champ_77:601909558604070961>', '6': '<:champ_6:601909560751423526>', '110': '<:champ_110:601909562953433098>', '67': '<:champ_67:601909566078451735>', '45': '<:champ_45:601909568452165653>', '161': '<:champ_161:601909571069411359>', '254': '<:champ_254:601909573863079936>', '112': '<:champ_112:601909575800717332>', '8': '<:champ_8:601909578438934677>', '106': '<:champ_106:601909581311901719>', '19': '<:champ_19:601909584277405709>', '498': '<:champ_498:601909586701582336>', '101': '<:champ_101:601909589369159691>', '5': '<:champ_5:601909591667769364>', '157': '<:champ_157:601909594758971468>', '83': '<:champ_83:601909596877094940>', '350': '<:champ_350:601909599469305875>', '154': '<:champ_154:601909605194268673>', '238': '<:champ_238:601909607824359462>', '115': '<:champ_115:601909610885939200>', '26': '<:champ_26:601909614031798447>', '142': '<:champ_142:601909616258973696>', '143': '<:champ_143:601909618808979478>'}
RUNE_ID_TO_EMOJI = {'8112': '<:rune_8112:602195444940144650>', '8124': '<:rune_8124:602195452028518410>', '8128': '<:rune_8128:602195459003514920>', '9923': '<:rune_9923:602195465299165308>', '8126': '<:rune_8126:602195466981212190>', '8139': '<:rune_8139:602195469573160970>', '8143': '<:rune_8143:602195471859056641>', '8136': '<:rune_8136:602195473264017462>', '8120': '<:rune_8120:602195475013173288>', '8138': '<:rune_8138:602195477257256963>', '8135': '<:rune_8135:602195479417192449>', '8134': '<:rune_8134:602195482487554058>', '8105': '<:rune_8105:602195484748152843>', '8106': '<:rune_8106:602195487650742283>', '8351': '<:rune_8351:602195494319423529>', '8359': '<:rune_8359:602195503048032291>', '8360': '<:rune_8360:602195510388064256>', '8306': '<:rune_8306:602195512036163585>', '8304': '<:rune_8304:602195513173082113>', '8313': '<:rune_8313:602195513546244128>', '8321': '<:rune_8321:602195517103014084>', '8316': '<:rune_8316:602195519829311562>', '8345': '<:rune_8345:602195522345893911>', '8347': '<:rune_8347:602195524338319370>', '8410': '<:rune_8410:602195527479722000>', '8352': '<:rune_8352:602195529291661489>', '8005': '<:rune_8005:602195538036785152>', '8008': '<:rune_8008:602195543464345601>', '8021': '<:rune_8021:602195550271700992>', '8010': '<:rune_8010:602195555006939137>', '9101': '<:rune_9101:602195557502681088>', '9111': '<:rune_9111:602195559880851536>', '8009': '<:rune_8009:602195562481057792>', '9104': '<:rune_9104:602195563936743455>', '9105': '<:rune_9105:602195565408813056>', '9103': '<:rune_9103:602195567241854979>', '8014': '<:rune_8014:602195568759930900>', '8017': '<:rune_8017:602195571364724774>', '8299': '<:rune_8299:602195573952479242>', '8437': '<:rune_8437:602195580919349261>', '8439': '<:rune_8439:602195586468544533>', '8465': '<:rune_8465:602195592357347358>', '8446': '<:rune_8446:602195594643243018>', '8463': '<:rune_8463:602195596736200757>', '8401': '<:rune_8401:602195601475764234>', '8429': '<:rune_8429:602195603308675078>', '8444': '<:rune_8444:602195605334392832>', '8473': '<:rune_8473:602195607670620161>', '8451': '<:rune_8451:602195610233339914>', '8453': '<:rune_8453:602195612569567250>', '8242': '<:rune_8242:602195615321030840>', '8214': '<:rune_8214:602195620601528330>', '8229': '<:rune_8229:602195626293198859>', '8230': '<:rune_8230:602195631255060541>', '8224': '<:rune_8224:602195633171857418>', '8226': '<:rune_8226:602195635868925970>', '8275': '<:rune_8275:602195639140483072>', '8210': '<:rune_8210:602195640432328792>', '8234': '<:rune_8234:602195643515011092>', '8233': '<:rune_8233:602195645956096010>', '8237': '<:rune_8237:602195647268913162>', '8232': '<:rune_8232:602195649907392525>', '8236': '<:rune_8236:602195652235231235>'}
