content
stringlengths
7
1.05M
fixed_cases
stringlengths
1
1.28M
class Solution: def maxProfit(self, prices: List[int]) -> int: if not prices: raise Exception("No Available Prices") low = prices[0] # lowest HISTORICAL price profit = 0 for i in range(1, len(prices)): if prices[i] - low > profit: profit = prices[i] - low if prices[i] < low: low = prices[i] return profit
class Solution: def max_profit(self, prices: List[int]) -> int: if not prices: raise exception('No Available Prices') low = prices[0] profit = 0 for i in range(1, len(prices)): if prices[i] - low > profit: profit = prices[i] - low if prices[i] < low: low = prices[i] return profit
# Create a calculator function # The function should accept three parameters: # first_number: a numeric value for the math operation # second_number: a numeric value for the math operation # operation: the word 'add' or 'subtract' # the function should return the result of the two numbers added or subtracted # based on the value passed in for the operator # # Test your function with the values 6,4, add # Should return 10 # # Test your function with the values 6,4, subtract # Should return 2 # # BONUS: Test your function with the values 6, 4 and divide # Have your function return an error message when invalid values are received def calculator(first_number, second_number, operation): if operation == 'add': answer = first_number + second_number elif operation == 'subtract': answer = first_number - second_number elif operation == 'divide': answer = first_number / second_number return answer first_number = float(input('Please enter a number: ')) second_number = float(input('Please enter another number: ')) operation = input('Please enter an operation: ').lower() answer = calculator(first_number, second_number, operation) print(answer)
def calculator(first_number, second_number, operation): if operation == 'add': answer = first_number + second_number elif operation == 'subtract': answer = first_number - second_number elif operation == 'divide': answer = first_number / second_number return answer first_number = float(input('Please enter a number: ')) second_number = float(input('Please enter another number: ')) operation = input('Please enter an operation: ').lower() answer = calculator(first_number, second_number, operation) print(answer)
# Auto generated by web.apps.config module WXMP_TOKEN='laonabuzhai' WXMP_APP_ID='wxadf692dbf276c755' WXMP_APP_KEY='d5d70f3c91578b545de3392c8c758dad ' WXMP_ENCODING_AES_KEY='Y81yOIit1k5GZS9Vhx5L1JCOVaQJc9uXnhvaDVKGq4k' WXMP_MSG_ENCRYPT_METHOD='clear'
wxmp_token = 'laonabuzhai' wxmp_app_id = 'wxadf692dbf276c755' wxmp_app_key = 'd5d70f3c91578b545de3392c8c758dad ' wxmp_encoding_aes_key = 'Y81yOIit1k5GZS9Vhx5L1JCOVaQJc9uXnhvaDVKGq4k' wxmp_msg_encrypt_method = 'clear'
# Find this puzzle at: # https://adventofcode.com/2020/day/6 with open('input.txt', 'r') as file: puzzle_input = [i for i in file.read().split('\n\n')] answered = 0 for group in puzzle_input: ques_answered = set() # Add all questions answered to a set. # Duplicates are avoided by using a set. for question in group.replace('\n', ''): ques_answered.add(question) answered += len(ques_answered) print(answered)
with open('input.txt', 'r') as file: puzzle_input = [i for i in file.read().split('\n\n')] answered = 0 for group in puzzle_input: ques_answered = set() for question in group.replace('\n', ''): ques_answered.add(question) answered += len(ques_answered) print(answered)
def test_app_is_created(app): assert app.name == 'joalheria.app' def test_config_is_loaded(config): assert config["DEBUG"] is False
def test_app_is_created(app): assert app.name == 'joalheria.app' def test_config_is_loaded(config): assert config['DEBUG'] is False
database = {"shuttle":9080590855,"barath":638383877,"hannah":6987237898} print("\nGreeting\'s from Vigneshwaram") print("Welcome to phoneBook\n") while True: print("Type EDIT to edit the contact number\n CREATE to create a new contact\n SEARCH to search a specific contact\n DELETE to Delete the contact\n VIEW to view all contacts in PhoneBook") print('') function = input("Enter the function: ").lower() def view(): print('') print("Here is your phoneBook :- ") print(database) print('') def create(): print('') name = input("Enter the name of the contact: ") number = int(input("Enter the number of the contact: ")) print('') database.setdefault(name,number) print("Contact updated succesfully") print('') print(database) print('') def delete(): print('') print(database) print('') delete = input("Enter contact to delete: ") print('') if delete in database: database.pop(delete) print(database) print('') print("Contact succesfully deleted !!") print('') else: print("Given contact doesn\'t exist in phoneBook !!") print('') def search(): print('') search = input("Enter contact to search: ") print('') if search in database: print(database[search]) print('') if search not in database: print('') print("Contact doesn't exist in Phonebook !!") print('') print("Do you want to create that contact?") print('') function1 = input("CREATE to create or EXIT to ignore: ").lower() if function1 == "create": print('') create() elif function1 == "exit": print('') pass else: print('') print("Invalid input from user contact admin(Vignesh)") print('') def edit(): print('') print(database) print('') edit = input("Enter the contact which you want to edit: ") print('') if edit in database: editNumber = int(input("Enter the new number: ")) database[edit] = editNumber print('') print("Contact updated succesfully") print('') print(database) print('') else: print("Given contact doesn't exist in Phonebook") print('') sys.exit() if function == "edit": edit() elif function == "create": create() elif function == "search": search() elif function == "delete": delete() elif function == "view": view() else: print('') print("Invalid user input contact admin(Vignesh)\n") responce = input("Type \'RUN\' to keep your phoneBook open or \'EXIT\' to close your phoneBook: ").lower() print('') if responce == 'run': print('') print("Welcome back!!") continue elif responce == 'exit': print('') print('Hope you had a nice time !!') break else: print('') print(' Program has been discontinued due to Invalid input from user\n To continue run the file or contact Vignesh ') print('') break
database = {'shuttle': 9080590855, 'barath': 638383877, 'hannah': 6987237898} print("\nGreeting's from Vigneshwaram") print('Welcome to phoneBook\n') while True: print('Type EDIT to edit the contact number\n CREATE to create a new contact\n SEARCH to search a specific contact\n DELETE to Delete the contact\n VIEW to view all contacts in PhoneBook') print('') function = input('Enter the function: ').lower() def view(): print('') print('Here is your phoneBook :- ') print(database) print('') def create(): print('') name = input('Enter the name of the contact: ') number = int(input('Enter the number of the contact: ')) print('') database.setdefault(name, number) print('Contact updated succesfully') print('') print(database) print('') def delete(): print('') print(database) print('') delete = input('Enter contact to delete: ') print('') if delete in database: database.pop(delete) print(database) print('') print('Contact succesfully deleted !!') print('') else: print("Given contact doesn't exist in phoneBook !!") print('') def search(): print('') search = input('Enter contact to search: ') print('') if search in database: print(database[search]) print('') if search not in database: print('') print("Contact doesn't exist in Phonebook !!") print('') print('Do you want to create that contact?') print('') function1 = input('CREATE to create or EXIT to ignore: ').lower() if function1 == 'create': print('') create() elif function1 == 'exit': print('') pass else: print('') print('Invalid input from user contact admin(Vignesh)') print('') def edit(): print('') print(database) print('') edit = input('Enter the contact which you want to edit: ') print('') if edit in database: edit_number = int(input('Enter the new number: ')) database[edit] = editNumber print('') print('Contact updated succesfully') print('') print(database) print('') else: print("Given contact doesn't exist in Phonebook") print('') sys.exit() if function == 'edit': edit() elif function == 'create': create() elif function == 'search': search() elif function == 'delete': delete() elif function == 'view': view() else: print('') print('Invalid user input contact admin(Vignesh)\n') responce = input("Type 'RUN' to keep your phoneBook open or 'EXIT' to close your phoneBook: ").lower() print('') if responce == 'run': print('') print('Welcome back!!') continue elif responce == 'exit': print('') print('Hope you had a nice time !!') break else: print('') print(' Program has been discontinued due to Invalid input from user\n To continue run the file or contact Vignesh ') print('') break
#take a user input i = input() print (i) #int i = 23 #float j = 23.5 #bool k = True # char l = 'w' #string m = "word" #input typecasting print("Try to enter an alphabet") value1 = input() value2 = int(value1) print (value2+1) print("Please input integers only") a = int(input()) b = int(input()) #Operator 1 print (a+b); print (a-b); print (a*b); #division later # Operator 2 print (a>b) print(a<b) print(a==b) print(a>=b) print(a<=b) print(a!=b) #Operator 3 a = True b = False print(a or b) print(a and b) print(not a) #Do these operators work outside int #Yes, but don't really use anything execpt + a = "hello" b = "world" print (a+b); # - & // don't work #alphabetical print (a>b) print(a<b) print(a==b) print(a>=b) print(a<=b) print(a!=b) #complicated, useless, do you really want to know print(a or b) print(a and b) print(not a) #cool h = 6 print(a*6) # division a = 5 b = 2 c = -5 # // is integer division. It uses the floor value print(a//b) print (c//b) d = 5.0 e = 2.0 f = -5.0 # / is float division print(d/e) print(f/e) # Guess val1 = 6.0 val2 = 2.0 val3 = 6 val4 = 2 print(val1/val2) print(val1//val2) print(val3/val4) print(val3//val4) print(val1/val4) print(val1//val4) print(val3/val2) print(val3//val2) # Guess again val1 = 5.0 val2 = 2.0 val3 = 5 val4 = 2 print(val1/val2) print(val1//val2) print(val3/val4) print(val3//val4) print(val1/val4) print(val1//val4) print(val3/val2) print(val3//val2) # You don't need to remember it. It's just for fun # But if you want to - // will awlays give the floor, no matter the argument. And if any one argument is float, the answer will be written as float
i = input() print(i) i = 23 j = 23.5 k = True l = 'w' m = 'word' print('Try to enter an alphabet') value1 = input() value2 = int(value1) print(value2 + 1) print('Please input integers only') a = int(input()) b = int(input()) print(a + b) print(a - b) print(a * b) print(a > b) print(a < b) print(a == b) print(a >= b) print(a <= b) print(a != b) a = True b = False print(a or b) print(a and b) print(not a) a = 'hello' b = 'world' print(a + b) print(a > b) print(a < b) print(a == b) print(a >= b) print(a <= b) print(a != b) print(a or b) print(a and b) print(not a) h = 6 print(a * 6) a = 5 b = 2 c = -5 print(a // b) print(c // b) d = 5.0 e = 2.0 f = -5.0 print(d / e) print(f / e) val1 = 6.0 val2 = 2.0 val3 = 6 val4 = 2 print(val1 / val2) print(val1 // val2) print(val3 / val4) print(val3 // val4) print(val1 / val4) print(val1 // val4) print(val3 / val2) print(val3 // val2) val1 = 5.0 val2 = 2.0 val3 = 5 val4 = 2 print(val1 / val2) print(val1 // val2) print(val3 / val4) print(val3 // val4) print(val1 / val4) print(val1 // val4) print(val3 / val2) print(val3 // val2)
def add_native_methods(clazz): def mapAlternativeName__java_io_File__(a0): raise NotImplementedError() clazz.mapAlternativeName__java_io_File__ = staticmethod(mapAlternativeName__java_io_File__)
def add_native_methods(clazz): def map_alternative_name__java_io__file__(a0): raise not_implemented_error() clazz.mapAlternativeName__java_io_File__ = staticmethod(mapAlternativeName__java_io_File__)
class Timings(object): def __init__(self, j): self.raw = j if "blocked" in self.raw: self.blocked = self.raw["blocked"] else: self.blocked = -1 if "dns" in self.raw: self.dns = self.raw["dns"] else: self.dns = -1 if "connect" in self.raw: self.connect = self.raw["connect"] else: self.connect = -1 self.send = self.raw["send"] self.wait = self.raw["wait"] self.receive = self.raw["receive"] if "ssl" in self.raw: self.ssl = self.raw["ssl"] else: self.ssl = -1 if "comment" in self.raw: self.comment = self.raw["comment"] else: self.comment = ''
class Timings(object): def __init__(self, j): self.raw = j if 'blocked' in self.raw: self.blocked = self.raw['blocked'] else: self.blocked = -1 if 'dns' in self.raw: self.dns = self.raw['dns'] else: self.dns = -1 if 'connect' in self.raw: self.connect = self.raw['connect'] else: self.connect = -1 self.send = self.raw['send'] self.wait = self.raw['wait'] self.receive = self.raw['receive'] if 'ssl' in self.raw: self.ssl = self.raw['ssl'] else: self.ssl = -1 if 'comment' in self.raw: self.comment = self.raw['comment'] else: self.comment = ''
def splitscore(file_dir): score = [] Prefix_str = [] f = open(file_dir) for line in f: s =line.split() score.append(float(s[-1])) s = s[0] + ' ' + s[1] + ' ' + s[2] + ' ' Prefix_str.append(s) return score,Prefix_str file_dir1='submission/2019-01-28_15:45:05_fishnet150_52_submission.txt' score1,Prefix_str = splitscore(file_dir1) file_dir2 = 'submission/2019-02-13_15:22:05_FeatherNet54-se_69_submission.txt' score2,Prefix_str = splitscore(file_dir2) # print(Prefix_str[1]) file_dir3 = 'submission/2019-03-01_22:25:43_fishnet150_27_submission.txt' score3,Prefix_str = splitscore(file_dir3) # file_dir4 = 'submission/2019-02-13_13:30:12_FeatherNet54_41_submission.txt' score4,Prefix_str = splitscore(file_dir4) # file_dir5 = 'submission/2019-02-13_14:13:43_fishnet150_16_submission.txt' score5,Prefix_str = splitscore(file_dir5) file_dir6 = 'submission/2019-02-16_19:31:04_moilenetv2_5_submission.txt' score6,Prefix_str = splitscore(file_dir6) file_dir7 = 'submission/2019-02-16_19:30:02_moilenetv2_7_submission.txt' score7,Prefix_str = splitscore(file_dir7) file_dir8 = 'submission/2019-02-16_19:28:47_moilenetv2_6_submission.txt' score8,Prefix_str = splitscore(file_dir8) file_dir9 = 'submission/2019-03-01_17:10:11_mobilelitenetB_48_submission.txt' score9,Prefix_str = splitscore(file_dir9) file_dir10 = 'submission/2019-03-01_17:38:27_mobilelitenetA_51_submission.txt' score10,Prefix_str = splitscore(file_dir10) # scores =[score1,score2,score3,score4,score5,score6,score7,score8,score9] scores = [score1,score2,score3,score4,score5,score6,score7,score8,score9,score10] def Average(lst): return sum(lst) / len(lst) def fecth_ensembled_score(scores, threshold): ensembled_score = [] for i in range(len(score1)): line_socres = [scores[j][i] for j in range(len(scores))] mean_socre = Average(line_socres) if mean_socre > threshold: ensembled_score.append(max(line_socres)) else: ensembled_score.append(min(line_socres)) return ensembled_score def num_err(ensembled_score,threshold,real_scores): count = 0 for i in range(len(real_scores)): if real_scores[i] == (ensembled_score[i]>0.5): pass else: count = count + 1 if count < 50: print('threshold: {:.3f} num_errors is {}'.format(threshold,count)) return count # submission_ensembled_file_dir='data/val_label.txt' submission_ensembled_file_dir='data/test_private_list.txt' real_scores,Prefix_str = splitscore(submission_ensembled_file_dir) print('img num in test: ',len(real_scores)) def get_best_threshold(): min_count = 10000000 best_threshold = 0.0 for i in range(100): threshold = i / 100 ensembled_score = fecth_ensembled_score(scores, threshold) count = num_err(ensembled_score,threshold,real_scores) if count < min_count: min_count = count best_threshold = threshold return best_threshold best_threshold = get_best_threshold() print('best threshold is :',best_threshold) submission_ensembled_file_dir='submission/final_submission.txt' ensembled_file = open(submission_ensembled_file_dir,'a') ensembled_score = fecth_ensembled_score(scores, best_threshold) for i in range(len(ensembled_score)): ensembled_file.write(Prefix_str[i]+str(ensembled_score[i])+'\n') ensembled_file.close()
def splitscore(file_dir): score = [] prefix_str = [] f = open(file_dir) for line in f: s = line.split() score.append(float(s[-1])) s = s[0] + ' ' + s[1] + ' ' + s[2] + ' ' Prefix_str.append(s) return (score, Prefix_str) file_dir1 = 'submission/2019-01-28_15:45:05_fishnet150_52_submission.txt' (score1, prefix_str) = splitscore(file_dir1) file_dir2 = 'submission/2019-02-13_15:22:05_FeatherNet54-se_69_submission.txt' (score2, prefix_str) = splitscore(file_dir2) file_dir3 = 'submission/2019-03-01_22:25:43_fishnet150_27_submission.txt' (score3, prefix_str) = splitscore(file_dir3) file_dir4 = 'submission/2019-02-13_13:30:12_FeatherNet54_41_submission.txt' (score4, prefix_str) = splitscore(file_dir4) file_dir5 = 'submission/2019-02-13_14:13:43_fishnet150_16_submission.txt' (score5, prefix_str) = splitscore(file_dir5) file_dir6 = 'submission/2019-02-16_19:31:04_moilenetv2_5_submission.txt' (score6, prefix_str) = splitscore(file_dir6) file_dir7 = 'submission/2019-02-16_19:30:02_moilenetv2_7_submission.txt' (score7, prefix_str) = splitscore(file_dir7) file_dir8 = 'submission/2019-02-16_19:28:47_moilenetv2_6_submission.txt' (score8, prefix_str) = splitscore(file_dir8) file_dir9 = 'submission/2019-03-01_17:10:11_mobilelitenetB_48_submission.txt' (score9, prefix_str) = splitscore(file_dir9) file_dir10 = 'submission/2019-03-01_17:38:27_mobilelitenetA_51_submission.txt' (score10, prefix_str) = splitscore(file_dir10) scores = [score1, score2, score3, score4, score5, score6, score7, score8, score9, score10] def average(lst): return sum(lst) / len(lst) def fecth_ensembled_score(scores, threshold): ensembled_score = [] for i in range(len(score1)): line_socres = [scores[j][i] for j in range(len(scores))] mean_socre = average(line_socres) if mean_socre > threshold: ensembled_score.append(max(line_socres)) else: ensembled_score.append(min(line_socres)) return ensembled_score def num_err(ensembled_score, threshold, real_scores): count = 0 for i in range(len(real_scores)): if real_scores[i] == (ensembled_score[i] > 0.5): pass else: count = count + 1 if count < 50: print('threshold: {:.3f} num_errors is {}'.format(threshold, count)) return count submission_ensembled_file_dir = 'data/test_private_list.txt' (real_scores, prefix_str) = splitscore(submission_ensembled_file_dir) print('img num in test: ', len(real_scores)) def get_best_threshold(): min_count = 10000000 best_threshold = 0.0 for i in range(100): threshold = i / 100 ensembled_score = fecth_ensembled_score(scores, threshold) count = num_err(ensembled_score, threshold, real_scores) if count < min_count: min_count = count best_threshold = threshold return best_threshold best_threshold = get_best_threshold() print('best threshold is :', best_threshold) submission_ensembled_file_dir = 'submission/final_submission.txt' ensembled_file = open(submission_ensembled_file_dir, 'a') ensembled_score = fecth_ensembled_score(scores, best_threshold) for i in range(len(ensembled_score)): ensembled_file.write(Prefix_str[i] + str(ensembled_score[i]) + '\n') ensembled_file.close()
layer_info = \ {1: {'B': 1, 'K': 96, 'C': 3, 'OY': 165, 'OX': 165, 'FY': 3, 'FX': 3, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 2: {'B': 1, 'K': 42, 'C': 96, 'OY': 165, 'OX': 165, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 3: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 4: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 5: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 6: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 7: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 8: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 9: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 10: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 11: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 12: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 13: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 14: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 15: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 16: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 17: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 18: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 19: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 20: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 21: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 22: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 23: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 24: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 25: {'B': 1, 'K': 84, 'C': 168, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 26: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 27: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 28: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 29: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 30: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 31: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 32: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 33: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 34: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 35: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 36: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 37: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 38: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 39: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 40: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 41: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 42: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 43: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 44: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 45: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 46: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 47: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 48: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 49: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 50: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 51: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 52: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 53: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 54: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 55: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 56: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 57: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 58: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 59: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 60: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 61: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 62: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 63: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 64: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 65: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 66: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 67: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 68: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 69: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 70: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 71: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 72: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 73: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 74: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 75: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 76: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 77: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 78: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 79: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 80: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 81: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 82: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 83: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 84: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 85: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 86: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 87: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 88: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 89: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 90: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 91: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 92: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 93: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 94: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 95: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 96: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 97: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 98: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 99: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 100: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 101: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 102: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 103: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 104: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 105: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 106: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 107: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 108: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 109: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 110: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 111: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 112: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 113: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 114: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 115: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 116: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 117: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 118: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 119: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 120: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 121: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 122: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 123: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 124: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 125: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 126: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 127: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 128: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 129: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 130: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 131: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 132: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 133: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 134: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 135: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 136: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 137: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 138: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 139: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 140: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 141: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 142: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 143: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 144: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 145: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 146: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 147: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 148: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 149: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 150: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 151: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 152: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 153: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 154: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 155: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 156: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 157: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 158: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 159: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 160: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 161: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 162: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 163: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 164: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 165: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 166: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 167: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 168: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 169: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 170: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 171: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 172: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 173: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 174: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 175: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 176: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 177: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 178: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 179: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 180: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 181: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 182: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 183: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 184: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 185: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 186: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 187: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 188: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 189: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 190: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 191: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 192: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 193: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 194: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 195: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 196: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 197: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 198: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 199: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 200: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 201: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 202: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 203: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 204: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 205: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 206: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 207: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 208: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 209: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 210: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 211: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 212: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 213: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 214: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 215: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 216: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 217: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 218: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 219: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 220: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 221: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 222: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 223: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 224: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 225: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 226: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 227: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 228: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 229: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 230: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 231: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 232: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 233: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 234: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 235: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 236: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 237: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 238: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 239: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 240: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 241: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 242: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 243: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 244: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 245: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 246: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 247: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 248: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 249: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 250: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 251: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 252: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 253: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 254: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 255: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 256: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 257: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 258: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 259: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 260: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 261: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 262: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 263: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 264: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 265: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 266: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 267: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 268: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 269: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 270: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 271: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 272: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 273: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 274: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 275: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 276: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 277: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 278: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 279: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 280: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 281: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 282: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 283: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 284: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 285: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 286: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 287: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 288: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 289: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 290: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 291: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 292: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 293: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 294: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 295: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 296: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 297: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 298: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 299: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 300: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 301: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 302: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 303: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 304: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 305: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 306: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 307: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 308: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 309: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 310: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 311: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 312: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 313: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 314: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 315: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 316: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 317: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 318: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 319: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 320: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 321: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 322: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 323: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 324: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 325: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 326: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 327: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 328: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 329: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 330: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 331: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 332: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 333: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 334: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 335: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 336: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 337: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 338: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 339: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 340: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 341: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 342: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 343: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 344: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 345: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 346: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 347: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 348: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 349: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 350: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 351: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 352: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 353: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 354: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 355: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 356: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 357: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 358: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 359: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 360: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 361: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 362: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 363: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 364: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 365: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 366: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 367: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 368: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 369: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 370: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 371: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 372: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 373: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 374: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 375: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 376: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 377: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 378: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 379: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 380: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 381: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 382: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 383: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 384: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 385: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 386: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 387: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 388: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 389: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 390: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 391: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 392: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 393: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 394: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 395: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 396: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 397: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 398: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 399: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 400: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 401: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 402: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 403: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 404: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 405: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 406: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 407: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 408: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 409: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 410: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 411: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 412: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 413: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 414: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 415: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 416: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 417: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 418: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 419: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 420: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 421: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 422: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 423: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 424: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 425: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 426: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 427: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 428: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 429: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 430: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 431: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 432: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 433: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 434: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 435: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 436: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 437: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 438: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 439: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 440: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 441: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 442: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 443: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 444: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 445: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 446: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 447: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 448: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 449: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 450: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 451: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 452: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 453: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 454: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 455: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 456: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 457: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 458: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 459: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 460: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 461: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 462: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 463: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 464: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 465: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 466: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 467: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 468: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 469: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 470: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 471: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 472: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 473: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 474: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 475: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 476: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 477: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 478: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 479: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 480: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 481: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 482: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 483: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 484: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 485: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 486: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 487: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 488: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 489: {'B': 1, 'K': 1000, 'C': 4032, 'OY': 1, 'OX': 1, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}}
layer_info = {1: {'B': 1, 'K': 96, 'C': 3, 'OY': 165, 'OX': 165, 'FY': 3, 'FX': 3, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 2: {'B': 1, 'K': 42, 'C': 96, 'OY': 165, 'OX': 165, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 3: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 4: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 5: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 6: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 7: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 8: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 9: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 10: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 11: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 12: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 13: {'B': 1, 'K': 96, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 96}, 14: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 15: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 16: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 17: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 18: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 19: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 20: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 21: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 42}, 22: {'B': 1, 'K': 42, 'C': 42, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 23: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 24: {'B': 1, 'K': 42, 'C': 96, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 25: {'B': 1, 'K': 84, 'C': 168, 'OY': 83, 'OX': 83, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 26: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 27: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 28: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 29: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 30: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 31: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 32: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 33: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 34: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 35: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 36: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 37: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 38: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 39: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 40: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 41: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 42: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 43: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 44: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 84}, 45: {'B': 1, 'K': 84, 'C': 84, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 46: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 47: {'B': 1, 'K': 84, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 48: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 49: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 50: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 51: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 52: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 53: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 54: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 55: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 56: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 57: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 58: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 59: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 60: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 61: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 62: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 63: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 64: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 65: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 66: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 67: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 68: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 69: {'B': 1, 'K': 168, 'C': 336, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 70: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 71: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 72: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 73: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 74: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 75: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 76: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 77: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 78: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 79: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 80: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 81: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 82: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 83: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 84: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 85: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 86: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 87: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 88: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 89: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 90: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 91: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 92: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 93: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 94: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 95: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 96: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 97: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 98: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 99: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 100: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 101: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 102: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 103: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 104: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 105: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 106: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 107: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 108: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 109: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 110: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 111: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 112: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 113: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 114: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 115: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 116: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 117: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 118: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 119: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 120: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 121: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 122: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 123: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 124: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 125: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 126: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 127: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 128: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 129: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 130: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 131: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 132: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 133: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 134: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 135: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 136: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 137: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 138: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 139: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 140: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 141: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 142: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 143: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 144: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 145: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 146: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 147: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 148: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 149: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 150: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 151: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 152: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 153: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 154: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 155: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 156: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 157: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 158: {'B': 1, 'K': 168, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 159: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 160: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 161: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 162: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 163: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 164: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 165: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 166: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 167: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 168: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 169: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 170: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 171: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 172: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 173: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 174: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 175: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 176: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 177: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 168}, 178: {'B': 1, 'K': 168, 'C': 168, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 179: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 180: {'B': 1, 'K': 336, 'C': 1008, 'OY': 42, 'OX': 42, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 181: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 182: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 183: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 184: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 185: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 186: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 187: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 188: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 189: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 190: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 191: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 192: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 193: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 194: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 195: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 196: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 197: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 198: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 199: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 200: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 201: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 202: {'B': 1, 'K': 168, 'C': 1008, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 203: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 204: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 205: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 206: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 207: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 208: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 209: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 210: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 211: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 212: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 213: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 214: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 215: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 216: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 217: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 218: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 219: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 220: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 221: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 222: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 223: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 224: {'B': 1, 'K': 336, 'C': 1344, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 225: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 226: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 227: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 228: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 229: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 230: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 231: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 232: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 233: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 234: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 235: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 236: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 237: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 238: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 239: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 240: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 241: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 242: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 243: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 244: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 245: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 246: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 247: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 248: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 249: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 250: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 251: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 252: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 253: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 254: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 255: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 256: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 257: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 258: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 259: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 260: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 261: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 262: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 263: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 264: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 265: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 266: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 267: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 268: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 269: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 270: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 271: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 272: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 273: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 274: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 275: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 276: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 277: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 278: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 279: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 280: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 281: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 282: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 283: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 284: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 285: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 286: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 287: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 288: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 289: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 290: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 291: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 292: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 293: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 294: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 295: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 296: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 297: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 298: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 299: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 300: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 301: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 302: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 303: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 304: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 305: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 306: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 307: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 308: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 309: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 310: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 311: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 312: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 313: {'B': 1, 'K': 336, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 314: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 315: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 316: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 317: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 318: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 319: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 320: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 321: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 322: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 323: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 324: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 325: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 326: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 327: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 328: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 329: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 330: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 331: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 332: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 336}, 333: {'B': 1, 'K': 336, 'C': 336, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 334: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 335: {'B': 1, 'K': 672, 'C': 2016, 'OY': 21, 'OX': 21, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 336: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 337: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 338: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 339: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 340: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 341: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 342: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 343: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 344: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 345: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 346: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 2, 'SX': 2, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 347: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 348: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 349: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 350: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 7, 'FX': 7, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 351: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 352: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 353: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 354: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 355: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 356: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 357: {'B': 1, 'K': 336, 'C': 2016, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 358: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 359: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 360: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 361: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 362: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 363: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 364: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 365: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 366: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 367: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 368: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 369: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 370: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 371: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 372: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 373: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 374: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 375: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 376: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 377: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 378: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 379: {'B': 1, 'K': 672, 'C': 2688, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 380: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 381: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 382: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 383: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 384: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 385: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 386: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 387: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 388: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 389: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 390: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 391: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 392: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 393: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 394: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 395: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 396: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 397: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 398: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 399: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 400: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 401: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 402: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 403: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 404: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 405: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 406: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 407: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 408: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 409: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 410: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 411: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 412: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 413: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 414: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 415: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 416: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 417: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 418: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 419: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 420: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 421: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 422: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 423: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 424: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 425: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 426: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 427: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 428: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 429: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 430: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 431: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 432: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 433: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 434: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 435: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 436: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 437: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 438: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 439: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 440: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 441: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 442: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 443: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 444: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 445: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 446: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 447: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 448: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 449: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 450: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 451: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 452: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 453: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 454: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 455: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 456: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 457: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 458: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 459: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 460: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 461: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 462: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 463: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 464: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 465: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 466: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 467: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 468: {'B': 1, 'K': 672, 'C': 4032, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 469: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 470: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 471: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 472: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 473: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 474: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 475: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 476: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 477: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 478: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 479: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 480: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 481: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 482: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 483: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 5, 'FX': 5, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 484: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 485: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 486: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 487: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 3, 'FX': 3, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 672}, 488: {'B': 1, 'K': 672, 'C': 672, 'OY': 11, 'OX': 11, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}, 489: {'B': 1, 'K': 1000, 'C': 4032, 'OY': 1, 'OX': 1, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0, 'G': 1}}