MASTERIES_TO_EMOJI = {'1': '<:masteries_1:602201182131322886>', '2': '<:masteries_2:602201195792039967>', '3': '<:masteries_3:602201208505106453>', '4': '<:masteries_4:602201225701883924>', '5': '<:masteries_5:602201238528065557>', '6': '<:masteries_6:602201251069034496>', '7': '<:masteries_7:602201263152693325>'}
CHAMP_NONE_EMOJI = "<:champ_0:602225831095435294>"
INVISIBLE_EMOJI = "<:__:602265603893493761>"
CHAMP_NAME_TO_ID = {'Aatrox': '266', 'Ahri': '103', 'Akali': '84', 'Alistar': '12', 'Amumu': '32', 'Anivia': '34', 'Annie': '1', 'Ashe': '22', 'Aurelion Sol': '136', 'Azir': '268', 'Bard': '432', 'Blitzcrank': '53', 'Brand': '63', 'Braum': '201', 'Caitlyn': '51', 'Camille': '164', 'Cassiopeia': '69', "Cho'Gath": '31', 'Corki': '42', 'Darius': '122', 'Diana': '131', 'Draven': '119', 'Dr. Mundo': '36', 'Ekko': '245', 'Elise': '60', 'Evelynn': '28', 'Ezreal': '81', 'Fiddlesticks': '9', 'Fiora': '114', 'Fizz': '105', 'Galio': '3', 'Gangplank': '41', 'Garen': '86', 'Gnar': '150', 'Gragas': '79', 'Graves': '104', 'Hecarim': '120', 'Heimerdinger': '74', 'Illaoi': '420', 'Irelia': '39', 'Ivern': '427', 'Janna': '40', 'Jarvan IV': '59', 'Jax': '24', 'Jayce': '126', 'Jhin': '202', 'Jinx': '222', "Kai'Sa": '145', 'Kalista': '429', 'Karma': '43', 'Karthus': '30', 'Kassadin': '38', 'Katarina': '55', 'Kayle': '10', 'Kayn': '141', 'Kennen': '85', "Kha'Zix": '121', 'Kindred': '203', 'Kled': '240', "Kog'Maw": '96', 'LeBlanc': '7', 'Lee Sin': '64', 'Leona': '89', 'Lissandra': '127', 'Lucian': '236', 'Lulu': '117', 'Lux': '99', 'Malphite': '54', 'Malzahar': '90', 'Maokai': '57', 'Master Yi': '11', 'Miss Fortune': '21', 'Wukong': '62', 'Mordekaiser': '82', 'Morgana': '25', 'Nami': '267', 'Nasus': '75', 'Nautilus': '111', 'Neeko': '518', 'Nidalee': '76', 'Nocturne': '56', 'Nunu & Willump': '20', 'Olaf': '2', 'Orianna': '61', 'Ornn': '516', 'Pantheon': '80', 'Poppy': '78', 'Pyke': '555', 'Qiyana': '246', 'Quinn': '133', 'Rakan': '497', 'Rammus': '33', "Rek'Sai": '421', 'Renekton': '58', 'Rengar': '107', 'Riven': '92', 'Rumble': '68', 'Ryze': '13', 'Sejuani': '113', 'Senna': '235', 'Shaco': '35', 'Shen': '98', 'Shyvana': '102', 'Singed': '27', 'Sion': '14', 'Sivir': '15', 'Skarner': '72', 'Sona': '37', 'Soraka': '16', 'Swain': '50', 'Sylas': '517', 'Syndra': '134', 'Tahm Kench': '223', 'Taliyah': '163', 'Talon': '91', 'Taric': '44', 'Teemo': '17', 'Thresh': '412', 'Tristana': '18', 'Trundle': '48', 'Tryndamere': '23', 'Twisted Fate': '4', 'Twitch': '29', 'Udyr': '77', 'Urgot': '6', 'Varus': '110', 'Vayne': '67', 'Veigar': '45', "Vel'Koz": '161', 'Vi': '254', 'Viktor': '112', 'Vladimir': '8', 'Volibear': '106', 'Warwick': '19', 'Xayah': '498', 'Xerath': '101', 'Xin Zhao': '5', 'Yasuo': '157', 'Yorick': '83', 'Yuumi': '350', 'Zac': '154', 'Zed': '238', 'Ziggs': '115', 'Zilean': '26', 'Zoe': '142', 'Zyra': '143'}
TFT_PRICES = [INVISIBLE_EMOJI, '<:tft_g1:652142396405972992>', '<:tft_g2:652142435606069248>', '<:tft_g3:652142468007067649>', '<:tft_g4:652142511913041960>', '<:tft_g5:652142572541575181>'] | champ_id_to_emoji = {'266': '<:champ_266:601909182748164097>', '103': '<:champ_103:601909185243774976>', '84': '<:champ_84:601909188612063233>', '12': '<:champ_12:601909190809878530>', '32': '<:champ_32:601909193456222221>', '34': '<:champ_34:601909195968610356>', '1': '<:champ_1:601909198799896690>', '22': '<:champ_22:601909201564073984>', '136': '<:champ_136:601909204034387986>', '268': '<:champ_268:601909206337191937>', '432': '<:champ_432:601909209348571136>', '53': '<:champ_53:601909212175663129>', '63': '<:champ_63:601909215262408705>', '201': '<:champ_201:601909218072592406>', '51': '<:champ_51:601909220664672275>', '164': '<:champ_164:601909222455640094>', '69': '<:champ_69:601909224213053481>', '31': '<:champ_31:601909227174494208>', '42': '<:champ_42:601909229246218250>', '122': '<:champ_122:601909231268134933>', '131': '<:champ_131:601909232954245122>', '119': '<:champ_119:601909235831406759>', '36': '<:champ_36:601909237928689714>', '245': '<:champ_245:601909241250578462>', '60': '<:champ_60:601909243112718355>', '28': '<:champ_28:601909244823863309>', '81': '<:champ_81:601909247458148353>', '9': '<:champ_9:601909250234646746>', '114': '<:champ_114:601909252642045964>', '105': '<:champ_105:601909255259291648>', '3': '<:champ_3:601909257067298865>', '41': '<:champ_41:601909258963124225>', '86': '<:champ_86:601909261915783188>', '150': '<:champ_150:601909264533028932>', '79': '<:champ_79:601909267032702989>', '104': '<:champ_104:601909269520056352>', '120': '<:champ_120:601909272825298944>', '74': '<:champ_74:601909276398714921>', '420': '<:champ_420:601909278105665588>', '39': '<:champ_39:601909281687732317>', '427': '<:champ_427:601909283675963402>', '40': '<:champ_40:601909286418907137>', '59': '<:champ_59:601909288994340933>', '24': '<:champ_24:601909292534071327>', '126': '<:champ_126:601909294975287325>', '202': '<:champ_202:601909297974083605>', '222': '<:champ_222:601909300687929355>', '145': '<:champ_145:601909302814310437>', '429': '<:champ_429:601909305662504981>', '43': '<:champ_43:601909308183150592>', '30': '<:champ_30:601909340571566080>', '38': '<:champ_38:601909342756929557>', '55': '<:champ_55:601909345663582273>', '10': '<:champ_10:601909347945283584>', '141': '<:champ_141:601909349471748112>', '85': '<:champ_85:601909351523024897>', '121': '<:champ_121:601909353540354061>', '203': '<:champ_203:601909356086296609>', '240': '<:champ_240:601909358258946048>', '96': '<:champ_96:601909360284663808>', '7': '<:champ_7:601909362222432266>', '64': '<:champ_64:601909364881883136>', '89': '<:champ_89:601909366802612236>', '127': '<:champ_127:601909370413907984>', '236': '<:champ_236:601909373194993698>', '117': '<:champ_117:601909375317311488>', '99': '<:champ_99:601909377959460885>', '54': '<:champ_54:601909383433027614>', '90': '<:champ_90:601909385614196767>', '57': '<:champ_57:601909388122390529>', '11': '<:champ_11:601909392623009793>', '21': '<:champ_21:601909395030409235>', '62': '<:champ_62:601909398578659358>', '82': '<:champ_82:601909401506414598>', '25': '<:champ_25:601909403448508437>', '267': '<:champ_267:601909406426333198>', '75': '<:champ_75:601909408628211715>', '111': '<:champ_111:601909410805055488>', '518': '<:champ_518:601909414118686752>', '76': '<:champ_76:601909416110981169>', '56': '<:champ_56:601909419189469185>', '20': '<:champ_20:601909421580484629>', '2': '<:champ_2:601909423983558668>', '61': '<:champ_61:601909426474975263>', '516': '<:champ_516:601909428958003212>', '80': '<:champ_80:601909431747346447>', '78': '<:champ_78:601909434142294086>', '555': '<:champ_555:601909436864397322>', '246': '<:champ_246:601909439876038676>', '133': '<:champ_133:601909442371387395>', '497': '<:champ_497:601909445253005335>', '33': '<:champ_33:601909447320797244>', '421': '<:champ_421:601909449850093579>', '58': '<:champ_58:601909452567871571>', '107': '<:champ_107:601909455478718491>', '92': '<:champ_92:601909458230050816>', '68': '<:champ_68:601909460482654