shelters = ['MNTG1', 'MNTG'] twitter_api_key = 'k5O4owMpAPDcI7LG7y4fue9Fc' twitter_api_secret = 'XXXXX' #Edited out twitter_access_token = '2150117929-qnttvTJW3uvP0QbZr2ZKxaBlrkRPa9FdUUWSxqx' twitter_access_token_secret = 'XXXXX'
shelters = ['MNTG1', 'MNTG'] twitter_api_key = 'k5O4owMpAPDcI7LG7y4fue9Fc' twitter_api_secret = 'XXXXX' twitter_access_token = '2150117929-qnttvTJW3uvP0QbZr2ZKxaBlrkRPa9FdUUWSxqx' twitter_access_token_secret = 'XXXXX'
class LatticeModifier: object = None strength = None vertex_group = None
class Latticemodifier: object = None strength = None vertex_group = None
class ModbusException(Exception): def __init__(self, code): codes = { '1': 'Illegal Function', '2': 'Illegal Data Address', '3': 'Illegal Data Value', '4': 'Slave Device Failure', '5': 'Acknowledge', '6': 'Slave Device Busy', '7': 'Negative Acknowledge', '8': 'Memory Parity Error', '10': 'Gateway Path Unavailable', '11': 'Gateway Target Device Failed to Respond', } super().__init__(codes.get(str(code), 'Unknown error code {}'.format(code))) class BadCRCResponse(Exception): pass class BadCRCRequest(Exception): pass
class Modbusexception(Exception): def __init__(self, code): codes = {'1': 'Illegal Function', '2': 'Illegal Data Address', '3': 'Illegal Data Value', '4': 'Slave Device Failure', '5': 'Acknowledge', '6': 'Slave Device Busy', '7': 'Negative Acknowledge', '8': 'Memory Parity Error', '10': 'Gateway Path Unavailable', '11': 'Gateway Target Device Failed to Respond'} super().__init__(codes.get(str(code), 'Unknown error code {}'.format(code))) class Badcrcresponse(Exception): pass class Badcrcrequest(Exception): pass
'''2. Write a Python program to convert all units of time into seconds.''' def time_conv(ty, tmo, twk, tdy, thr, tmin): yr = 365 * 24 * 60 * 60 * ty mont = 30 * 24 * 60 * 60 *tmo week = 7 * 24 * 60 * 60 * twk days = 24 * 60 * 60 * tdy hrs= 60*60 * thr mins =60* tmin return f"{ty} year ={yr} seconds\n{tmo} month = {mont} seconds\n{twk} week = {week} seconds\n{tdy}day = {days} seconds\n{thr} hour = {hrs} seconds\n{tmin} minute = {mins} seconds" print(time_conv(1, 1, 1, 1, 1, 1))
"""2. Write a Python program to convert all units of time into seconds.""" def time_conv(ty, tmo, twk, tdy, thr, tmin): yr = 365 * 24 * 60 * 60 * ty mont = 30 * 24 * 60 * 60 * tmo week = 7 * 24 * 60 * 60 * twk days = 24 * 60 * 60 * tdy hrs = 60 * 60 * thr mins = 60 * tmin return f'{ty} year ={yr} seconds\n{tmo} month = {mont} seconds\n{twk} week = {week} seconds\n{tdy}day = {days} seconds\n{thr} hour = {hrs} seconds\n{tmin} minute = {mins} seconds' print(time_conv(1, 1, 1, 1, 1, 1))
## Single ended filter chain element # class FilterElement(object): ## Constructor def __init__(self): self.nextelement = None ##! points at next in chain self.name = "noname" ##! nicename for printing ## Call to input data into the filter def input(self, data, meta=None): return self.down.rxup(data, meta) def output(self, data, meta=None): return self.nextelement.input(data, meta) ## Call this regularly on blocks which impliment it def tick(self): pass ## String classes together with this def set_next(self, n): self.nextelement = n
class Filterelement(object): def __init__(self): self.nextelement = None self.name = 'noname' def input(self, data, meta=None): return self.down.rxup(data, meta) def output(self, data, meta=None): return self.nextelement.input(data, meta) def tick(self): pass def set_next(self, n): self.nextelement = n
class driven_range: def main(self, inputData): inputData.sort() self.inputData = inputData.copy() return self.generateResult() def convertDigitalToAnalog(self, digitalValueRange, ADC_Sensor_Type): # Formula used to convert Digital to Analog: # # Analog_Value = ((Scale * Digital_Value) / Max._Digital_Value_permissible) - Offset # # For 12 Bit: # Scale = 10 [10A - 0A = 10] # Max._Digital_Value_permissible = 4094 # Offset = 0 [As no Negative reading is applicable] # # For 10 Bit: # Scale = 30 [15A - (-15A) = 30] # Max._Digital_Value_permissible = 1023 # Offset = 15 [As negative values upto -15 are applivale] # analogValueRange=[] maxDigitalValue, scale, offset = self.sensorParameters(ADC_Sensor_Type) for digitalValue in digitalValueRange: if (0<=digitalValue and digitalValue<=maxDigitalValue): analogValue = abs(round((scale*digitalValue/maxDigitalValue)-offset)) analogValueRange.append(analogValue) return analogValueRange def sensorParameters(self, ADC_Sensor_Type): if (ADC_Sensor_Type == '12Bits'): maxDigitalValue = 4094 scale = 10 offset = 0 else: maxDigitalValue = 1023 scale = 30 offset = 15 return maxDigitalValue, scale, offset def getRangeListInfo(self): cumulativeFrequency = 0 rangeInfoList = [] listCurrentPosition = 0 while (cumulativeFrequency != len(self.inputData)): rangeOpenerElement = self.inputData[listCurrentPosition] rangeCloserPosition = self.getRangeCloserPosition(listCurrentPosition) frequency = rangeCloserPosition - listCurrentPosition + 1 rangeCloserElement = self.inputData[rangeCloserPosition] rangeInfoList.append((rangeOpenerElement, rangeCloserElement, frequency)) listCurrentPosition = rangeCloserPosition + 1 cumulativeFrequency+=frequency return rangeInfoList def getRangeCloserPosition(self, listBeginPosition): rangeCloserPosition = listBeginPosition for i in range(listBeginPosition+1, len(self.inputData)): differenceInValues = (self.inputData[i]-self.inputData[rangeCloserPosition]) if(differenceInValues==0 or differenceInValues==1): rangeCloserPosition = i return rangeCloserPosition def generateResult(self): self.printOnConsole('Range, Result') rangeInfoList = self.getRangeListInfo() rangeResult = {} for rangeInfo in rangeInfoList: rangeData = f'{rangeInfo[0]}-{rangeInfo[1]}' freqData = f'{rangeInfo[2]}' rangeResult.update({rangeData: freqData}) self.printOnConsole(f'{rangeData}, {freqData}') self.printOnConsole('\n') return rangeResult def printOnConsole(self, rangeResult): print(rangeResult)
class Driven_Range: def main(self, inputData): inputData.sort() self.inputData = inputData.copy() return self.generateResult() def convert_digital_to_analog(self, digitalValueRange, ADC_Sensor_Type): analog_value_range = [] (max_digital_value, scale, offset) = self.sensorParameters(ADC_Sensor_Type) for digital_value in digitalValueRange: if 0 <= digitalValue and digitalValue <= maxDigitalValue: analog_value = abs(round(scale * digitalValue / maxDigitalValue - offset)) analogValueRange.append(analogValue) return analogValueRange def sensor_parameters(self, ADC_Sensor_Type): if ADC_Sensor_Type == '12Bits': max_digital_value = 4094 scale = 10 offset = 0 else: max_digital_value = 1023 scale = 30 offset = 15 return (maxDigitalValue, scale, offset) def get_range_list_info(self): cumulative_frequency = 0 range_info_list = [] list_current_position = 0 while cumulativeFrequency != len(self.inputData): range_opener_element = self.inputData[listCurrentPosition] range_closer_position = self.getRangeCloserPosition(listCurrentPosition) frequency = rangeCloserPosition - listCurrentPosition + 1 range_closer_element = self.inputData[rangeCloserPosition] rangeInfoList.append((rangeOpenerElement, rangeCloserElement, frequency)) list_current_position = rangeCloserPosition + 1 cumulative_frequency += frequency return rangeInfoList def get_range_closer_position(self, listBeginPosition): range_closer_position = listBeginPosition for i in range(listBeginPosition + 1, len(self.inputData)): difference_in_values = self.inputData[i] - self.inputData[rangeCloserPosition] if differenceInValues == 0 or differenceInValues == 1: range_closer_position = i return rangeCloserPosition def generate_result(self): self.printOnConsole('Range, Result') range_info_list = self.getRangeListInfo() range_result = {} for range_info in rangeInfoList: range_data = f'{rangeInfo[0]}-{rangeInfo[1]}' freq_data = f'{rangeInfo[2]}' rangeResult.update({rangeData: freqData}) self.printOnConsole(f'{rangeData}, {freqData}') self.printOnConsole('\n') return rangeResult def print_on_console(self, rangeResult): print(rangeResult)
# Given 2 arrays, create a function that let's a user know (true/false) whether these two arrays contain any # common items # For Example: # const array1 = ['a', 'b', 'c', 'x'];//const array2 = ['z', 'y', 'i']; # should return false. # ----------- # const array1 = ['a', 'b', 'c', 'x'];//const array2 = ['z', 'y', 'x']; # should return true. # 2 parameters - arrays - no size limit # return true or false # Function Definition def find_common(list_1, list_2): for i in list1: # O(m) for j in list2: # O(n) if i == j: print('Common element is :', i) return True return False # Declarations list1 = ['a', 'b', 'c', 'x'] list2 = ['z', 'y', 'x'] find_common(list1, list2) # BigO(m*n)
def find_common(list_1, list_2): for i in list1: for j in list2: if i == j: print('Common element is :', i) return True return False list1 = ['a', 'b', 'c', 'x'] list2 = ['z', 'y', 'x'] find_common(list1, list2)
# version_info should conform to PEP 386 # (major, minor, micro, alpha/beta/rc/final, #) # (1, 1, 2, 'alpha', 0) => "1.1.2.dev" # (1, 2, 0, 'beta', 2) => "1.2b2" __version_info__ = (0, 1, 0, 'alpha', 0) def _get_version(): # pragma: no cover " Returns a PEP 386-compliant version number from version_info. " assert len(__version_info__) == 5 assert __version_info__[3] in ('alpha', 'beta', 'rc', 'final') parts = 2 if __version_info__[2] == 0 else 3 main = '.'.join(map(str, __version_info__[:parts])) sub = '' if __version_info__[3] == 'alpha' and __version_info__[4] == 0: # TODO: maybe append some sort of git info here?? sub = '.dev' elif __version_info__[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[__version_info__[3]] + str(__version_info__[4]) return str(main + sub) __version__ = _get_version()
__version_info__ = (0, 1, 0, 'alpha', 0) def _get_version(): """ Returns a PEP 386-compliant version number from version_info. """ assert len(__version_info__) == 5 assert __version_info__[3] in ('alpha', 'beta', 'rc', 'final') parts = 2 if __version_info__[2] == 0 else 3 main = '.'.join(map(str, __version_info__[:parts])) sub = '' if __version_info__[3] == 'alpha' and __version_info__[4] == 0: sub = '.dev' elif __version_info__[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[__version_info__[3]] + str(__version_info__[4]) return str(main + sub) __version__ = _get_version()
class Options(object): def __init__(self, dry_run=False, unoptimized=False, verbose=False, debug=False): self.dry_run = dry_run self.unoptimized = unoptimized self.verbose = verbose self.debug = debug
class Options(object): def __init__(self, dry_run=False, unoptimized=False, verbose=False, debug=False): self.dry_run = dry_run self.unoptimized = unoptimized self.verbose = verbose self.debug = debug
# Bubble Sort implementation. def bubbleSort(array): for i in range(len(array) - 1, -1, -1): for j in range(i): if array[j] > array[j+1]: array = exchange(array, j, j+1) print(array) return array # Exchange function implementation. def exchange(array, i, j): temp = array[i] array[i] = array[j] array[j] = temp return array # Improved bubble sort implementation. def improvedBubbleSort(array): flag = True for i in range(len(array) - 1, -1, -1): for j in range(i): if array[j] > array[j+1]: array = exchange(array, j, j+1) flag = False print(array) if flag: break return array a = input().split() nums = [] for i in a: nums.append(int(i)) answer = bubbleSort(nums) print(answer)
def bubble_sort(array): for i in range(len(array) - 1, -1, -1): for j in range(i): if array[j] > array[j + 1]: array = exchange(array, j, j + 1) print(array) return array def exchange(array, i, j): temp = array[i] array[i] = array[j] array[j] = temp return array def improved_bubble_sort(array): flag = True for i in range(len(array) - 1, -1, -1): for j in range(i): if array[j] > array[j + 1]: array = exchange(array, j, j + 1) flag = False print(array) if flag: break return array a = input().split() nums = [] for i in a: nums.append(int(i)) answer = bubble_sort(nums) print(answer)
words = [word.upper() for word in open('gettysburg.txt').read().split()] theDictionary = {} for word in words: theDictionary[word] = theDictionary.get(word,0) + 1 print(theDictionary)
words = [word.upper() for word in open('gettysburg.txt').read().split()] the_dictionary = {} for word in words: theDictionary[word] = theDictionary.get(word, 0) + 1 print(theDictionary)
class Mobile: def __init__(self, brand, price): print("Inside Constructor") self.brand = brand self.price = price def purchase(self): print("Purchasing a mobile") print("The mobile has brand", self.brand, "and price", self.price) print("Mobile-1") mob1 = Mobile("Apple", 20000) mob1.purchase() print("Mobile-2") mob2 = Mobile("Samsung", 8000) mob2.purchase() # we can invoke one method from another using self: class Mobile2: def display(self): print("Displaying Details") def purchase(self): self.display() print("Calcuating the price") Mobile2().purchase()
class Mobile: def __init__(self, brand, price): print('Inside Constructor') self.brand = brand self.price = price def purchase(self): print('Purchasing a mobile') print('The mobile has brand', self.brand, 'and price', self.price) print('Mobile-1') mob1 = mobile('Apple', 20000) mob1.purchase() print('Mobile-2') mob2 = mobile('Samsung', 8000) mob2.purchase() class Mobile2: def display(self): print('Displaying Details') def purchase(self): self.display() print('Calcuating the price') mobile2().purchase()
def byte(n): return bytes([n]) def rlp_encode_bytes(x): if len(x) == 1 and x < b'\x80': # For a single byte whose value is in the [0x00, 0x7f] range, # that byte is its own RLP encoding. return x elif len(x) < 56: # Otherwise, if a string is 0-55 bytes long, the RLP encoding # consists of a single byte with value 0x80 plus the length of # the string followed by the string. The range of the first # byte is thus [0x80, 0xb7]. return byte(len(x) + 0x80) + x else: length = to_binary(len(x)) # If a string is more than 55 bytes long, the RLP encoding # consists of a single byte with value 0xb7 plus the length in # bytes of the length of the string in binary form, followed by # the length of the string, followed by the string. For example, # a length-1024 string would be encoded as \xb9\x04\x00 followed # by the string. The range of the first byte is thus [0xb8, 0xbf]. return byte(len(length) + 0xb7) + length + x def rlp_encode_list(xs): sx = b''.join(rlp_encode(x) for x in xs) if len(sx) < 56: # If the total payload of a list (i.e. the combined length of all # its items being RLP encoded) is 0-55 bytes long, the RLP encoding # consists of a single byte with value 0xc0 plus the length of the # list followed by the concatenation of the RLP encodings of the # items. The range of the first byte is thus [0xc0, 0xf7]. return byte(len(sx) + 0xc0) + sx else: length = to_binary(len(sx)) # If the total payload of a list is more than 55 bytes long, the # RLP encoding consists of a single byte with value 0xf7 plus the # length in bytes of the length of the payload in binary form, # followed by the length of the payload, followed by the concatenation # of the RLP encodings of the items. The range of the first byte is # thus [0xf8, 0xff]. return byte(len(length) + 0xf7) + length + sx def rlp_encode(x): if isinstance(x,bytes): return rlp_encode_bytes(x) elif isinstance(x,list): return rlp_encode_list(x) else: return "unknown type " # encodes an integer as bytes, big-endian def to_binary(n): return n.to_bytes((n.bit_length() + 7) // 8, 'big') assert(rlp_encode(b'dog').hex() == '83646f67') assert(rlp_encode([[], [[]], [[], [[]]]]).hex() == 'c7c0c1c0c3c0c1c0')
def byte(n): return bytes([n]) def rlp_encode_bytes(x): if len(x) == 1 and x < b'\x80': return x elif len(x) < 56: return byte(len(x) + 128) + x else: length = to_binary(len(x)) return byte(len(length) + 183) + length + x def rlp_encode_list(xs): sx = b''.join((rlp_encode(x) for x in xs)) if len(sx) < 56: return byte(len(sx) + 192) + sx else: length = to_binary(len(sx)) return byte(len(length) + 247) + length + sx def rlp_encode(x): if isinstance(x, bytes): return rlp_encode_bytes(x) elif isinstance(x, list): return rlp_encode_list(x) else: return 'unknown type ' def to_binary(n): return n.to_bytes((n.bit_length() + 7) // 8, 'big') assert rlp_encode(b'dog').hex() == '83646f67' assert rlp_encode([[], [[]], [[], [[]]]]).hex() == 'c7c0c1c0c3c0c1c0'
pm = sm.getChr().getPotentialMan() pm.addPotential(pm.generateRandomPotential(1)) sm.completeQuestNoRewards(12394) sm.dispose()
pm = sm.getChr().getPotentialMan() pm.addPotential(pm.generateRandomPotential(1)) sm.completeQuestNoRewards(12394) sm.dispose()
class UpdateIpExclusionObject: def __init__(self, filterIp, ipFilterId): self.filterIp = filterIp self.ipFilterId = ipFilterId self.memo = None
class Updateipexclusionobject: def __init__(self, filterIp, ipFilterId): self.filterIp = filterIp self.ipFilterId = ipFilterId self.memo = None
class PsKeyCode: def __init__(self): pass def keycode_in_alpha_upper(self, code): return 65 <= code <= 90 def keycode_in_alpha_lower(self, code): return 97 <= code <= 122 def keycode_in_alpha(self, code): return self.keycode_in_alpha_lower( code ) or self.keycode_in_alpha_upper(code) def keycode_in_num_neg(self, code): return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code) def keycode_in_num_float(self, code): return self.keycode_in_pure_num(code) or self.keycode_in_dot(code) def keycode_in_pure_num(self, code): return 48 <= code <= 57 def keycode_in_num(self, code): return ( self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code) or self.keycode_in_dot(code) ) def keycode_in_dot(self, code): return code == 46 def keycode_in_alpha_num(self, code): return self.keycode_in_num(code) or self.keycode_in_alpha(code) def keycode_in_space(self, code): return code == 32 def keycode_in_hyphen(self, code): return code == 45 def keycode_in_return(self, code): return code == 0xD
class Pskeycode: def __init__(self): pass def keycode_in_alpha_upper(self, code): return 65 <= code <= 90 def keycode_in_alpha_lower(self, code): return 97 <= code <= 122 def keycode_in_alpha(self, code): return self.keycode_in_alpha_lower(code) or self.keycode_in_alpha_upper(code) def keycode_in_num_neg(self, code): return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code) def keycode_in_num_float(self, code): return self.keycode_in_pure_num(code) or self.keycode_in_dot(code) def keycode_in_pure_num(self, code): return 48 <= code <= 57 def keycode_in_num(self, code): return self.keycode_in_pure_num(code) or self.keycode_in_hyphen(code) or self.keycode_in_dot(code) def keycode_in_dot(self, code): return code == 46 def keycode_in_alpha_num(self, code): return self.keycode_in_num(code) or self.keycode_in_alpha(code) def keycode_in_space(self, code): return code == 32 def keycode_in_hyphen(self, code): return code == 45 def keycode_in_return(self, code): return code == 13
class AnalysisElement: def __init__(self, validationResult, validationMessage): self.validation_result = validationResult self.validation_message = validationMessage class AnalysisResult: def __init__(self): self.elements = [] def add_element(self, element: AnalysisElement): self.elements.append(element) class DataSetEntry: def __init__(self, index, classification): self.index = index self.classification = classification class DataSetEntries: def __init__(self): self.entries = [] def add_element(self, entry: DataSetEntry): self.entries.append(entry)
class Analysiselement: def __init__(self, validationResult, validationMessage): self.validation_result = validationResult self.validation_message = validationMessage class Analysisresult: def __init__(self): self.elements = [] def add_element(self, element: AnalysisElement): self.elements.append(element) class Datasetentry: def __init__(self, index, classification): self.index = index self.classification = classification class Datasetentries: def __init__(self): self.entries = [] def add_element(self, entry: DataSetEntry): self.entries.append(entry)
lim = 10000000 num = [True for _ in range(lim)] for i in range(4, lim, 2): num[i] = False for i in range(3, lim, 2): if num[i]: for j in range(i * i, lim, i): num[j] = False oa = 0 ob = 0 mnp = 0 size = 1000 for a in range(-size + 1, size): for b in range(1, size, 2): np = 0 for n in range(0, lim): if num[n * n + a * n + b]: np += 1 else: break if np > mnp: mnp = np oa = a ob = b print(oa * ob)
lim = 10000000 num = [True for _ in range(lim)] for i in range(4, lim, 2): num[i] = False for i in range(3, lim, 2): if num[i]: for j in range(i * i, lim, i): num[j] = False oa = 0 ob = 0 mnp = 0 size = 1000 for a in range(-size + 1, size): for b in range(1, size, 2): np = 0 for n in range(0, lim): if num[n * n + a * n + b]: np += 1 else: break if np > mnp: mnp = np oa = a ob = b print(oa * ob)
STATS = [ { "num_node_expansions": 0, "search_time": 0.0260686, "total_time": 0.161712, "plan_length": 64, "plan_cost": 64, "objects_used": 261, "objects_total": 379, "neural_net_time": 0.10646533966064453, "num_replanning_steps": 3, "wall_time": 2.435692071914673 }, { "num_node_expansions": 0, "search_time": 0.0279492, "total_time": 0.17491, "plan_length": 52, "plan_cost": 52, "objects_used": 276, "objects_total": 379, "neural_net_time": 0.058258056640625, "num_replanning_steps": 4, "wall_time": 3.361152410507202 }, { "num_node_expansions": 0, "search_time": 0.0313502, "total_time": 0.245342, "plan_length": 61, "plan_cost": 61, "objects_used": 273, "objects_total": 379, "neural_net_time": 0.06083822250366211, "num_replanning_steps": 4, "wall_time": 4.374004602432251 }, { "num_node_expansions": 0, "search_time": 0.0462309, "total_time": 0.237932, "plan_length": 59, "plan_cost": 59, "objects_used": 243, "objects_total": 379, "neural_net_time": 0.05759286880493164, "num_replanning_steps": 3, "wall_time": 2.5270650386810303 }, { "num_node_expansions": 0, "search_time": 0.0368982, "total_time": 0.233488, "plan_length": 54, "plan_cost": 54, "objects_used": 272, "objects_total": 379, "neural_net_time": 0.05734562873840332, "num_replanning_steps": 4, "wall_time": 3.6436092853546143 }, { "num_node_expansions": 0, "search_time": 0.0155738, "total_time": 0.0682826, "plan_length": 73, "plan_cost": 73, "objects_used": 117, "objects_total": 217, "neural_net_time": 0.029698610305786133, "num_replanning_steps": 1, "wall_time": 0.906505823135376 }, { "num_node_expansions": 0, "search_time": 0.0171021, "total_time": 0.0927101, "plan_length": 63, "plan_cost": 63, "objects_used": 122, "objects_total": 217, "neural_net_time": 0.05449986457824707, "num_replanning_steps": 1, "wall_time": 1.0803697109222412 }, { "num_node_expansions": 0, "search_time": 0.020779, "total_time": 0.09933, "plan_length": 55, "plan_cost": 55, "objects_used": 124, "objects_total": 217, "neural_net_time": 0.03200268745422363, "num_replanning_steps": 1, "wall_time": 1.2762155532836914 }, { "num_node_expansions": 0, "search_time": 0.116974, "total_time": 0.160087, "plan_length": 118, "plan_cost": 118, "objects_used": 113, "objects_total": 217, "neural_net_time": 0.032900094985961914, "num_replanning_steps": 1, "wall_time": 0.9846065044403076 }, { "num_node_expansions": 0, "search_time": 0.00864599, "total_time": 0.0618746, "plan_length": 51, "plan_cost": 51, "objects_used": 121, "objects_total": 217, "neural_net_time": 0.03256845474243164, "num_replanning_steps": 1, "wall_time": 0.9345319271087646 }, { "num_node_expansions": 0, "search_time": 0.0150995, "total_time": 0.139498, "plan_length": 55, "plan_cost": 55, "objects_used": 184, "objects_total": 320, "neural_net_time": 0.04656338691711426, "num_replanning_steps": 1, "wall_time": 1.576615810394287 }, { "num_node_expansions": 0, "search_time": 0.0195704, "total_time": 0.0776481, "plan_length": 76, "plan_cost": 76, "objects_used": 157, "objects_total": 320, "neural_net_time": 0.044793128967285156, "num_replanning_steps": 1, "wall_time": 0.9117276668548584 }, { "num_node_expansions": 0, "search_time": 0.0218047, "total_time": 0.0813003, "plan_length": 91, "plan_cost": 91, "objects_used": 169, "objects_total": 320, "neural_net_time": 0.0447840690612793, "num_replanning_steps": 1, "wall_time": 1.0234675407409668 }, { "num_node_expansions": 0, "search_time": 0.0318204, "total_time": 0.112719, "plan_length": 82, "plan_cost": 82, "objects_used": 168, "objects_total": 320, "neural_net_time": 0.048575401306152344, "num_replanning_steps": 1, "wall_time": 1.182650089263916 }, { "num_node_expansions": 0, "search_time": 0.0214701, "total_time": 0.12052, "plan_length": 68, "plan_cost": 68, "objects_used": 193, "objects_total": 305, "neural_net_time": 0.046851396560668945, "num_replanning_steps": 1, "wall_time": 1.3422448635101318 }, { "num_node_expansions": 0, "search_time": 0.0238054, "total_time": 0.0993613, "plan_length": 53, "plan_cost": 53, "objects_used": 214, "objects_total": 305, "neural_net_time": 0.04596352577209473, "num_replanning_steps": 1, "wall_time": 1.352567434310913 }, { "num_node_expansions": 0, "search_time": 0.0134198, "total_time": 0.0667924, "plan_length": 86, "plan_cost": 86, "objects_used": 169, "objects_total": 305, "neural_net_time": 0.043943166732788086, "num_replanning_steps": 1, "wall_time": 0.9647877216339111 }, { "num_node_expansions": 0, "search_time": 0.231443, "total_time": 0.312803, "plan_length": 84, "plan_cost": 84, "objects_used": 194, "objects_total": 305, "neural_net_time": 0.04476618766784668, "num_replanning_steps": 1, "wall_time": 1.5609796047210693 }, { "num_node_expansions": 0, "search_time": 0.0272906, "total_time": 0.101185, "plan_length": 63, "plan_cost": 63, "objects_used": 211, "objects_total": 305, "neural_net_time": 0.04451155662536621, "num_replanning_steps": 1, "wall_time": 1.2499635219573975 }, { "num_node_expansions": 0, "search_time": 0.0767934, "total_time": 0.113212, "plan_length": 156, "plan_cost": 156, "objects_used": 114, "objects_total": 212, "neural_net_time": 0.03154778480529785, "num_replanning_steps": 1, "wall_time": 0.8447625637054443 }, { "num_node_expansions": 0, "search_time": 0.665671, "total_time": 0.694063, "plan_length": 92, "plan_cost": 92, "objects_used": 109, "objects_total": 212, "neural_net_time": 0.029831647872924805, "num_replanning_steps": 0, "wall_time": 1.1394996643066406 }, { "num_node_expansions": 0, "search_time": 0.0104928, "total_time": 0.0622191, "plan_length": 68, "plan_cost": 68, "objects_used": 159, "objects_total": 365, "neural_net_time": 0.05487489700317383, "num_replanning_steps": 1, "wall_time": 0.8508009910583496 }, { "num_node_expansions": 0, "search_time": 0.0328946, "total_time": 0.126837, "plan_length": 89, "plan_cost": 89, "objects_used": 203, "objects_total": 365, "neural_net_time": 0.053848981857299805, "num_replanning_steps": 2, "wall_time": 1.7260208129882812 }, { "num_node_expansions": 0, "search_time": 0.0234049, "total_time": 0.0851975, "plan_length": 75, "plan_cost": 75, "objects_used": 168, "objects_total": 365, "neural_net_time": 0.053121328353881836, "num_replanning_steps": 1, "wall_time": 1.030031681060791 }, { "num_node_expansions": 0, "search_time": 0.013401, "total_time": 0.0713078, "plan_length": 59, "plan_cost": 59, "objects_used": 169, "objects_total": 365, "neural_net_time": 0.05536675453186035, "num_replanning_steps": 1, "wall_time": 1.1071906089782715 }, { "num_node_expansions": 0, "search_time": 0.104847, "total_time": 0.195061, "plan_length": 52, "plan_cost": 52, "objects_used": 167, "objects_total": 302, "neural_net_time": 0.04499459266662598, "num_replanning_steps": 1, "wall_time": 1.4144911766052246 }, { "num_node_expansions": 0, "search_time": 0.0765767, "total_time": 0.131634, "plan_length": 66, "plan_cost": 66, "objects_used": 159, "objects_total": 302, "neural_net_time": 0.0444490909576416, "num_replanning_steps": 1, "wall_time": 1.1225917339324951 }, { "num_node_expansions": 0, "search_time": 0.0633749, "total_time": 0.159814, "plan_length": 70, "plan_cost": 70, "objects_used": 163, "objects_total": 302, "neural_net_time": 0.044997453689575195, "num_replanning_steps": 1, "wall_time": 1.3655714988708496 }, { "num_node_expansions": 0, "search_time": 0.134185, "total_time": 0.447814, "plan_length": 68, "plan_cost": 68, "objects_used": 230, "objects_total": 365, "neural_net_time": 0.05536222457885742, "num_replanning_steps": 3, "wall_time": 4.771425485610962 }, { "num_node_expansions": 0, "search_time": 0.0165639, "total_time": 0.0940178, "plan_length": 62, "plan_cost": 62, "objects_used": 183, "objects_total": 365, "neural_net_time": 0.05884861946105957, "num_replanning_steps": 1, "wall_time": 1.2651619911193848 }, { "num_node_expansions": 0, "search_time": 0.124357, "total_time": 0.248529, "plan_length": 81, "plan_cost": 81, "objects_used": 214, "objects_total": 365, "neural_net_time": 0.05655694007873535, "num_replanning_steps": 3, "wall_time": 2.9309194087982178 }, { "num_node_expansions": 0, "search_time": 0.0150311, "total_time": 0.101787, "plan_length": 63, "plan_cost": 63, "objects_used": 192, "objects_total": 365, "neural_net_time": 0.0555422306060791, "num_replanning_steps": 2, "wall_time": 1.666846752166748 }, { "num_node_expansions": 0, "search_time": 0.0150945, "total_time": 0.0514842, "plan_length": 90, "plan_cost": 90, "objects_used": 175, "objects_total": 365, "neural_net_time": 0.05377364158630371, "num_replanning_steps": 1, "wall_time": 0.8902196884155273 }, { "num_node_expansions": 0, "search_time": 0.0176192, "total_time": 0.0796522, "plan_length": 92, "plan_cost": 92, "objects_used": 178, "objects_total": 362, "neural_net_time": 0.05463862419128418, "num_replanning_steps": 1, "wall_time": 1.0109508037567139 }, { "num_node_expansions": 0, "search_time": 0.0104213, "total_time": 0.0470441, "plan_length": 77, "plan_cost": 77, "objects_used": 160, "objects_total": 362, "neural_net_time": 0.054520368576049805, "num_replanning_steps": 1, "wall_time": 0.7542357444763184 }, { "num_node_expansions": 0, "search_time": 0.00448661, "total_time": 0.0177422, "plan_length": 84, "plan_cost": 84, "objects_used": 136, "objects_total": 362, "neural_net_time": 0.05472111701965332, "num_replanning_steps": 0, "wall_time": 0.4157280921936035 }, { "num_node_expansions": 0, "search_time": 0.045955, "total_time": 0.190108, "plan_length": 74, "plan_cost": 74, "objects_used": 221, "objects_total": 322, "neural_net_time": 0.047133445739746094, "num_replanning_steps": 1, "wall_time": 1.6114940643310547 }, { "num_node_expansions": 0, "search_time": 0.0459863, "total_time": 0.178842, "plan_length": 103, "plan_cost": 103, "objects_used": 215, "objects_total": 441, "neural_net_time": 0.06811332702636719, "num_replanning_steps": 1, "wall_time": 1.7026808261871338 }, { "num_node_expansions": 0, "search_time": 0.0375162, "total_time": 0.17094, "plan_length": 71, "plan_cost": 71, "objects_used": 216, "objects_total": 441, "neural_net_time": 0.06928086280822754, "num_replanning_steps": 1, "wall_time": 3.0769970417022705 }, { "num_node_expansions": 0, "search_time": 0.15904, "total_time": 0.361705, "plan_length": 123, "plan_cost": 123, "objects_used": 224, "objects_total": 441, "neural_net_time": 0.06914591789245605, "num_replanning_steps": 2, "wall_time": 2.922773838043213 }, { "num_node_expansions": 0, "search_time": 0.127007, "total_time": 0.591304, "plan_length": 97, "plan_cost": 97, "objects_used": 249, "objects_total": 441, "neural_net_time": 0.06865596771240234, "num_replanning_steps": 2, "wall_time": 5.019821643829346 }, { "num_node_expansions": 0, "search_time": 0.0700383, "total_time": 0.268587, "plan_length": 95, "plan_cost": 95, "objects_used": 227, "objects_total": 441, "neural_net_time": 0.06840014457702637, "num_replanning_steps": 1, "wall_time": 2.3747305870056152 }, { "num_node_expansions": 0, "search_time": 0.0111234, "total_time": 0.0605018, "plan_length": 76, "plan_cost": 76, "objects_used": 171, "objects_total": 417, "neural_net_time": 0.06322216987609863, "num_replanning_steps": 1, "wall_time": 1.0112266540527344 }, { "num_node_expansions": 0, "search_time": 0.0183385, "total_time": 0.106249, "plan_length": 87, "plan_cost": 87, "objects_used": 194, "objects_total": 417, "neural_net_time": 0.0725412368774414, "num_replanning_steps": 1, "wall_time": 1.364563226699829 }, { "num_node_expansions": 0, "search_time": 0.0190809, "total_time": 0.111638, "plan_length": 58, "plan_cost": 58, "objects_used": 216, "objects_total": 417, "neural_net_time": 0.06367969512939453, "num_replanning_steps": 3, "wall_time": 2.054568290710449 }, { "num_node_expansions": 0, "search_time": 0.210535, "total_time": 0.334857, "plan_length": 123, "plan_cost": 123, "objects_used": 203, "objects_total": 417, "neural_net_time": 0.06560730934143066, "num_replanning_steps": 2, "wall_time": 2.3334832191467285 }, { "num_node_expansions": 0, "search_time": 0.0219698, "total_time": 0.130103, "plan_length": 62, "plan_cost": 62, "objects_used": 197, "objects_total": 417, "neural_net_time": 0.06369471549987793, "num_replanning_steps": 1, "wall_time": 1.6010661125183105 }, { "num_node_expansions": 0, "search_time": 0.0101631, "total_time": 0.0415831, "plan_length": 76, "plan_cost": 76, "objects_used": 112, "objects_total": 232, "neural_net_time": 0.03584003448486328, "num_replanning_steps": 1, "wall_time": 0.7372550964355469 }, { "num_node_expansions": 0, "search_time": 0.0111653, "total_time": 0.0418656, "plan_length": 53, "plan_cost": 53, "objects_used": 110, "objects_total": 232, "neural_net_time": 0.032355308532714844, "num_replanning_steps": 0, "wall_time": 0.5313618183135986 }, { "num_node_expansions": 0, "search_time": 0.00524832, "total_time": 0.0220788, "plan_length": 56, "plan_cost": 56, "objects_used": 106, "objects_total": 232, "neural_net_time": 0.03553891181945801, "num_replanning_steps": 1, "wall_time": 0.7103500366210938 }, { "num_node_expansions": 0, "search_time": 0.0136476, "total_time": 0.0672117, "plan_length": 78, "plan_cost": 78, "objects_used": 130, "objects_total": 212, "neural_net_time": 0.02926468849182129, "num_replanning_steps": 1, "wall_time": 0.8608791828155518 }, { "num_node_expansions": 0, "search_time": 0.016218, "total_time": 0.0887494, "plan_length": 75, "plan_cost": 75, "objects_used": 133, "objects_total": 212, "neural_net_time": 0.029755353927612305, "num_replanning_steps": 1, "wall_time": 1.1875898838043213 }, { "num_node_expansions": 0, "search_time": 0.0276188, "total_time": 0.0960435, "plan_length": 87, "plan_cost": 87, "objects_used": 132, "objects_total": 212, "neural_net_time": 0.04944968223571777, "num_replanning_steps": 2, "wall_time": 1.4252169132232666 }, { "num_node_expansions": 0, "search_time": 0.00914205, "total_time": 0.0572312, "plan_length": 60, "plan_cost": 60, "objects_used": 125, "objects_total": 212, "neural_net_time": 0.05208992958068848, "num_replanning_steps": 1, "wall_time": 0.8581404685974121 } ]