208>', '13': '<:champ_13:601909462776676372>', '113': '<:champ_113:601909465624608777>', '35': '<:champ_35:601909468028207135>', '98': '<:champ_98:601909497539067924>', '102': '<:champ_102:601909500059975685>', '27': '<:champ_27:601909503205834764>', '14': '<:champ_14:601909506074607659>', '15': '<:champ_15:601909508129685504>', '72': '<:champ_72:601909510679953438>', '37': '<:champ_37:601909513066643456>', '16': '<:champ_16:601909515222253582>', '50': '<:champ_50:601909518082899972>', '517': '<:champ_517:601909520939089920>', '134': '<:champ_134:601909523493683213>', '223': '<:champ_223:601909526408724480>', '163': '<:champ_163:601909528652546070>', '91': '<:champ_91:601909531223654439>', '44': '<:champ_44:601909533727653918>', '17': '<:champ_17:601909535929794562>', '412': '<:champ_412:601909538701967370>', '18': '<:champ_18:601909541705089054>', '48': '<:champ_48:601909545056337960>', '23': '<:champ_23:601909548735004723>', '4': '<:champ_4:601909551637200898>', '29': '<:champ_29:601909555810795531>', '77': '<:champ_77:601909558604070961>', '6': '<:champ_6:601909560751423526>', '110': '<:champ_110:601909562953433098>', '67': '<:champ_67:601909566078451735>', '45': '<:champ_45:601909568452165653>', '161': '<:champ_161:601909571069411359>', '254': '<:champ_254:601909573863079936>', '112': '<:champ_112:601909575800717332>', '8': '<:champ_8:601909578438934677>', '106': '<:champ_106:601909581311901719>', '19': '<:champ_19:601909584277405709>', '498': '<:champ_498:601909586701582336>', '101': '<:champ_101:601909589369159691>', '5': '<:champ_5:601909591667769364>', '157': '<:champ_157:601909594758971468>', '83': '<:champ_83:601909596877094940>', '350': '<:champ_350:601909599469305875>', '154': '<:champ_154:601909605194268673>', '238': '<:champ_238:601909607824359462>', '115': '<:champ_115:601909610885939200>', '26': '<:champ_26:601909614031798447>', '142': '<:champ_142:601909616258973696>', '143': '<:champ_143:601909618808979478>'}
rune_id_to_emoji = {'8112': '<:rune_8112:602195444940144650>', '8124': '<:rune_8124:602195452028518410>', '8128': '<:rune_8128:602195459003514920>', '9923': '<:rune_9923:602195465299165308>', '8126': '<:rune_8126:602195466981212190>', '8139': '<:rune_8139:602195469573160970>', '8143': '<:rune_8143:602195471859056641>', '8136': '<:rune_8136:602195473264017462>', '8120': '<:rune_8120:602195475013173288>', '8138': '<:rune_8138:602195477257256963>', '8135': '<:rune_8135:602195479417192449>', '8134': '<:rune_8134:602195482487554058>', '8105': '<:rune_8105:602195484748152843>', '8106': '<:rune_8106:602195487650742283>', '8351': '<:rune_8351:602195494319423529>', '8359': '<:rune_8359:602195503048032291>', '8360': '<:rune_8360:602195510388064256>', '8306': '<:rune_8306:602195512036163585>', '8304': '<:rune_8304:602195513173082113>', '8313': '<:rune_8313:602195513546244128>', '8321': '<:rune_8321:602195517103014084>', '8316': '<:rune_8316:602195519829311562>', '8345': '<:rune_8345:602195522345893911>', '8347': '<:rune_8347:602195524338319370>', '8410': '<:rune_8410:602195527479722000>', '8352': '<:rune_8352:602195529291661489>', '8005': '<:rune_8005:602195538036785152>', '8008': '<:rune_8008:602195543464345601>', '8021': '<:rune_8021:602195550271700992>', '8010': '<:rune_8010:602195555006939137>', '9101': '<:rune_9101:602195557502681088>', '9111': '<:rune_9111:602195559880851536>', '8009': '<:rune_8009:602195562481057792>', '9104': '<:rune_9104:602195563936743455>', '9105': '<:rune_9105:602195565408813056>', '9103': '<:rune_9103:602195567241854979>', '8014': '<:rune_8014:602