stats = [{'num_node_expansions': 0, 'search_time': 0.0260686, 'total_time': 0.161712, 'plan_length': 64, 'plan_cost': 64, 'objects_used': 261, 'objects_total': 379, 'neural_net_time': 0.10646533966064453, 'num_replanning_steps': 3, 'wall_time': 2.435692071914673}, {'num_node_expansions': 0, 'search_time': 0.0279492, 'total_time': 0.17491, 'plan_length': 52, 'plan_cost': 52, 'objects_used': 276, 'objects_total': 379, 'neural_net_time': 0.058258056640625, 'num_replanning_steps': 4, 'wall_time': 3.361152410507202}, {'num_node_expansions': 0, 'search_time': 0.0313502, 'total_time': 0.245342, 'plan_length': 61, 'plan_cost': 61, 'objects_used': 273, 'objects_total': 379, 'neural_net_time': 0.06083822250366211, 'num_replanning_steps': 4, 'wall_time': 4.374004602432251}, {'num_node_expansions': 0, 'search_time': 0.0462309, 'total_time': 0.237932, 'plan_length': 59, 'plan_cost': 59, 'objects_used': 243, 'objects_total': 379, 'neural_net_time': 0.05759286880493164, 'num_replanning_steps': 3, 'wall_time': 2.5270650386810303}, {'num_node_expansions': 0, 'search_time': 0.0368982, 'total_time': 0.233488, 'plan_length': 54, 'plan_cost': 54, 'objects_used': 272, 'objects_total': 379, 'neural_net_time': 0.05734562873840332, 'num_replanning_steps': 4, 'wall_time': 3.6436092853546143}, {'num_node_expansions': 0, 'search_time': 0.0155738, 'total_time': 0.0682826, 'plan_length': 73, 'plan_cost': 73, 'objects_used': 117, 'objects_total': 217, 'neural_net_time': 0.029698610305786133, 'num_replanning_steps': 1, 'wall_time': 0.906505823135376}, {'num_node_expansions': 0, 'search_time': 0.0171021, 'total_time': 0.0927101, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 122, 'objects_total': 217, 'neural_net_time': 0.05449986457824707, 'num_replanning_steps': 1, 'wall_time': 1.0803697109222412}, {'num_node_expansions': 0, 'search_time': 0.020779, 'total_time': 0.09933, 'plan_length': 55, 'plan_cost': 55, 'objects_used': 124, 'objects_total': 217, 'neural_net_time': 0.03200268745422363, 'num_replanning_steps': 1, 'wall_time': 1.2762155532836914}, {'num_node_expansions': 0, 'search_time': 0.116974, 'total_time': 0.160087, 'plan_length': 118, 'plan_cost': 118, 'objects_used': 113, 'objects_total': 217, 'neural_net_time': 0.032900094985961914, 'num_replanning_steps': 1, 'wall_time': 0.9846065044403076}, {'num_node_expansions': 0, 'search_time': 0.00864599, 'total_time': 0.0618746, 'plan_length': 51, 'plan_cost': 51, 'objects_used': 121, 'objects_total': 217, 'neural_net_time': 0.03256845474243164, 'num_replanning_steps': 1, 'wall_time': 0.9345319271087646}, {'num_node_expansions': 0, 'search_time': 0.0150995, 'total_time': 0.139498, 'plan_length': 55, 'plan_cost': 55, 'objects_used': 184, 'objects_total': 320, 'neural_net_time': 0.04656338691711426, 'num_replanning_steps': 1, 'wall_time': 1.576615810394287}, {'num_node_expansions': 0, 'search_time': 0.0195704, 'total_time': 0.0776481, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 157, 'objects_total': 320, 'neural_net_time': 0.044793128967285156, 'num_replanning_steps': 1, 'wall_time': 0.9117276668548584}, {'num_node_expansions': 0, 'search_time': 0.0218047, 'total_time': 0.0813003, 'plan_length': 91, 'plan_cost': 91, 'objects_used': 169, 'objects_total': 320, 'neural_net_time': 0.0447840690612793, 'num_replanning_steps': 1, 'wall_time': 1.0234675407409668}, {'num_node_expansions': 0, 'search_time': 0.0318204, 'total_time': 0.112719, 'plan_length': 82, 'plan_cost': 82, 'objects_used': 168, 'objects_total': 320, 'neural_net_time': 0.048575401306152344, 'num_replanning_steps': 1, 'wall_time': 1.182650089263916}, {'num_node_expansions': 0, 'search_time': 0.0214701, 'total_time': 0.12052, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 193, 'objects_total': 305, 'neural_net_time': 0.046851396560668945, 'num_replanning_steps': 1, 'wall_time': 1.3422448635101318}, {'num_node_expansions': 0, 'search_time': 0.0238054, 'total_time': 0.0993613, 'plan_length': 53, 'plan_cost': 53, 'objects_used': 214, 'objects_total': 305, 'neural_net_time': 0.04596352577209473, 'num_replanning_steps': 1, 'wall_time': 1.352567434310913}, {'num_node_expansions': 0, 'search_time': 0.0134198, 'total_time': 0.0667924, 'plan_length': 86, 'plan_cost': 86, 'objects_used': 169, 'objects_total': 305, 'neural_net_time': 0.043943166732788086, 'num_replanning_steps': 1, 'wall_time': 0.9647877216339111}, {'num_node_expansions': 0, 'search_time': 0.231443, 'total_time': 0.312803, 'plan_length': 84, 'plan_cost': 84, 'objects_used': 194, 'objects_total': 305, 'neural_net_time': 0.04476618766784668, 'num_replanning_steps': 1, 'wall_time': 1.5609796047210693}, {'num_node_expansions': 0, 'search_time': 0.0272906, 'total_time': 0.101185, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 211, 'objects_total': 305, 'neural_net_time': 0.04451155662536621, 'num_replanning_steps': 1, 'wall_time': 1.2499635219573975}, {'num_node_expansions': 0, 'search_time': 0.0767934, 'total_time': 0.113212, 'plan_length': 156, 'plan_cost': 156, 'objects_used': 114, 'objects_total': 212, 'neural_net_time': 0.03154778480529785, 'num_replanning_steps': 1, 'wall_time': 0.8447625637054443}, {'num_node_expansions': 0, 'search_time': 0.665671, 'total_time': 0.694063, 'plan_length': 92, 'plan_cost': 92, 'objects_used': 109, 'objects_total': 212, 'neural_net_time': 0.029831647872924805, 'num_replanning_steps': 0, 'wall_time': 1.1394996643066406}, {'num_node_expansions': 0, 'search_time': 0.0104928, 'total_time': 0.0622191, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 159, 'objects_total': 365, 'neural_net_time': 0.05487489700317383, 'num_replanning_steps': 1, 'wall_time': 0.8508009910583496}, {'num_node_expansions': 0, 'search_time': 0.0328946, 'total_time': 0.126837, 'plan_length': 89, 'plan_cost': 89, 'objects_used': 203, 'objects_total': 365, 'neural_net_time': 0.053848981857299805, 'num_replanning_steps': 2, 'wall_time': 1.7260208129882812}, {'num_node_expansions': 0, 'search_time': 0.0234049, 'total_time': 0.0851975, 'plan_length': 75, 'plan_cost': 75, 'objects_used': 168, 'objects_total': 365, 'neural_net_time': 0.053121328353881836, 'num_replanning_steps': 1, 'wall_time': 1.030031681060791}, {'num_node_expansions': 0, 'search_time': 0.013401, 'total_time': 0.0713078, 'plan_length': 59, 'plan_cost': 59, 'objects_used': 169, 'objects_total': 365, 'neural_net_time': 0.05536675453186035, 'num_replanning_steps': 1, 'wall_time': 1.1071906089782715}, {'num_node_expansions': 0, 'search_time': 0.104847, 'total_time': 0.195061, 'plan_length': 52, 'plan_cost': 52, 'objects_used': 167, 'objects_total': 302, 'neural_net_time': 0.04499459266662598, 'num_replanning_steps': 1, 'wall_time': 1.4144911766052246}, {'num_node_expansions': 0, 'search_time': 0.0765767, 'total_time': 0.131634, 'plan_length': 66, 'plan_cost': 66, 'objects_used': 159, 'objects_total': 302, 'neural_net_time': 0.0444490909576416, 'num_replanning_steps': 1, 'wall_time': 1.1225917339324951}, {'num_node_expansions': 0, 'search_time': 0.0633749, 'total_time': 0.159814, 'plan_length': 70, 'plan_cost': 70, 'objects_used': 163, 'objects_total': 302, 'neural_net_time': 0.044997453689575195, 'num_replanning_steps': 1, 'wall_time': 1.3655714988708496}, {'num_node_expansions': 0, 'search_time': 0.134185, 'total_time': 0.447814, 'plan_length': 68, 'plan_cost': 68, 'objects_used': 230, 'objects_total': 365, 'neural_net_time': 0.05536222457885742, 'num_replanning_steps': 3, 'wall_time': 4.771425485610962}, {'num_node_expansions': 0, 'search_time': 0.0165639, 'total_time': 0.0940178, 'plan_length': 62, 'plan_cost': 62, 'objects_used': 183, 'objects_total': 365, 'neural_net_time': 0.05884861946105957, 'num_replanning_steps': 1, 'wall_time': 1.2651619911193848}, {'num_node_expansions': 0, 'search_time': 0.124357, 'total_time': 0.248529, 'plan_length': 81, 'plan_cost': 81, 'objects_used': 214, 'objects_total': 365, 'neural_net_time': 0.05655694007873535, 'num_replanning_steps': 3, 'wall_time': 2.9309194087982178}, {'num_node_expansions': 0, 'search_time': 0.0150311, 'total_time': 0.101787, 'plan_length': 63, 'plan_cost': 63, 'objects_used': 192, 'objects_total': 365, 'neural_net_time': 0.0555422306060791, 'num_replanning_steps': 2, 'wall_time': 1.666846752166748}, {'num_node_expansions': 0, 'search_time': 0.0150945, 'total_time': 0.0514842, 'plan_length': 90, 'plan_cost': 90, 'objects_used': 175, 'objects_total': 365, 'neural_net_time': 0.05377364158630371, 'num_replanning_steps': 1, 'wall_time': 0.8902196884155273}, {'num_node_expansions': 0, 'search_time': 0.0176192, 'total_time': 0.0796522, 'plan_length': 92, 'plan_cost': 92, 'objects_used': 178, 'objects_total': 362, 'neural_net_time': 0.05463862419128418, 'num_replanning_steps': 1, 'wall_time': 1.0109508037567139}, {'num_node_expansions': 0, 'search_time': 0.0104213, 'total_time': 0.0470441, 'plan_length': 77, 'plan_cost': 77, 'objects_used': 160, 'objects_total': 362, 'neural_net_time': 0.054520368576049805, 'num_replanning_steps': 1, 'wall_time': 0.7542357444763184}, {'num_node_expansions': 0, 'search_time': 0.00448661, 'total_time': 0.0177422, 'plan_length': 84, 'plan_cost': 84, 'objects_used': 136, 'objects_total': 362, 'neural_net_time': 0.05472111701965332, 'num_replanning_steps': 0, 'wall_time': 0.4157280921936035}, {'num_node_expansions': 0, 'search_time': 0.045955, 'total_time': 0.190108, 'plan_length': 74, 'plan_cost': 74, 'objects_used': 221, 'objects_total': 322, 'neural_net_time': 0.047133445739746094, 'num_replanning_steps': 1, 'wall_time': 1.6114940643310547}, {'num_node_expansions': 0, 'search_time': 0.0459863, 'total_time': 0.178842, 'plan_length': 103, 'plan_cost': 103, 'objects_used': 215, 'objects_total': 441, 'neural_net_time': 0.06811332702636719, 'num_replanning_steps': 1, 'wall_time': 1.7026808261871338}, {'num_node_expansions': 0, 'search_time': 0.0375162, 'total_time': 0.17094, 'plan_length': 71, 'plan_cost': 71, 'objects_used': 216, 'objects_total': 441, 'neural_net_time': 0.06928086280822754, 'num_replanning_steps': 1, 'wall_time': 3.0769970417022705}, {'num_node_expansions': 0, 'search_time': 0.15904, 'total_time': 0.361705, 'plan_length': 123, 'plan_cost': 123, 'objects_used': 224, 'objects_total': 441, 'neural_net_time': 0.06914591789245605, 'num_replanning_steps': 2, 'wall_time': 2.922773838043213}, {'num_node_expansions': 0, 'search_time': 0.127007, 'total_time': 0.591304, 'plan_length': 97, 'plan_cost': 97, 'objects_used': 249, 'objects_total': 441, 'neural_net_time': 0.06865596771240234, 'num_replanning_steps': 2, 'wall_time': 5.019821643829346}, {'num_node_expansions': 0, 'search_time': 0.0700383, 'total_time': 0.268587, 'plan_length': 95, 'plan_cost': 95, 'objects_used': 227, 'objects_total': 441, 'neural_net_time': 0.06840014457702637, 'num_replanning_steps': 1, 'wall_time': 2.3747305870056152}, {'num_node_expansions': 0, 'search_time': 0.0111234, 'total_time': 0.0605018, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 171, 'objects_total': 417, 'neural_net_time': 0.06322216987609863, 'num_replanning_steps': 1, 'wall_time': 1.0112266540527344}, {'num_node_expansions': 0, 'search_time': 0.0183385, 'total_time': 0.106249, 'plan_length': 87, 'plan_cost': 87, 'objects_used': 194, 'objects_total': 417, 'neural_net_time': 0.0725412368774414, 'num_replanning_steps': 1, 'wall_time': 1.364563226699829}, {'num_node_expansions': 0, 'search_time': 0.0190809, 'total_time': 0.111638, 'plan_length': 58, 'plan_cost': 58, 'objects_used': 216, 'objects_total': 417, 'neural_net_time': 0.06367969512939453, 'num_replanning_steps': 3, 'wall_time': 2.054568290710449}, {'num_node_expansions': 0, 'search_time': 0.210535, 'total_time': 0.334857, 'plan_length': 123, 'plan_cost': 123, 'objects_used': 203, 'objects_total': 417, 'neural_net_time': 0.06560730934143066, 'num_replanning_steps': 2, 'wall_time': 2.3334832191467285}, {'num_node_expansions': 0, 'search_time': 0.0219698, 'total_time': 0.130103, 'plan_length': 62, 'plan_cost': 62, 'objects_used': 197, 'objects_total': 417, 'neural_net_time': 0.06369471549987793, 'num_replanning_steps': 1, 'wall_time': 1.6010661125183105}, {'num_node_expansions': 0, 'search_time': 0.0101631, 'total_time': 0.0415831, 'plan_length': 76, 'plan_cost': 76, 'objects_used': 112, 'objects_total': 232, 'neural_net_time': 0.03584003448486328, 'num_replanning_steps': 1, 'wall_time': 0.7372550964355469}, {'num_node_expansions': 0, 'search_time': 0.0111653, 'total_time': 0.0418656, 'plan_length': 53, 'plan_cost': 53, 'objects_used': 110, 'objects_total': 232, 'neural_net_time': 0.032355308532714844, 'num_replanning_steps': 0, 'wall_time': 0.5313618183135986}, {'num_node_expansions': 0, 'search_time': 0.00524832, 'total_time': 0.0220788, 'plan_length': 56, 'plan_cost': 56, 'objects_used': 106, 'objects_total': 232, 'neural_net_time': 0.03553891181945801, 'num_replanning_steps': 1, 'wall_time': 0.7103500366210938}, {'num_node_expansions': 0, 'search_time': 0.0136476, 'total_time': 0.0672117, 'plan_length': 78, 'plan_cost': 78, 'objects_used': 130, 'objects_total': 212, 'neural_net_time': 0.02926468849182129, 'num_replanning_steps': 1, 'wall_time': 0.8608791828155518}, {'num_node_expansions': 0, 'search_time': 0.016218, 'total_time': 0.0887494, 'plan_length': 75, 'plan_cost': 75, 'objects_used': 133, 'objects_total': 212, 'neural_net_time': 0.029755353927612305, 'num_replanning_steps': 1, 'wall_time': 1.1875898838043213}, {'num_node_expansions': 0, 'search_time': 0.0276188, 'total_time': 0.0960435, 'plan_length': 87, 'plan_cost': 87, 'objects_used': 132, 'objects_total': 212, 'neural_net_time': 0.04944968223571777, 'num_replanning_steps': 2, 'wall_time': 1.4252169132232666}, {'num_node_expansions': 0, 'search_time': 0.00914205, 'total_time': 0.0572312, 'plan_length': 60, 'plan_cost': 60, 'objects_used': 125, 'objects_total': 212, 'neural_net_time': 0.05208992958068848, 'num_replanning_steps': 1, 'wall_time': 0.8581404685974121}]
# Numbers are not stored in the written representation, so they can't be # treated like strings. a = 123 print(a[1])
a = 123 print(a[1])
def get_reversed_string(word): return word[::-1] while True: string = input() if string == 'end': break rev_str = get_reversed_string(string) print(f'{string} = {rev_str}')
def get_reversed_string(word): return word[::-1] while True: string = input() if string == 'end': break rev_str = get_reversed_string(string) print(f'{string} = {rev_str}')
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def levelOrderBottom(self, root: 'TreeNode') -> 'List[List[int]]': if not root: return stack = [(root,0)] rst = [] while stack: n, level = stack.pop(0) if len(rst) < level + 1: rst.insert(0,[]) rst[-(level+1)].append(n.val) if n.left: stack.append((n.left,level+1)) if n.right: stack.append((n.right, level+1)) return rst
class Solution: def level_order_bottom(self, root: 'TreeNode') -> 'List[List[int]]': if not root: return stack = [(root, 0)] rst = [] while stack: (n, level) = stack.pop(0) if len(rst) < level + 1: rst.insert(0, []) rst[-(level + 1)].append(n.val) if n.left: stack.append((n.left, level + 1)) if n.right: stack.append((n.right, level + 1)) return rst
# def function_name_print(a,b,c,d): # # print(a,b,c,d) def funargs(normal,*args, **kwargs): print(normal) for item in args: print(item) print("\nNow I would like to introduce some of our heroes") for key,value in kwargs.items(): print(f"{key} is a {value}") # As a tuple # function_name_print("Jiggu","g","f","dd") list = ["Jiggu","g","f","dd"] normal = "Yhis is normal" kw = {"Rohan":"Monitor", "Jiggu":"Sports coach","Him":"Programmer"} funargs(normal,*list,**kw)
def funargs(normal, *args, **kwargs): print(normal) for item in args: print(item) print('\nNow I would like to introduce some of our heroes') for (key, value) in kwargs.items(): print(f'{key} is a {value}') list = ['Jiggu', 'g', 'f', 'dd'] normal = 'Yhis is normal' kw = {'Rohan': 'Monitor', 'Jiggu': 'Sports coach', 'Him': 'Programmer'} funargs(normal, *list, **kw)
class MonoDevelopSvnPackage (Package): def __init__ (self): Package.__init__ (self, 'monodevelop', 'trunk') def svn_co_or_up (self): self.cd ('..') if os.path.isdir ('svn'): self.cd ('svn') self.sh ('svn up') else: self.sh ('svn co http://anonsvn.mono-project.com/source/trunk/monodevelop svn') self.cd ('svn') self.cd ('..') def prep (self): self.svn_co_or_up () self.sh ('cp -r svn _build') self.cd ('_build/svn') def build (self): self.sh ( 'echo "main --disable-update-mimedb --disable-update-desktopdb --disable-gnomeplatform --enable-macplatform --disable-tests" > profiles/mac', './configure --prefix="%{prefix}" --profile=mac', 'make' ) def install (self): self.sh ('%{makeinstall}') MonoDevelopSvnPackage ()
class Monodevelopsvnpackage(Package): def __init__(self): Package.__init__(self, 'monodevelop', 'trunk') def svn_co_or_up(self): self.cd('..') if os.path.isdir('svn'): self.cd('svn') self.sh('svn up') else: self.sh('svn co http://anonsvn.mono-project.com/source/trunk/monodevelop svn') self.cd('svn') self.cd('..') def prep(self): self.svn_co_or_up() self.sh('cp -r svn _build') self.cd('_build/svn') def build(self): self.sh('echo "main --disable-update-mimedb --disable-update-desktopdb --disable-gnomeplatform --enable-macplatform --disable-tests" > profiles/mac', './configure --prefix="%{prefix}" --profile=mac', 'make') def install(self): self.sh('%{makeinstall}') mono_develop_svn_package()
# # PySNMP MIB module CISCOSB-UDP (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCOSB-UDP # Produced by pysmi-0.3.4 at Wed May 1 12:24:02 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion") switch001, = mibBuilder.importSymbols("CISCOSB-MIB", "switch001") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") ipCidrRouteTos, ipCidrRouteDest, ipCidrRouteMask, ipCidrRouteNextHop, ipCidrRouteEntry = mibBuilder.importSymbols("IP-FORWARD-MIB", "ipCidrRouteTos", "ipCidrRouteDest", "ipCidrRouteMask", "ipCidrRouteNextHop", "ipCidrRouteEntry") ipAddrEntry, = mibBuilder.importSymbols("IP-MIB", "ipAddrEntry") rip2IfConfEntry, = mibBuilder.importSymbols("RFC1389-MIB", "rip2IfConfEntry") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Counter32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity, NotificationType, Unsigned32, Bits, IpAddress, Counter64, Integer32, Gauge32, MibIdentifier, ModuleIdentity, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity", "NotificationType", "Unsigned32", "Bits", "IpAddress", "Counter64", "Integer32", "Gauge32", "MibIdentifier", "ModuleIdentity", "TimeTicks") DisplayString, RowStatus, TruthValue, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TruthValue", "TextualConvention") rsUDP = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42)) rsUDP.setRevisions(('2004-06-01 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: rsUDP.setRevisionsDescriptions(('Initial version of this MIB.',)) if mibBuilder.loadTexts: rsUDP.setLastUpdated('200406010000Z') if mibBuilder.loadTexts: rsUDP.setOrganization('Cisco Small Business') if mibBuilder.loadTexts: rsUDP.setContactInfo('Postal: 170 West Tasman Drive San Jose , CA 95134-1706 USA Website: Cisco Small Business Home http://www.cisco.com/smb>;, Cisco Small Business Support Community <http://www.cisco.com/go/smallbizsupport>') if mibBuilder.loadTexts: rsUDP.setDescription('The private MIB module definition for switch001 UDP MIB.') rsUdpRelayTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1), ) if mibBuilder.loadTexts: rsUdpRelayTable.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayTable.setDescription('This table contains the udp relay configuration per port.') rsUdpRelayEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1), ).setIndexNames((0, "CISCOSB-UDP", "rsUdpRelayDstPort"), (0, "CISCOSB-UDP", "rsUdpRelaySrcIpInf"), (0, "CISCOSB-UDP", "rsUdpRelayDstIpAddr")) if mibBuilder.loadTexts: rsUdpRelayEntry.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayEntry.setDescription(' The row definition for this table.') rsUdpRelayDstPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rsUdpRelayDstPort.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayDstPort.setDescription('The UDP port number in the UDP message header.') rsUdpRelaySrcIpInf = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setStatus('current') if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setDescription('The source interface IP that receives UDP message. 255.255.255.255 from all IP interface. 0.0.0.0 - 0.255.255.255 and 127.0.0.0 - 127.255.255.255 not relevant addresses.') rsUdpRelayDstIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 3), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setDescription('The destination IP address the UDP message will be forward. 0.0.0.0 does not forward, 255.255.255.255 broadcasts to all addresses.') rsUdpRelayStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 4), RowStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rsUdpRelayStatus.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayStatus.setDescription('The status of a table entry. It is used to delete an entry from this table.') rsUdpRelayUserInfo = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rsUdpRelayUserInfo.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayUserInfo.setDescription('The information used for implementation purposes') rsUdpRelayMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rsUdpRelayMibVersion.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayMibVersion.setDescription('Mib version. The current version is 1.') rlUdpSessionTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3), ) if mibBuilder.loadTexts: rlUdpSessionTable.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionTable.setDescription('This table contains the udp sessions information') rlUdpSessionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1), ).setIndexNames((0, "CISCOSB-UDP", "rlUdpSessionLocalAddrType"), (0, "CISCOSB-UDP", "rlUdpSessionLocalAddr"), (0, "CISCOSB-UDP", "rlUdpSessionLocalPort"), (0, "CISCOSB-UDP", "rlUdpSessionAppInst")) if mibBuilder.loadTexts: rlUdpSessionEntry.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionEntry.setDescription(' The row definition for this table.') rlUdpSessionLocalAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 1), InetAddressType()) if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setDescription('The type of the rlUdpSessionLocalAddress address') rlUdpSessionLocalAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 2), InetAddress()) if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setDescription('The UDP port session number.') rlUdpSessionLocalPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 3), Integer32()) if mibBuilder.loadTexts: rlUdpSessionLocalPort.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalPort.setDescription('The UDP port local IP address.') rlUdpSessionAppInst = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))) if mibBuilder.loadTexts: rlUdpSessionAppInst.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionAppInst.setDescription('The instance ID for the application on the port (for future use).') rlUdpSessionAppName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 12))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlUdpSessionAppName.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionAppName.setDescription('The name of the application that created the session.') mibBuilder.exportSymbols("CISCOSB-UDP", rsUdpRelayStatus=rsUdpRelayStatus, rlUdpSessionAppInst=rlUdpSessionAppInst, rsUdpRelayTable=rsUdpRelayTable, rlUdpSessionLocalPort=rlUdpSessionLocalPort, rsUdpRelayDstIpAddr=rsUdpRelayDstIpAddr, rlUdpSessionTable=rlUdpSessionTable, rlUdpSessionAppName=rlUdpSessionAppName, rlUdpSessionLocalAddrType=rlUdpSessionLocalAddrType, rsUdpRelayDstPort=rsUdpRelayDstPort, rsUDP=rsUDP, rsUdpRelayMibVersion=rsUdpRelayMibVersion, rsUdpRelaySrcIpInf=rsUdpRelaySrcIpInf, rsUdpRelayEntry=rsUdpRelayEntry, PYSNMP_MODULE_ID=rsUDP, rlUdpSessionLocalAddr=rlUdpSessionLocalAddr, rsUdpRelayUserInfo=rsUdpRelayUserInfo, rlUdpSessionEntry=rlUdpSessionEntry)
(integer, octet_string, object_identifier) = mibBuilder.importSymbols('ASN1', 'Integer', 'OctetString', 'ObjectIdentifier') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (single_value_constraint, value_range_constraint, constraints_intersection, value_size_constraint, constraints_union) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ValueRangeConstraint', 'ConstraintsIntersection', 'ValueSizeConstraint', 'ConstraintsUnion') (switch001,) = mibBuilder.importSymbols('CISCOSB-MIB', 'switch001') (inet_address, inet_address_type) = mibBuilder.importSymbols('INET-ADDRESS-MIB', 'InetAddress', 'InetAddressType') (ip_cidr_route_tos, ip_cidr_route_dest, ip_cidr_route_mask, ip_cidr_route_next_hop, ip_cidr_route_entry) = mibBuilder.importSymbols('IP-FORWARD-MIB', 'ipCidrRouteTos', 'ipCidrRouteDest', 'ipCidrRouteMask', 'ipCidrRouteNextHop', 'ipCidrRouteEntry') (ip_addr_entry,) = mibBuilder.importSymbols('IP-MIB', 'ipAddrEntry') (rip2_if_conf_entry,) = mibBuilder.importSymbols('RFC1389-MIB', 'rip2IfConfEntry') (module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup') (counter32, iso, mib_scalar, mib_table, mib_table_row, mib_table_column, object_identity, notification_type, unsigned32, bits, ip_address, counter64, integer32, gauge32, mib_identifier, module_identity, time_ticks) = mibBuilder.importSymbols('SNMPv2-SMI', 'Counter32', 'iso', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'ObjectIdentity', 'NotificationType', 'Unsigned32', 'Bits', 'IpAddress', 'Counter64', 'Integer32', 'Gauge32', 'MibIdentifier', 'ModuleIdentity', 'TimeTicks') (display_string, row_status, truth_value, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'RowStatus', 'TruthValue', 'TextualConvention') rs_udp = module_identity((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42)) rsUDP.setRevisions(('2004-06-01 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: rsUDP.setRevisionsDescriptions(('Initial version of this MIB.',)) if mibBuilder.loadTexts: rsUDP.setLastUpdated('200406010000Z') if mibBuilder.loadTexts: rsUDP.setOrganization('Cisco Small Business') if mibBuilder.loadTexts: rsUDP.setContactInfo('Postal: 170 West Tasman Drive San Jose , CA 95134-1706 USA Website: Cisco Small Business Home http://www.cisco.com/smb>;, Cisco Small Business Support Community <http://www.cisco.com/go/smallbizsupport>') if mibBuilder.loadTexts: rsUDP.setDescription('The private MIB module definition for switch001 UDP MIB.') rs_udp_relay_table = mib_table((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1)) if mibBuilder.loadTexts: rsUdpRelayTable.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayTable.setDescription('This table contains the udp relay configuration per port.') rs_udp_relay_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1)).setIndexNames((0, 'CISCOSB-UDP', 'rsUdpRelayDstPort'), (0, 'CISCOSB-UDP', 'rsUdpRelaySrcIpInf'), (0, 'CISCOSB-UDP', 'rsUdpRelayDstIpAddr')) if mibBuilder.loadTexts: rsUdpRelayEntry.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayEntry.setDescription(' The row definition for this table.') rs_udp_relay_dst_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 1), integer32()).setMaxAccess('readonly') if mibBuilder.loadTexts: rsUdpRelayDstPort.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayDstPort.setDescription('The UDP port number in the UDP message header.') rs_udp_relay_src_ip_inf = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 2), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setStatus('current') if mibBuilder.loadTexts: rsUdpRelaySrcIpInf.setDescription('The source interface IP that receives UDP message. 255.255.255.255 from all IP interface. 0.0.0.0 - 0.255.255.255 and 127.0.0.0 - 127.255.255.255 not relevant addresses.') rs_udp_relay_dst_ip_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 3), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayDstIpAddr.setDescription('The destination IP address the UDP message will be forward. 0.0.0.0 does not forward, 255.255.255.255 broadcasts to all addresses.') rs_udp_relay_status = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 4), row_status()).setMaxAccess('readwrite') if mibBuilder.loadTexts: rsUdpRelayStatus.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayStatus.setDescription('The status of a table entry. It is used to delete an entry from this table.') rs_udp_relay_user_info = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 1, 1, 5), integer32()).setMaxAccess('readwrite') if mibBuilder.loadTexts: rsUdpRelayUserInfo.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayUserInfo.setDescription('The information used for implementation purposes') rs_udp_relay_mib_version = mib_scalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 2), integer32()).setMaxAccess('readonly') if mibBuilder.loadTexts: rsUdpRelayMibVersion.setStatus('current') if mibBuilder.loadTexts: rsUdpRelayMibVersion.setDescription('Mib version. The current version is 1.') rl_udp_session_table = mib_table((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3)) if mibBuilder.loadTexts: rlUdpSessionTable.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionTable.setDescription('This table contains the udp sessions information') rl_udp_session_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1)).setIndexNames((0, 'CISCOSB-UDP', 'rlUdpSessionLocalAddrType'), (0, 'CISCOSB-UDP', 'rlUdpSessionLocalAddr'), (0, 'CISCOSB-UDP', 'rlUdpSessionLocalPort'), (0, 'CISCOSB-UDP', 'rlUdpSessionAppInst')) if mibBuilder.loadTexts: rlUdpSessionEntry.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionEntry.setDescription(' The row definition for this table.') rl_udp_session_local_addr_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 1), inet_address_type()) if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalAddrType.setDescription('The type of the rlUdpSessionLocalAddress address') rl_udp_session_local_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 2), inet_address()) if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalAddr.setDescription('The UDP port session number.') rl_udp_session_local_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 3), integer32()) if mibBuilder.loadTexts: rlUdpSessionLocalPort.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionLocalPort.setDescription('The UDP port local IP address.') rl_udp_session_app_inst = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 4), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535))) if mibBuilder.loadTexts: rlUdpSessionAppInst.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionAppInst.setDescription('The instance ID for the application on the port (for future use).') rl_udp_session_app_name = mib_table_column((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 42, 3, 1, 5), display_string().subtype(subtypeSpec=value_size_constraint(0, 12))).setMaxAccess('readonly') if mibBuilder.loadTexts: rlUdpSessionAppName.setStatus('current') if mibBuilder.loadTexts: rlUdpSessionAppName.setDescription('The name of the application that created the session.') mibBuilder.exportSymbols('CISCOSB-UDP', rsUdpRelayStatus=rsUdpRelayStatus, rlUdpSessionAppInst=rlUdpSessionAppInst, rsUdpRelayTable=rsUdpRelayTable, rlUdpSessionLocalPort=rlUdpSessionLocalPort, rsUdpRelayDstIpAddr=rsUdpRelayDstIpAddr, rlUdpSessionTable=rlUdpSessionTable, rlUdpSessionAppName=rlUdpSessionAppName, rlUdpSessionLocalAddrType=rlUdpSessionLocalAddrType, rsUdpRelayDstPort=rsUdpRelayDstPort, rsUDP=rsUDP, rsUdpRelayMibVersion=rsUdpRelayMibVersion, rsUdpRelaySrcIpInf=rsUdpRelaySrcIpInf, rsUdpRelayEntry=rsUdpRelayEntry, PYSNMP_MODULE_ID=rsUDP, rlUdpSessionLocalAddr=rlUdpSessionLocalAddr, rsUdpRelayUserInfo=rsUdpRelayUserInfo, rlUdpSessionEntry=rlUdpSessionEntry)
def entry_id(entry): for field in ['id', 'link']: ret = getattr(entry, field, None) if ret: return ret raise Exception('no id field found in entry: {}'.format(entry))
def entry_id(entry): for field in ['id', 'link']: ret = getattr(entry, field, None) if ret: return ret raise exception('no id field found in entry: {}'.format(entry))
print("~" * 60) print("Tower of Hanoi") def hanoi(n, src, dst, tmp): if n > 0: hanoi(n - 1, src, tmp, dst) print(f"Move disk {n} from {src} to {dst}") hanoi(n - 1, tmp, dst, src) hanoi(4, "A", "B", "C") print("~" * 60) print("8 Queens Problem") queen = [0 for _ in range(8)] rfree = [True for _ in range(8)] du = [True for _ in range(15)] dd = [True for _ in range(15)] def solve(c): global solutions if c == 8: solutions += 1 print(solutions, end=": ") for r in range(8): print(queen[r] + 1, end=" " if r < 7 else "\n") else: for r in range(8): if rfree[r] and dd[c + r] and du[c + 7 - r]: queen[c] = r rfree[r] = dd[c + r] = du[c + 7 - r] = False solve(c + 1) rfree[r] = dd[c + r] = du[c + 7 - r] = True solutions = 0 solve(0) print(f"\nThere are {solutions} solutions")
print('~' * 60) print('Tower of Hanoi') def hanoi(n, src, dst, tmp): if n > 0: hanoi(n - 1, src, tmp, dst) print(f'Move disk {n} from {src} to {dst}') hanoi(n - 1, tmp, dst, src) hanoi(4, 'A', 'B', 'C') print('~' * 60) print('8 Queens Problem') queen = [0 for _ in range(8)] rfree = [True for _ in range(8)] du = [True for _ in range(15)] dd = [True for _ in range(15)] def solve(c): global solutions if c == 8: solutions += 1 print(solutions, end=': ') for r in range(8): print(queen[r] + 1, end=' ' if r < 7 else '\n') else: for r in range(8): if rfree[r] and dd[c + r] and du[c + 7 - r]: queen[c] = r rfree[r] = dd[c + r] = du[c + 7 - r] = False solve(c + 1) rfree[r] = dd[c + r] = du[c + 7 - r] = True solutions = 0 solve(0) print(f'\nThere are {solutions} solutions')
class Function: def __init__(self, name, param_types, return_type, line=0): self.name = name self.param_types = param_types self.return_type = return_type self.line = line def __str__(self): return Function.__qualname__ def getattr(self, name): raise AttributeError("Invalid attribute or method access")
class Function: def __init__(self, name, param_types, return_type, line=0): self.name = name self.param_types = param_types self.return_type = return_type self.line = line def __str__(self): return Function.__qualname__ def getattr(self, name): raise attribute_error('Invalid attribute or method access')
class Solution: def minStartValue(self, nums: List[int]) -> int: total = minSum = 0 for num in nums: total += num minSum = min(minSum, total) return 1 - minSum
class Solution: def min_start_value(self, nums: List[int]) -> int: total = min_sum = 0 for num in nums: total += num min_sum = min(minSum, total) return 1 - minSum
def conduit_login(driver): driver.find_element_by_xpath('//a[@href="#/login"]').click() driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys("[email protected]") driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys("Testpass1") driver.find_element_by_xpath('//*[@id="app"]//form/button').click() def conduit_logout(driver): driver.find_element_by_xpath('//*[@id="app"]/nav/div/ul/li[5]/a').click()
def conduit_login(driver): driver.find_element_by_xpath('//a[@href="#/login"]').click() driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys('[email protected]') driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys('Testpass1') driver.find_element_by_xpath('//*[@id="app"]//form/button').click() def conduit_logout(driver): driver.find_element_by_xpath('//*[@id="app"]/nav/div/ul/li[5]/a').click()
class Node(): def __init__(self, val): self.val = val self.adjacent_nodes = [] self.visited = False # O(E^d) where d is depth def word_transform(w1, w2, dictionary): # make dictionary into linked list start_node = Node(w1) end_node = Node(w2) nodes = [start_node, end_node] nodes_dict = {start_node.val: start_node, end_node.val: end_node} while nodes: node = nodes.pop() word = node.val for w in dictionary: if w == word: continue diff = 0 for i in range(len(word)): if w[i] != word[i]: diff += 1 diff += abs(len(word) - len(w)) if diff == 1: if w not in nodes_dict: nodes_dict[w] = Node(w) nodes.append(nodes_dict[w]) node.adjacent_nodes.append(nodes_dict[w]) nodes = [start_node] path = [] while nodes: node = nodes.pop() if node == end_node: path.append(node.val) return ''.join(path) path.append(node.val + ' -> ') node.visited = True for c in node.adjacent_nodes: if not c.visited: nodes.append(c) return None
class Node: def __init__(self, val): self.val = val self.adjacent_nodes = [] self.visited = False def word_transform(w1, w2, dictionary): start_node = node(w1) end_node = node(w2) nodes = [start_node, end_node] nodes_dict = {start_node.val: start_node, end_node.val: end_node} while nodes: node = nodes.pop() word = node.val for w in dictionary: if w == word: continue diff = 0 for i in range(len(word)): if w[i] != word[i]: diff += 1 diff += abs(len(word) - len(w)) if diff == 1: if w not in nodes_dict: nodes_dict[w] = node(w) nodes.append(nodes_dict[w]) node.adjacent_nodes.append(nodes_dict[w]) nodes = [start_node] path = [] while nodes: node = nodes.pop() if node == end_node: path.append(node.val) return ''.join(path) path.append(node.val + ' -> ') node.visited = True for c in node.adjacent_nodes: if not c.visited: nodes.append(c) return None
# leetcode class Solution: def mincostTickets(self, days: List[int], costs: List[int]) -> int: num = 366 one, seven, thirty = costs dp = [0] * num idx = 0 for i in range(1, num): dp[i] = dp[i-1] if i == days[idx]: dp[i] = min( one+dp[i-1 if i-1>0 else 0], seven+dp[i-7 if i-7>0 else 0], thirty+dp[i-30 if i-30>0 else 0] ) if idx != len(days)-1: idx += 1 else: break return dp[days[idx]]
class Solution: def mincost_tickets(self, days: List[int], costs: List[int]) -> int: num = 366 (one, seven, thirty) = costs dp = [0] * num idx = 0 for i in range(1, num): dp[i] = dp[i - 1] if i == days[idx]: dp[i] = min(one + dp[i - 1 if i - 1 > 0 else 0], seven + dp[i - 7 if i - 7 > 0 else 0], thirty + dp[i - 30 if i - 30 > 0 else 0]) if idx != len(days) - 1: idx += 1 else: break return dp[days[idx]]
''' The Python repository "AA" contains the scripts, data, figures, and text for nudged Arctic Amplification (AA) and Upper-troposphere Tropical Warming (UTW). The model is SC-WACCM4. We are interested in the large-scale atmospheric response to Arctic sea ice loss in AA simulations compared to sea-ice forcing. See Peings, Cattiaux, and Magnusdottir, GRL (2019) for model set-up. Author: Zachary Labe ([email protected]) '''
""" The Python repository "AA" contains the scripts, data, figures, and text for nudged Arctic Amplification (AA) and Upper-troposphere Tropical Warming (UTW). The model is SC-WACCM4. We are interested in the large-scale atmospheric response to Arctic sea ice loss in AA simulations compared to sea-ice forcing. See Peings, Cattiaux, and Magnusdottir, GRL (2019) for model set-up. Author: Zachary Labe ([email protected]) """
# employees = {'marge': 3, 'mag': 2} # employees['phil'] = '5' # print(employees.values()) # new_list = list(iter(employees)) # for key, value in employees.iteritems(): # print(key,value) # print(new_list) # t = ('a', 'b', 'c', 'd') # print(t.index('c')) # print(1 > 2) # myfile = open('test_file.txt') # read = myfile.read() # print(read) # with open('test_file.txt') as myfile: # read = myfile.read() # print(read) f = open('second_file.txt') lines = f.read() print(lines)
f = open('second_file.txt') lines = f.read() print(lines)
sample_pos_100_circle = { (0, 12, 14, 28, 61, 76) : (0.6606687940575429, 0.12955294286970329, 0.1392231402857147), (0, 14, 26, 28, 61, 76) : (0.6775622847685568, 0.0898623709846611, 0.14956067316950022), (0, 11, 12, 14, 23, 28, 42, 44, 76, 79, 89) : (0.6065886283561139, 0.20320288122581232, 0.14005207871339437), (0, 11, 12, 14, 23, 42, 44, 76, 79, 89, 98) : (0.5656826490913177, 0.22945537874500058, 0.14709530367632542), (0, 12, 14, 23, 42, 44, 89, 90, 98) : (0.49723213477453154, 0.23278842941402605, 0.14874812754801625), (0, 12, 14, 42, 43, 44, 89, 90, 98) : (0.4531982657491745, 0.21474447325341245, 0.14781957286366254), (0, 12, 14, 42, 44, 60, 89, 90, 98) : (0.4269561884232388, 0.19727225941604984, 0.1493885409990972), (1, 8, 15, 22, 27, 28, 51, 53, 62, 74, 76) : (0.846301261746641, 0.18166537169350574, 0.14397835552200322), (1, 8, 13, 15, 27, 28, 39, 51, 53, 62, 74, 76) : (0.8485490407639608, 0.26577545830529575, 0.14237104291986868), (1, 8, 13, 15, 27, 39, 51, 53, 55, 62, 74) : (0.8598700336382776, 0.2936319361757566, 0.14316008940627623), (8, 13, 15, 27, 39, 51, 53, 55, 62, 74, 76) : (0.848475421386148, 0.2979123559117623, 0.1495723404911163), (8, 15, 22, 27, 28, 51, 53, 61, 74, 76) : (0.8313716731911684, 0.15951059780677493, 0.14984734652985005), (1, 15, 22, 26, 27, 28, 51, 53, 61, 74) : (0.8707649166253553, 0.12603886971740247, 0.14915740644860379), (15, 22, 26, 27, 28, 51, 53, 61, 74, 76) : (0.8365094688174124, 0.15377823301715582, 0.1482384443600522), (1, 8, 15, 27, 39, 51, 53, 55, 57, 62, 74) : (0.8744674026914928, 0.32488477158328966, 0.14993334330995228), (8, 13, 27, 39, 51, 53, 55, 57, 62, 74, 76) : (0.8394379542077309, 0.3149880381645896, 0.14976819860224347), (2, 7, 46, 54, 57, 77) : (0.8345091660588192, 0.583756096334454, 0.12229815996364714), (2, 39, 46, 55, 57, 77) : (0.9084352576938933, 0.5098903011547264, 0.14572090388150585), (2, 7, 46, 54, 67, 77, 78) : (0.812411509094655, 0.6641080591492242, 0.14888487099965556), (2, 7, 35, 46, 54, 67, 77, 82, 95) : (0.8518389325402812, 0.6847232482307565, 0.14327587769420472), (2, 7, 35, 54, 67, 77, 82, 93, 95) : (0.9204975034212663, 0.7431093346713038, 0.14939837995538113), (3, 29, 30, 34, 45, 65, 86, 94, 97) : (0.1004320333187312, 0.25448500386219897, 0.13457985828835478), (3, 30, 34, 45, 52, 65, 70, 86, 94, 97) : (0.13232166150446328, 0.1787966932430779, 0.14148065167771823), (3, 30, 33, 45, 52, 65, 70, 86, 94, 97) : (0.10213454221898952, 0.158512554500736, 0.14562465660768442), (3, 30, 34, 45, 52, 60, 65, 86, 94, 97) : (0.16328756540749167, 0.2126428426271769, 0.14578456301618062), (3, 34, 45, 52, 60, 65, 70, 86, 94, 97) : (0.17797832456706061, 0.19683196747732873, 0.14011636481529072), (3, 30, 34, 45, 50, 60, 65, 86, 94, 97) : (0.1553910862561932, 0.23765246912401705, 0.14827548821813938), (29, 30, 34, 45, 50, 60, 65, 86, 94, 97) : (0.15000102162768236, 0.30018732583286084, 0.14984415048071437), (4, 9, 10, 20, 38, 75, 81) : (0.4003130616293591, 0.8285844456813044, 0.1480307501034011), (4, 9, 10, 38, 48, 75, 81) : (0.38580428031766406, 0.8561990999547606, 0.14870245579695562), (4, 9, 17, 20, 21, 38, 48, 75, 81, 85) : (0.3287611424267173, 0.7727174414557608, 0.14875929774485536), (4, 9, 21, 38, 48, 68, 75, 81) : (0.35085609036236404, 0.829788163067764, 0.14875398876294763), (4, 10, 18, 48, 68, 75, 81) : (0.37649547612262557, 0.8951760847630872, 0.14919996648688127), (4, 9, 19, 20, 21, 38, 49, 75, 85) : (0.41640100306849537, 0.705093150372995, 0.14015996098823705), (4, 9, 17, 20, 21, 38, 64, 75, 81, 85) : (0.33085298603236063, 0.7418399215994397, 0.14487972439785962), (4, 17, 20, 21, 38, 48, 64, 75, 81, 85) : (0.3193974850937622, 0.7680632820869213, 0.1474266580607778), (4, 9, 17, 20, 21, 38, 49, 64, 75, 85) : (0.34114170574087294, 0.6969174305624999, 0.14405921509093017), (9, 19, 20, 38, 49, 75, 87) : (0.5006885871277305, 0.7412338818491877, 0.1451388894436533), (4, 9, 10, 75, 80, 81) : (0.4019264767473983, 0.8734149403352809, 0.14482927195072062), (4, 10, 18, 48, 75, 80, 81) : (0.3830407940310534, 0.8944881167840582, 0.14681390420878215), (4, 18, 32, 48, 56, 68, 69, 75, 81) : (0.3229807880040072, 0.8650666484497739, 0.14809708296773283), (4, 10, 18, 48, 56, 68, 80, 81) : (0.37683713029076393, 0.911312260609274, 0.14832443190916603), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81, 85) : (0.28091256649751173, 0.7845716212169753, 0.141585496443792), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81) : (0.28070798853230206, 0.8090664742306333, 0.14931465362464058), (4, 17, 20, 21, 38, 64, 66, 75, 81, 85) : (0.29785238436809, 0.7234263474491083, 0.1490540650472151), (4, 18, 21, 32, 48, 56, 66, 68, 69, 81, 96) : (0.26699140597300897, 0.8495296776189856, 0.14875348880939057), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 81, 96) : (0.25527949109936104, 0.8106316384539816, 0.1445317451825426), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 81, 85, 96) : (0.23217561230891856, 0.7805372979198325, 0.14511838625757928), (4, 9, 10, 19, 20, 38, 71, 75, 87) : (0.4775129839401001, 0.7927769793318314, 0.14462380860637297), (4, 9, 10, 20, 71, 75, 80, 87) : (0.4747088359878572, 0.8297948931425277, 0.14678768577566298), (9, 10, 19, 20, 71, 75, 80, 87) : (0.502030117116463, 0.8236087646816392, 0.14943676014695212), (4, 18, 32, 48, 56, 58, 66, 68, 69, 72, 81, 96) : (0.21696064154531802, 0.874101533075222, 0.13041150648755526), (4, 18, 21, 32, 48, 58, 64, 66, 68, 69, 72, 81, 96) : (0.20114669372366326, 0.8301128240778305, 0.1493335313715823), (4, 17, 21, 38, 64, 66, 69, 81, 85, 99) : (0.21769657381971141, 0.7313388234347639, 0.14701057273298804), (4, 17, 21, 32, 48, 64, 66, 69, 81, 85, 96, 99) : (0.2015477050911515, 0.7529044317010726, 0.1494589238432731), (20, 25, 31, 49, 59, 84) : (0.4258087319921411, 0.5401043228214542, 0.14745116571790448), (5, 24, 25, 31, 41, 43, 49, 59, 84, 90) : (0.37662482838264727, 0.4751123959489456, 0.1496946360540124), (5, 17, 20, 24, 25, 31, 38, 41, 49, 85) : (0.3622865226400378, 0.5612057389900295, 0.14877040889503995), (5, 17, 21, 24, 25, 31, 38, 41, 49, 85) : (0.3397797027650458, 0.5662701001128034, 0.14899731011520068), (17, 20, 21, 24, 25, 31, 38, 41, 49, 85) : (0.3529122532222511, 0.5772058553558765, 0.145641194646832), (5, 24, 25, 31, 41, 43, 50, 84, 90) : (0.36744835703496576, 0.44513805791935623, 0.149017727518376), (5, 17, 24, 25, 41, 50) : (0.25238459020708376, 0.49714842367609063, 0.14920289957040228), (5, 24, 25, 31, 43, 50, 59, 83, 84, 90) : (0.3742525826195432, 0.4225237020811445, 0.14492114513872695), (5, 11, 23, 31, 43, 44, 59, 63, 84, 89, 90) : (0.46586820074056295, 0.38692285503826956, 0.14938930201395317), (5, 25, 31, 43, 50, 59, 60, 83, 84, 90) : (0.37465236999713214, 0.3967343268979738, 0.14793274615561394), (5, 24, 25, 31, 43, 50, 60, 83, 84, 90) : (0.3666595366409718, 0.4029451066437212, 0.14935861884170346), (5, 24, 25, 31, 41, 43, 50, 60, 83, 90) : (0.3374953446014549, 0.40768326591677895, 0.14271109555895584), (5, 11, 23, 31, 43, 44, 59, 84, 89, 90, 98) : (0.46179357379075087, 0.37130700578519776, 0.14959106548201262), (5, 31, 43, 44, 50, 59, 60, 83, 84, 89, 90, 98) : (0.3992944529514407, 0.34835251138844014, 0.14481894164813303), (5, 24, 25, 34, 41, 43, 50, 60, 83, 86, 90) : (0.2643514690001076, 0.38046461029115597, 0.13200682283744283), (5, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98) : (0.4251496043395029, 0.314317932764338, 0.14818426431967247), (5, 42, 43, 44, 50, 60, 83, 89, 90, 98) : (0.3896204611486524, 0.2884476340796184, 0.14766772614257698), (5, 34, 43, 50, 60, 65, 83, 89, 90, 98) : (0.35484204032889544, 0.28298632126058126, 0.14896339447527998), (5, 24, 34, 41, 43, 50, 60, 65, 83, 86, 90) : (0.24186208866496334, 0.35381703763650374, 0.147248332994493), (42, 43, 50, 60, 65, 83, 89, 90, 98) : (0.3648226358119667, 0.2529208238960593, 0.14563258715152547), (5, 17, 21, 24, 25, 41, 64, 85) : (0.26509967721642796, 0.5547482058021883, 0.1467474135798299), (17, 20, 21, 24, 25, 38, 41, 49, 64, 85) : (0.3204205925258258, 0.6110698164118312, 0.1433963240190826), (5, 24, 34, 41, 50, 60, 65, 83, 86, 94) : (0.1963459614878132, 0.354221443943041, 0.1499119871156634), (5, 34, 43, 50, 60, 65, 83, 86, 90, 97, 98) : (0.2786672893971936, 0.2764212575028138, 0.148038361569061), (6, 8, 13, 36, 39, 46, 57, 79, 91) : (0.7812938642651628, 0.40869196155963294, 0.1483179196387932), (6, 11, 13, 36, 39, 46, 57, 63, 79, 91) : (0.7400403080009023, 0.4149028417553895, 0.14959527944822024), (6, 11, 13, 23, 36, 40, 46, 57, 63, 79, 91) : (0.6955733914381548, 0.4466149890794219, 0.14332938261511524), (6, 11, 23, 36, 40, 46, 59, 63, 91) : (0.661799803852757, 0.47465268914249026, 0.14990023270177139), (6, 11, 13, 23, 36, 40, 57, 59, 63, 79, 91) : (0.6674444223364877, 0.44592897980175666, 0.1493799596176158), (6, 8, 11, 13, 23, 36, 39, 57, 63, 76, 79, 91) : (0.7479505156724652, 0.3543364256041871, 0.14504949210030488), (6, 36, 40, 46, 57, 78) : (0.6989923716784051, 0.5550188424375802, 0.14881436260536204), (6, 11, 13, 23, 36, 40, 44, 59, 63, 79, 84, 91) : (0.6121508102053388, 0.4160214927121739, 0.13919367839740476), (6, 11, 23, 31, 36, 40, 44, 59, 63, 79, 84, 91) : (0.5840006753840745, 0.425262952856729, 0.13453194363310325), (6, 7, 40, 46, 54, 57, 78) : (0.7359758275738826, 0.5714274758487573, 0.1459224915245561), (6, 19, 40, 46, 54, 78) : (0.6804138212873839, 0.6024152093385852, 0.14958356907798287), (7, 19, 40, 46, 54, 78) : (0.7001663606329307, 0.6736530749126453, 0.145581886573751), (6, 11, 12, 23, 31, 36, 44, 59, 63, 79, 84, 89, 91) : (0.5546692350232861, 0.3748947382581936, 0.1404608810549469), (6, 11, 12, 13, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91) : (0.6158471277538801, 0.33210754135354276, 0.13695160632128495), (6, 19, 40, 49, 78) : (0.5898959630882554, 0.5849837349401764, 0.1395478206848745), (6, 19, 31, 40, 49, 59, 84) : (0.5508159716065527, 0.5507115624444804, 0.13320543730746362), (6, 31, 40, 49, 59, 63, 84) : (0.5334868035040657, 0.4969112537149139, 0.13520536905611247), (6, 11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 91) : (0.5248341660288149, 0.3695285456138079, 0.14898478769694384), (16, 19, 40, 54, 78) : (0.648734030229264, 0.69772769100568, 0.14566639395175016), (7, 16, 19, 54, 78, 92) : (0.7017301747157373, 0.7018096583710086, 0.14788217314648738), (7, 35, 46, 54, 67, 77, 78, 92, 95) : (0.8016668768331154, 0.7050427315864585, 0.14885954882353508), (7, 35, 54, 67, 77, 78, 82, 92, 95) : (0.8126860837487624, 0.7390030277575786, 0.14963827070744815), (7, 35, 54, 67, 77, 82, 92, 93, 95) : (0.8541983606053255, 0.7617510039302191, 0.13551854101469707), (7, 16, 35, 54, 67, 78, 92, 93, 95) : (0.7835123617757969, 0.7940004134527878, 0.14850931037307125), (7, 35, 54, 67, 73, 82, 92, 93, 95) : (0.8680257488645291, 0.8105733497073806, 0.14461010599432164), (16, 35, 54, 67, 73, 92, 93, 95) : (0.8039052049993555, 0.8358136241307832, 0.1460176815171897), (8, 13, 27, 28, 36, 39, 51, 62, 74, 76, 79) : (0.7864858215585857, 0.29075158032698684, 0.14961460741813482), (8, 13, 27, 28, 36, 39, 62, 74, 76, 79, 91) : (0.7851472504933936, 0.30671346343945144, 0.14266494791580994), (8, 13, 27, 36, 39, 57, 62, 74, 76, 79, 91) : (0.7947045059120503, 0.31997763795542744, 0.14446794140299074), (8, 11, 13, 23, 27, 28, 36, 74, 76, 79, 91) : (0.7372472238258292, 0.2715103777107627, 0.14815884891492234), (8, 11, 13, 23, 36, 39, 57, 74, 76, 79, 91) : (0.7536701632685218, 0.3264131965382456, 0.1499762709695208), (8, 11, 13, 23, 28, 36, 39, 63, 74, 76, 79, 91) : (0.7432076014100258, 0.3161679754031407, 0.14735220435952692), (8, 13, 36, 39, 55, 57, 62, 74) : (0.8270244719636314, 0.3463770009824643, 0.14816894016641344), (8, 13, 36, 39, 46, 55, 57) : (0.8315524471930096, 0.4208862595245414, 0.14308143530640893), (9, 19, 20, 49, 75, 78, 87) : (0.526255574364575, 0.7284182151763334, 0.1445142284421115), (9, 10, 16, 19, 20, 71, 75, 78, 87) : (0.5503029395762983, 0.7725028563327712, 0.1379855198507884), (9, 19, 20, 40, 49, 75, 78) : (0.5308236138060022, 0.6654717052596012, 0.14166070888466), (9, 16, 19, 40, 78) : (0.6152792270448181, 0.7022038051249079, 0.14724540705027672), (9, 19, 20, 31, 38, 49, 75, 85) : (0.4397878732528429, 0.6157549414177731, 0.1379389073709895), (9, 19, 20, 31, 40, 49, 75) : (0.48958920540021267, 0.6234521812075917, 0.14685558331482343), (9, 10, 16, 19, 71, 75, 80, 87) : (0.5310332240866265, 0.8284058748099863, 0.14651673216295627), (9, 10, 16, 19, 71, 78, 87, 92) : (0.6106510896880954, 0.7958501908923952, 0.1430714723104721), (10, 16, 71, 80, 87, 92) : (0.6264282483677088, 0.9079762183947514, 0.1358534990005984), (11, 12, 23, 31, 42, 43, 44, 59, 63, 84, 89, 90, 98) : (0.4776061998845129, 0.3308921514293687, 0.14948378198882384), (11, 12, 14, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 98) : (0.5190100909516181, 0.3024309974602939, 0.1461597643756266), (11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 98) : (0.5167680750767972, 0.3408073723414071, 0.1494775277829455), (11, 12, 14, 23, 42, 44, 59, 63, 79, 84, 89, 90, 91, 98) : (0.5353432225094631, 0.3092813311287071, 0.14961247846229375), (11, 12, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 91, 98) : (0.5269080789204658, 0.3272778263063749, 0.1492860996243205), (11, 12, 14, 23, 42, 44, 63, 76, 79, 89, 98) : (0.5651889224135658, 0.24974452994663424, 0.1481860442866704), (11, 12, 13, 14, 23, 42, 44, 59, 63, 76, 79, 84, 89, 91) : (0.5810248153025497, 0.297301468717096, 0.14553280939641036), (11, 12, 13, 14, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91) : (0.59020808374762, 0.30242702351356676, 0.14518706205274268), (11, 12, 13, 14, 23, 28, 42, 44, 63, 76, 79, 89, 91) : (0.6206933635449503, 0.24682154651736443, 0.14397395607960825), (11, 12, 13, 14, 23, 28, 36, 44, 63, 76, 79, 89, 91) : (0.6443421994012091, 0.27263136238807373, 0.1418464361759105), (11, 12, 13, 14, 23, 28, 74, 76, 79, 91) : (0.6865690251676432, 0.23557064983017745, 0.1497576533972519), (11, 12, 13, 23, 28, 36, 63, 74, 76, 79, 91) : (0.7095105226389335, 0.27798372862136267, 0.145811382266761), (12, 13, 27, 28, 74, 76, 79) : (0.7163112725430478, 0.21385230043077974, 0.14778176906674004), (12, 14, 28, 61, 74, 76) : (0.692614694039914, 0.15857646831069733, 0.14455379460889162), (12, 23, 42, 43, 44, 59, 83, 84, 89, 90, 98) : (0.4563543195907547, 0.31480881243674935, 0.14922880337038014), (12, 23, 31, 43, 44, 59, 83, 84, 89, 90, 98) : (0.45419723615723284, 0.32960642809424645, 0.1499761920887504), (12, 14, 42, 43, 44, 60, 83, 89, 90, 98) : (0.42955231039420116, 0.2226100668877384, 0.14110959536132095), (12, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98) : (0.4402325483015652, 0.3046223156987031, 0.14721181227676056), (14, 22, 28, 61, 74, 76) : (0.7017172984423354, 0.12325899188468137, 0.14999980732453855), (14, 22, 26, 28, 61, 76) : (0.6912503728261168, 0.10016189310233165, 0.14784082552996525), (16, 19, 54, 71, 78, 87, 92) : (0.6703761804849702, 0.7581413028998242, 0.13727248723415264), (16, 54, 71, 78, 87, 92, 95) : (0.7055796088125853, 0.8042768799273943, 0.13751533041746666), (16, 71, 92, 93, 95) : (0.748680649656, 0.8792981719129548, 0.14810534432725672), (16, 35, 47, 73, 92, 93, 95) : (0.7973963974798904, 0.8730772012592461, 0.14251677211486202), (17, 20, 21, 25, 38, 49, 64, 75, 85) : (0.33122073385849954, 0.6424372081216861, 0.140272333871763), (17, 20, 21, 25, 31, 38, 49, 75, 85) : (0.3899560099849434, 0.6080529827711362, 0.14686618715840474), (17, 21, 24, 25, 38, 41, 64, 66, 85, 99) : (0.2324845209042679, 0.6381836480533993, 0.14541606090517503), (17, 21, 24, 25, 41, 64, 66, 85, 88, 99) : (0.17759327332460764, 0.6154216464660676, 0.14680527616816053), (17, 21, 64, 66, 69, 85, 88, 99) : (0.1700753673132927, 0.7010807602993253, 0.14829695794446568), (17, 21, 64, 66, 69, 88, 96, 99) : (0.14057040165146145, 0.7404980045079362, 0.14458712542500857), (21, 32, 64, 66, 69, 88, 96, 99) : (0.13589958287585685, 0.7521082386304109, 0.14938908416349977), (32, 37, 48, 58, 64, 66, 68, 69, 72, 81, 96) : (0.1587853817899879, 0.8265085757585824, 0.14669323412266905), (18, 32, 37, 48, 56, 58, 66, 68, 69, 72, 81, 96) : (0.1565898330981594, 0.900576785386657, 0.14039118879912008), (19, 20, 31, 40, 49, 59, 84) : (0.4955100051053224, 0.5592196556545426, 0.13807852710419102), (29, 88) : (0.021898984551369127, 0.498905674871803, 0.14491984926943427), (24, 29, 34, 41, 50, 86, 94) : (0.15186115338348286, 0.38521837733842534, 0.14484075712621175), (29, 30, 34, 41, 50, 86, 94) : (0.1318289821876929, 0.3907884062675565, 0.14663186091122857), (30, 34, 45, 50, 60, 65, 83, 86, 94, 97) : (0.17218506307174686, 0.2745348904559653, 0.13778262145170894), (34, 45, 52, 60, 65, 70, 83, 86, 94, 97) : (0.1946945060242287, 0.20205232918260238, 0.14600384549982623), (34, 45, 50, 60, 65, 70, 83, 86, 94, 97) : (0.1984942686851189, 0.20938746372536046, 0.14945353002055525), (32, 37, 48, 64, 66, 69, 81, 96, 99) : (0.13998817052833173, 0.7858689353702485, 0.14814097529549805), (32, 37, 64, 66, 69, 88, 96, 99) : (0.111022615751386, 0.7676327866502684, 0.1464828433048606), (34, 60, 65, 70, 83, 86, 97, 98) : (0.27881170846041564, 0.18823061782622416, 0.14535381423478827), (35, 47, 67, 73, 82, 92, 93, 95) : (0.8668407448339298, 0.8654424303052715, 0.12317143039084451), }
sample_pos_100_circle = {(0, 12, 14, 28, 61, 76): (0.6606687940575429, 0.12955294286970329, 0.1392231402857147), (0, 14, 26, 28, 61, 76): (0.6775622847685568, 0.0898623709846611, 0.14956067316950022), (0, 11, 12, 14, 23, 28, 42, 44, 76, 79, 89): (0.6065886283561139, 0.20320288122581232, 0.14005207871339437), (0, 11, 12, 14, 23, 42, 44, 76, 79, 89, 98): (0.5656826490913177, 0.22945537874500058, 0.14709530367632542), (0, 12, 14, 23, 42, 44, 89, 90, 98): (0.49723213477453154, 0.23278842941402605, 0.14874812754801625), (0, 12, 14, 42, 43, 44, 89, 90, 98): (0.4531982657491745, 0.21474447325341245, 0.14781957286366254), (0, 12, 14, 42, 44, 60, 89, 90, 98): (0.4269561884232388, 0.19727225941604984, 0.1493885409990972), (1, 8, 15, 22, 27, 28, 51, 53, 62, 74, 76): (0.846301261746641, 0.18166537169350574, 0.14397835552200322), (1, 8, 13, 15, 27, 28, 39, 51, 53, 62, 74, 76): (0.8485490407639608, 0.26577545830529575, 0.14237104291986868), (1, 8, 13, 15, 27, 39, 51, 53, 55, 62, 74): (0.8598700336382776, 0.2936319361757566, 0.14316008940627623), (8, 13, 15, 27, 39, 51, 53, 55, 62, 74, 76): (0.848475421386148, 0.2979123559117623, 0.1495723404911163), (8, 15, 22, 27, 28, 51, 53, 61, 74, 76): (0.8313716731911684, 0.15951059780677493, 0.14984734652985005), (1, 15, 22, 26, 27, 28, 51, 53, 61, 74): (0.8707649166253553, 0.12603886971740247, 0.14915740644860379), (15, 22, 26, 27, 28, 51, 53, 61, 74, 76): (0.8365094688174124, 0.15377823301715582, 0.1482384443600522), (1, 8, 15, 27, 39, 51, 53, 55, 57, 62, 74): (0.8744674026914928, 0.32488477158328966, 0.14993334330995228), (8, 13, 27, 39, 51, 53, 55, 57, 62, 74, 76): (0.8394379542077309, 0.3149880381645896, 0.14976819860224347), (2, 7, 46, 54, 57, 77): (0.8345091660588192, 0.583756096334454, 0.12229815996364714), (2, 39, 46, 55, 57, 77): (0.9084352576938933, 0.5098903011547264, 0.14572090388150585), (2, 7, 46, 54, 67, 77, 78): (0.812411509094655, 0.6641080591492242, 0.14888487099965556), (2, 7, 35, 46, 54, 67, 77, 82, 95): (0.8518389325402812, 0.6847232482307565, 0.14327587769420472), (2, 7, 35, 54, 67, 77, 82, 93, 95): (0.9204975034212663, 0.7431093346713038, 0.14939837995538113), (3, 29, 30, 34, 45, 65, 86, 94, 97): (0.1004320333187312, 0.25448500386219897, 0.13457985828835478), (3, 30, 34, 45, 52, 65, 70, 86, 94, 97): (0.13232166150446328, 0.1787966932430779, 0.14148065167771823), (3, 30, 33, 45, 52, 65, 70, 86, 94, 97): (0.10213454221898952, 0.158512554500736, 0.14562465660768442), (3, 30, 34, 45, 52, 60, 65, 86, 94, 97): (0.16328756540749167, 0.2126428426271769, 0.14578456301618062), (3, 34, 45, 52, 60, 65, 70, 86, 94, 97): (0.17797832456706061, 0.19683196747732873, 0.14011636481529072), (3, 30, 34, 45, 50, 60, 65, 86, 94, 97): (0.1553910862561932, 0.23765246912401705, 0.14827548821813938), (29, 30, 34, 45, 50, 60, 65, 86, 94, 97): (0.15000102162768236, 0.30018732583286084, 0.14984415048071437), (4, 9, 10, 20, 38, 75, 81): (0.4003130616293591, 0.8285844456813044, 0.1480307501034011), (4, 9, 10, 38, 48, 75, 81): (0.38580428031766406, 0.8561990999547606, 0.14870245579695562), (4, 9, 17, 20, 21, 38, 48, 75, 81, 85): (0.3287611424267173, 0.7727174414557608, 0.14875929774485536), (4, 9, 21, 38, 48, 68, 75, 81): (0.35085609036236404, 0.829788163067764, 0.14875398876294763), (4, 10, 18, 48, 68, 75, 81): (0.37649547612262557, 0.8951760847630872, 0.14919996648688127), (4, 9, 19, 20, 21, 38, 49, 75, 85): (0.41640100306849537, 0.705093150372995, 0.14015996098823705), (4, 9, 17, 20, 21, 38, 64, 75, 81, 85): (0.33085298603236063, 0.7418399215994397, 0.14487972439785962), (4, 17, 20, 21, 38, 48, 64, 75, 81, 85): (0.3193974850937622, 0.7680632820869213, 0.1474266580607778), (4, 9, 17, 20, 21, 38, 49, 64, 75, 85): (0.34114170574087294, 0.6969174305624999, 0.14405921509093017), (9, 19, 20, 38, 49, 75, 87): (0.5006885871277305, 0.7412338818491877, 0.1451388894436533), (4, 9, 10, 75, 80, 81): (0.4019264767473983, 0.8734149403352809, 0.14482927195072062), (4, 10, 18, 48, 75, 80, 81): (0.3830407940310534, 0.8944881167840582, 0.14681390420878215), (4, 18, 32, 48, 56, 68, 69, 75, 81): (0.3229807880040072, 0.8650666484497739, 0.14809708296773283), (4, 10, 18, 48, 56, 68, 80, 81): (0.37683713029076393, 0.911312260609274, 0.14832443190916603), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81, 85): (0.28091256649751173, 0.7845716212169753, 0.141585496443792), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 75, 81): (0.28070798853230206, 0.8090664742306333, 0.14931465362464058), (4, 17, 20, 21, 38, 64, 66, 75, 81, 85): (0.29785238436809, 0.7234263474491083, 0.1490540650472151), (4, 18, 21, 32, 48, 56, 66, 68, 69, 81, 96): (0.26699140597300897, 0.8495296776189856, 0.14875348880939057), (4, 18, 21, 32, 38, 48, 64, 66, 68, 69, 81, 96): (0.25527949109936104, 0.8106316384539816, 0.1445317451825426), (4, 17, 21, 32, 38, 48, 64, 66, 68, 69, 81, 85, 96): (0.23217561230891856, 0.7805372979198325, 0.14511838625757928), (4, 9, 10, 19, 20, 38, 71, 75, 87): (0.4775129839401001, 0.7927769793318314, 0.14462380860637297), (4, 9, 10, 20, 71, 75, 80, 87): (0.4747088359878572, 0.8297948931425277, 0.14678768577566298), (9, 10, 19, 20, 71, 75, 80, 87): (0.502030117116463, 0.8236087646816392, 0.14943676014695212), (4, 18, 32, 48, 56, 58, 66, 68, 69, 72, 81, 96): (0.21696064154531802, 0.874101533075222, 0.13041150648755526), (4, 18, 21, 32, 48, 58, 64, 66, 68, 69, 72, 81, 96): (0.20114669372366326, 0.8301128240778305, 0.1493335313715823), (4, 17, 21, 38, 64, 66, 69, 81, 85, 99): (0.21769657381971141, 0.7313388234347639, 0.14701057273298804), (4, 17, 21, 32, 48, 64, 66, 69, 81, 85, 96, 99): (0.2015477050911515, 0.7529044317010726, 0.1494589238432731), (20, 25, 31, 49, 59, 84): (0.4258087319921411, 0.5401043228214542, 0.14745116571790448), (5, 24, 25, 31, 41, 43, 49, 59, 84, 90): (0.37662482838264727, 0.4751123959489456, 0.1496946360540124), (5, 17, 20, 24, 25, 31, 38, 41, 49, 85): (0.3622865226400378, 0.5612057389900295, 0.14877040889503995), (5, 17, 21, 24, 25, 31, 38, 41, 49, 85): (0.3397797027650458, 0.5662701001128034, 0.14899731011520068), (17, 20, 21, 24, 25, 31, 38, 41, 49, 85): (0.3529122532222511, 0.5772058553558765, 0.145641194646832), (5, 24, 25, 31, 41, 43, 50, 84, 90): (0.36744835703496576, 0.44513805791935623, 0.149017727518376), (5, 17, 24, 25, 41, 50): (0.25238459020708376, 0.49714842367609063, 0.14920289957040228), (5, 24, 25, 31, 43, 50, 59, 83, 84, 90): (0.3742525826195432, 0.4225237020811445, 0.14492114513872695), (5, 11, 23, 31, 43, 44, 59, 63, 84, 89, 90): (0.46586820074056295, 0.38692285503826956, 0.14938930201395317), (5, 25, 31, 43, 50, 59, 60, 83, 84, 90): (0.37465236999713214, 0.3967343268979738, 0.14793274615561394), (5, 24, 25, 31, 43, 50, 60, 83, 84, 90): (0.3666595366409718, 0.4029451066437212, 0.14935861884170346), (5, 24, 25, 31, 41, 43, 50, 60, 83, 90): (0.3374953446014549, 0.40768326591677895, 0.14271109555895584), (5, 11, 23, 31, 43, 44, 59, 84, 89, 90, 98): (0.46179357379075087, 0.37130700578519776, 0.14959106548201262), (5, 31, 43, 44, 50, 59, 60, 83, 84, 89, 90, 98): (0.3992944529514407, 0.34835251138844014, 0.14481894164813303), (5, 24, 25, 34, 41, 43, 50, 60, 83, 86, 90): (0.2643514690001076, 0.38046461029115597, 0.13200682283744283), (5, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98): (0.4251496043395029, 0.314317932764338, 0.14818426431967247), (5, 42, 43, 44, 50, 60, 83, 89, 90, 98): (0.3896204611486524, 0.2884476340796184, 0.14766772614257698), (5, 34, 43, 50, 60, 65, 83, 89, 90, 98): (0.35484204032889544, 0.28298632126058126, 0.14896339447527998), (5, 24, 34, 41, 43, 50, 60, 65, 83, 86, 90): (0.24186208866496334, 0.35381703763650374, 0.147248332994493), (42, 43, 50, 60, 65, 83, 89, 90, 98): (0.3648226358119667, 0.2529208238960593, 0.14563258715152547), (5, 17, 21, 24, 25, 41, 64, 85): (0.26509967721642796, 0.5547482058021883, 0.1467474135798299), (17, 20, 21, 24, 25, 38, 41, 49, 64, 85): (0.3204205925258258, 0.6110698164118312, 0.1433963240190826), (5, 24, 34, 41, 50, 60, 65, 83, 86, 94): (0.1963459614878132, 0.354221443943041, 0.1499119871156634), (5, 34, 43, 50, 60, 65, 83, 86, 90, 97, 98): (0.2786672893971936, 0.2764212575028138, 0.148038361569061), (6, 8, 13, 36, 39, 46, 57, 79, 91): (0.7812938642651628, 0.40869196155963294, 0.1483179196387932), (6, 11, 13, 36, 39, 46, 57, 63, 79, 91): (0.7400403080009023, 0.4149028417553895, 0.14959527944822024), (6, 11, 13, 23, 36, 40, 46, 57, 63, 79, 91): (0.6955733914381548, 0.4466149890794219, 0.14332938261511524), (6, 11, 23, 36, 40, 46, 59, 63, 91): (0.661799803852757, 0.47465268914249026, 0.14990023270177139), (6, 11, 13, 23, 36, 40, 57, 59, 63, 79, 91): (0.6674444223364877, 0.44592897980175666, 0.1493799596176158), (6, 8, 11, 13, 23, 36, 39, 57, 63, 76, 79, 91): (0.7479505156724652, 0.3543364256041871, 0.14504949210030488), (6, 36, 40, 46, 57, 78): (0.6989923716784051, 0.5550188424375802, 0.14881436260536204), (6, 11, 13, 23, 36, 40, 44, 59, 63, 79, 84, 91): (0.6121508102053388, 0.4160214927121739, 0.13919367839740476), (6, 11, 23, 31, 36, 40, 44, 59, 63, 79, 84, 91): (0.5840006753840745, 0.425262952856729, 0.13453194363310325), (6, 7, 40, 46, 54, 57, 78): (0.7359758275738826, 0.5714274758487573, 0.1459224915245561), (6, 19, 40, 46, 54, 78): (0.6804138212873839, 0.6024152093385852, 0.14958356907798287), (7, 19, 40, 46, 54, 78): (0.7001663606329307, 0.6736530749126453, 0.145581886573751), (6, 11, 12, 23, 31, 36, 44, 59, 63, 79, 84, 89, 91): (0.5546692350232861, 0.3748947382581936, 0.1404608810549469), (6, 11, 12, 13, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91): (0.6158471277538801, 0.33210754135354276, 0.13695160632128495), (6, 19, 40, 49, 78): (0.5898959630882554, 0.5849837349401764, 0.1395478206848745), (6, 19, 31, 40, 49, 59, 84): (0.5508159716065527, 0.5507115624444804, 0.13320543730746362), (6, 31, 40, 49, 59, 63, 84): (0.5334868035040657, 0.4969112537149139, 0.13520536905611247), (6, 11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 91): (0.5248341660288149, 0.3695285456138079, 0.14898478769694384), (16, 19, 40, 54, 78): (0.648734030229264, 0.69772769100568, 0.14566639395175016), (7, 16, 19, 54, 78, 92): (0.7017301747157373, 0.7018096583710086, 0.14788217314648738), (7, 35, 46, 54, 67, 77, 78, 92, 95): (0.8016668768331154, 0.7050427315864585, 0.14885954882353508), (7, 35, 54, 67, 77, 78, 82, 92, 95): (0.8126860837487624, 0.7390030277575786, 0.14963827070744815), (7, 35, 54, 67, 77, 82, 92, 93, 95): (0.8541983606053255, 0.7617510039302191, 0.13551854101469707), (7, 16, 35, 54, 67, 78, 92, 93, 95): (0.7835123617757969, 0.7940004134527878, 0.14850931037307125), (7, 35, 54, 67, 73, 82, 92, 93, 95): (0.8680257488645291, 0.8105733497073806, 0.14461010599432164), (16, 35, 54, 67, 73, 92, 93, 95): (0.8039052049993555, 0.8358136241307832, 0.1460176815171897), (8, 13, 27, 28, 36, 39, 51, 62, 74, 76, 79): (0.7864858215585857, 0.29075158032698684, 0.14961460741813482), (8, 13, 27, 28, 36, 39, 62, 74, 76, 79, 91): (0.7851472504933936, 0.30671346343945144, 0.14266494791580994), (8, 13, 27, 36, 39, 57, 62, 74, 76, 79, 91): (0.7947045059120503, 0.31997763795542744, 0.14446794140299074), (8, 11, 13, 23, 27, 28, 36, 74, 76, 79, 91): (0.7372472238258292, 0.2715103777107627, 0.14815884891492234), (8, 11, 13, 23, 36, 39, 57, 74, 76, 79, 91): (0.7536701632685218, 0.3264131965382456, 0.1499762709695208), (8, 11, 13, 23, 28, 36, 39, 63, 74, 76, 79, 91): (0.7432076014100258, 0.3161679754031407, 0.14735220435952692), (8, 13, 36, 39, 55, 57, 62, 74): (0.8270244719636314, 0.3463770009824643, 0.14816894016641344), (8, 13, 36, 39, 46, 55, 57): (0.8315524471930096, 0.4208862595245414, 0.14308143530640893), (9, 19, 20, 49, 75, 78, 87): (0.526255574364575, 0.7284182151763334, 0.1445142284421115), (9, 10, 16, 19, 20, 71, 75, 78, 87): (0.5503029395762983, 0.7725028563327712, 0.1379855198507884), (9, 19, 20, 40, 49, 75, 78): (0.5308236138060022, 0.6654717052596012, 0.14166070888466), (9, 16, 19, 40, 78): (0.6152792270448181, 0.7022038051249079, 0.14724540705027672), (9, 19, 20, 31, 38, 49, 75, 85): (0.4397878732528429, 0.6157549414177731, 0.1379389073709895), (9, 19, 20, 31, 40, 49, 75): (0.48958920540021267, 0.6234521812075917, 0.14685558331482343), (9, 10, 16, 19, 71, 75, 80, 87): (0.5310332240866265, 0.8284058748099863, 0.14651673216295627), (9, 10, 16, 19, 71, 78, 87, 92): (0.6106510896880954, 0.7958501908923952, 0.1430714723104721), (10, 16, 71, 80, 87, 92): (0.6264282483677088, 0.9079762183947514, 0.1358534990005984), (11, 12, 23, 31, 42, 43, 44, 59, 63, 84, 89, 90, 98): (0.4776061998845129, 0.3308921514293687, 0.14948378198882384), (11, 12, 14, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 98): (0.5190100909516181, 0.3024309974602939, 0.1461597643756266), (11, 12, 23, 31, 43, 44, 59, 63, 79, 84, 89, 90, 98): (0.5167680750767972, 0.3408073723414071, 0.1494775277829455), (11, 12, 14, 23, 42, 44, 59, 63, 79, 84, 89, 90, 91, 98): (0.5353432225094631, 0.3092813311287071, 0.14961247846229375), (11, 12, 23, 42, 43, 44, 59, 63, 79, 84, 89, 90, 91, 98): (0.5269080789204658, 0.3272778263063749, 0.1492860996243205), (11, 12, 14, 23, 42, 44, 63, 76, 79, 89, 98): (0.5651889224135658, 0.24974452994663424, 0.1481860442866704), (11, 12, 13, 14, 23, 42, 44, 59, 63, 76, 79, 84, 89, 91): (0.5810248153025497, 0.297301468717096, 0.14553280939641036), (11, 12, 13, 14, 23, 36, 44, 59, 63, 76, 79, 84, 89, 91): (0.59020808374762, 0.30242702351356676, 0.14518706205274268), (11, 12, 13, 14, 23, 28, 42, 44, 63, 76, 79, 89, 91): (0.6206933635449503, 0.24682154651736443, 0.14397395607960825), (11, 12, 13, 14, 23, 28, 36, 44, 63, 76, 79, 89, 91): (0.6443421994012091, 0.27263136238807373, 0.1418464361759105), (11, 12, 13, 14, 23, 28, 74, 76, 79, 91): (0.6865690251676432, 0.23557064983017745, 0.1497576533972519), (11, 12, 13, 23, 28, 36, 63, 74, 76, 79, 91): (0.7095105226389335, 0.27798372862136267, 0.145811382266761), (12, 13, 27, 28, 74, 76, 79): (0.7163112725430478, 0.21385230043077974, 0.14778176906674004), (12, 14, 28, 61, 74, 76): (0.692614694039914, 0.15857646831069733, 0.14455379460889162), (12, 23, 42, 43, 44, 59, 83, 84, 89, 90, 98): (0.4563543195907547, 0.31480881243674935, 0.14922880337038014), (12, 23, 31, 43, 44, 59, 83, 84, 89, 90, 98): (0.45419723615723284, 0.32960642809424645, 0.1499761920887504), (12, 14, 42, 43, 44, 60, 83, 89, 90, 98): (0.42955231039420116, 0.2226100668877384, 0.14110959536132095), (12, 42, 43, 44, 59, 60, 83, 84, 89, 90, 98): (0.4402325483015652, 0.3046223156987031, 0.14721181227676056), (14, 22, 28, 61, 74, 76): (0.7017172984423354, 0.12325899188468137, 0.14999980732453855), (14, 22, 26, 28, 61, 76): (0.6912503728261168, 0.10016189310233165, 0.14784082552996525), (16, 19, 54, 71, 78, 87, 92): (0.6703761804849702, 0.7581413028998242, 0.13727248723415264), (16, 54, 71, 78, 87, 92, 95): (0.7055796088125853, 0.8042768799273943, 0.13751533041746666), (16, 71, 92, 93, 95): (0.748680649656, 0.8792981719129548, 0.14810534432725672), (16, 35, 47, 73, 92, 93, 95): (0.7973963974798904, 0.8730772012592461, 0.14251677211486202), (17, 20, 21, 25, 38, 49, 64, 75, 85): (0.33122073385849954, 0.6424372081216861, 0.140272333871763), (17, 20, 21, 25, 31, 38, 49, 75, 85): (0.3899560099849434, 0.6080529827711362, 0.14686618715840474), (17, 21, 24, 25, 38, 41, 64, 66, 85, 99): (0.2324845209042679, 0.6381836480533993, 0.14541606090517503), (17, 21, 24, 25, 41, 64, 66, 85, 88, 99): (0.17759327332460764, 0.6154216464660676, 0.14680527616816053), (17, 21, 64, 66, 69, 85, 88, 99): (0.1700753673132927, 0.7010807602993253, 0.14829695794446568), (17, 21, 64, 66, 69, 88, 96, 99): (0.14057040165146145, 0.7404980045079362, 0.14458712542500857), (21, 32, 64, 66, 69, 88, 96, 99): (0.13589958287585685, 0.7521082386304109, 0.14938908416349977), (32, 37, 48, 58, 64, 66, 68, 69, 72, 81, 96): (0.1587853817899879, 0.8265085757585824, 0.14669323412266905), (18, 32, 37, 48, 56, 58, 66, 68, 69, 72, 81, 96): (0.1565898330981594, 0.900576785386657, 0.14039118879912008), (19, 20, 31, 40, 49, 59, 84): (0.4955100051053224, 0.5592196556545426, 0.13807852710419102), (29, 88): (0.021898984551369127, 0.498905674871803, 0.14491984926943427), (24, 29, 34, 41, 50, 86, 94): (0.15186115338348286, 0.38521837733842534, 0.14484075712621175), (29, 30, 34, 41, 50, 86, 94): (0.1318289821876929, 0.3907884062675565, 0.14663186091122857), (30, 34, 45, 50, 60, 65, 83, 86, 94, 97): (0.17218506307174686, 0.2745348904559653, 0.13778262145170894), (34, 45, 52, 60, 65, 70, 83, 86, 94, 97): (0.1946945060242287, 0.20205232918260238, 0.14600384549982623), (34, 45, 50, 60, 65, 70, 83, 86, 94, 97): (0.1984942686851189, 0.20938746372536046, 0.14945353002055525), (32, 37, 48, 64, 66, 69, 81, 96, 99): (0.13998817052833173, 0.7858689353702485, 0.14814097529549805), (32, 37, 64, 66, 69, 88, 96, 99): (0.111022615751386, 0.7676327866502684, 0.1464828433048606), (34, 60, 65, 70, 83, 86, 97, 98): (0.27881170846041564, 0.18823061782622416, 0.14535381423478827), (35, 47, 67, 73, 82, 92, 93, 95): (0.8668407448339298, 0.8654424303052715, 0.12317143039084451)}
# -*- coding: utf-8 -*- '''Top-level package for lico.''' __author__ = '''Sjoerd Kerkstra''' __email__ = '[email protected]' __version__ = '0.1.1'
"""Top-level package for lico.""" __author__ = 'Sjoerd Kerkstra' __email__ = '[email protected]' __version__ = '0.1.1'
# Author: zhao-zh10 # ----------- # User Instructions: # # Modify the the search function so that it becomes # an A* search algorithm as defined in the previous # lectures. # # Your function should return the expanded grid # which shows, for each element, the count when # it was expanded or -1 if the element was never expanded. # # If there is no path from init to goal, # the function should return the string 'fail' # ---------- grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]] heuristic = [[9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], [7, 6, 5, 4, 3, 2], [6, 5, 4, 3, 2, 1], [5, 4, 3, 2, 1, 0]] init = [0, 0] goal = [len(grid) - 1, len(grid[0]) - 1] cost = 1 delta = [[-1, 0], # go up [0, -1], # go left [1, 0], # go down [0, 1]] # go right delta_name = ['^', '<', 'v', '>'] def search(grid, init, goal, cost, heuristic, debug_flag = False): # ---------------------------------------- # modify the code below # ---------------------------------------- closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))] closed[init[0]][init[1]] = 1 expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))] action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))] policy = [[' ' for col in range(len(grid[0]))] for row in range(len(grid))] x = init[0] y = init[1] g = 0 h = heuristic[x][y] f = g + h open = [[f, g, h, x, y]] found = False # flag that is set when search is complete resign = False # flag set if we can't find expand count = 0 if debug_flag: print('initial open list:') for i in range(len(open)): print(" ", open[i]) print("----") while not found and not resign: if len(open) == 0: resign = True if debug_flag: print('Fail') print('###### Search terminated without success') return "Fail" else: # remove node from list open.sort() open.reverse() next = open.pop() if debug_flag: print('take list item') print(next) x = next[3] y = next[4] g = next[1] expand[x][y] = count count += 1 if x == goal[0] and y == goal[1]: if debug_flag: print(next) print('###### Search successful') found = True else: # expand winning element and add to new open list for i in range(len(delta)): x2 = x + delta[i][0] y2 = y + delta[i][1] if 0 <= x2 < len(grid) and 0 <= y2 < len(grid[0]): if closed[x2][y2] == 0 and grid[x2][y2] == 0: g2 = g + cost h2 = heuristic[x2][y2] f2 = g2 + h2 open.append([f2, g2, h2, x2, y2]) if debug_flag: print('append list item') print([f2, g2, h2, x2, y2]) closed[x2][y2] = 1 action[x2][y2] = i if debug_flag: print('---'*10) print('new open list:') for i in range(len(open)): print(' ', open[i]) print('---'*10) if found: x = goal[0] y = goal[1] policy[x][y] = '*' while x != init[0] or y != init[0]: x2 = x - delta[action[x][y]][0] y2 = y - delta[action[x][y]][1] policy[x2][y2] = delta_name[action[x][y]] x = x2 y = y2 if debug_flag: print('---'*10) print('The path policy is:') for m in range(len(policy)): print(policy[m]) print('---'*10) print('The expanded table is :') for k in range(len(expand)): print(expand[k]) return expand search(grid, init, goal, cost, heuristic)
grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]] heuristic = [[9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], [7, 6, 5, 4, 3, 2], [6, 5, 4, 3, 2, 1], [5, 4, 3, 2, 1, 0]] init = [0, 0] goal = [len(grid) - 1, len(grid[0]) - 1] cost = 1 delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] delta_name = ['^', '<', 'v', '>'] def search(grid, init, goal, cost, heuristic, debug_flag=False): closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))] closed[init[0]][init[1]] = 1 expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))] action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))] policy = [[' ' for col in range(len(grid[0]))] for row in range(len(grid))] x = init[0] y = init[1] g = 0 h = heuristic[x][y] f = g + h open = [[f, g, h, x, y]] found = False resign = False count = 0 if debug_flag: print('initial open list:') for i in range(len(open)): print(' ', open[i]) print('----') while not found and (not resign): if len(open) == 0: resign = True if debug_flag: print('Fail') print('###### Search terminated without success') return 'Fail' else: open.sort() open.reverse() next = open.pop() if debug_flag: print('take list item') print(next) x = next[3] y = next[4] g = next[1] expand[x][y] = count count += 1 if x == goal[0] and y == goal[1]: if debug_flag: print(next) print('###### Search successful') found = True else: for i in range(len(delta)): x2 = x + delta[i][0] y2 = y + delta[i][1] if 0 <= x2 < len(grid) and 0 <= y2 < len(grid[0]): if closed[x2][y2] == 0 and grid[x2][y2] == 0: g2 = g + cost h2 = heuristic[x2][y2] f2 = g2 + h2 open.append([f2, g2, h2, x2, y2]) if debug_flag: print('append list item') print([f2, g2, h2, x2, y2]) closed[x2][y2] = 1 action[x2][y2] = i if debug_flag: print('---' * 10) print('new open list:') for i in range(len(open)): print(' ', open[i]) print('---' * 10) if found: x = goal[0] y = goal[1] policy[x][y] = '*' while x != init[0] or y != init[0]: x2 = x - delta[action[x][y]][0] y2 = y - delta[action[x][y]][1] policy[x2][y2] = delta_name[action[x][y]] x = x2 y = y2 if debug_flag: print('---' * 10) print('The path policy is:') for m in range(len(policy)): print(policy[m]) print('---' * 10) print('The expanded table is :') for k in range(len(expand)): print(expand[k]) return expand search(grid, init, goal, cost, heuristic)