195568759930900>', '8017': '<:rune_8017:602195571364724774>', '8299': '<:rune_8299:602195573952479242>', '8437': '<:rune_8437:602195580919349261>', '8439': '<:rune_8439:602195586468544533>', '8465': '<:rune_8465:602195592357347358>', '8446': '<:rune_8446:602195594643243018>', '8463': '<:rune_8463:602195596736200757>', '8401': '<:rune_8401:602195601475764234>', '8429': '<:rune_8429:602195603308675078>', '8444': '<:rune_8444:602195605334392832>', '8473': '<:rune_8473:602195607670620161>', '8451': '<:rune_8451:602195610233339914>', '8453': '<:rune_8453:602195612569567250>', '8242': '<:rune_8242:602195615321030840>', '8214': '<:rune_8214:602195620601528330>', '8229': '<:rune_8229:602195626293198859>', '8230': '<:rune_8230:602195631255060541>', '8224': '<:rune_8224:602195633171857418>', '8226': '<:rune_8226:602195635868925970>', '8275': '<:rune_8275:602195639140483072>', '8210': '<:rune_8210:602195640432328792>', '8234': '<:rune_8234:602195643515011092>', '8233': '<:rune_8233:602195645956096010>', '8237': '<:rune_8237:602195647268913162>', '8232': '<:rune_8232:602195649907392525>', '8236': '<:rune_8236:602195652235231235>'}
masteries_to_emoji = {'1': '<:masteries_1:602201182131322886>', '2': '<:masteries_2:602201195792039967>', '3': '<:masteries_3:602201208505106453>', '4': '<:masteries_4:602201225701883924>', '5': '<:masteries_5:602201238528065557>', '6': '<:masteries_6:602201251069034496>', '7': '<:masteries_7:602201263152693325>'}
champ_none_emoji = '<:champ_0:602225831095435294>'
invisible_emoji = '<:__:602265603893493761>'
champ_name_to_id = {'Aatrox': '266', 'Ahri': '103', 'Akali': '84', 'Alistar': '12', 'Amumu': '32', 'Anivia': '34', 'Annie': '1', 'Ashe': '22', 'Aurelion Sol': '136', 'Azir': '268', 'Bard': '432', 'Blitzcrank': '53', 'Brand': '63', 'Braum': '201', 'Caitlyn': '51', 'Camille': '164', 'Cassiopeia': '69', "Cho'Gath": '31', 'Corki': '42', 'Darius': '122', 'Diana': '131', 'Draven': '119', 'Dr. Mundo': '36', 'Ekko': '245', 'Elise': '60', 'Evelynn': '28', 'Ezreal': '81', 'Fiddlesticks': '9', 'Fiora': '114', 'Fizz': '105', 'Galio': '3', 'Gangplank': '41', 'Garen': '86', 'Gnar': '150', 'Gragas': '79', 'Graves': '104', 'Hecarim': '120', 'Heimerdinger': '74', 'Illaoi': '420', 'Irelia': '39', 'Ivern': '427', 'Janna': '40', 'Jarvan IV': '59', 'Jax': '24', 'Jayce': '126', 'Jhin': '202', 'Jinx': '222', "Kai'Sa": '145', 'Kalista': '429', 'Karma': '43', 'Karthus': '30', 'Kassadin': '38', 'Katarina': '55', 'Kayle': '10', 'Kayn': '141', 'Kennen': '85', "Kha'Zix": '121', 'Kindred': '203', 'Kled': '240', "Kog'Maw": '96', 'LeBlanc': '7', 'Lee Sin': '64', 'Leona': '89', 'Lissandra': '127', 'Lucian': '236', 'Lulu': '117', 'Lux': '99', 'Malphite': '54', 'Malzahar': '90', 'Maokai': '57', 'Master Yi': '11', 'Miss Fortune': '21', 'Wukong': '62', 'Mordekaiser': '82', 'Morgana': '25', 'Nami': '267', 'Nasus': '75', 'Nautilus': '111', 'Neeko': '518', 'Nidalee': '76', 'Nocturne': '56', 'Nunu & Willump': '20', 'Olaf': '2', 'Orianna': '61', 'Ornn': '516', 'Pantheon': '80', 'Poppy': '78', 'Pyke': '555', 'Qiyana': '246', 'Quinn': '133', 'Rakan': '497', 'Rammus': '33', "Rek'Sai": '421', 'Renekton': '58', 'Rengar': '107', 'Riven': '92', 'Rumble': '68', 'Ryze': '13', 'Sejuani': '113', 'Senna': '235', 'Shaco': '35', 'Shen': '98', 'Shyvana': '102', 'Singed': '27', 'Sion': '14', 'Sivir': '15', 'Skarner': '72', 'Sona': '37', 'Soraka': '16', 'Swain': '50', 'Sylas': '517', 'Syndra': '134', 'Tahm Kench': '223', 'Taliyah': '163', 'Talon': '91', 'Taric': '44', 'Teemo': '17', 'Thresh': '412', 'Tristana': '18', 'Trundle': '48', 'Tryndamere': '23', 'Twisted Fate': '4', 'Twitch': '29', 'Udyr': '77', 'Urgot': '6', 'Varus': '110', 'Vayne': '67', 'Veigar': '45', "Vel'Koz": '161', 'Vi': '254', 'Viktor': '112', 'Vladimir': '8', 'Volibear': '106', 'Warwick': '19', 'Xayah': '498', 'Xerath': '101', 'Xin Zhao': '5', 'Yasuo': '157', 'Yorick': '83', 'Yuumi': '350', 'Zac': '154', 'Zed': '238', 'Ziggs': '115', 'Zilean': '26', 'Zoe': '142', 'Zyra': '143'}
tft_prices = [INVISIBLE_EMOJI, '<:tft_g1:652142396405972992>', '<:tft_g2:652142435606069248>', '<:tft_g3:652142468007067649>', '<:tft_g4:652142511913041960>', '<:tft_g5:652142572541575181>'] |
class Preciousstone:
def __init__(self):
self.preciousStone = []
def storePreciousStone(self,name):
self.preciousStone.append(name)
if( len(self.preciousStone) > 5):
del(self.preciousStone[0])
def displayPreciousStone(self):
if( len(self.preciousStone) > 0):
print(' '.join(self.preciousStone))
preciousstone = Preciousstone()
while(1):
print('1.Store 2.Display 3.Exit')
n = int(input('Enter your choice:'))
if n == 1:
stone = input("Enter the stone name:")
preciousstone.storePreciousStone(stone)
if n == 2:
preciousstone.displayPreciousStone()
if n == 3:
break | class Preciousstone:
def __init__(self):
self.preciousStone = []
def store_precious_stone(self, name):
self.preciousStone.append(name)
if len(self.preciousStone) > 5:
del self.preciousStone[0]
def display_precious_stone(self):
if len(self.preciousStone) > 0:
print(' '.join(self.preciousStone))
preciousstone = preciousstone()
while 1:
print('1.Store 2.Display 3.Exit')
n = int(input('Enter your choice:'))
if n == 1:
stone = input('Enter the stone name:')
preciousstone.storePreciousStone(stone)
if n == 2:
preciousstone.displayPreciousStone()
if n == 3:
break |
class BufferList:
def __init__(self, maxlen):
self.data = []
self.maxlen = maxlen
def append(self, el):
if len(self.data) == self.maxlen:
popped = self.data.pop(0)
else:
popped = None
self.data.append(el)
return popped
def peek(self, i):
return self.data[-i-1]
def __len__(self):
return len(self.data) | class Bufferlist:
def __init__(self, maxlen):
self.data = []
self.maxlen = maxlen
def append(self, el):
if len(self.data) == self.maxlen:
popped = self.data.pop(0)
else:
popped = None
self.data.append(el)
return popped
def peek(self, i):
return self.data[-i - 1]
def __len__(self):
return len(self.data) |
actor_name = input("Enter the actor's name: ")
initial_points = int(input("Enter the points form academy: "))
judges_count = int(input("Enter the number of jury: "))
points_needed = 1250.5
for jury in range(judges_count):
judges_name = input("Enter the name of jury: ")
points_from_judge = float(input("Enter the points from the jury: "))
initial_points += ((len(judges_name) * points_from_judge) / 2)
if initial_points > points_needed:
print(f"Congratulations, {actor_name} got a nominee for leading role with {initial_points:.1f}!")
break
if initial_points <= points_needed:
print(f"Sorry, {actor_name} you need {points_needed - initial_points:.1f} more!")
| actor_name = input("Enter the actor's name: ")
initial_points = int(input('Enter the points form academy: '))
judges_count = int(input('Enter the number of jury: '))
points_needed = 1250.5
for jury in range(judges_count):
judges_name = input('Enter the name of jury: ')
points_from_judge = float(input('Enter the points from the jury: '))
initial_points += len(judges_name) * points_from_judge / 2
if initial_points > points_needed:
print(f'Congratulations, {actor_name} got a nominee for leading role with {initial_points:.1f}!')