# python3 class HeapBuilder: def __init__(self): self._swaps = [] self._data = [] def ReadData(self): global n n = int(input()) self._data = [int(s) for s in input().split()] assert n == len(self._data) def WriteResponse(self): print(len(self._swaps)) for swap in self._swaps: print(swap[0], swap[1]) def SiftDown(self, i): minIndex = i left = 2 * i + 1 if left < n and self._data[left] < self._data[minIndex]: minIndex = left right = 2 * i + 2 if right < n and self._data[right] < self._data[minIndex]: minIndex = right if i != minIndex: self._data[i], self._data[minIndex] = self._data[minIndex], self._data[i] self._swaps.append([i, minIndex]) self.SiftDown(minIndex) def GenerateSwaps(self): for i in range(n // 2, -1, -1): self.SiftDown(i) def Solve(self): self.ReadData() self.GenerateSwaps() self.WriteResponse() if __name__ == '__main__': heap_builder = HeapBuilder() heap_builder.Solve()
class Heapbuilder: def __init__(self): self._swaps = [] self._data = [] def read_data(self): global n n = int(input()) self._data = [int(s) for s in input().split()] assert n == len(self._data) def write_response(self): print(len(self._swaps)) for swap in self._swaps: print(swap[0], swap[1]) def sift_down(self, i): min_index = i left = 2 * i + 1 if left < n and self._data[left] < self._data[minIndex]: min_index = left right = 2 * i + 2 if right < n and self._data[right] < self._data[minIndex]: min_index = right if i != minIndex: (self._data[i], self._data[minIndex]) = (self._data[minIndex], self._data[i]) self._swaps.append([i, minIndex]) self.SiftDown(minIndex) def generate_swaps(self): for i in range(n // 2, -1, -1): self.SiftDown(i) def solve(self): self.ReadData() self.GenerateSwaps() self.WriteResponse() if __name__ == '__main__': heap_builder = heap_builder() heap_builder.Solve()
# python dict of naming overrides GENE_NAME_OVERRIDE = { # pmmo Genes 'EQU24_RS19315':'pmoC', 'EQU24_RS19310':'pmoA', 'EQU24_RS19305':'pmoB', # smmo Genes 'EQU24_RS05930':'mmoR', 'EQU24_RS05925':'mmoG', 'EQU24_RS05910':'mmoC', 'EQU24_RS05900':'mmoZ', 'EQU24_RS05895':'mmoB', 'EQU24_RS05890':'mmoY', 'EQU24_RS05885':'mmoX', # groEL/groES genes 'EQU24_RS17825':'groS', 'EQU24_RS08650':'groS', # mxaF genes (mxa and mox) 'EQU24_RS18155':'mxaD', 'EQU24_RS18140':'moxF', 'EQU24_RS18125':'moxI', 'EQU24_RS18120':'moxR', 'EQU24_RS18115':'mxaP', # via blast 'EQU24_RS18110':'mxaS', 'EQU24_RS18105':'mxaA', 'EQU24_RS18100':'mxaC', 'EQU24_RS18095':'mxaK', 'EQU24_RS18090':'mxaL', 'EQU24_RS18145':'mxaB', # Xox 'EQU24_RS18610':'xoxJ', 'EQU24_RS18605':'xoxF' } GENE_PRODUCT_OVERRIDE = { 'EQU24_RS05925':'likely chaperone for smmo', } SYS_LOOKUP = { #pmo 'EQU24_RS19315':'pmo', 'EQU24_RS19310':'pmo', 'EQU24_RS19305':'pmo', # smo 'EQU24_RS05910':'smo', 'EQU24_RS05905':'smo', 'EQU24_RS05900':'smo', 'EQU24_RS05895':'smo', 'EQU24_RS05890':'smo', 'EQU24_RS05885':'smo', 'EQU24_RS05930':'smo', 'EQU24_RS05925':'smo', # mxa 'EQU24_RS18145':'mox', 'EQU24_RS18140':'mox', 'EQU24_RS18135':'mox', 'EQU24_RS18130':'mox', 'EQU24_RS18125':'mox', 'EQU24_RS18120':'mox', 'EQU24_RS18115':'mox', 'EQU24_RS18110':'mox', 'EQU24_RS18105':'mox', 'EQU24_RS18100':'mox', 'EQU24_RS18095':'mox', 'EQU24_RS18090':'mox', # xox 'EQU24_RS18605':'xox', 'EQU24_RS18610':'xox', #groEL/ES # 'EQU24_RS17825':'gro', # 'EQU24_RS17820':'gro', # 'EQU24_RS08655':'gro', # 'EQU24_RS08650':'gro', #pilin 'EQU24_RS04275':'pilin', 'EQU24_RS01095':'pilin', 'EQU24_RS16035':'pilin', 'EQU24_RS03345':'pilin', 'EQU24_RS16020':'pilin', 'EQU24_RS19380':'pilin', 'EQU24_RS00705':'pilin', 'EQU24_RS04470':'pilin', 'EQU24_RS12830':'pilin', 'EQU24_RS04480':'pilin', 'EQU24_RS12835':'pilin', 'EQU24_RS04490':'pilin', 'EQU24_RS04485':'pilin', 'EQU24_RS03355':'pilin', 'EQU24_RS00710':'pilin', 'EQU24_RS05130':'pilin', 'EQU24_RS19585':'pilin', 'EQU24_RS04615':'pilin', 'EQU24_RS05525':'pilin', 'EQU24_RS16025':'pilin', 'EQU24_RS05135':'pilin', 'EQU24_RS12840':'pilin', 'EQU24_RS04585':'pilin', 'EQU24_RS04610':'pilin', 'EQU24_RS04595':'pilin', 'EQU24_RS04600':'pilin', # secretion 'EQU24_RS19520':'secretion', 'EQU24_RS11235':'secretion', 'EQU24_RS15565':'secretion', 'EQU24_RS06345':'secretion', 'EQU24_RS05115':'secretion', 'EQU24_RS15560':'secretion', 'EQU24_RS11240':'secretion', 'EQU24_RS11280':'secretion', 'EQU24_RS11210':'secretion', 'EQU24_RS11245':'secretion', 'EQU24_RS11180':'secretion', 'EQU24_RS20155':'secretion', 'EQU24_RS15945':'secretion', 'EQU24_RS05120':'secretion', 'EQU24_RS11270':'secretion', 'EQU24_RS11275':'secretion', 'EQU24_RS11250':'secretion', 'EQU24_RS11260':'secretion', 'EQU24_RS20160':'secretion', 'EQU24_RS05110':'secretion', 'EQU24_RS04490':'secretion', 'EQU24_RS03350':'secretion', 'EQU24_RS11255':'secretion', 'EQU24_RS15930':'secretion', 'EQU24_RS16015':'secretion', 'EQU24_RS11215':'secretion', 'EQU24_RS11220':'secretion', 'EQU24_RS11205':'secretion', 'EQU24_RS11190':'secretion', 'EQU24_RS19490':'secretion', 'EQU24_RS05160':'secretion', 'EQU24_RS05105':'secretion', 'EQU24_RS16000':'secretion', 'EQU24_RS19465':'secretion', 'EQU24_RS15995':'secretion', 'EQU24_RS01525':'secretion', 'EQU24_RS05405':'secretion', 'EQU24_RS11175':'secretion', 'EQU24_RS10950':'secretion', #toxin 'EQU24_RS11700':'toxin', 'EQU24_RS14175':'toxin', 'EQU24_RS18440':'toxin', 'EQU24_RS20880':'toxin', 'EQU24_RS07550':'toxin', 'EQU24_RS11705':'toxin', 'EQU24_RS07535':'toxin', 'EQU24_RS08075':'toxin', 'EQU24_RS02930':'toxin', 'EQU24_RS21185':'toxin', 'EQU24_RS21860':'toxin', 'EQU24_RS17985':'toxin', 'EQU24_RS07545':'toxin', 'EQU24_RS18405':'toxin', 'EQU24_RS00235':'toxin', 'EQU24_RS19535':'toxin', 'EQU24_RS10190':'toxin', 'EQU24_RS08220':'toxin', 'EQU24_RS21865':'toxin', 'EQU24_RS15430':'toxin', 'EQU24_RS20925':'toxin', 'EQU24_RS04285':'toxin', 'EQU24_RS10850':'toxin', 'EQU24_RS20920':'toxin', 'EQU24_RS08175':'toxin', 'EQU24_RS08180':'toxin', 'EQU24_RS08210':'toxin', 'EQU24_RS13090':'toxin', 'EQU24_RS20735':'toxin', 'EQU24_RS04320':'toxin', 'EQU24_RS20730':'toxin', 'EQU24_RS01855':'toxin', 'EQU24_RS10855':'toxin', 'EQU24_RS19540':'toxin', 'EQU24_RS20010':'toxin', 'EQU24_RS20725':'toxin', 'EQU24_RS08130':'toxin', 'EQU24_RS15455':'toxin', 'EQU24_RS13520':'toxin', 'EQU24_RS08065':'toxin', 'EQU24_RS04325':'toxin', 'EQU24_RS01485':'toxin', 'EQU24_RS05330':'toxin', 'EQU24_RS20720':'toxin', 'EQU24_RS13725':'toxin', 'EQU24_RS20935':'toxin', 'EQU24_RS08135':'toxin', 'EQU24_RS01930':'toxin', 'EQU24_RS17920':'toxin', 'EQU24_RS20265':'toxin', 'EQU24_RS16915':'toxin', 'EQU24_RS07460':'toxin', 'EQU24_RS01935':'toxin', 'EQU24_RS22115':'toxin', 'EQU24_RS19020':'toxin', 'EQU24_RS04380':'toxin', 'EQU24_RS04110':'toxin', 'EQU24_RS00215':'toxin', 'EQU24_RS01345':'toxin', 'EQU24_RS07575':'toxin', 'EQU24_RS00220':'toxin', 'EQU24_RS20270':'toxin', 'EQU24_RS05325':'toxin', 'EQU24_RS16470':'toxin', 'EQU24_RS17375':'toxin', 'EQU24_RS12475':'toxin', 'EQU24_RS16330':'toxin', 'EQU24_RS12820':'toxin', 'EQU24_RS12825':'toxin', 'EQU24_RS08850':'toxin', 'EQU24_RS08845':'toxin', # 5152 'EQU24_RS19480':'5152', 'EQU24_RS19490':'5152', 'EQU24_RS19495':'5152', 'EQU24_RS19515':'5152', 'EQU24_RS19510':'5152', 'EQU24_RS19505':'5152', 'EQU24_RS19470':'5152', 'EQU24_RS19460':'5152', 'EQU24_RS19450':'5152', # repressible no 5152 'EQU24_RS10650':'RepCurCu-no5152', 'EQU24_RS15800':'RepCurCu-no5152', 'EQU24_RS01900':'RepCurCu-no5152', 'EQU24_RS21005':'RepCurCu-no5152', 'EQU24_RS02325':'RepCurCu-no5152', 'EQU24_RS05885':'RepCurCu-no5152', 'EQU24_RS21000':'RepCurCu-no5152', 'EQU24_RS00670':'RepCurCu-no5152', 'EQU24_RS05870':'RepCurCu-no5152', 'EQU24_RS10665':'RepCurCu-no5152', 'EQU24_RS05880':'RepCurCu-no5152', 'EQU24_RS05905':'RepCurCu-no5152', 'EQU24_RS05915':'RepCurCu-no5152', 'EQU24_RS05920':'RepCurCu-no5152', 'EQU24_RS05925':'RepCurCu-no5152' }
gene_name_override = {'EQU24_RS19315': 'pmoC', 'EQU24_RS19310': 'pmoA', 'EQU24_RS19305': 'pmoB', 'EQU24_RS05930': 'mmoR', 'EQU24_RS05925': 'mmoG', 'EQU24_RS05910': 'mmoC', 'EQU24_RS05900': 'mmoZ', 'EQU24_RS05895': 'mmoB', 'EQU24_RS05890': 'mmoY', 'EQU24_RS05885': 'mmoX', 'EQU24_RS17825': 'groS', 'EQU24_RS08650': 'groS', 'EQU24_RS18155': 'mxaD', 'EQU24_RS18140': 'moxF', 'EQU24_RS18125': 'moxI', 'EQU24_RS18120': 'moxR', 'EQU24_RS18115': 'mxaP', 'EQU24_RS18110': 'mxaS', 'EQU24_RS18105': 'mxaA', 'EQU24_RS18100': 'mxaC', 'EQU24_RS18095': 'mxaK', 'EQU24_RS18090': 'mxaL', 'EQU24_RS18145': 'mxaB', 'EQU24_RS18610': 'xoxJ', 'EQU24_RS18605': 'xoxF'} gene_product_override = {'EQU24_RS05925': 'likely chaperone for smmo'} sys_lookup = {'EQU24_RS19315': 'pmo', 'EQU24_RS19310': 'pmo', 'EQU24_RS19305': 'pmo', 'EQU24_RS05910': 'smo', 'EQU24_RS05905': 'smo', 'EQU24_RS05900': 'smo', 'EQU24_RS05895': 'smo', 'EQU24_RS05890': 'smo', 'EQU24_RS05885': 'smo', 'EQU24_RS05930': 'smo', 'EQU24_RS05925': 'smo', 'EQU24_RS18145': 'mox', 'EQU24_RS18140': 'mox', 'EQU24_RS18135': 'mox', 'EQU24_RS18130': 'mox', 'EQU24_RS18125': 'mox', 'EQU24_RS18120': 'mox', 'EQU24_RS18115': 'mox', 'EQU24_RS18110': 'mox', 'EQU24_RS18105': 'mox', 'EQU24_RS18100': 'mox', 'EQU24_RS18095': 'mox', 'EQU24_RS18090': 'mox', 'EQU24_RS18605': 'xox', 'EQU24_RS18610': 'xox', 'EQU24_RS04275': 'pilin', 'EQU24_RS01095': 'pilin', 'EQU24_RS16035': 'pilin', 'EQU24_RS03345': 'pilin', 'EQU24_RS16020': 'pilin', 'EQU24_RS19380': 'pilin', 'EQU24_RS00705': 'pilin', 'EQU24_RS04470': 'pilin', 'EQU24_RS12830': 'pilin', 'EQU24_RS04480': 'pilin', 'EQU24_RS12835': 'pilin', 'EQU24_RS04490': 'pilin', 'EQU24_RS04485': 'pilin', 'EQU24_RS03355': 'pilin', 'EQU24_RS00710': 'pilin', 'EQU24_RS05130': 'pilin', 'EQU24_RS19585': 'pilin', 'EQU24_RS04615': 'pilin', 'EQU24_RS05525': 'pilin', 'EQU24_RS16025': 'pilin', 'EQU24_RS05135': 'pilin', 'EQU24_RS12840': 'pilin', 'EQU24_RS04585': 'pilin', 'EQU24_RS04610': 'pilin', 'EQU24_RS04595': 'pilin', 'EQU24_RS04600': 'pilin', 'EQU24_RS19520': 'secretion', 'EQU24_RS11235': 'secretion', 'EQU24_RS15565': 'secretion', 'EQU24_RS06345': 'secretion', 'EQU24_RS05115': 'secretion', 'EQU24_RS15560': 'secretion', 'EQU24_RS11240': 'secretion', 'EQU24_RS11280': 'secretion', 'EQU24_RS11210': 'secretion', 'EQU24_RS11245': 'secretion', 'EQU24_RS11180': 'secretion', 'EQU24_RS20155': 'secretion', 'EQU24_RS15945': 'secretion', 'EQU24_RS05120': 'secretion', 'EQU24_RS11270': 'secretion', 'EQU24_RS11275': 'secretion', 'EQU24_RS11250': 'secretion', 'EQU24_RS11260': 'secretion', 'EQU24_RS20160': 'secretion', 'EQU24_RS05110': 'secretion', 'EQU24_RS04490': 'secretion', 'EQU24_RS03350': 'secretion', 'EQU24_RS11255': 'secretion', 'EQU24_RS15930': 'secretion', 'EQU24_RS16015': 'secretion', 'EQU24_RS11215': 'secretion', 'EQU24_RS11220': 'secretion', 'EQU24_RS11205': 'secretion', 'EQU24_RS11190': 'secretion', 'EQU24_RS19490': 'secretion', 'EQU24_RS05160': 'secretion', 'EQU24_RS05105': 'secretion', 'EQU24_RS16000': 'secretion', 'EQU24_RS19465': 'secretion', 'EQU24_RS15995': 'secretion', 'EQU24_RS01525': 'secretion', 'EQU24_RS05405': 'secretion', 'EQU24_RS11175': 'secretion', 'EQU24_RS10950': 'secretion', 'EQU24_RS11700': 'toxin', 'EQU24_RS14175': 'toxin', 'EQU24_RS18440': 'toxin', 'EQU24_RS20880': 'toxin', 'EQU24_RS07550': 'toxin', 'EQU24_RS11705': 'toxin', 'EQU24_RS07535': 'toxin', 'EQU24_RS08075': 'toxin', 'EQU24_RS02930': 'toxin', 'EQU24_RS21185': 'toxin', 'EQU24_RS21860': 'toxin', 'EQU24_RS17985': 'toxin', 'EQU24_RS07545': 'toxin', 'EQU24_RS18405': 'toxin', 'EQU24_RS00235': 'toxin', 'EQU24_RS19535': 'toxin', 'EQU24_RS10190': 'toxin', 'EQU24_RS08220': 'toxin', 'EQU24_RS21865': 'toxin', 'EQU24_RS15430': 'toxin', 'EQU24_RS20925': 'toxin', 'EQU24_RS04285': 'toxin', 'EQU24_RS10850': 'toxin', 'EQU24_RS20920': 'toxin', 'EQU24_RS08175': 'toxin', 'EQU24_RS08180': 'toxin', 'EQU24_RS08210': 'toxin', 'EQU24_RS13090': 'toxin', 'EQU24_RS20735': 'toxin', 'EQU24_RS04320': 'toxin', 'EQU24_RS20730': 'toxin', 'EQU24_RS01855': 'toxin', 'EQU24_RS10855': 'toxin', 'EQU24_RS19540': 'toxin', 'EQU24_RS20010': 'toxin', 'EQU24_RS20725': 'toxin', 'EQU24_RS08130': 'toxin', 'EQU24_RS15455': 'toxin', 'EQU24_RS13520': 'toxin', 'EQU24_RS08065': 'toxin', 'EQU24_RS04325': 'toxin', 'EQU24_RS01485': 'toxin', 'EQU24_RS05330': 'toxin', 'EQU24_RS20720': 'toxin', 'EQU24_RS13725': 'toxin', 'EQU24_RS20935': 'toxin', 'EQU24_RS08135': 'toxin', 'EQU24_RS01930': 'toxin', 'EQU24_RS17920': 'toxin', 'EQU24_RS20265': 'toxin', 'EQU24_RS16915': 'toxin', 'EQU24_RS07460': 'toxin', 'EQU24_RS01935': 'toxin', 'EQU24_RS22115': 'toxin', 'EQU24_RS19020': 'toxin', 'EQU24_RS04380': 'toxin', 'EQU24_RS04110': 'toxin', 'EQU24_RS00215': 'toxin', 'EQU24_RS01345': 'toxin', 'EQU24_RS07575': 'toxin', 'EQU24_RS00220': 'toxin', 'EQU24_RS20270': 'toxin', 'EQU24_RS05325': 'toxin', 'EQU24_RS16470': 'toxin', 'EQU24_RS17375': 'toxin', 'EQU24_RS12475': 'toxin', 'EQU24_RS16330': 'toxin', 'EQU24_RS12820': 'toxin', 'EQU24_RS12825': 'toxin', 'EQU24_RS08850': 'toxin', 'EQU24_RS08845': 'toxin', 'EQU24_RS19480': '5152', 'EQU24_RS19490': '5152', 'EQU24_RS19495': '5152', 'EQU24_RS19515': '5152', 'EQU24_RS19510': '5152', 'EQU24_RS19505': '5152', 'EQU24_RS19470': '5152', 'EQU24_RS19460': '5152', 'EQU24_RS19450': '5152', 'EQU24_RS10650': 'RepCurCu-no5152', 'EQU24_RS15800': 'RepCurCu-no5152', 'EQU24_RS01900': 'RepCurCu-no5152', 'EQU24_RS21005': 'RepCurCu-no5152', 'EQU24_RS02325': 'RepCurCu-no5152', 'EQU24_RS05885': 'RepCurCu-no5152', 'EQU24_RS21000': 'RepCurCu-no5152', 'EQU24_RS00670': 'RepCurCu-no5152', 'EQU24_RS05870': 'RepCurCu-no5152', 'EQU24_RS10665': 'RepCurCu-no5152', 'EQU24_RS05880': 'RepCurCu-no5152', 'EQU24_RS05905': 'RepCurCu-no5152', 'EQU24_RS05915': 'RepCurCu-no5152', 'EQU24_RS05920': 'RepCurCu-no5152', 'EQU24_RS05925': 'RepCurCu-no5152'}
class Coordinate: coordX = 0 coordY = 0 def __init__(self, coordX=0, coordY=0): self.coordX = coordX self.coordY = coordY pass def set(self, coordX, coordY): self.coordX = coordX self.coordY = coordY return coordX, coordY if __name__ == '__main__': pass
class Coordinate: coord_x = 0 coord_y = 0 def __init__(self, coordX=0, coordY=0): self.coordX = coordX self.coordY = coordY pass def set(self, coordX, coordY): self.coordX = coordX self.coordY = coordY return (coordX, coordY) if __name__ == '__main__': pass
apiAttachAvailable = u'API Kullanilabilir' apiAttachNotAvailable = u'Kullanilamiyor' apiAttachPendingAuthorization = u'Yetkilendirme Bekliyor' apiAttachRefused = u'Reddedildi' apiAttachSuccess = u'Basarili oldu' apiAttachUnknown = u'Bilinmiyor' budDeletedFriend = u'Arkadas Listesinden Silindi' budFriend = u'Arkadas' budNeverBeenFriend = u'Arkadas Listesinde Hi\xe7 Olmadi' budPendingAuthorization = u'Yetkilendirme Bekliyor' budUnknown = u'Bilinmiyor' cfrBlockedByRecipient = u'\xc7agri alici tarafindan engellendi' cfrMiscError = u'Diger Hata' cfrNoCommonCodec = u'Genel codec yok' cfrNoProxyFound = u'Proxy bulunamadi' cfrNotAuthorizedByRecipient = u'Ge\xe7erli kullanici alici tarafindan yetkilendirilmemis' cfrRecipientNotFriend = u'Alici bir arkadas degil' cfrRemoteDeviceError = u'Uzak ses aygitinda problem var' cfrSessionTerminated = u'Oturum sonlandirildi' cfrSoundIOError = u'Ses G/\xc7 hatasi' cfrSoundRecordingError = u'Ses kayit hatasi' cfrUnknown = u'Bilinmiyor' cfrUserDoesNotExist = u'Kullanici/telefon numarasi mevcut degil' cfrUserIsOffline = u'\xc7evrim Disi' chsAllCalls = u'Eski Diyalog' chsDialog = u'Diyalog' chsIncomingCalls = u'\xc7oklu Sohbet Kabul\xfc Gerekli' chsLegacyDialog = u'Eski Diyalog' chsMissedCalls = u'Diyalog' chsMultiNeedAccept = u'\xc7oklu Sohbet Kabul\xfc Gerekli' chsMultiSubscribed = u'\xc7oklu Abonelik' chsOutgoingCalls = u'\xc7oklu Abonelik' chsUnknown = u'Bilinmiyor' chsUnsubscribed = u'Aboneligi Silindi' clsBusy = u'Mesgul' clsCancelled = u'Iptal Edildi' clsEarlyMedia = u'Early Media y\xfcr\xfct\xfcl\xfcyor' clsFailed = u'\xdczg\xfcn\xfcz, arama basarisiz!' clsFinished = u'Bitirildi' clsInProgress = u'Arama Yapiliyor' clsLocalHold = u'Yerel Beklemede' clsMissed = u'Cevapsiz Arama' clsOnHold = u'Beklemede' clsRefused = u'Reddedildi' clsRemoteHold = u'Uzak Beklemede' clsRinging = u'ariyor' clsRouting = u'Y\xf6nlendirme' clsTransferred = u'Bilinmiyor' clsTransferring = u'Bilinmiyor' clsUnknown = u'Bilinmiyor' clsUnplaced = u'Asla baglanmadi' clsVoicemailBufferingGreeting = u'Selamlama Ara Bellege Aliniyor' clsVoicemailCancelled = u'Sesli Posta Iptal Edildi' clsVoicemailFailed = u'Sesli Mesaj Basarisiz' clsVoicemailPlayingGreeting = u'Selamlama Y\xfcr\xfct\xfcl\xfcyor' clsVoicemailRecording = u'Sesli Mesaj Kaydediliyor' clsVoicemailSent = u'Sesli Posta G\xf6nderildi' clsVoicemailUploading = u'Sesli Posta Karsiya Y\xfckleniyor' cltIncomingP2P = u'Gelen Esler Arasi Telefon \xc7agrisi' cltIncomingPSTN = u'Gelen Telefon \xc7agrisi' cltOutgoingP2P = u'Giden Esler Arasi Telefon \xc7agrisi' cltOutgoingPSTN = u'Giden Telefon \xc7agrisi' cltUnknown = u'Bilinmiyor' cmeAddedMembers = u'Eklenen \xdcyeler' cmeCreatedChatWith = u'Sohbet Olusturuldu:' cmeEmoted = u'Bilinmiyor' cmeLeft = u'Birakilan' cmeSaid = u'Ifade' cmeSawMembers = u'G\xf6r\xfclen \xdcyeler' cmeSetTopic = u'Konu Belirleme' cmeUnknown = u'Bilinmiyor' cmsRead = u'Okundu' cmsReceived = u'Alindi' cmsSending = u'G\xf6nderiliyor...' cmsSent = u'G\xf6nderildi' cmsUnknown = u'Bilinmiyor' conConnecting = u'Baglaniyor' conOffline = u'\xc7evrim Disi' conOnline = u'\xc7evrim I\xe7i' conPausing = u'Duraklatiliyor' conUnknown = u'Bilinmiyor' cusAway = u'Uzakta' cusDoNotDisturb = u'Rahatsiz Etmeyin' cusInvisible = u'G\xf6r\xfcnmez' cusLoggedOut = u'\xc7evrim Disi' cusNotAvailable = u'Kullanilamiyor' cusOffline = u'\xc7evrim Disi' cusOnline = u'\xc7evrim I\xe7i' cusSkypeMe = u'Skype Me' cusUnknown = u'Bilinmiyor' cvsBothEnabled = u'Video G\xf6nderme ve Alma' cvsNone = u'Video Yok' cvsReceiveEnabled = u'Video Alma' cvsSendEnabled = u'Video G\xf6nderme' cvsUnknown = u'' grpAllFriends = u'T\xfcm Arkadaslar' grpAllUsers = u'T\xfcm Kullanicilar' grpCustomGroup = u'\xd6zel' grpOnlineFriends = u'\xc7evrimi\xe7i Arkadaslar' grpPendingAuthorizationFriends = u'Yetkilendirme Bekliyor' grpProposedSharedGroup = u'Proposed Shared Group' grpRecentlyContactedUsers = u'Son Zamanlarda Iletisim Kurulmus Kullanicilar' grpSharedGroup = u'Shared Group' grpSkypeFriends = u'Skype Arkadaslari' grpSkypeOutFriends = u'SkypeOut Arkadaslari' grpUngroupedFriends = u'Gruplanmamis Arkadaslar' grpUnknown = u'Bilinmiyor' grpUsersAuthorizedByMe = u'Tarafimdan Yetkilendirilenler' grpUsersBlockedByMe = u'Engellediklerim' grpUsersWaitingMyAuthorization = u'Yetkilendirmemi Bekleyenler' leaAddDeclined = u'Ekleme Reddedildi' leaAddedNotAuthorized = u'Ekleyen Kisinin Yetkisi Olmali' leaAdderNotFriend = u'Ekleyen Bir Arkadas Olmali' leaUnknown = u'Bilinmiyor' leaUnsubscribe = u'Aboneligi Silindi' leaUserIncapable = u'Kullanicidan Kaynaklanan Yetersizlik' leaUserNotFound = u'Kullanici Bulunamadi' olsAway = u'Uzakta' olsDoNotDisturb = u'Rahatsiz Etmeyin' olsNotAvailable = u'Kullanilamiyor' olsOffline = u'\xc7evrim Disi' olsOnline = u'\xc7evrim I\xe7i' olsSkypeMe = u'Skype Me' olsSkypeOut = u'SkypeOut' olsUnknown = u'Bilinmiyor' smsMessageStatusComposing = u'Composing' smsMessageStatusDelivered = u'Delivered' smsMessageStatusFailed = u'Failed' smsMessageStatusRead = u'Read' smsMessageStatusReceived = u'Received' smsMessageStatusSendingToServer = u'Sending to Server' smsMessageStatusSentToServer = u'Sent to Server' smsMessageStatusSomeTargetsFailed = u'Some Targets Failed' smsMessageStatusUnknown = u'Unknown' smsMessageTypeCCRequest = u'Confirmation Code Request' smsMessageTypeCCSubmit = u'Confirmation Code Submit' smsMessageTypeIncoming = u'Incoming' smsMessageTypeOutgoing = u'Outgoing' smsMessageTypeUnknown = u'Unknown' smsTargetStatusAcceptable = u'Acceptable' smsTargetStatusAnalyzing = u'Analyzing' smsTargetStatusDeliveryFailed = u'Delivery Failed' smsTargetStatusDeliveryPending = u'Delivery Pending' smsTargetStatusDeliverySuccessful = u'Delivery Successful' smsTargetStatusNotRoutable = u'Not Routable' smsTargetStatusUndefined = u'Undefined' smsTargetStatusUnknown = u'Unknown' usexFemale = u'Kadin' usexMale = u'Erkek' usexUnknown = u'Bilinmiyor' vmrConnectError = u'Baglanti Hatasi' vmrFileReadError = u'Dosya Okuma Hatasi' vmrFileWriteError = u'Dosya Yazma Hatasi' vmrMiscError = u'Diger Hata' vmrNoError = u'Hata Yok' vmrNoPrivilege = u'Sesli Posta \xd6nceligi Yok' vmrNoVoicemail = u'B\xf6yle Bir Sesli Posta Yok' vmrPlaybackError = u'Y\xfcr\xfctme Hatasi' vmrRecordingError = u'Kayit Hatasi' vmrUnknown = u'Bilinmiyor' vmsBlank = u'Bos' vmsBuffering = u'Ara bellege aliniyor' vmsDeleting = u'Siliniyor' vmsDownloading = u'Karsidan Y\xfckleniyor' vmsFailed = u'Basarisiz Oldu' vmsNotDownloaded = u'Karsidan Y\xfcklenmedi' vmsPlayed = u'Y\xfcr\xfct\xfcld\xfc' vmsPlaying = u'Y\xfcr\xfct\xfcl\xfcyor' vmsRecorded = u'Kaydedildi' vmsRecording = u'Sesli Mesaj Kaydediliyor' vmsUnknown = u'Bilinmiyor' vmsUnplayed = u'Y\xfcr\xfct\xfclmemis' vmsUploaded = u'Karsiya Y\xfcklendi' vmsUploading = u'Karsiya Y\xfckleniyor' vmtCustomGreeting = u'\xd6zel Selamlama' vmtDefaultGreeting = u'Varsayilan Selamlama' vmtIncoming = u'gelen sesli mesaj' vmtOutgoing = u'Giden' vmtUnknown = u'Bilinmiyor' vssAvailable = u'Kullanilabilir' vssNotAvailable = u'Kullanilamiyor' vssPaused = u'Duraklatildi' vssRejected = u'Reddedildi' vssRunning = u'\xc7alisiyor' vssStarting = u'Basliyor' vssStopping = u'Durduruluyor' vssUnknown = u'Bilinmiyor'
api_attach_available = u'API Kullanilabilir' api_attach_not_available = u'Kullanilamiyor' api_attach_pending_authorization = u'Yetkilendirme Bekliyor' api_attach_refused = u'Reddedildi' api_attach_success = u'Basarili oldu' api_attach_unknown = u'Bilinmiyor' bud_deleted_friend = u'Arkadas Listesinden Silindi' bud_friend = u'Arkadas' bud_never_been_friend = u'Arkadas Listesinde Hiç Olmadi' bud_pending_authorization = u'Yetkilendirme Bekliyor' bud_unknown = u'Bilinmiyor' cfr_blocked_by_recipient = u'Çagri alici tarafindan engellendi' cfr_misc_error = u'Diger Hata' cfr_no_common_codec = u'Genel codec yok' cfr_no_proxy_found = u'Proxy bulunamadi' cfr_not_authorized_by_recipient = u'Geçerli kullanici alici tarafindan yetkilendirilmemis' cfr_recipient_not_friend = u'Alici bir arkadas degil' cfr_remote_device_error = u'Uzak ses aygitinda problem var' cfr_session_terminated = u'Oturum sonlandirildi' cfr_sound_io_error = u'Ses G/Ç hatasi' cfr_sound_recording_error = u'Ses kayit hatasi' cfr_unknown = u'Bilinmiyor' cfr_user_does_not_exist = u'Kullanici/telefon numarasi mevcut degil' cfr_user_is_offline = u'Çevrim Disi' chs_all_calls = u'Eski Diyalog' chs_dialog = u'Diyalog' chs_incoming_calls = u'Çoklu Sohbet Kabulü Gerekli' chs_legacy_dialog = u'Eski Diyalog' chs_missed_calls = u'Diyalog' chs_multi_need_accept = u'Çoklu Sohbet Kabulü Gerekli' chs_multi_subscribed = u'Çoklu Abonelik' chs_outgoing_calls = u'Çoklu Abonelik' chs_unknown = u'Bilinmiyor' chs_unsubscribed = u'Aboneligi Silindi' cls_busy = u'Mesgul' cls_cancelled = u'Iptal Edildi' cls_early_media = u'Early Media yürütülüyor' cls_failed = u'Üzgünüz, arama basarisiz!' cls_finished = u'Bitirildi' cls_in_progress = u'Arama Yapiliyor' cls_local_hold = u'Yerel Beklemede' cls_missed = u'Cevapsiz Arama' cls_on_hold = u'Beklemede' cls_refused = u'Reddedildi' cls_remote_hold = u'Uzak Beklemede' cls_ringing = u'ariyor' cls_routing = u'Yönlendirme' cls_transferred = u'Bilinmiyor' cls_transferring = u'Bilinmiyor' cls_unknown = u'Bilinmiyor' cls_unplaced = u'Asla baglanmadi' cls_voicemail_buffering_greeting = u'Selamlama Ara Bellege Aliniyor' cls_voicemail_cancelled = u'Sesli Posta Iptal Edildi' cls_voicemail_failed = u'Sesli Mesaj Basarisiz' cls_voicemail_playing_greeting = u'Selamlama Yürütülüyor' cls_voicemail_recording = u'Sesli Mesaj Kaydediliyor' cls_voicemail_sent = u'Sesli Posta Gönderildi' cls_voicemail_uploading = u'Sesli Posta Karsiya Yükleniyor' clt_incoming_p2_p = u'Gelen Esler Arasi Telefon Çagrisi' clt_incoming_pstn = u'Gelen Telefon Çagrisi' clt_outgoing_p2_p = u'Giden Esler Arasi Telefon Çagrisi' clt_outgoing_pstn = u'Giden Telefon Çagrisi' clt_unknown = u'Bilinmiyor' cme_added_members = u'Eklenen Üyeler' cme_created_chat_with = u'Sohbet Olusturuldu:' cme_emoted = u'Bilinmiyor' cme_left = u'Birakilan' cme_said = u'Ifade' cme_saw_members = u'Görülen Üyeler' cme_set_topic = u'Konu Belirleme' cme_unknown = u'Bilinmiyor' cms_read = u'Okundu' cms_received = u'Alindi' cms_sending = u'Gönderiliyor...' cms_sent = u'Gönderildi' cms_unknown = u'Bilinmiyor' con_connecting = u'Baglaniyor' con_offline = u'Çevrim Disi' con_online = u'Çevrim Içi' con_pausing = u'Duraklatiliyor' con_unknown = u'Bilinmiyor' cus_away = u'Uzakta' cus_do_not_disturb = u'Rahatsiz Etmeyin' cus_invisible = u'Görünmez' cus_logged_out = u'Çevrim Disi' cus_not_available = u'Kullanilamiyor' cus_offline = u'Çevrim Disi' cus_online = u'Çevrim Içi' cus_skype_me = u'Skype Me' cus_unknown = u'Bilinmiyor' cvs_both_enabled = u'Video Gönderme ve Alma' cvs_none = u'Video Yok' cvs_receive_enabled = u'Video Alma' cvs_send_enabled = u'Video Gönderme' cvs_unknown = u'' grp_all_friends = u'Tüm Arkadaslar' grp_all_users = u'Tüm Kullanicilar' grp_custom_group = u'Özel' grp_online_friends = u'Çevrimiçi Arkadaslar' grp_pending_authorization_friends = u'Yetkilendirme Bekliyor' grp_proposed_shared_group = u'Proposed Shared Group' grp_recently_contacted_users = u'Son Zamanlarda Iletisim Kurulmus Kullanicilar' grp_shared_group = u'Shared Group' grp_skype_friends = u'Skype Arkadaslari' grp_skype_out_friends = u'SkypeOut Arkadaslari' grp_ungrouped_friends = u'Gruplanmamis Arkadaslar' grp_unknown = u'Bilinmiyor' grp_users_authorized_by_me = u'Tarafimdan Yetkilendirilenler' grp_users_blocked_by_me = u'Engellediklerim' grp_users_waiting_my_authorization = u'Yetkilendirmemi Bekleyenler' lea_add_declined = u'Ekleme Reddedildi' lea_added_not_authorized = u'Ekleyen Kisinin Yetkisi Olmali' lea_adder_not_friend = u'Ekleyen Bir Arkadas Olmali' lea_unknown = u'Bilinmiyor' lea_unsubscribe = u'Aboneligi Silindi' lea_user_incapable = u'Kullanicidan Kaynaklanan Yetersizlik' lea_user_not_found = u'Kullanici Bulunamadi' ols_away = u'Uzakta' ols_do_not_disturb = u'Rahatsiz Etmeyin' ols_not_available = u'Kullanilamiyor' ols_offline = u'Çevrim Disi' ols_online = u'Çevrim Içi' ols_skype_me = u'Skype Me' ols_skype_out = u'SkypeOut' ols_unknown = u'Bilinmiyor' sms_message_status_composing = u'Composing' sms_message_status_delivered = u'Delivered' sms_message_status_failed = u'Failed' sms_message_status_read = u'Read' sms_message_status_received = u'Received' sms_message_status_sending_to_server = u'Sending to Server' sms_message_status_sent_to_server = u'Sent to Server' sms_message_status_some_targets_failed = u'Some Targets Failed' sms_message_status_unknown = u'Unknown' sms_message_type_cc_request = u'Confirmation Code Request' sms_message_type_cc_submit = u'Confirmation Code Submit' sms_message_type_incoming = u'Incoming' sms_message_type_outgoing = u'Outgoing' sms_message_type_unknown = u'Unknown' sms_target_status_acceptable = u'Acceptable' sms_target_status_analyzing = u'Analyzing' sms_target_status_delivery_failed = u'Delivery Failed' sms_target_status_delivery_pending = u'Delivery Pending' sms_target_status_delivery_successful = u'Delivery Successful' sms_target_status_not_routable = u'Not Routable' sms_target_status_undefined = u'Undefined' sms_target_status_unknown = u'Unknown' usex_female = u'Kadin' usex_male = u'Erkek' usex_unknown = u'Bilinmiyor' vmr_connect_error = u'Baglanti Hatasi' vmr_file_read_error = u'Dosya Okuma Hatasi' vmr_file_write_error = u'Dosya Yazma Hatasi' vmr_misc_error = u'Diger Hata' vmr_no_error = u'Hata Yok' vmr_no_privilege = u'Sesli Posta Önceligi Yok' vmr_no_voicemail = u'Böyle Bir Sesli Posta Yok' vmr_playback_error = u'Yürütme Hatasi' vmr_recording_error = u'Kayit Hatasi' vmr_unknown = u'Bilinmiyor' vms_blank = u'Bos' vms_buffering = u'Ara bellege aliniyor' vms_deleting = u'Siliniyor' vms_downloading = u'Karsidan Yükleniyor' vms_failed = u'Basarisiz Oldu' vms_not_downloaded = u'Karsidan Yüklenmedi' vms_played = u'Yürütüldü' vms_playing = u'Yürütülüyor' vms_recorded = u'Kaydedildi' vms_recording = u'Sesli Mesaj Kaydediliyor' vms_unknown = u'Bilinmiyor' vms_unplayed = u'Yürütülmemis' vms_uploaded = u'Karsiya Yüklendi' vms_uploading = u'Karsiya Yükleniyor' vmt_custom_greeting = u'Özel Selamlama' vmt_default_greeting = u'Varsayilan Selamlama' vmt_incoming = u'gelen sesli mesaj' vmt_outgoing = u'Giden' vmt_unknown = u'Bilinmiyor' vss_available = u'Kullanilabilir' vss_not_available = u'Kullanilamiyor' vss_paused = u'Duraklatildi' vss_rejected = u'Reddedildi' vss_running = u'Çalisiyor' vss_starting = u'Basliyor' vss_stopping = u'Durduruluyor' vss_unknown = u'Bilinmiyor'
# Copyright (C) 2015-2016 Ammon Smith and Bradley Cai # Available for use under the terms of the MIT License. __all__ = [ 'print_success', 'print_failure', ] def print_success(target, usecolor, elapsed): if usecolor: start_color = '\033[32;4m' end_color = '\033[0m' else: start_color = '' end_color = '' print("%sTarget '%s' ran successfully in %.4f seconds.%s" % (start_color, target, elapsed, end_color)) def print_failure(target, usecolor, ending): if usecolor: start_color = '\033[31;4m' end_color = '\033[0m' else: start_color = '' end_color = '' print("%sTarget '%s' was unsuccessful%s%s" % (start_color, target, ending, end_color))
__all__ = ['print_success', 'print_failure'] def print_success(target, usecolor, elapsed): if usecolor: start_color = '\x1b[32;4m' end_color = '\x1b[0m' else: start_color = '' end_color = '' print("%sTarget '%s' ran successfully in %.4f seconds.%s" % (start_color, target, elapsed, end_color)) def print_failure(target, usecolor, ending): if usecolor: start_color = '\x1b[31;4m' end_color = '\x1b[0m' else: start_color = '' end_color = '' print("%sTarget '%s' was unsuccessful%s%s" % (start_color, target, ending, end_color))
# # PySNMP MIB module IANA-GMPLS-TC-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IANA-GMPLS-TC-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:19:44 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ObjectIdentity, Counter32, Gauge32, TimeTicks, mib_2, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, iso, Integer32, ModuleIdentity, Bits, NotificationType, Unsigned32, IpAddress, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "Counter32", "Gauge32", "TimeTicks", "mib-2", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "iso", "Integer32", "ModuleIdentity", "Bits", "NotificationType", "Unsigned32", "IpAddress", "Counter64") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ianaGmpls = ModuleIdentity((1, 3, 6, 1, 2, 1, 152)) ianaGmpls.setRevisions(('2015-11-04 00:00', '2015-09-22 00:00', '2014-05-09 00:00', '2014-03-11 00:00', '2013-12-16 00:00', '2013-11-04 00:00', '2013-10-14 00:00', '2013-10-10 00:00', '2013-10-09 00:00', '2010-04-13 00:00', '2010-02-22 00:00', '2010-02-19 00:00', '2007-02-27 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ianaGmpls.setRevisionsDescriptions(('Updated description for Switching Type 151.', 'Added Switching Type 151.', 'Fixed typographical error that interfered with compilation.', 'Added Administrative Status Information Flags 23-24.', 'Added Switching Type 110.', 'Added missing value 40 to IANAGmplsSwitchingTypeTC.', 'Restored names,added comments for G-PIDs 47, 56; updated IANA contact info.', 'Deprecated 2-4 in IANAGmplsSwitchingTypeTC, added registry reference.', 'Added Generalized PIDs 59-70 and changed names for 47, 56.', 'Added LSP Encoding Type tunnelLine(14), Switching Type evpl(30).', 'Added missing Administrative Status Information Flags 25, 26, and 28.', 'Added dcsc(125).', 'Initial version issued as part of RFC 4802.',)) if mibBuilder.loadTexts: ianaGmpls.setLastUpdated('201511040000Z') if mibBuilder.loadTexts: ianaGmpls.setOrganization('IANA') if mibBuilder.loadTexts: ianaGmpls.setContactInfo('Internet Assigned Numbers Authority Postal: 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094 Tel: +1 310 301-5800 E-Mail: iana&iana.org') if mibBuilder.loadTexts: ianaGmpls.setDescription('Copyright (C) The IETF Trust (2007). The initial version of this MIB module was published in RFC 4802. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html') class IANAGmplsLSPEncodingTypeTC(TextualConvention, Integer32): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.1.' description = 'This type is used to represent and control the LSP encoding type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the LSP Encoding Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the LSP Encoding Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the LSP Encoding Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14)) namedValues = NamedValues(("tunnelLspNotGmpls", 0), ("tunnelLspPacket", 1), ("tunnelLspEthernet", 2), ("tunnelLspAnsiEtsiPdh", 3), ("tunnelLspSdhSonet", 5), ("tunnelLspDigitalWrapper", 7), ("tunnelLspLambda", 8), ("tunnelLspFiber", 9), ("tunnelLspFiberChannel", 11), ("tunnelDigitalPath", 12), ("tunnelOpticalChannel", 13), ("tunnelLine", 14)) class IANAGmplsSwitchingTypeTC(TextualConvention, Integer32): reference = '1. Routing Extensions in Support of Generalized Multi-Protocol Label Switching, RFC 4202, section 2.4. 2. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 3. Revised Definition of The GMPLS Switching Capability and Type Fields, RFC7074, section 5.' description = 'This type is used to represent and control the LSP switching type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Switching Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Switching Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Switching Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 30, 40, 51, 100, 110, 125, 150, 151, 200)) namedValues = NamedValues(("unknown", 0), ("psc1", 1), ("psc2", 2), ("psc3", 3), ("psc4", 4), ("evpl", 30), ("pbb", 40), ("l2sc", 51), ("tdm", 100), ("otntdm", 110), ("dcsc", 125), ("lsc", 150), ("wsonlsc", 151), ("fsc", 200)) class IANAGmplsGeneralizedPidTC(TextualConvention, Integer32): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.3. 3. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control,[RFC7139], sections 4 and 11.' description = 'This data type is used to represent and control the LSP Generalized Protocol Identifier (G-PID) of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Generalized PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Generalized PIDs (G-PID) sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Generalized PIDs (G-PID) sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70)) namedValues = NamedValues(("unknown", 0), ("asynchE4", 5), ("asynchDS3T3", 6), ("asynchE3", 7), ("bitsynchE3", 8), ("bytesynchE3", 9), ("asynchDS2T2", 10), ("bitsynchDS2T2", 11), ("reservedByRFC3471first", 12), ("asynchE1", 13), ("bytesynchE1", 14), ("bytesynch31ByDS0", 15), ("asynchDS1T1", 16), ("bitsynchDS1T1", 17), ("bytesynchDS1T1", 18), ("vc1vc12", 19), ("reservedByRFC3471second", 20), ("reservedByRFC3471third", 21), ("ds1SFAsynch", 22), ("ds1ESFAsynch", 23), ("ds3M23Asynch", 24), ("ds3CBitParityAsynch", 25), ("vtLovc", 26), ("stsSpeHovc", 27), ("posNoScramble16BitCrc", 28), ("posNoScramble32BitCrc", 29), ("posScramble16BitCrc", 30), ("posScramble32BitCrc", 31), ("atm", 32), ("ethernet", 33), ("sdhSonet", 34), ("digitalwrapper", 36), ("lambda", 37), ("ansiEtsiPdh", 38), ("lapsSdh", 40), ("fddi", 41), ("dqdb", 42), ("fiberChannel3", 43), ("hdlc", 44), ("ethernetV2DixOnly", 45), ("ethernet802dot3Only", 46), ("g709ODUj", 47), ("g709OTUk", 48), ("g709CBRorCBRa", 49), ("g709CBRb", 50), ("g709BSOT", 51), ("g709BSNT", 52), ("gfpIPorPPP", 53), ("gfpEthernetMAC", 54), ("gfpEthernetPHY", 55), ("g709ESCON", 56), ("g709FICON", 57), ("g709FiberChannel", 58), ("framedGFP", 59), ("sTM1", 60), ("sTM4", 61), ("infiniBand", 62), ("sDI", 63), ("sDI1point001", 64), ("dVBASI", 65), ("g709ODU125G", 66), ("g709ODUAny", 67), ("nullTest", 68), ("randomTest", 69), ("sixtyfourB66BGFPFEthernet", 70)) class IANAGmplsAdminStatusInformationTC(TextualConvention, Bits): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 7. 3. GMPLS - Communication of Alarm Information, RFC 4783, section 3.2.1.' description = 'This data type determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this object to a non-zero value will result in the inclusion of the Admin Status object or TLV on signaling messages. This textual convention is strongly tied to the Administrative Status Information Flags sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Administrative Status Flags sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Administrative Status Information Flags sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' namedValues = NamedValues(("reflect", 0), ("reserved1", 1), ("reserved2", 2), ("reserved3", 3), ("reserved4", 4), ("reserved5", 5), ("reserved6", 6), ("reserved7", 7), ("reserved8", 8), ("reserved9", 9), ("reserved10", 10), ("reserved11", 11), ("reserved12", 12), ("reserved13", 13), ("reserved14", 14), ("reserved15", 15), ("reserved16", 16), ("reserved17", 17), ("reserved18", 18), ("reserved19", 19), ("reserved20", 20), ("reserved21", 21), ("reserved22", 22), ("oamFlowsEnabled", 23), ("oamAlarmsEnabled", 24), ("handover", 25), ("lockout", 26), ("inhibitAlarmCommunication", 27), ("callControl", 28), ("testing", 29), ("administrativelyDown", 30), ("deleteInProgress", 31)) mibBuilder.exportSymbols("IANA-GMPLS-TC-MIB", IANAGmplsSwitchingTypeTC=IANAGmplsSwitchingTypeTC, IANAGmplsLSPEncodingTypeTC=IANAGmplsLSPEncodingTypeTC, IANAGmplsAdminStatusInformationTC=IANAGmplsAdminStatusInformationTC, PYSNMP_MODULE_ID=ianaGmpls, ianaGmpls=ianaGmpls, IANAGmplsGeneralizedPidTC=IANAGmplsGeneralizedPidTC)
(octet_string, object_identifier, integer) = mibBuilder.importSymbols('ASN1', 'OctetString', 'ObjectIdentifier', 'Integer') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (value_size_constraint, single_value_constraint, constraints_union, constraints_intersection, value_range_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueSizeConstraint', 'SingleValueConstraint', 'ConstraintsUnion', 'ConstraintsIntersection', 'ValueRangeConstraint') (module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup') (object_identity, counter32, gauge32, time_ticks, mib_2, mib_scalar, mib_table, mib_table_row, mib_table_column, mib_identifier, iso, integer32, module_identity, bits, notification_type, unsigned32, ip_address, counter64) = mibBuilder.importSymbols('SNMPv2-SMI', 'ObjectIdentity', 'Counter32', 'Gauge32', 'TimeTicks', 'mib-2', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'MibIdentifier', 'iso', 'Integer32', 'ModuleIdentity', 'Bits', 'NotificationType', 'Unsigned32', 'IpAddress', 'Counter64') (display_string, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TextualConvention') iana_gmpls = module_identity((1, 3, 6, 1, 2, 1, 152)) ianaGmpls.setRevisions(('2015-11-04 00:00', '2015-09-22 00:00', '2014-05-09 00:00', '2014-03-11 00:00', '2013-12-16 00:00', '2013-11-04 00:00', '2013-10-14 00:00', '2013-10-10 00:00', '2013-10-09 00:00', '2010-04-13 00:00', '2010-02-22 00:00', '2010-02-19 00:00', '2007-02-27 00:00')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ianaGmpls.setRevisionsDescriptions(('Updated description for Switching Type 151.', 'Added Switching Type 151.', 'Fixed typographical error that interfered with compilation.', 'Added Administrative Status Information Flags 23-24.', 'Added Switching Type 110.', 'Added missing value 40 to IANAGmplsSwitchingTypeTC.', 'Restored names,added comments for G-PIDs 47, 56; updated IANA contact info.', 'Deprecated 2-4 in IANAGmplsSwitchingTypeTC, added registry reference.', 'Added Generalized PIDs 59-70 and changed names for 47, 56.', 'Added LSP Encoding Type tunnelLine(14), Switching Type evpl(30).', 'Added missing Administrative Status Information Flags 25, 26, and 28.', 'Added dcsc(125).', 'Initial version issued as part of RFC 4802.')) if mibBuilder.loadTexts: ianaGmpls.setLastUpdated('201511040000Z') if mibBuilder.loadTexts: ianaGmpls.setOrganization('IANA') if mibBuilder.loadTexts: ianaGmpls.setContactInfo('Internet Assigned Numbers Authority Postal: 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094 Tel: +1 310 301-5800 E-Mail: iana&iana.org') if mibBuilder.loadTexts: ianaGmpls.setDescription('Copyright (C) The IETF Trust (2007). The initial version of this MIB module was published in RFC 4802. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html') class Ianagmplslspencodingtypetc(TextualConvention, Integer32): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.1.' description = 'This type is used to represent and control the LSP encoding type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the LSP Encoding Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the LSP Encoding Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the LSP Encoding Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14)) named_values = named_values(('tunnelLspNotGmpls', 0), ('tunnelLspPacket', 1), ('tunnelLspEthernet', 2), ('tunnelLspAnsiEtsiPdh', 3), ('tunnelLspSdhSonet', 5), ('tunnelLspDigitalWrapper', 7), ('tunnelLspLambda', 8), ('tunnelLspFiber', 9), ('tunnelLspFiberChannel', 11), ('tunnelDigitalPath', 12), ('tunnelOpticalChannel', 13), ('tunnelLine', 14)) class Ianagmplsswitchingtypetc(TextualConvention, Integer32): reference = '1. Routing Extensions in Support of Generalized Multi-Protocol Label Switching, RFC 4202, section 2.4. 2. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 3. Revised Definition of The GMPLS Switching Capability and Type Fields, RFC7074, section 5.' description = 'This type is used to represent and control the LSP switching type of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Switching Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Switching Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Switching Types sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 1, 2, 3, 4, 30, 40, 51, 100, 110, 125, 150, 151, 200)) named_values = named_values(('unknown', 0), ('psc1', 1), ('psc2', 2), ('psc3', 3), ('psc4', 4), ('evpl', 30), ('pbb', 40), ('l2sc', 51), ('tdm', 100), ('otntdm', 110), ('dcsc', 125), ('lsc', 150), ('wsonlsc', 151), ('fsc', 200)) class Ianagmplsgeneralizedpidtc(TextualConvention, Integer32): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1. 2. Generalized MPLS Signalling Extensions for G.709 Optical Transport Networks Control, RFC 4328, section 3.1.3. 3. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control,[RFC7139], sections 4 and 11.' description = 'This data type is used to represent and control the LSP Generalized Protocol Identifier (G-PID) of an LSP signaled by a GMPLS signaling protocol. This textual convention is strongly tied to the Generalized PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Generalized PIDs (G-PID) sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Generalized PIDs (G-PID) sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70)) named_values = named_values(('unknown', 0), ('asynchE4', 5), ('asynchDS3T3', 6), ('asynchE3', 7), ('bitsynchE3', 8), ('bytesynchE3', 9), ('asynchDS2T2', 10), ('bitsynchDS2T2', 11), ('reservedByRFC3471first', 12), ('asynchE1', 13), ('bytesynchE1', 14), ('bytesynch31ByDS0', 15), ('asynchDS1T1', 16), ('bitsynchDS1T1', 17), ('bytesynchDS1T1', 18), ('vc1vc12', 19), ('reservedByRFC3471second', 20), ('reservedByRFC3471third', 21), ('ds1SFAsynch', 22), ('ds1ESFAsynch', 23), ('ds3M23Asynch', 24), ('ds3CBitParityAsynch', 25), ('vtLovc', 26), ('stsSpeHovc', 27), ('posNoScramble16BitCrc', 28), ('posNoScramble32BitCrc', 29), ('posScramble16BitCrc', 30), ('posScramble32BitCrc', 31), ('atm', 32), ('ethernet', 33), ('sdhSonet', 34), ('digitalwrapper', 36), ('lambda', 37), ('ansiEtsiPdh', 38), ('lapsSdh', 40), ('fddi', 41), ('dqdb', 42), ('fiberChannel3', 43), ('hdlc', 44), ('ethernetV2DixOnly', 45), ('ethernet802dot3Only', 46), ('g709ODUj', 47), ('g709OTUk', 48), ('g709CBRorCBRa', 49), ('g709CBRb', 50), ('g709BSOT', 51), ('g709BSNT', 52), ('gfpIPorPPP', 53), ('gfpEthernetMAC', 54), ('gfpEthernetPHY', 55), ('g709ESCON', 56), ('g709FICON', 57), ('g709FiberChannel', 58), ('framedGFP', 59), ('sTM1', 60), ('sTM4', 61), ('infiniBand', 62), ('sDI', 63), ('sDI1point001', 64), ('dVBASI', 65), ('g709ODU125G', 66), ('g709ODUAny', 67), ('nullTest', 68), ('randomTest', 69), ('sixtyfourB66BGFPFEthernet', 70)) class Ianagmplsadminstatusinformationtc(TextualConvention, Bits): reference = '1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 7. 3. GMPLS - Communication of Alarm Information, RFC 4783, section 3.2.1.' description = 'This data type determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this object to a non-zero value will result in the inclusion of the Admin Status object or TLV on signaling messages. This textual convention is strongly tied to the Administrative Status Information Flags sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Administrative Status Flags sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the Administrative Status Information Flags sub-registry. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana&iana.org).' status = 'current' named_values = named_values(('reflect', 0), ('reserved1', 1), ('reserved2', 2), ('reserved3', 3), ('reserved4', 4), ('reserved5', 5), ('reserved6', 6), ('reserved7', 7), ('reserved8', 8), ('reserved9', 9), ('reserved10', 10), ('reserved11', 11), ('reserved12', 12), ('reserved13', 13), ('reserved14', 14), ('reserved15', 15), ('reserved16', 16), ('reserved17', 17), ('reserved18', 18), ('reserved19', 19), ('reserved20', 20), ('reserved21', 21), ('reserved22', 22), ('oamFlowsEnabled', 23), ('oamAlarmsEnabled', 24), ('handover', 25), ('lockout', 26), ('inhibitAlarmCommunication', 27), ('callControl', 28), ('testing', 29), ('administrativelyDown', 30), ('deleteInProgress', 31)) mibBuilder.exportSymbols('IANA-GMPLS-TC-MIB', IANAGmplsSwitchingTypeTC=IANAGmplsSwitchingTypeTC, IANAGmplsLSPEncodingTypeTC=IANAGmplsLSPEncodingTypeTC, IANAGmplsAdminStatusInformationTC=IANAGmplsAdminStatusInformationTC, PYSNMP_MODULE_ID=ianaGmpls, ianaGmpls=ianaGmpls, IANAGmplsGeneralizedPidTC=IANAGmplsGeneralizedPidTC)
letters = ["a", "e", "t", "o", "u"] word = "CreepyNuts" if (word[1] in letters) and (word[6] in letters): print(0) elif (word[1] in letters) or (word[6] in letters): print(1) else: print(2)
letters = ['a', 'e', 't', 'o', 'u'] word = 'CreepyNuts' if word[1] in letters and word[6] in letters: print(0) elif word[1] in letters or word[6] in letters: print(1) else: print(2)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2017 - hongzhi.wang <[email protected]> ''' Author: hongzhi.wang Create Date: 2019-09-04 Modify Date: 2019-09-04 '''
""" Author: hongzhi.wang Create Date: 2019-09-04 Modify Date: 2019-09-04 """
def parse_input(file): return [[int(h) for h in l] for l in open(file).read().splitlines()] input = parse_input('./day 09/Xavier - Python/input.txt') example = parse_input('./day 09/Xavier - Python/example.txt') def get_neighbours(map,i,j): neighbours = [] if i > 0: neighbours.append((i-1,j)) if i < len(map)-1: neighbours.append((i+1,j)) if j > 0: neighbours.append((i,j-1)) if j < len(map[i])-1: neighbours.append((i,j+1)) return neighbours def low_points(map): low_points = [] for i in range(len(map)): for j in range(len(map[i])): if map[i][j] < min([map[i][j] for i,j in get_neighbours(map, i , j)]): low_points.append((i,j)) return low_points lp_ex = low_points(example) lp_in = low_points(input) assert len(lp_ex)+sum([example[i][j] for i,j in lp_ex]) == 15 print(len(lp_in)+sum([input[i][j] for i,j in lp_in])) def expand(map, point): points = {point} neighbours = get_neighbours(map, *point) for n in neighbours: if not map[n[0]][n[1]] == 9 and map[n[0]][n[1]] > map[point[0]][point[1]]: points = points.union(expand(map, n)) return points def part_two(map, low_points): sizes = [] for p in low_points: basin = expand(map, p) sizes.append(len(basin)) sizes.sort(reverse=True) return sizes[0]*sizes[1]*sizes[2] assert part_two(example, lp_ex) == 1134 print(part_two(input, lp_in))
def parse_input(file): return [[int(h) for h in l] for l in open(file).read().splitlines()] input = parse_input('./day 09/Xavier - Python/input.txt') example = parse_input('./day 09/Xavier - Python/example.txt') def get_neighbours(map, i, j): neighbours = [] if i > 0: neighbours.append((i - 1, j)) if i < len(map) - 1: neighbours.append((i + 1, j)) if j > 0: neighbours.append((i, j - 1)) if j < len(map[i]) - 1: neighbours.append((i, j + 1)) return neighbours def low_points(map): low_points = [] for i in range(len(map)): for j in range(len(map[i])): if map[i][j] < min([map[i][j] for (i, j) in get_neighbours(map, i, j)]): low_points.append((i, j)) return low_points lp_ex = low_points(example) lp_in = low_points(input) assert len(lp_ex) + sum([example[i][j] for (i, j) in lp_ex]) == 15 print(len(lp_in) + sum([input[i][j] for (i, j) in lp_in])) def expand(map, point): points = {point} neighbours = get_neighbours(map, *point) for n in neighbours: if not map[n[0]][n[1]] == 9 and map[n[0]][n[1]] > map[point[0]][point[1]]: points = points.union(expand(map, n)) return points def part_two(map, low_points): sizes = [] for p in low_points: basin = expand(map, p) sizes.append(len(basin)) sizes.sort(reverse=True) return sizes[0] * sizes[1] * sizes[2] assert part_two(example, lp_ex) == 1134 print(part_two(input, lp_in))
_base_ = ['./mask_rcnn_r50_8x2_1x.py'] model = dict(roi_head=dict(type='BTRoIHead', bbox_head=dict(type='Shared2FCCBBoxHeadBT', loss_cls=dict(type="EQLv2"), loss_opl=dict( type='OrthogonalProjectionLoss', loss_weight=0.0), loss_bt=dict( type='BarlowTwinLoss', loss_weight=1.0), ))) data = dict(train=dict(oversample_thr=1e-3)) # test_cfg = dict(rcnn=dict(max_per_img=800)) # train_cfg = dict(rcnn=dict(sampler=dict(pos_fraction=0.5))) work_dir = 'bt_1x_rfs'
_base_ = ['./mask_rcnn_r50_8x2_1x.py'] model = dict(roi_head=dict(type='BTRoIHead', bbox_head=dict(type='Shared2FCCBBoxHeadBT', loss_cls=dict(type='EQLv2'), loss_opl=dict(type='OrthogonalProjectionLoss', loss_weight=0.0), loss_bt=dict(type='BarlowTwinLoss', loss_weight=1.0)))) data = dict(train=dict(oversample_thr=0.001)) work_dir = 'bt_1x_rfs'
# -*- coding: utf-8 -*- # System SYSTEM_LANGUAGE_KEY = 'System/Language' SYSTEM_THEME_KEY = 'System/Theme' SYSTEM_THEME_DEFAULT = 'System' # File FILE_SAVE_TO_DIR_KEY = 'File/SaveToDir' FILE_SAVE_TO_DIR_DEFAULT = '' FILE_FILENAME_PREFIX_FORMAT_KEY = 'File/FilenamePrefixFormat' FILE_FILENAME_PREFIX_FORMAT_DEFAULT = '{id}_{year}_{author}_{title}' FILE_OVERWRITE_EXISTING_FILE_KEY = 'File/OverwriteExistingFile' FILE_OVERWRITE_EXISTING_FILE_DEFAULT = False # Network NETWORK_SCIHUB_URL_KEY = 'Network/SciHubURL' NETWORK_SCIHUB_URL_DEFAULT = 'https://sci-hub.se' NETWORK_SCIHUB_URLS_KEY = 'Network/SciHubURLs' NETWORK_SCIHUB_URLS_DEFAULT = ['https://sci-hub.se', 'https://sci-hub.st'] NETWORK_TIMEOUT_KEY = 'Network/Timeout' NETWORK_TIMEOUT_DEFAULT = 3000 NETWORK_RETRY_TIMES_KEY = 'Network/RetryTimes' NETWORK_RETRY_TIMES_DEFAULT = 3 NETWORK_PROXY_ENABLE_KEY = 'Network/ProxyEnable' NETWORK_PROXY_ENABLE_DEFAULT = False NETWORK_PROXY_TYPE_KEY = 'Network/ProxyType' NETWORK_PROXY_TYPE_DEFAULT = 'http' NETWORK_PROXY_HOST_KEY = 'Network/ProxyHost' NETWORK_PROXY_HOST_DEFAULT = '127.0.0.1' NETWORK_PROXY_PORT_KEY = 'Network/ProxyPort' NETWORK_PROXY_PORT_DEFAULT = '7890' NETWORK_PROXY_USERNAME_KEY = 'Network/ProxyUsername' NETWORK_PROXY_USERNAME_DEFAULT = '' NETWORK_PROXY_PASSWORD_KEY = 'Network/ProxyPassword' NETWORK_PROXY_PASSWORD_DEFAULT = ''
system_language_key = 'System/Language' system_theme_key = 'System/Theme' system_theme_default = 'System' file_save_to_dir_key = 'File/SaveToDir' file_save_to_dir_default = '' file_filename_prefix_format_key = 'File/FilenamePrefixFormat' file_filename_prefix_format_default = '{id}_{year}_{author}_{title}' file_overwrite_existing_file_key = 'File/OverwriteExistingFile' file_overwrite_existing_file_default = False network_scihub_url_key = 'Network/SciHubURL' network_scihub_url_default = 'https://sci-hub.se' network_scihub_urls_key = 'Network/SciHubURLs' network_scihub_urls_default = ['https://sci-hub.se', 'https://sci-hub.st'] network_timeout_key = 'Network/Timeout' network_timeout_default = 3000 network_retry_times_key = 'Network/RetryTimes' network_retry_times_default = 3 network_proxy_enable_key = 'Network/ProxyEnable' network_proxy_enable_default = False network_proxy_type_key = 'Network/ProxyType' network_proxy_type_default = 'http' network_proxy_host_key = 'Network/ProxyHost' network_proxy_host_default = '127.0.0.1' network_proxy_port_key = 'Network/ProxyPort' network_proxy_port_default = '7890' network_proxy_username_key = 'Network/ProxyUsername' network_proxy_username_default = '' network_proxy_password_key = 'Network/ProxyPassword' network_proxy_password_default = ''
#Get roll numbers, name & marks of the students of a class(get from user) and store these details in a file- marks.txt count = int(input("How many students are there in class? ")) fileObj = open('marks.txt',"w") for i in range(count): print("Enter details for student",(i+1),"below:") rollNo = int(input("Rollno: ")) name = input("Name: ") marks = float(input("Marks: ")) records = str(rollNo) + "," + name + "," + str(marks) + '\n' fileObj.write(records) fileObj.close()
count = int(input('How many students are there in class? ')) file_obj = open('marks.txt', 'w') for i in range(count): print('Enter details for student', i + 1, 'below:') roll_no = int(input('Rollno: ')) name = input('Name: ') marks = float(input('Marks: ')) records = str(rollNo) + ',' + name + ',' + str(marks) + '\n' fileObj.write(records) fileObj.close()
# id: 640;Stairs # title:"Schody", # about:"", # robotCol:3, # robotRow:10, # robotDir:3, # subs:[3,3,0,0,0], # allowedCommands:0, # board:" ggggggggGG gggggggGGg ggggggGGgg gggggGGggg ggggGGgggg gggGGggggg ggGGgggggg gGGggggggg GGgggggggg gggggggggg " class Problem: def __init__(self, parse_str): gen = self.__lineGenerator(parse_str) self.id = next(gen) self.title = next(gen) self.about = next(gen) self.robotCol = (int)(next(gen)) self.robotRow = (int)(next(gen)) self.robotDir = (int)(next(gen)) self.subs = next(gen) self.allowedCommands = (int)(next(gen)) self.board_str = next(gen) def getBoardCopy(self): arr = [self.board_str[i:i+16] for i in range(0, 16*12, 16)] return arr def getFlowerCount(self): return self.board_str.count("R") + self.board_str.count("G") + self.board_str.count("B") def getFirstId(self): arr = self.id.split(';') if len(arr) == 1: return self.id.zfill(4) else: return arr[0].zfill(4) def __lineGenerator(self, parse_str): for line in parse_str.splitlines(): if len(line) == 0: continue line = line.strip() if line[-1] == ',': line = line[:-1] arr = line.split(':') yield arr[1].strip().replace('"', "")
class Problem: def __init__(self, parse_str): gen = self.__lineGenerator(parse_str) self.id = next(gen) self.title = next(gen) self.about = next(gen) self.robotCol = int(next(gen)) self.robotRow = int(next(gen)) self.robotDir = int(next(gen)) self.subs = next(gen) self.allowedCommands = int(next(gen)) self.board_str = next(gen) def get_board_copy(self): arr = [self.board_str[i:i + 16] for i in range(0, 16 * 12, 16)] return arr def get_flower_count(self): return self.board_str.count('R') + self.board_str.count('G') + self.board_str.count('B') def get_first_id(self): arr = self.id.split(';') if len(arr) == 1: return self.id.zfill(4) else: return arr[0].zfill(4) def __line_generator(self, parse_str): for line in parse_str.splitlines(): if len(line) == 0: continue line = line.strip() if line[-1] == ',': line = line[:-1] arr = line.split(':') yield arr[1].strip().replace('"', '')
class DSU: def __init__(self, N): self.par = list(range(N)) def find(self, U): if self.par[U] != U: self.par[U] = self.find(self.par[U]) return self.par[U] def union(self, U, V): X, Y = self.find(U), self.find(V) self.par[X] = Y class Solution: def factors(self, n): for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return self.factors(n//i) | set([i]) return set([n]) def largestComponentSize(self, A: List[int]) -> int: n = len(A) uf = DSU(n) factor = defaultdict(list) for i, num in enumerate(A): fct = self.factors(num) for f in fct: factor[f].append(i) for k, ind in factor.items(): for i in range(len(ind)-1): uf.union(ind[i], ind[i+1]) return max(Counter([uf.find(i) for i in range(n)]).values())
class Dsu: def __init__(self, N): self.par = list(range(N)) def find(self, U): if self.par[U] != U: self.par[U] = self.find(self.par[U]) return self.par[U] def union(self, U, V): (x, y) = (self.find(U), self.find(V)) self.par[X] = Y class Solution: def factors(self, n): for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: return self.factors(n // i) | set([i]) return set([n]) def largest_component_size(self, A: List[int]) -> int: n = len(A) uf = dsu(n) factor = defaultdict(list) for (i, num) in enumerate(A): fct = self.factors(num) for f in fct: factor[f].append(i) for (k, ind) in factor.items(): for i in range(len(ind) - 1): uf.union(ind[i], ind[i + 1]) return max(counter([uf.find(i) for i in range(n)]).values())
#!/usr/bin/python # -*- coding: utf-8 -*- # simple dictionary mybasket = {'apple':2.99,'orange':1.99,'milk':5.8} print(mybasket['apple']) # dictionary with list inside mynestedbasket = {'apple':2.99,'orange':1.99,'milk':['chocolate','stawbery']} print(mynestedbasket['milk'][1].upper()) # append more key mybasket['pizza'] = 4.5 print(mybasket) # get only keys print(mybasket.keys()) # get only values print(mybasket.values()) # get pair values print(mybasket.items())
mybasket = {'apple': 2.99, 'orange': 1.99, 'milk': 5.8} print(mybasket['apple']) mynestedbasket = {'apple': 2.99, 'orange': 1.99, 'milk': ['chocolate', 'stawbery']} print(mynestedbasket['milk'][1].upper()) mybasket['pizza'] = 4.5 print(mybasket) print(mybasket.keys()) print(mybasket.values()) print(mybasket.items())
class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: if not grid or not grid[0]: return 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j]: return self.dfs(grid, i, j) return 0 def dfs(self, grid, i, j): if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]): return 1 if grid[i][j] == -1: return 0 if grid[i][j]: grid[i][j] = -1 return self.dfs(grid, i + 1, j) + self.dfs( grid, i, j + 1) + self.dfs(grid, i - 1, j) + self.dfs( grid, i, j - 1) else: return 1
class Solution: def island_perimeter(self, grid: List[List[int]]) -> int: if not grid or not grid[0]: return 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j]: return self.dfs(grid, i, j) return 0 def dfs(self, grid, i, j): if i < 0 or i >= len(grid) or j < 0 or (j >= len(grid[0])): return 1 if grid[i][j] == -1: return 0 if grid[i][j]: grid[i][j] = -1 return self.dfs(grid, i + 1, j) + self.dfs(grid, i, j + 1) + self.dfs(grid, i - 1, j) + self.dfs(grid, i, j - 1) else: return 1
class Solution: def addBinary(self, a, b): res, carry = '', 0 i, j = len(a) - 1, len(b) - 1 while i >= 0 or j >= 0 or carry: curval = (i >= 0 and a[i] == '1') + (j >= 0 and b[j] == '1') carry, rem = divmod(curval + carry, 2) res = str(rem) + res i -= 1 j -= 1 return res
class Solution: def add_binary(self, a, b): (res, carry) = ('', 0) (i, j) = (len(a) - 1, len(b) - 1) while i >= 0 or j >= 0 or carry: curval = (i >= 0 and a[i] == '1') + (j >= 0 and b[j] == '1') (carry, rem) = divmod(curval + carry, 2) res = str(rem) + res i -= 1 j -= 1 return res
#this function would write data in the database def write_data(name, phone, pincode, city, resources): #here we will connect to database #and write to it f = open('/Users/mukesht/Mukesh/Github/covid_resource/resource_item.text', 'a') f.write(name + ', ' + phone + ', ' + pincode + ', ' + city + ', [' + resources + ']\n') f.close() write_data("Hello World", "657254762", "232101", "Mughalsarai", "[ Oxygen, Vaccine ]")
def write_data(name, phone, pincode, city, resources): f = open('/Users/mukesht/Mukesh/Github/covid_resource/resource_item.text', 'a') f.write(name + ', ' + phone + ', ' + pincode + ', ' + city + ', [' + resources + ']\n') f.close() write_data('Hello World', '657254762', '232101', 'Mughalsarai', '[ Oxygen, Vaccine ]')
def validate(n): string = str(n) mod = 0 if len(string) % 2 == 0 else 1 # 0 for even, 1 for odd total = 0 for i, a in enumerate(string): current = int(a) if i % 2 == mod: double = current * 2 if double > 9: total += double - 9 else: total += double else: total += current return total % 10 == 0
def validate(n): string = str(n) mod = 0 if len(string) % 2 == 0 else 1 total = 0 for (i, a) in enumerate(string): current = int(a) if i % 2 == mod: double = current * 2 if double > 9: total += double - 9 else: total += double else: total += current return total % 10 == 0
expected_output = { "interfaces": { "Port-channel1": { "name": "Port-channel1", "protocol": "lacp", "members": { "GigabitEthernet0/0/1": { "activity": "Active", "age": 18, "aggregatable": True, "collecting": True, "defaulted": False, "distributing": True, "expired": False, "flags": "FA", "interface": "GigabitEthernet0/0/1", "lacp_port_priority": 100, "oper_key": 1, "port_num": 2, "port_state": 63, "synchronization": True, "system_id": "00127,6487.88ff.68ef", "timeout": "Short", }, "GigabitEthernet0/0/7": { "activity": "Active", "age": 0, "aggregatable": True, "collecting": False, "defaulted": False, "distributing": False, "expired": False, "flags": "FA", "interface": "GigabitEthernet0/0/7", "lacp_port_priority": 200, "oper_key": 1, "port_num": 1, "port_state": 15, "synchronization": True, "system_id": "00127,6487.88ff.68ef", "timeout": "Short", }, }, } } }
expected_output = {'interfaces': {'Port-channel1': {'name': 'Port-channel1', 'protocol': 'lacp', 'members': {'GigabitEthernet0/0/1': {'activity': 'Active', 'age': 18, 'aggregatable': True, 'collecting': True, 'defaulted': False, 'distributing': True, 'expired': False, 'flags': 'FA', 'interface': 'GigabitEthernet0/0/1', 'lacp_port_priority': 100, 'oper_key': 1, 'port_num': 2, 'port_state': 63, 'synchronization': True, 'system_id': '00127,6487.88ff.68ef', 'timeout': 'Short'}, 'GigabitEthernet0/0/7': {'activity': 'Active', 'age': 0, 'aggregatable': True, 'collecting': False, 'defaulted': False, 'distributing': False, 'expired': False, 'flags': 'FA', 'interface': 'GigabitEthernet0/0/7', 'lacp_port_priority': 200, 'oper_key': 1, 'port_num': 1, 'port_state': 15, 'synchronization': True, 'system_id': '00127,6487.88ff.68ef', 'timeout': 'Short'}}}}}
#!/usr/bin/python # -*- coding: utf-8 -*- inputs = [ "LLLRLLULLDDLDUDRDDURLDDRDLRDDRUULRULLLDLUURUUUDLUUDLRUDLDUDURRLDRRRUULUURLUDRURULRLRLRRUULRUUUDRRDDRLLLDDLLUDDDLLRLLULULRRURRRLDRLDLLRURDULLDULRUURLRUDRURLRRDLLDDURLDDLUDLRLUURDRDRDDUURDDLDDDRUDULDLRDRDDURDLUDDDRUDLUDLULULRUURLRUUUDDRLDULLLUDLULDUUDLDLRRLLLRLDUDRUULDLDRDLRRDLDLULUUDRRUDDDRDLRLDLRDUDRULDRDURRUULLUDURURUUDRDRLRRDRRDRDDDDLLRURULDURDLUDLUULDDLLLDULUUUULDUDRDURLURDLDDLDDUULRLUUDLDRUDRURURRDDLURURDRLRLUUUURLLRR", "UUUUURRRURLLRRDRLLDUUUUDDDRLRRDRUULDUURURDRLLRRRDRLLUDURUDLDURURRLUDLLLDRDUDRDRLDRUDUDDUULLUULLDUDUDDRDUUUDLULUDUULLUUULURRUDUULDUDDRDURRLDDURLRDLULDDRUDUDRDULLRLRLLUUDDURLUUDLRUUDDLLRUURDUDLLDRURLDURDLRDUUDLRLLRLRURRUDRRLRDRURRRUULLUDLDURDLDDDUUDRUUUDULLLRDRRDRLURDDRUUUDRRUUDLUDDDRRRRRLRLDLLDDLRDURRURLLLULURULLULRLLDDLDRLDULLDLDDDRLUDDDUDUDRRLRDLLDULULRLRURDLUDDLRUDRLUURRURDURDRRDRULUDURRLULUURDRLDLRUDLUDRURLUDUUULRRLRRRULRRRLRLRLULULDRUUDLRLLRLLLURUUDLUDLRURUDRRLDLLULUDRUDRLLLRLLDLLDUDRRURRLDLUUUURDDDUURLLRRDRUUURRRDRUDLLULDLLDLUDRRDLLDDLDURLLDLLDLLLDR", "LRDULUUUDLRUUUDURUUULLURDRURDRRDDDLRLRUULDLRRUDDLLUURLDRLLRUULLUDLUDUDRDRDLUUDULLLLRDDUDRRRURLRDDLRLDRLULLLRUUULURDDLLLLRURUUDDDLDUDDDDLLLURLUUUURLRUDRRLLLUUULRDUURDLRDDDUDLLRDULURURUULUDLLRRURDLUULUUDULLUDUUDURLRULRLLDLUULLRRUDDULRULDURRLRRLULLLRRDLLDDLDUDDDUDLRUURUDUUUDDLRRDLRUDRLLRDRDLURRLUDUULDRRUDRRUDLLLLRURRRRRUULULLLRDRDUDRDDURDLDDUURRURLDRRUDLRLLRRURULUUDDDLLLRDRLULLDLDDULDLUUDRURULLDLLLLDRLRRLURLRULRDLLULUDRDR", "RURRRUDLURRURLURDDRULLDRDRDRRULRRDLDDLDUUURUULLRRDRLDRRDRULLURRRULLLDULDDDDLULRUULRURUDURDUDRLRULLLRDURDDUDDRDLURRURUURDLDDDDDURURRURLLLDDLDRRDUDDLLLDRRLDDUUULDLLDRUURUDDRRLDUULRRDDUDRUULRLDLRLRUURLLDRDLDRLURULDLULDRULURLLRRLLDDDURLRUURUULULRLLLULUDULUUULDRURUDDDUUDDRDUDUDRDLLLRDULRLDLRRDRRLRDLDDULULRLRUUDDUDRRLUDRDUUUDRLLLRRLRUDRRLRUUDDLDURLDRRRUDRRDUDDLRDDLULLDLURLUUDLUDLUDLDRRLRRRULDRLRDUURLUULRDURUDUUDDURDDLRRRLUUUDURULRURLDRURULDDUDDLUDLDLURDDRRDDUDUUURLDLRDDLDULDULDDDLDRDDLUURDULLUDRRRULRLDDLRDRLRURLULLLDULLUUDURLDDULRRDDUULDRLDLULRRDULUDUUURUURDDDRULRLRDLRRURR", "UDDDRLDRDULDRLRDUDDLDLLDDLUUURDDDLUDRDUDLDURLUURUDUULUUULDUURLULLRLUDLLURUUUULRLRLLLRRLULLDRUULURRLLUDUDURULLLRRRRLRUULLRDRDRRDDLUDRRUULUDRUULRDLRDRRLRRDRRRLULRULUURRRULLRRRURUDUURRLLDDDUDDULUULRURUDUDUDRLDLUULUDDLLLLDRLLRLDULLLRLLDLUUDURDLLRURUUDDDDLLUDDRLUUDUDRDRLLURURLURRDLDDDULUURURURRLUUDUDLDLDDULLURUDLRLDLRLDLDUDULURDUDRLURRRULLDDDRDRURDDLDLULUDRUULDLULRDUUURLULDRRULLUDLDRLRDDUDURRRURRLRDUULURUUDLULDLRUUULUDRDRRUDUDULLDDRLRDLURDLRLUURDRUDRDRUDLULRUDDRDLLLRLURRURRLDDDUDDLRDRRRULLUUDULURDLDRDDDLDURRLRRDLLDDLULULRRDUDUUDUULRDRRDURDDDDUUDDLUDDUULDRDDULLUUUURRRUUURRULDRRDURRLULLDU"] x=1 y=1 combination = [] #Internal Use _keypad = [[1,2,3],[4,5,6],[7,8,9]] for line in inputs: for input in line: #Move if input == "D": if y < 2: y+=1 elif input == "U": if y > 0: y-=1 elif input == "L": if x > 0: x-=1 elif input == "R": if x < 2: x+=1 combination.append(_keypad[y][x]) print("Combinaison : {}".format(combination))
inputs = ['LLLRLLULLDDLDUDRDDURLDDRDLRDDRUULRULLLDLUURUUUDLUUDLRUDLDUDURRLDRRRUULUURLUDRURULRLRLRRUULRUUUDRRDDRLLLDDLLUDDDLLRLLULULRRURRRLDRLDLLRURDULLDULRUURLRUDRURLRRDLLDDURLDDLUDLRLUURDRDRDDUURDDLDDDRUDULDLRDRDDURDLUDDDRUDLUDLULULRUURLRUUUDDRLDULLLUDLULDUUDLDLRRLLLRLDUDRUULDLDRDLRRDLDLULUUDRRUDDDRDLRLDLRDUDRULDRDURRUULLUDURURUUDRDRLRRDRRDRDDDDLLRURULDURDLUDLUULDDLLLDULUUUULDUDRDURLURDLDDLDDUULRLUUDLDRUDRURURRDDLURURDRLRLUUUURLLRR', 'UUUUURRRURLLRRDRLLDUUUUDDDRLRRDRUULDUURURDRLLRRRDRLLUDURUDLDURURRLUDLLLDRDUDRDRLDRUDUDDUULLUULLDUDUDDRDUUUDLULUDUULLUUULURRUDUULDUDDRDURRLDDURLRDLULDDRUDUDRDULLRLRLLUUDDURLUUDLRUUDDLLRUURDUDLLDRURLDURDLRDUUDLRLLRLRURRUDRRLRDRURRRUULLUDLDURDLDDDUUDRUUUDULLLRDRRDRLURDDRUUUDRRUUDLUDDDRRRRRLRLDLLDDLRDURRURLLLULURULLULRLLDDLDRLDULLDLDDDRLUDDDUDUDRRLRDLLDULULRLRURDLUDDLRUDRLUURRURDURDRRDRULUDURRLULUURDRLDLRUDLUDRURLUDUUULRRLRRRULRRRLRLRLULULDRUUDLRLLRLLLURUUDLUDLRURUDRRLDLLULUDRUDRLLLRLLDLLDUDRRURRLDLUUUURDDDUURLLRRDRUUURRRDRUDLLULDLLDLUDRRDLLDDLDURLLDLLDLLLDR', 'LRDULUUUDLRUUUDURUUULLURDRURDRRDDDLRLRUULDLRRUDDLLUURLDRLLRUULLUDLUDUDRDRDLUUDULLLLRDDUDRRRURLRDDLRLDRLULLLRUUULURDDLLLLRURUUDDDLDUDDDDLLLURLUUUURLRUDRRLLLUUULRDUURDLRDDDUDLLRDULURURUULUDLLRRURDLUULUUDULLUDUUDURLRULRLLDLUULLRRUDDULRULDURRLRRLULLLRRDLLDDLDUDDDUDLRUURUDUUUDDLRRDLRUDRLLRDRDLURRLUDUULDRRUDRRUDLLLLRURRRRRUULULLLRDRDUDRDDURDLDDUURRURLDRRUDLRLLRRURULUUDDDLLLRDRLULLDLDDULDLUUDRURULLDLLLLDRLRRLURLRULRDLLULUDRDR', 'RURRRUDLURRURLURDDRULLDRDRDRRULRRDLDDLDUUURUULLRRDRLDRRDRULLURRRULLLDULDDDDLULRUULRURUDURDUDRLRULLLRDURDDUDDRDLURRURUURDLDDDDDURURRURLLLDDLDRRDUDDLLLDRRLDDUUULDLLDRUURUDDRRLDUULRRDDUDRUULRLDLRLRUURLLDRDLDRLURULDLULDRULURLLRRLLDDDURLRUURUULULRLLLULUDULUUULDRURUDDDUUDDRDUDUDRDLLLRDULRLDLRRDRRLRDLDDULULRLRUUDDUDRRLUDRDUUUDRLLLRRLRUDRRLRUUDDLDURLDRRRUDRRDUDDLRDDLULLDLURLUUDLUDLUDLDRRLRRRULDRLRDUURLUULRDURUDUUDDURDDLRRRLUUUDURULRURLDRURULDDUDDLUDLDLURDDRRDDUDUUURLDLRDDLDULDULDDDLDRDDLUURDULLUDRRRULRLDDLRDRLRURLULLLDULLUUDURLDDULRRDDUULDRLDLULRRDULUDUUURUURDDDRULRLRDLRRURR', 'UDDDRLDRDULDRLRDUDDLDLLDDLUUURDDDLUDRDUDLDURLUURUDUULUUULDUURLULLRLUDLLURUUUULRLRLLLRRLULLDRUULURRLLUDUDURULLLRRRRLRUULLRDRDRRDDLUDRRUULUDRUULRDLRDRRLRRDRRRLULRULUURRRULLRRRURUDUURRLLDDDUDDULUULRURUDUDUDRLDLUULUDDLLLLDRLLRLDULLLRLLDLUUDURDLLRURUUDDDDLLUDDRLUUDUDRDRLLURURLURRDLDDDULUURURURRLUUDUDLDLDDULLURUDLRLDLRLDLDUDULURDUDRLURRRULLDDDRDRURDDLDLULUDRUULDLULRDUUURLULDRRULLUDLDRLRDDUDURRRURRLRDUULURUUDLULDLRUUULUDRDRRUDUDULLDDRLRDLURDLRLUURDRUDRDRUDLULRUDDRDLLLRLURRURRLDDDUDDLRDRRRULLUUDULURDLDRDDDLDURRLRRDLLDDLULULRRDUDUUDUULRDRRDURDDDDUUDDLUDDUULDRDDULLUUUURRRUUURRULDRRDURRLULLDU'] x = 1 y = 1 combination = [] _keypad = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] for line in inputs: for input in line: if input == 'D': if y < 2: y += 1 elif input == 'U': if y > 0: y -= 1 elif input == 'L': if x > 0: x -= 1 elif input == 'R': if x < 2: x += 1 combination.append(_keypad[y][x]) print('Combinaison : {}'.format(combination))
#!/usr/bin/env python3 def num_sol(n): if n==1: return 1 if n==2: return 2 solu=num_sol(n-1)+num_sol(n-2) return solu # def unrank(n, pos, sorting_criterion="loves_long_tiles"): # return "(" + unrank(n_in_A, (pos-count) // num_B) + ")" + unrank(n - n_in_A -1, (pos-count) % num_B) def unrank(n): if num_sol(n)==1: return ['[]'] if num_sol(n)==2: return ['[][]', '[--]'] solu1=[] solu2=[] for i in range(num_sol(n-1)): solu1.append('[]' + unrank(n-1)[i]) for j in range(num_sol(n-2)): solu2.append('[--]' + unrank(n-2)[j]) return solu1 + solu2 def recognize(tiling, TAc, LANG): #print(f"tiling={tiling}") pos = 0 n_tiles = 0 char = None while pos < len(tiling): if tiling[pos] != '[': TAc.print(tiling, "yellow", ["underline"]) TAc.print(LANG.render_feedback("wrong-tile-opening", f'No. The tile in position {n_tiles+1} does not start with "[" (it starts with "{tiling[pos]}" instead). Your tiling is not correctly encoded.'), "red", ["bold"]) return False n_tiles += 1 if tiling[pos+1] == ']': pos += 2 else: if pos+3 < len(tiling) and tiling[pos+3] != ']': TAc.print(tiling, "yellow", ["underline"]) TAc.print(LANG.render_feedback("wrong-tile-closing", f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos+3]}, does not end wih "]" (it ends with "{tiling[pos+3]}" instead). Your tiling is not correctly encoded.'), "red", ["bold"]) return False for pos_fill in {pos+1,pos+2}: if tiling[pos_fill] in {'[',']'}: TAc.print(tiling, "yellow", ["underline"]) TAc.print(LANG.render_feedback("wrong-tile-filling", f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos+4]}, has a forbidden filling character (namely, "{tiling[pos_fill]}"). Your tiling is not correctly encoded.'), "red", ["bold"]) return False pos += 4 return True
def num_sol(n): if n == 1: return 1 if n == 2: return 2 solu = num_sol(n - 1) + num_sol(n - 2) return solu def unrank(n): if num_sol(n) == 1: return ['[]'] if num_sol(n) == 2: return ['[][]', '[--]'] solu1 = [] solu2 = [] for i in range(num_sol(n - 1)): solu1.append('[]' + unrank(n - 1)[i]) for j in range(num_sol(n - 2)): solu2.append('[--]' + unrank(n - 2)[j]) return solu1 + solu2 def recognize(tiling, TAc, LANG): pos = 0 n_tiles = 0 char = None while pos < len(tiling): if tiling[pos] != '[': TAc.print(tiling, 'yellow', ['underline']) TAc.print(LANG.render_feedback('wrong-tile-opening', f'No. The tile in position {n_tiles + 1} does not start with "[" (it starts with "{tiling[pos]}" instead). Your tiling is not correctly encoded.'), 'red', ['bold']) return False n_tiles += 1 if tiling[pos + 1] == ']': pos += 2 else: if pos + 3 < len(tiling) and tiling[pos + 3] != ']': TAc.print(tiling, 'yellow', ['underline']) TAc.print(LANG.render_feedback('wrong-tile-closing', f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos + 3]}, does not end wih "]" (it ends with "{tiling[pos + 3]}" instead). Your tiling is not correctly encoded.'), 'red', ['bold']) return False for pos_fill in {pos + 1, pos + 2}: if tiling[pos_fill] in {'[', ']'}: TAc.print(tiling, 'yellow', ['underline']) TAc.print(LANG.render_feedback('wrong-tile-filling', f'No. The tile in position {n_tiles}, starting with {tiling[pos:pos + 4]}, has a forbidden filling character (namely, "{tiling[pos_fill]}"). Your tiling is not correctly encoded.'), 'red', ['bold']) return False pos += 4 return True
def check_geneassessment(result, payload, previous_assessment_id=None): assert result["gene_id"] == payload["gene_id"] assert result["evaluation"] == payload["evaluation"] assert result["analysis_id"] == payload.get("analysis_id") assert result["genepanel_name"] == payload["genepanel_name"] assert result["genepanel_version"] == payload["genepanel_version"] assert result["date_superceeded"] is None assert result["user_id"] == 1 assert result["usergroup_id"] == 1 assert result["previous_assessment_id"] == previous_assessment_id def test_create_assessment(session, client, test_database): test_database.refresh() # Insert new geneassessment with analysis_id ASSESSMENT1 = { "gene_id": 1101, "evaluation": {"comment": "TEST1"}, "analysis_id": 1, "genepanel_name": "Mendel", "genepanel_version": "v04", } r = client.post("/api/v1/geneassessments/", ASSESSMENT1) assert r.status_code == 200 ga1 = r.get_json() check_geneassessment(ga1, ASSESSMENT1) # Check latest result when loading genepanel (allele_id 1 is in BRCA2) r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1") gp = r.get_json() assert len(gp["geneassessments"]) == 1 check_geneassessment(gp["geneassessments"][0], ASSESSMENT1) # Insert new geneassessment, without analysis_id ASSESSMENT2 = { "gene_id": 1101, "evaluation": {"comment": "TEST2"}, "genepanel_name": "Mendel", "genepanel_version": "v04", "presented_geneassessment_id": ga1["id"], } r = client.post("/api/v1/geneassessments/", ASSESSMENT2) assert r.status_code == 200 ga2 = r.get_json() check_geneassessment(ga2, ASSESSMENT2, previous_assessment_id=ga1["id"]) r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1") gp = r.get_json() assert len(gp["geneassessments"]) == 1 check_geneassessment(gp["geneassessments"][0], ASSESSMENT2, previous_assessment_id=ga1["id"]) # Insert new geneassessment, with wrong presented id (should fail) ASSESSMENT3 = { "gene_id": 1101, "evaluation": {"comment": "TEST3"}, "genepanel_name": "Mendel", "genepanel_version": "v04", "presented_geneassessment_id": ga1["id"], } r = client.post("/api/v1/geneassessments/", ASSESSMENT3) assert r.status_code == 500 ga2 = ( r.get_json()["message"] == "'presented_geneassessment_id': 1 does not match latest existing geneassessment id: 2" ) # Check that latest is same as before r = client.get("/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1") gp = r.get_json() assert len(gp["geneassessments"]) == 1 check_geneassessment(gp["geneassessments"][0], ASSESSMENT2, previous_assessment_id=ga1["id"])
def check_geneassessment(result, payload, previous_assessment_id=None): assert result['gene_id'] == payload['gene_id'] assert result['evaluation'] == payload['evaluation'] assert result['analysis_id'] == payload.get('analysis_id') assert result['genepanel_name'] == payload['genepanel_name'] assert result['genepanel_version'] == payload['genepanel_version'] assert result['date_superceeded'] is None assert result['user_id'] == 1 assert result['usergroup_id'] == 1 assert result['previous_assessment_id'] == previous_assessment_id def test_create_assessment(session, client, test_database): test_database.refresh() assessment1 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST1'}, 'analysis_id': 1, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04'} r = client.post('/api/v1/geneassessments/', ASSESSMENT1) assert r.status_code == 200 ga1 = r.get_json() check_geneassessment(ga1, ASSESSMENT1) r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1') gp = r.get_json() assert len(gp['geneassessments']) == 1 check_geneassessment(gp['geneassessments'][0], ASSESSMENT1) assessment2 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST2'}, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04', 'presented_geneassessment_id': ga1['id']} r = client.post('/api/v1/geneassessments/', ASSESSMENT2) assert r.status_code == 200 ga2 = r.get_json() check_geneassessment(ga2, ASSESSMENT2, previous_assessment_id=ga1['id']) r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1') gp = r.get_json() assert len(gp['geneassessments']) == 1 check_geneassessment(gp['geneassessments'][0], ASSESSMENT2, previous_assessment_id=ga1['id']) assessment3 = {'gene_id': 1101, 'evaluation': {'comment': 'TEST3'}, 'genepanel_name': 'Mendel', 'genepanel_version': 'v04', 'presented_geneassessment_id': ga1['id']} r = client.post('/api/v1/geneassessments/', ASSESSMENT3) assert r.status_code == 500 ga2 = r.get_json()['message'] == "'presented_geneassessment_id': 1 does not match latest existing geneassessment id: 2" r = client.get('/api/v1/workflows/analyses/1/genepanels/HBOC/v01/?allele_ids=1') gp = r.get_json() assert len(gp['geneassessments']) == 1 check_geneassessment(gp['geneassessments'][0], ASSESSMENT2, previous_assessment_id=ga1['id'])