break
if initial_points <= points_needed:
print(f'Sorry, {actor_name} you need {points_needed - initial_points:.1f} more!') |
print("hello world")
a = 3
b = 4
c = a * b
print(c)
| print('hello world')
a = 3
b = 4
c = a * b
print(c) |
#################################################
### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
#################################################
def get_resize_target(img_sz, crop_target, do_crop=False):
if crop_target is None: return None
ch,r,c = img_sz
target_r,target_c = crop_target
ratio = (min if do_crop else max)(r/target_r, c/target_c)
return ch,round(r/ratio),round(c/ratio) | def get_resize_target(img_sz, crop_target, do_crop=False):
if crop_target is None:
return None
(ch, r, c) = img_sz
(target_r, target_c) = crop_target
ratio = (min if do_crop else max)(r / target_r, c / target_c)
return (ch, round(r / ratio), round(c / ratio)) |
def func3(a):
a/0;
def func2(a, b):
func3(a);
def func1(a, b, c):
func2(a, b);
if __name__ == "__main__":
func1(12, 0, 89) | def func3(a):
a / 0
def func2(a, b):
func3(a)
def func1(a, b, c):
func2(a, b)
if __name__ == '__main__':
func1(12, 0, 89) |
def setup():
global pg
pg = createGraphics(1000, 1000)
noLoop()
def draw():
pg.beginDraw()
pg.colorMode(HSB, 360, 100, 100, 100)
pg.background(0, 0, 25)
pg.stroke(60, 7, 86, 100)
pg.noFill()
for i in range(100):
pg.ellipse(random(pg.width), random(pg.height), 100, 100)
pg.endDraw()
pg.save('image.png')
exit()
| def setup():
global pg
pg = create_graphics(1000, 1000)
no_loop()
def draw():
pg.beginDraw()
pg.colorMode(HSB, 360, 100, 100, 100)
pg.background(0, 0, 25)
pg.stroke(60, 7, 86, 100)
pg.noFill()
for i in range(100):
pg.ellipse(random(pg.width), random(pg.height), 100, 100)
pg.endDraw()
pg.save('image.png')
exit() |
n=list(map(int,input("Enter the list").split(",")))
le=max(n)
while max(n)==le:
n.remove(max(n))
print(max(n))
| n = list(map(int, input('Enter the list').split(',')))
le = max(n)
while max(n) == le:
n.remove(max(n))
print(max(n)) |
for i in range(int(input())):
text = input().replace('.', '')
countOpen = 0
countDiamonds = 0
for char in text:
if char == '<':
countOpen += 1
elif char == '>' and countOpen > 0:
countDiamonds += 1
countOpen -= 1
print(countDiamonds) | for i in range(int(input())):
text = input().replace('.', '')
count_open = 0
count_diamonds = 0
for char in text:
if char == '<':
count_open += 1
elif char == '>' and countOpen > 0:
count_diamonds += 1
count_open -= 1
print(countDiamonds) |
def read_n_values(n):
print("Please enter", n, "values.")
values = []
for i in range(n):
values.append(input("Value {}: ".format(i + 1)))
return values
def compute_average(values):
# set sum to first value of list
total_sum = values[0]
# iterate over remaining values and add them up
for value in values[1:]:
total_sum += value
return float(total_sum) / len(values)
values = read_n_values(3)
print("Average:", compute_average(values))
| def read_n_values(n):
print('Please enter', n, 'values.')
values = []
for i in range(n):
values.append(input('Value {}: '.format(i + 1)))
return values
def compute_average(values):
total_sum = values[0]
for value in values[1:]:
total_sum += value
return float(total_sum) / len(values)
values = read_n_values(3)
print('Average:', compute_average(values)) |
load("@rules_python//python:python.bzl", "py_binary", "py_library", "py_test")
def py3_library(*args, **kwargs):
py_library(
srcs_version = "PY3",
*args,
**kwargs
)
def py3_binary(name, main = None, *args, **kwargs):
if main == None:
main = "%s.py" % (name)
py_binary(
name = name,
main = main,
legacy_create_init = False,
python_version = "PY3",
*args,
**kwargs
)
def py3_test(*args, **kwargs):
py_test(
legacy_create_init = False,
python_version = "PY3",
srcs_version = "PY3",
*args,
**kwargs
)
| load('@rules_python//python:python.bzl', 'py_binary', 'py_library', 'py_test')
def py3_library(*args, **kwargs):
py_library(*args, srcs_version='PY3', **kwargs)
def py3_binary(name, main=None, *args, **kwargs):
if main == None:
main = '%s.py' % name
py_binary(*args, name=name, main=main, legacy_create_init=False, python_version='PY3', **kwargs)
def py3_test(*args, **kwargs):
py_test(*args, legacy_create_init=False, python_version='PY3', srcs_version='PY3', **kwargs) |
try:
test = int(input().strip())
while test!=0:
k,d0,d1 = map(int,input().strip().split())
d2 = (d1+d0)%10
if k == 2:
if (d1+d0)%3 == 0:
print("YES")
continue
else:
print("NO")
continue
elif k == 3:
if (d1+d2+d0)%3 == 0:
print("YES")
continue
else:
print("NO")
continue
else:
a = (2*(d1+d0))%10
b = (4*(d1+d0))%10
c = (8*(d1+d0))%10
d = (6*(d1+d0))%10
su = d1+d2+d0+((a+b+c+d)*((k-3)//4))
if (k-3)%4 == 1:
su += a
elif (k-3)%4 == 2:
su += a+b
elif (k-3)%4 == 3:
su += a+b+c
if su%3 == 0:
print("YES")
continue
else:
print("NO")
continue
test -=1
except:
pass
| try:
test = int(input().strip())
while test != 0:
(k, d0, d1) = map(int, input().strip().split())
d2 = (d1 + d0) % 10
if k == 2:
if (d1 + d0) % 3 == 0:
print('YES')
continue
else:
print('NO')
continue
elif k == 3:
if (d1 + d2 + d0) % 3 == 0:
print('YES')
continue
else:
print('NO')
continue
else:
a = 2 * (d1 + d0) % 10
b = 4 * (d1 + d0) % 10
c = 8 * (d1 + d0) % 10
d = 6 * (d1 + d0) % 10
su = d1 + d2 + d0 + (a + b + c + d) * ((k - 3) // 4)
if (k - 3) % 4 == 1:
su += a
elif (k - 3) % 4 == 2:
su += a + b
elif (k - 3) % 4 == 3:
su += a + b + c
if su % 3 == 0:
print('YES')
continue
else:
print('NO')
continue
test -= 1
except:
pass |
##
# This software was developed and / or modified by Raytheon Company,
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
#
# U.S. EXPORT CONTROLLED TECHNICAL DATA
# This software product contains export-restricted data whose
# export/transfer/disclosure is restricted by U.S. law. Dissemination
# to non-U.S. persons whether in the United States or abroad requires
# an export license or other authorization.
#
# Contractor Name: Raytheon Company
# Contractor Address: 6825 Pine Street, Suite 340
# Mail Stop B8
# Omaha, NE 68106
# 402.291.0100
#
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
# further licensing information.
##
#
# Python wrapper for PointDataView
#
#
# SOFTWARE HISTORY
#
# Date Ticket# Engineer Description
# ------------ ---------- ----------- --------------------------
# 07/20/09 njensen Initial Creation.
#
#
#
##
# This is a base file that is not intended to be overridden.
##
class PointDataView:
def __init__(self, javaPointDataView):
self.__javaPdv = javaPointDataView
self.__keys = []
keyset = self.__javaPdv.getContainer().getParameters()
itr = keyset.iterator()
while itr.hasNext():
self.__keys.append(str(itr.next()))
def __getitem__(self, key):
result = None
strValType = self.getType(key)
if strValType == 'FLOAT':
result = self.__javaPdv.getFloat(key)
elif strValType == 'STRING':
result = self.__javaPdv.getString(key)
elif strValType == 'INT':
result = self.__javaPdv.getInt(key)
elif strValType == 'LONG':
result = self.__javaPdv.getLong(key)
return result
def getType(self, key):
val = self.__javaPdv.getType(key)
if val:
val = str(val)
return val
def has_key(self, key):
return self.__keys.__contains__(key)
def keys(self):
return self.__keys
def __contains__(self, key):
return self.has_key(key)
def getFillValue(self, key):
# TODO if we get fill value support in pointdata, hook that up
return -9999.0
def getNumberAllLevels(self, key):
strValType = self.getType(key)
jlevels = self.__javaPdv.getNumberAllLevels(key)
levels = []
for level in jlevels:
level = str(level)
if strValType == 'FLOAT':
levels.append(float(level))
elif strValType == 'STRING':
levels.append(str(level))
elif strValType == 'INT':
levels.append(int(level))
elif strValType == 'LONG':
levels.append(long(level))
return levels
| class Pointdataview:
def __init__(self, javaPointDataView):
self.__javaPdv = javaPointDataView
self.__keys = []
keyset = self.__javaPdv.getContainer().getParameters()
itr = keyset.iterator()
while itr.hasNext():
self.__keys.append(str(itr.next()))
def __getitem__(self, key):
result = None
str_val_type = self.getType(key)
if strValType == 'FLOAT':
result = self.__javaPdv.getFloat(key)
elif strValType == 'STRING':
result = self.__javaPdv.getString(key)
elif strValType == 'INT':
result = self.__javaPdv.getInt(key)
elif strValType == 'LONG':
result = self.__javaPdv.getLong(key)
return result
def get_type(self, key):
val = self.__javaPdv.getType(key)
if val:
val = str(val)
return val
def has_key(self, key):
return self.__keys.__contains__(key)
def keys(self):
return self.__keys
def __contains__(self, key):
return self.has_key(key)
def get_fill_value(self, key):
return -9999.0
def get_number_all_levels(self, key):
str_val_type = self.getType(key)
jlevels = self.__javaPdv.getNumberAllLevels(key)
levels = []
for level in jlevels:
level = str(level)
if strValType == 'FLOAT':
levels.append(float(level))
elif strValType == 'STRING':
levels.append(str(level))
elif strValType == 'INT':
levels.append(int(level))
elif strValType == 'LONG':
levels.append(long(level))
return levels |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.