class Edge: def __init__(self, start, end): self.start = start self.end = end def __str__(self): return "<" + str(self.start) + " " + str(self.end) + ">"
class Edge: def __init__(self, start, end): self.start = start self.end = end def __str__(self): return '<' + str(self.start) + ' ' + str(self.end) + '>'
class Solution: def minOperations(self, boxes: str) -> List[int]: ans = [0]*len(boxes) lc = 0 lcost = 0 rc = 0 rcost = 0 for i in range(1,len(boxes)): if boxes[i-1]=="1": lc+=1 lcost += lc ans[i] = lcost for i in range(len(boxes)-2,-1,-1): if boxes[i+1]=="1": rc+=1 rcost += rc ans[i] += rcost return ans
class Solution: def min_operations(self, boxes: str) -> List[int]: ans = [0] * len(boxes) lc = 0 lcost = 0 rc = 0 rcost = 0 for i in range(1, len(boxes)): if boxes[i - 1] == '1': lc += 1 lcost += lc ans[i] = lcost for i in range(len(boxes) - 2, -1, -1): if boxes[i + 1] == '1': rc += 1 rcost += rc ans[i] += rcost return ans
class Solution: def evalRPN(self, tokens: List[str]) -> int: stack = [] op = { "+": lambda x, y: x + y, "-": lambda x, y: x - y, "*": lambda x, y: x * y, "/": lambda x, y: x // y if x * y >= 0 else -(-x // y), } for token in tokens: if token in op: n2 = stack.pop() n1 = stack.pop() stack.append(op[token](n1, n2)) else: stack.append(int(token)) return stack.pop()
class Solution: def eval_rpn(self, tokens: List[str]) -> int: stack = [] op = {'+': lambda x, y: x + y, '-': lambda x, y: x - y, '*': lambda x, y: x * y, '/': lambda x, y: x // y if x * y >= 0 else -(-x // y)} for token in tokens: if token in op: n2 = stack.pop() n1 = stack.pop() stack.append(op[token](n1, n2)) else: stack.append(int(token)) return stack.pop()
# Created by MechAviv # Map ID :: 402000630 # Desert Cavern : Below the Sinkhole # Update Quest Record EX | Quest ID: [34931] | Data: dir=1;exp=1 sm.curNodeEventEnd(True) sm.setTemporarySkillSet(0) sm.setInGameDirectionMode(True, False, False, False) sm.setStandAloneMode(True) sm.removeAdditionalEffect() sm.zoomCamera(0, 2000, 0, -142, -250) sm.blind(1, 255, 0, 0, 0, 0, 0) sm.sendDelay(1200) sm.blind(0, 0, 0, 0, 0, 1000, 0) sm.sendDelay(1400) sm.sendDelay(500) sm.zoomCamera(3000, 1000, 3000, 100, 0) sm.sendDelay(3500) sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendNext("#face2#So this is what's below the sand.") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#And now we've all been separated.") sm.setSpeakerID(3001500) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face0#Well...") sm.blind(1, 150, 0, 0, 0, 500, 0) sm.playSound("Sound/SoundEff.img/PinkBean/expectation", 100) sm.OnOffLayer_On(500, "d0", 0, -80, -1, "Effect/Direction17.img/effect/ark/illust/7/1", 4, 1, -1, 0) sm.sendDelay(1000) sm.blind(0, 0, 0, 0, 0, 500, 0) sm.OnOffLayer_Off(500, "d0", 0) sm.sendDelay(500) sm.setSpeakerID(3001500) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendNext("#face0#At least we got this.") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face0#Wow! You managed to catch that while we were falling? Impressive!") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#I'm not happy about being this far underground. What was that demolitions dummy thinking?!") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#Now we're going to waste a bunch of time we don't have tracking everyone down.") sm.showFadeTransition(0, 1000, 3000) sm.zoomCamera(0, 1000, 2147483647, 2147483647, 2147483647) sm.moveCamera(True, 0, 0, 0) sm.sendDelay(300) sm.removeOverlapScreen(1000) sm.moveCamera(True, 0, 0, 0) sm.setStandAloneMode(False) sm.setTemporarySkillSet(0) sm.setInGameDirectionMode(False, True, False, False)
sm.curNodeEventEnd(True) sm.setTemporarySkillSet(0) sm.setInGameDirectionMode(True, False, False, False) sm.setStandAloneMode(True) sm.removeAdditionalEffect() sm.zoomCamera(0, 2000, 0, -142, -250) sm.blind(1, 255, 0, 0, 0, 0, 0) sm.sendDelay(1200) sm.blind(0, 0, 0, 0, 0, 1000, 0) sm.sendDelay(1400) sm.sendDelay(500) sm.zoomCamera(3000, 1000, 3000, 100, 0) sm.sendDelay(3500) sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendNext("#face2#So this is what's below the sand.") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#And now we've all been separated.") sm.setSpeakerID(3001500) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay('#face0#Well...') sm.blind(1, 150, 0, 0, 0, 500, 0) sm.playSound('Sound/SoundEff.img/PinkBean/expectation', 100) sm.OnOffLayer_On(500, 'd0', 0, -80, -1, 'Effect/Direction17.img/effect/ark/illust/7/1', 4, 1, -1, 0) sm.sendDelay(1000) sm.blind(0, 0, 0, 0, 0, 500, 0) sm.OnOffLayer_Off(500, 'd0', 0) sm.sendDelay(500) sm.setSpeakerID(3001500) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendNext('#face0#At least we got this.') sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay('#face0#Wow! You managed to catch that while we were falling? Impressive!') sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#I'm not happy about being this far underground. What was that demolitions dummy thinking?!") sm.setSpeakerID(3001510) sm.setSpeakerType(3) sm.removeEscapeButton() sm.flipDialogue() sm.setBoxChat() sm.boxChatPlayerAsSpeaker() sm.setBoxOverrideSpeaker() sm.flipBoxChat() sm.flipBoxChatPlayerAsSpeaker() sm.setColor(1) sm.sendSay("#face2#Now we're going to waste a bunch of time we don't have tracking everyone down.") sm.showFadeTransition(0, 1000, 3000) sm.zoomCamera(0, 1000, 2147483647, 2147483647, 2147483647) sm.moveCamera(True, 0, 0, 0) sm.sendDelay(300) sm.removeOverlapScreen(1000) sm.moveCamera(True, 0, 0, 0) sm.setStandAloneMode(False) sm.setTemporarySkillSet(0) sm.setInGameDirectionMode(False, True, False, False)
# "directions" are all the ways you can describe going some way; # they are code-visible names for directions for adventure authors direction_names = ["NORTH","SOUTH","EAST","WEST","UP","DOWN","RIGHT","LEFT", "IN","OUT","FORWARD","BACK", "NORTHWEST","NORTHEAST","SOUTHWEST","SOUTHEAST"] direction_list = [ NORTH, SOUTH, EAST, WEST, UP, DOWN, RIGHT, LEFT, IN, OUT, FORWARD, BACK, NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST] = \ range(len(direction_names)) NOT_DIRECTION = None # some old names, for backwards compatibility (NORTH_WEST, NORTH_EAST, SOUTH_WEST, SOUTH_EAST) = \ (NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST) directions = dir_by_name = dict(zip(direction_names, direction_list)) def define_direction (number, name): if name in dir_by_name: exit("%s is already defined as %d" % (name, dir_by_name[name])) dir_by_name[name] = number def lookup_dir (name): return dir_by_name.get(name, NOT_DIRECTION) # add lower-case versions of all names in direction_names for name in direction_names: define_direction(dir_by_name[name], name.lower()) # add common aliases: # maybe the alias mechanism should be a more general # (text-based?) mechanism that works for any command?!!! common_aliases = [ (NORTH, "n"), (SOUTH, "s"), (EAST, "e"), (WEST, "w"), (UP, "u"), (DOWN, "d"), (FORWARD, "fd"), (FORWARD, "fwd"), (FORWARD, "f"), (BACK, "bk"), (BACK, "b"), (NORTHWEST,"nw"), (NORTHEAST,"ne"), (SOUTHWEST,"sw"), (SOUTHEAST, "se") ] for (k,v) in common_aliases: define_direction(k,v) # define the pairs of opposite directions opposite_by_dir = {} def define_opposite_dirs (d1, d2): for dir in (d1, d2): opposite = opposite_by_dir.get(dir) if opposite is not None: exit("opposite for %s is already defined as %s" % (dir, opposite)) opposite_by_dir[d1] = d2 opposite_by_dir[d2] = d1 opposites = [(NORTH, SOUTH), (EAST, WEST), (UP, DOWN), (LEFT, RIGHT), (IN, OUT), (FORWARD, BACK), (NORTHWEST, SOUTHEAST), (NORTHEAST, SOUTHWEST)] for (d1,d2) in opposites: define_opposite_dirs(d1,d2) def opposite_direction (dir): return opposite_by_dir[dir]
direction_names = ['NORTH', 'SOUTH', 'EAST', 'WEST', 'UP', 'DOWN', 'RIGHT', 'LEFT', 'IN', 'OUT', 'FORWARD', 'BACK', 'NORTHWEST', 'NORTHEAST', 'SOUTHWEST', 'SOUTHEAST'] direction_list = [north, south, east, west, up, down, right, left, in, out, forward, back, northwest, northeast, southwest, southeast] = range(len(direction_names)) not_direction = None (north_west, north_east, south_west, south_east) = (NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST) directions = dir_by_name = dict(zip(direction_names, direction_list)) def define_direction(number, name): if name in dir_by_name: exit('%s is already defined as %d' % (name, dir_by_name[name])) dir_by_name[name] = number def lookup_dir(name): return dir_by_name.get(name, NOT_DIRECTION) for name in direction_names: define_direction(dir_by_name[name], name.lower()) common_aliases = [(NORTH, 'n'), (SOUTH, 's'), (EAST, 'e'), (WEST, 'w'), (UP, 'u'), (DOWN, 'd'), (FORWARD, 'fd'), (FORWARD, 'fwd'), (FORWARD, 'f'), (BACK, 'bk'), (BACK, 'b'), (NORTHWEST, 'nw'), (NORTHEAST, 'ne'), (SOUTHWEST, 'sw'), (SOUTHEAST, 'se')] for (k, v) in common_aliases: define_direction(k, v) opposite_by_dir = {} def define_opposite_dirs(d1, d2): for dir in (d1, d2): opposite = opposite_by_dir.get(dir) if opposite is not None: exit('opposite for %s is already defined as %s' % (dir, opposite)) opposite_by_dir[d1] = d2 opposite_by_dir[d2] = d1 opposites = [(NORTH, SOUTH), (EAST, WEST), (UP, DOWN), (LEFT, RIGHT), (IN, OUT), (FORWARD, BACK), (NORTHWEST, SOUTHEAST), (NORTHEAST, SOUTHWEST)] for (d1, d2) in opposites: define_opposite_dirs(d1, d2) def opposite_direction(dir): return opposite_by_dir[dir]
# -*- coding:utf-8 -*- __author__ = 'zhangzhibo' __date__ = '202018/5/18 16:56'
__author__ = 'zhangzhibo' __date__ = '202018/5/18 16:56'
#Clases del ciclo de lavado class lavando: #Etapa 1. Lavado def lavado(self): print("Lavando...") class enjuagando: #Etapa 2. Enjuagado def enjuagado(self): print("Enjuagando...") class centrifugando: #Etapa 3. Centrifugado def centrifugado(self): print("Centrifugando...") class finalizado: #Etapa 4. Finalizado de ciclo def finalizar(self): print("Finalizado!") class LavadoraFacade: def __init__(self): self.lavando = lavando() self.enjuagando = enjuagando() self.centrifugando = centrifugando() self.finalizando = finalizado() #Lista de ciclos def ciclo_completo(self): self.lavando.lavado() self.enjuagando.enjuagado() self.centrifugando.centrifugado() self.finalizando.finalizar() def solo_centrifugado(self): self.centrifugando.centrifugado() self.finalizando.finalizar() def solo_lavado(self): self.lavando.lavado() self.finalizando.finalizar() def solo_enjuagado(self): self.enjuagando.enjuagado() self.finalizando.finalizar()
class Lavando: def lavado(self): print('Lavando...') class Enjuagando: def enjuagado(self): print('Enjuagando...') class Centrifugando: def centrifugado(self): print('Centrifugando...') class Finalizado: def finalizar(self): print('Finalizado!') class Lavadorafacade: def __init__(self): self.lavando = lavando() self.enjuagando = enjuagando() self.centrifugando = centrifugando() self.finalizando = finalizado() def ciclo_completo(self): self.lavando.lavado() self.enjuagando.enjuagado() self.centrifugando.centrifugado() self.finalizando.finalizar() def solo_centrifugado(self): self.centrifugando.centrifugado() self.finalizando.finalizar() def solo_lavado(self): self.lavando.lavado() self.finalizando.finalizar() def solo_enjuagado(self): self.enjuagando.enjuagado() self.finalizando.finalizar()
''' Date: 01/08/2019 Problem description: =================== This problem was asked by Google. Given an array of integers where every integer occurs three times except for one integer, which only occurs once, find and return the non-duplicated integer. For example, given [6, 1, 3, 3, 3, 6, 6], return 1. Given [13, 19, 13, 13], return 19. Do this in O(N) time and O(1) space. Algorithm: ========== Input: A list of numbers Output: An integer represeting the non-duplicate value Psuedo code: 1. Check for valid input 2. Rerurn value from set(list-comprehension) where element count equals to one Note: This is why I love Python!!! ''' def find_non_dup(A=[]): if len(A) == 0: return None non_dup = list(set([x for x in A if A.count(x) == 1])) return non_dup[-1] def test_code(): A = [7,3,3,3,7,8,7] assert find_non_dup(A) == 8 if __name__ == '__main__': Array = [9,5,5,5,8,9,8,9,3,4,4,4] non_dup = find_non_dup(Array) print("Test1:\nGiven a list [{}]\nThe non-duplicate value is {}".format(', '.join(str(i) for i in Array), non_dup)) ''' Run-time output: =============== (DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ python codechallenge_025.py Test1: Given a list [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4] The non-duplicate value is 3 (DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ pytest codechallenge_025.py ================================ test session starts ================================= platform linux2 -- Python 2.7.13, pytest-3.6.3, py-1.5.4, pluggy-0.6.0 rootdir: /home/markn/devel/py-src/DailyCodingChallenge, inifile: collected 1 item codechallenge_025.py . [100%] ============================== 1 passed in 0.03 seconds ============================== '''
""" Date: 01/08/2019 Problem description: =================== This problem was asked by Google. Given an array of integers where every integer occurs three times except for one integer, which only occurs once, find and return the non-duplicated integer. For example, given [6, 1, 3, 3, 3, 6, 6], return 1. Given [13, 19, 13, 13], return 19. Do this in O(N) time and O(1) space. Algorithm: ========== Input: A list of numbers Output: An integer represeting the non-duplicate value Psuedo code: 1. Check for valid input 2. Rerurn value from set(list-comprehension) where element count equals to one Note: This is why I love Python!!! """ def find_non_dup(A=[]): if len(A) == 0: return None non_dup = list(set([x for x in A if A.count(x) == 1])) return non_dup[-1] def test_code(): a = [7, 3, 3, 3, 7, 8, 7] assert find_non_dup(A) == 8 if __name__ == '__main__': array = [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4] non_dup = find_non_dup(Array) print('Test1:\nGiven a list [{}]\nThe non-duplicate value is {}'.format(', '.join((str(i) for i in Array)), non_dup)) '\nRun-time output:\n===============\n(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ python codechallenge_025.py\nTest1:\nGiven a list [9, 5, 5, 5, 8, 9, 8, 9, 3, 4, 4, 4]\nThe non-duplicate value is 3\n\n(DailyCodingChallenge-wC3ocw3s) markn@raspberrypi3:~/devel/py-src/DailyCodingChallenge $ pytest codechallenge_025.py\n================================ test session starts =================================\nplatform linux2 -- Python 2.7.13, pytest-3.6.3, py-1.5.4, pluggy-0.6.0\nrootdir: /home/markn/devel/py-src/DailyCodingChallenge, inifile:\ncollected 1 item\n\ncodechallenge_025.py . [100%]\n\n============================== 1 passed in 0.03 seconds ==============================\n\n'
# Start and end date gldas_start_date = '2010-01-01' gldas_end_date = '2014-01-01' # Location (Latitude and Longitude) gldas_geo_point = AutoParam([(38, -117), (38, -118)]) # Create data fetcher gldasdf = GLDASDF([gldas_geo_point],start_date=gldas_start_date, end_date=gldas_end_date, resample=False)
gldas_start_date = '2010-01-01' gldas_end_date = '2014-01-01' gldas_geo_point = auto_param([(38, -117), (38, -118)]) gldasdf = gldasdf([gldas_geo_point], start_date=gldas_start_date, end_date=gldas_end_date, resample=False)
def hola(): def bienvenido(): print("hola!") return bienvenido # hola()() def mensaje(): return "Este es un mensaje" def test(function): print(mensaje()) test(mensaje)
def hola(): def bienvenido(): print('hola!') return bienvenido def mensaje(): return 'Este es un mensaje' def test(function): print(mensaje()) test(mensaje)
# Getting all PAL : Prime and pallindrome numbers between two given numbers def pallindrome(n): temp=n rev=0 while(n>0): dig = n % 10 rev=rev*10 +dig n = n/10 if temp == rev: return True else: return False def isprime(n): if n<=1: return False if n<=3: return True if n % 2 == 0 or n % 3 == 0: return False i = 5 while i*i < n: if n % i == 0 or n % (i+2) == 0: return False i=i+6 return True a=int(input("Enter the number of lower range ")) b=int(input("Enter the number of upper range ")) for i in range(a,b): if pallindrome(i) and isprime(i): print(i)
def pallindrome(n): temp = n rev = 0 while n > 0: dig = n % 10 rev = rev * 10 + dig n = n / 10 if temp == rev: return True else: return False def isprime(n): if n <= 1: return False if n <= 3: return True if n % 2 == 0 or n % 3 == 0: return False i = 5 while i * i < n: if n % i == 0 or n % (i + 2) == 0: return False i = i + 6 return True a = int(input('Enter the number of lower range ')) b = int(input('Enter the number of upper range ')) for i in range(a, b): if pallindrome(i) and isprime(i): print(i)
# buttons PIN_BUTTON_PROG = 17 PIN_BUTTON_ERASE = 27 # LEDs PIN_RED = 23 PIN_GREEN = 24 PIN_BLUE = 20 PIN_BLUE2 = 25 # Jumpers PINS_PROFILES = [5, 6, 13, 19] # MCU PIN_RESET_ATMEGA = 16 PIN_MASTER_POWER = 12 PIN_ESP_RESET = 8 PIN_ESP_GPIO_0 = 4 # MISC PIN_BUZZER = 26 # Interfaces DEFAULT_SERIAL_SPEED = 9600 DEFAULT_PRGM_COMM_SPEED = 115200 SERIAL_PORT = "/dev/serial0"
pin_button_prog = 17 pin_button_erase = 27 pin_red = 23 pin_green = 24 pin_blue = 20 pin_blue2 = 25 pins_profiles = [5, 6, 13, 19] pin_reset_atmega = 16 pin_master_power = 12 pin_esp_reset = 8 pin_esp_gpio_0 = 4 pin_buzzer = 26 default_serial_speed = 9600 default_prgm_comm_speed = 115200 serial_port = '/dev/serial0'
# -*- coding: utf-8 -*- smtpserver = "smtp.qq.com" # will be read by smtp fixture def test_showhelo(smtp_connection): assert 0, smtp_connection.helo()
smtpserver = 'smtp.qq.com' def test_showhelo(smtp_connection): assert 0, smtp_connection.helo()
# -*- coding: utf-8 -*- project = 'test' master_doc = 'index'
project = 'test' master_doc = 'index'
s, n = map(int, input().split()) arr = [0] * n for i in range(s): p = int(input()) for j in range(0, len(arr), p): arr[j] = 1 for i in arr: print(i, end=" ") print()
(s, n) = map(int, input().split()) arr = [0] * n for i in range(s): p = int(input()) for j in range(0, len(arr), p): arr[j] = 1 for i in arr: print(i, end=' ') print()
CHAMP_ID_TO_EMOJI = {'266': '<:champ_266:601909182748164097>', '103': '<:champ_103:601909185243774976>', '84': '<:champ_84:601909188612063233>', '12': '<:champ_12:601909190809878530>', '32': '<:champ_32:601909193456222221>', '34': '<:champ_34:601909195968610356>', '1': '<:champ_1:601909198799896690>', '22': '<:champ_22:601909201564073984>', '136': '<:champ_136:601909204034387986>', '268': '<:champ_268:601909206337191937>', '432': '<:champ_432:601909209348571136>', '53': '<:champ_53:601909212175663129>', '63': '<:champ_63:601909215262408705>', '201': '<:champ_201:601909218072592406>', '51': '<:champ_51:601909220664672275>', '164': '<:champ_164:601909222455640094>', '69': '<:champ_69:601909224213053481>', '31': '<:champ_31:601909227174494208>', '42': '<:champ_42:601909229246218250>', '122': '<:champ_122:601909231268134933>', '131': '<:champ_131:601909232954245122>', '119': '<:champ_119:601909235831406759>', '36': '<:champ_36:601909237928689714>', '245': '<:champ_245:601909241250578462>', '60': '<:champ_60:601909243112718355>', '28': '<:champ_28:601909244823863309>', '81': '<:champ_81:601909247458148353>', '9': '<:champ_9:601909250234646746>', '114': '<:champ_114:601909252642045964>', '105': '<:champ_105:601909255259291648>', '3': '<:champ_3:601909257067298865>', '41': '<:champ_41:601909258963124225>', '86': '<:champ_86:601909261915783188>', '150': '<:champ_150:601909264533028932>', '79': '<:champ_79:601909267032702989>', '104': '<:champ_104:601909269520056352>', '120': '<:champ_120:601909272825298944>', '74': '<:champ_74:601909276398714921>', '420': '<:champ_420:601909278105665588>', '39': '<:champ_39:601909281687732317>', '427': '<:champ_427:601909283675963402>', '40': '<:champ_40:601909286418907137>', '59': '<:champ_59:601909288994340933>', '24': '<:champ_24:601909292534071327>', '126': '<:champ_126:601909294975287325>', '202': '<:champ_202:601909297974083605>', '222': '<:champ_222:601909300687929355>', '145': '<:champ_145:601909302814310437>', '429': '<:champ_429:601909305662504981>', '43': '<:champ_43:601909308183150592>', '30': '<:champ_30:601909340571566080>', '38': '<:champ_38:601909342756929557>', '55': '<:champ_55:601909345663582273>', '10': '<:champ_10:601909347945283584>', '141': '<:champ_141:601909349471748112>', '85': '<:champ_85:601909351523024897>', '121': '<:champ_121:601909353540354061>', '203': '<:champ_203:601909356086296609>', '240': '<:champ_240:601909358258946048>', '96': '<:champ_96:601909360284663808>', '7': '<:champ_7:601909362222432266>', '64': '<:champ_64:601909364881883136>', '89': '<:champ_89:601909366802612236>', '127': '<:champ_127:601909370413907984>', '236': '<:champ_236:601909373194993698>', '117': '<:champ_117:601909375317311488>', '99': '<:champ_99:601909377959460885>', '54': '<:champ_54:601909383433027614>', '90': '<:champ_90:601909385614196767>', '57': '<:champ_57:601909388122390529>', '11': '<:champ_11:601909392623009793>', '21': '<:champ_21:601909395030409235>', '62': '<:champ_62:601909398578659358>', '82': '<:champ_82:601909401506414598>', '25': '<:champ_25:601909403448508437>', '267': '<:champ_267:601909406426333198>', '75': '<:champ_75:601909408628211715>', '111': '<:champ_111:601909410805055488>', '518': '<:champ_518:601909414118686752>', '76': '<:champ_76:601909416110981169>', '56': '<:champ_56:601909419189469185>', '20': '<:champ_20:601909421580484629>', '2': '<:champ_2:601909423983558668>', '61': '<:champ_61:601909426474975263>', '516': '<:champ_516:601909428958003212>', '80': '<:champ_80:601909431747346447>', '78': '<:champ_78:601909434142294086>', '555': '<:champ_555:601909436864397322>', '246': '<:champ_246:601909439876038676>', '133': '<:champ_133:601909442371387395>', '497': '<:champ_497:601909445253005335>', '33': '<:champ_33:601909447320797244>', '421': '<:champ_421:601909449850093579>', '58': '<:champ_58:601909452567871571>', '107': '<:champ_107:601909455478718491>', '92': '<:champ_92:601909458230050816>', '68': '<:champ_68:601909460482654208>', '13': '<:champ_13:601909462776676372>', '113': '<:champ_113:601909465624608777>', '35': '<:champ_35:601909468028207135>', '98': '<:champ_98:601909497539067924>', '102': '<:champ_102:601909500059975685>', '27': '<:champ_27:601909503205834764>', '14': '<:champ_14:601909506074607659>', '15': '<:champ_15:601909508129685504>', '72': '<:champ_72:601909510679953438>', '37': '<:champ_37:601909513066643456>', '16': '<:champ_16:601909515222253582>', '50': '<:champ_50:601909518082899972>', '517': '<:champ_517:601909520939089920>', '134': '<:champ_134:601909523493683213>', '223': '<:champ_223:601909526408724480>', '163': '<:champ_163:601909528652546070>', '91': '<:champ_91:601909531223654439>', '44': '<:champ_44:601909533727653918>', '17': '<:champ_17:601909535929794562>', '412': '<:champ_412:601909538701967370>', '18': '<:champ_18:601909541705089054>', '48': '<:champ_48:601909545056337960>', '23': '<:champ_23:601909548735004723>', '4': '<:champ_4:601909551637200898>', '29': '<:champ_29:601909555810795531>', '77': '<:champ_77:601909558604070961>', '6': '<:champ_6:601909560751423526>', '110': '<:champ_110:601909562953433098>', '67': '<:champ_67:601909566078451735>', '45': '<:champ_45:601909568452165653>', '161': '<:champ_161:601909571069411359>', '254': '<:champ_254:601909573863079936>', '112': '<:champ_112:601909575800717332>', '8': '<:champ_8:601909578438934677>', '106': '<:champ_106:601909581311901719>', '19': '<:champ_19:601909584277405709>', '498': '<:champ_498:601909586701582336>', '101': '<:champ_101:601909589369159691>', '5': '<:champ_5:601909591667769364>', '157': '<:champ_157:601909594758971468>', '83': '<:champ_83:601909596877094940>', '350': '<:champ_350:601909599469305875>', '154': '<:champ_154:601909605194268673>', '238': '<:champ_238:601909607824359462>', '115': '<:champ_115:601909610885939200>', '26': '<:champ_26:601909614031798447>', '142': '<:champ_142:601909616258973696>', '143': '<:champ_143:601909618808979478>'} RUNE_ID_TO_EMOJI = {'8112': '<:rune_8112:602195444940144650>', '8124': '<:rune_8124:602195452028518410>', '8128': '<:rune_8128:602195459003514920>', '9923': '<:rune_9923:602195465299165308>', '8126': '<:rune_8126:602195466981212190>', '8139': '<:rune_8139:602195469573160970>', '8143': '<:rune_8143:602195471859056641>', '8136': '<:rune_8136:602195473264017462>', '8120': '<:rune_8120:602195475013173288>', '8138': '<:rune_8138:602195477257256963>', '8135': '<:rune_8135:602195479417192449>', '8134': '<:rune_8134:602195482487554058>', '8105': '<:rune_8105:602195484748152843>', '8106': '<:rune_8106:602195487650742283>', '8351': '<:rune_8351:602195494319423529>', '8359': '<:rune_8359:602195503048032291>', '8360': '<:rune_8360:602195510388064256>', '8306': '<:rune_8306:602195512036163585>', '8304': '<:rune_8304:602195513173082113>', '8313': '<:rune_8313:602195513546244128>', '8321': '<:rune_8321:602195517103014084>', '8316': '<:rune_8316:602195519829311562>', '8345': '<:rune_8345:602195522345893911>', '8347': '<:rune_8347:602195524338319370>', '8410': '<:rune_8410:602195527479722000>', '8352': '<:rune_8352:602195529291661489>', '8005': '<:rune_8005:602195538036785152>', '8008': '<:rune_8008:602195543464345601>', '8021': '<:rune_8021:602195550271700992>', '8010': '<:rune_8010:602195555006939137>', '9101': '<:rune_9101:602195557502681088>', '9111': '<:rune_9111:602195559880851536>', '8009': '<:rune_8009:602195562481057792>', '9104': '<:rune_9104:602195563936743455>', '9105': '<:rune_9105:602195565408813056>', '9103': '<:rune_9103:602195567241854979>', '8014': '<:rune_8014:602195568759930900>', '8017': '<:rune_8017:602195571364724774>', '8299': '<:rune_8299:602195573952479242>', '8437': '<:rune_8437:602195580919349261>', '8439': '<:rune_8439:602195586468544533>', '8465': '<:rune_8465:602195592357347358>', '8446': '<:rune_8446:602195594643243018>', '8463': '<:rune_8463:602195596736200757>', '8401': '<:rune_8401:602195601475764234>', '8429': '<:rune_8429:602195603308675078>', '8444': '<:rune_8444:602195605334392832>', '8473': '<:rune_8473:602195607670620161>', '8451': '<:rune_8451:602195610233339914>', '8453': '<:rune_8453:602195612569567250>', '8242': '<:rune_8242:602195615321030840>', '8214': '<:rune_8214:602195620601528330>', '8229': '<:rune_8229:602195626293198859>', '8230': '<:rune_8230:602195631255060541>', '8224': '<:rune_8224:602195633171857418>', '8226': '<:rune_8226:602195635868925970>', '8275': '<:rune_8275:602195639140483072>', '8210': '<:rune_8210:602195640432328792>', '8234': '<:rune_8234:602195643515011092>', '8233': '<:rune_8233:602195645956096010>', '8237': '<:rune_8237:602195647268913162>', '8232': '<:rune_8232:602195649907392525>', '8236': '<:rune_8236:602195652235231235>'} MASTERIES_TO_EMOJI = {'1': '<:masteries_1:602201182131322886>', '2': '<:masteries_2:602201195792039967>', '3': '<:masteries_3:602201208505106453>', '4': '<:masteries_4:602201225701883924>', '5': '<:masteries_5:602201238528065557>', '6': '<:masteries_6:602201251069034496>', '7': '<:masteries_7:602201263152693325>'} CHAMP_NONE_EMOJI = "<:champ_0:602225831095435294>" INVISIBLE_EMOJI = "<:__:602265603893493761>" CHAMP_NAME_TO_ID = {'Aatrox': '266', 'Ahri': '103', 'Akali': '84', 'Alistar': '12', 'Amumu': '32', 'Anivia': '34', 'Annie': '1', 'Ashe': '22', 'Aurelion Sol': '136', 'Azir': '268', 'Bard': '432', 'Blitzcrank': '53', 'Brand': '63', 'Braum': '201', 'Caitlyn': '51', 'Camille': '164', 'Cassiopeia': '69', "Cho'Gath": '31', 'Corki': '42', 'Darius': '122', 'Diana': '131', 'Draven': '119', 'Dr. Mundo': '36', 'Ekko': '245', 'Elise': '60', 'Evelynn': '28', 'Ezreal': '81', 'Fiddlesticks': '9', 'Fiora': '114', 'Fizz': '105', 'Galio': '3', 'Gangplank': '41', 'Garen': '86', 'Gnar': '150', 'Gragas': '79', 'Graves': '104', 'Hecarim': '120', 'Heimerdinger': '74', 'Illaoi': '420', 'Irelia': '39', 'Ivern': '427', 'Janna': '40', 'Jarvan IV': '59', 'Jax': '24', 'Jayce': '126', 'Jhin': '202', 'Jinx': '222', "Kai'Sa": '145', 'Kalista': '429', 'Karma': '43', 'Karthus': '30', 'Kassadin': '38', 'Katarina': '55', 'Kayle': '10', 'Kayn': '141', 'Kennen': '85', "Kha'Zix": '121', 'Kindred': '203', 'Kled': '240', "Kog'Maw": '96', 'LeBlanc': '7', 'Lee Sin': '64', 'Leona': '89', 'Lissandra': '127', 'Lucian': '236', 'Lulu': '117', 'Lux': '99', 'Malphite': '54', 'Malzahar': '90', 'Maokai': '57', 'Master Yi': '11', 'Miss Fortune': '21', 'Wukong': '62', 'Mordekaiser': '82', 'Morgana': '25', 'Nami': '267', 'Nasus': '75', 'Nautilus': '111', 'Neeko': '518', 'Nidalee': '76', 'Nocturne': '56', 'Nunu & Willump': '20', 'Olaf': '2', 'Orianna': '61', 'Ornn': '516', 'Pantheon': '80', 'Poppy': '78', 'Pyke': '555', 'Qiyana': '246', 'Quinn': '133', 'Rakan': '497', 'Rammus': '33', "Rek'Sai": '421', 'Renekton': '58', 'Rengar': '107', 'Riven': '92', 'Rumble': '68', 'Ryze': '13', 'Sejuani': '113', 'Senna': '235', 'Shaco': '35', 'Shen': '98', 'Shyvana': '102', 'Singed': '27', 'Sion': '14', 'Sivir': '15', 'Skarner': '72', 'Sona': '37', 'Soraka': '16', 'Swain': '50', 'Sylas': '517', 'Syndra': '134', 'Tahm Kench': '223', 'Taliyah': '163', 'Talon': '91', 'Taric': '44', 'Teemo': '17', 'Thresh': '412', 'Tristana': '18', 'Trundle': '48', 'Tryndamere': '23', 'Twisted Fate': '4', 'Twitch': '29', 'Udyr': '77', 'Urgot': '6', 'Varus': '110', 'Vayne': '67', 'Veigar': '45', "Vel'Koz": '161', 'Vi': '254', 'Viktor': '112', 'Vladimir': '8', 'Volibear': '106', 'Warwick': '19', 'Xayah': '498', 'Xerath': '101', 'Xin Zhao': '5', 'Yasuo': '157', 'Yorick': '83', 'Yuumi': '350', 'Zac': '154', 'Zed': '238', 'Ziggs': '115', 'Zilean': '26', 'Zoe': '142', 'Zyra': '143'} TFT_PRICES = [INVISIBLE_EMOJI, '<:tft_g1:652142396405972992>', '<:tft_g2:652142435606069248>', '<:tft_g3:652142468007067649>', '<:tft_g4:652142511913041960>', '<:tft_g5:652142572541575181>']
champ_id_to_emoji = {'266': '<:champ_266:601909182748164097>', '103': '<:champ_103:601909185243774976>', '84': '<:champ_84:601909188612063233>', '12': '<:champ_12:601909190809878530>', '32': '<:champ_32:601909193456222221>', '34': '<:champ_34:601909195968610356>', '1': '<:champ_1:601909198799896690>', '22': '<:champ_22:601909201564073984>', '136': '<:champ_136:601909204034387986>', '268': '<:champ_268:601909206337191937>', '432': '<:champ_432:601909209348571136>', '53': '<:champ_53:601909212175663129>', '63': '<:champ_63:601909215262408705>', '201': '<:champ_201:601909218072592406>', '51': '<:champ_51:601909220664672275>', '164': '<:champ_164:601909222455640094>', '69': '<:champ_69:601909224213053481>', '31': '<:champ_31:601909227174494208>', '42': '<:champ_42:601909229246218250>', '122': '<:champ_122:601909231268134933>', '131': '<:champ_131:601909232954245122>', '119': '<:champ_119:601909235831406759>', '36': '<:champ_36:601909237928689714>', '245': '<:champ_245:601909241250578462>', '60': '<:champ_60:601909243112718355>', '28': '<:champ_28:601909244823863309>', '81': '<:champ_81:601909247458148353>', '9': '<:champ_9:601909250234646746>', '114': '<:champ_114:601909252642045964>', '105': '<:champ_105:601909255259291648>', '3': '<:champ_3:601909257067298865>', '41': '<:champ_41:601909258963124225>', '86': '<:champ_86:601909261915783188>', '150': '<:champ_150:601909264533028932>', '79': '<:champ_79:601909267032702989>', '104': '<:champ_104:601909269520056352>', '120': '<:champ_120:601909272825298944>', '74': '<:champ_74:601909276398714921>', '420': '<:champ_420:601909278105665588>', '39': '<:champ_39:601909281687732317>', '427': '<:champ_427:601909283675963402>', '40': '<:champ_40:601909286418907137>', '59': '<:champ_59:601909288994340933>', '24': '<:champ_24:601909292534071327>', '126': '<:champ_126:601909294975287325>', '202': '<:champ_202:601909297974083605>', '222': '<:champ_222:601909300687929355>', '145': '<:champ_145:601909302814310437>', '429': '<:champ_429:601909305662504981>', '43': '<:champ_43:601909308183150592>', '30': '<:champ_30:601909340571566080>', '38': '<:champ_38:601909342756929557>', '55': '<:champ_55:601909345663582273>', '10': '<:champ_10:601909347945283584>', '141': '<:champ_141:601909349471748112>', '85': '<:champ_85:601909351523024897>', '121': '<:champ_121:601909353540354061>', '203': '<:champ_203:601909356086296609>', '240': '<:champ_240:601909358258946048>', '96': '<:champ_96:601909360284663808>', '7': '<:champ_7:601909362222432266>', '64': '<:champ_64:601909364881883136>', '89': '<:champ_89:601909366802612236>', '127': '<:champ_127:601909370413907984>', '236': '<:champ_236:601909373194993698>', '117': '<:champ_117:601909375317311488>', '99': '<:champ_99:601909377959460885>', '54': '<:champ_54:601909383433027614>', '90': '<:champ_90:601909385614196767>', '57': '<:champ_57:601909388122390529>', '11': '<:champ_11:601909392623009793>', '21': '<:champ_21:601909395030409235>', '62': '<:champ_62:601909398578659358>', '82': '<:champ_82:601909401506414598>', '25': '<:champ_25:601909403448508437>', '267': '<:champ_267:601909406426333198>', '75': '<:champ_75:601909408628211715>', '111': '<:champ_111:601909410805055488>', '518': '<:champ_518:601909414118686752>', '76': '<:champ_76:601909416110981169>', '56': '<:champ_56:601909419189469185>', '20': '<:champ_20:601909421580484629>', '2': '<:champ_2:601909423983558668>', '61': '<:champ_61:601909426474975263>', '516': '<:champ_516:601909428958003212>', '80': '<:champ_80:601909431747346447>', '78': '<:champ_78:601909434142294086>', '555': '<:champ_555:601909436864397322>', '246': '<:champ_246:601909439876038676>', '133': '<:champ_133:601909442371387395>', '497': '<:champ_497:601909445253005335>', '33': '<:champ_33:601909447320797244>', '421': '<:champ_421:601909449850093579>', '58': '<:champ_58:601909452567871571>', '107': '<:champ_107:601909455478718491>', '92': '<:champ_92:601909458230050816>', '68': '<:champ_68:601909460482654208>', '13': '<:champ_13:601909462776676372>', '113': '<:champ_113:601909465624608777>', '35': '<:champ_35:601909468028207135>', '98': '<:champ_98:601909497539067924>', '102': '<:champ_102:601909500059975685>', '27': '<:champ_27:601909503205834764>', '14': '<:champ_14:601909506074607659>', '15': '<:champ_15:601909508129685504>', '72': '<:champ_72:601909510679953438>', '37': '<:champ_37:601909513066643456>', '16': '<:champ_16:601909515222253582>', '50': '<:champ_50:601909518082899972>', '517': '<:champ_517:601909520939089920>', '134': '<:champ_134:601909523493683213>', '223': '<:champ_223:601909526408724480>', '163': '<:champ_163:601909528652546070>', '91': '<:champ_91:601909531223654439>', '44': '<:champ_44:601909533727653918>', '17': '<:champ_17:601909535929794562>', '412': '<:champ_412:601909538701967370>', '18': '<:champ_18:601909541705089054>', '48': '<:champ_48:601909545056337960>', '23': '<:champ_23:601909548735004723>', '4': '<:champ_4:601909551637200898>', '29': '<:champ_29:601909555810795531>', '77': '<:champ_77:601909558604070961>', '6': '<:champ_6:601909560751423526>', '110': '<:champ_110:601909562953433098>', '67': '<:champ_67:601909566078451735>', '45': '<:champ_45:601909568452165653>', '161': '<:champ_161:601909571069411359>', '254': '<:champ_254:601909573863079936>', '112': '<:champ_112:601909575800717332>', '8': '<:champ_8:601909578438934677>', '106': '<:champ_106:601909581311901719>', '19': '<:champ_19:601909584277405709>', '498': '<:champ_498:601909586701582336>', '101': '<:champ_101:601909589369159691>', '5': '<:champ_5:601909591667769364>', '157': '<:champ_157:601909594758971468>', '83': '<:champ_83:601909596877094940>', '350': '<:champ_350:601909599469305875>', '154': '<:champ_154:601909605194268673>', '238': '<:champ_238:601909607824359462>', '115': '<:champ_115:601909610885939200>', '26': '<:champ_26:601909614031798447>', '142': '<:champ_142:601909616258973696>', '143': '<:champ_143:601909618808979478>'} rune_id_to_emoji = {'8112': '<:rune_8112:602195444940144650>', '8124': '<:rune_8124:602195452028518410>', '8128': '<:rune_8128:602195459003514920>', '9923': '<:rune_9923:602195465299165308>', '8126': '<:rune_8126:602195466981212190>', '8139': '<:rune_8139:602195469573160970>', '8143': '<:rune_8143:602195471859056641>', '8136': '<:rune_8136:602195473264017462>', '8120': '<:rune_8120:602195475013173288>', '8138': '<:rune_8138:602195477257256963>', '8135': '<:rune_8135:602195479417192449>', '8134': '<:rune_8134:602195482487554058>', '8105': '<:rune_8105:602195484748152843>', '8106': '<:rune_8106:602195487650742283>', '8351': '<:rune_8351:602195494319423529>', '8359': '<:rune_8359:602195503048032291>', '8360': '<:rune_8360:602195510388064256>', '8306': '<:rune_8306:602195512036163585>', '8304': '<:rune_8304:602195513173082113>', '8313': '<:rune_8313:602195513546244128>', '8321': '<:rune_8321:602195517103014084>', '8316': '<:rune_8316:602195519829311562>', '8345': '<:rune_8345:602195522345893911>', '8347': '<:rune_8347:602195524338319370>', '8410': '<:rune_8410:602195527479722000>', '8352': '<:rune_8352:602195529291661489>', '8005': '<:rune_8005:602195538036785152>', '8008': '<:rune_8008:602195543464345601>', '8021': '<:rune_8021:602195550271700992>', '8010': '<:rune_8010:602195555006939137>', '9101': '<:rune_9101:602195557502681088>', '9111': '<:rune_9111:602195559880851536>', '8009': '<:rune_8009:602195562481057792>', '9104': '<:rune_9104:602195563936743455>', '9105': '<:rune_9105:602195565408813056>', '9103': '<:rune_9103:602195567241854979>', '8014': '<:rune_8014:602195568759930900>', '8017': '<:rune_8017:602195571364724774>', '8299': '<:rune_8299:602195573952479242>', '8437': '<:rune_8437:602195580919349261>', '8439': '<:rune_8439:602195586468544533>', '8465': '<:rune_8465:602195592357347358>', '8446': '<:rune_8446:602195594643243018>', '8463': '<:rune_8463:602195596736200757>', '8401': '<:rune_8401:602195601475764234>', '8429': '<:rune_8429:602195603308675078>', '8444': '<:rune_8444:602195605334392832>', '8473': '<:rune_8473:602195607670620161>', '8451': '<:rune_8451:602195610233339914>', '8453': '<:rune_8453:602195612569567250>', '8242': '<:rune_8242:602195615321030840>', '8214': '<:rune_8214:602195620601528330>', '8229': '<:rune_8229:602195626293198859>', '8230': '<:rune_8230:602195631255060541>', '8224': '<:rune_8224:602195633171857418>', '8226': '<:rune_8226:602195635868925970>', '8275': '<:rune_8275:602195639140483072>', '8210': '<:rune_8210:602195640432328792>', '8234': '<:rune_8234:602195643515011092>', '8233': '<:rune_8233:602195645956096010>', '8237': '<:rune_8237:602195647268913162>', '8232': '<:rune_8232:602195649907392525>', '8236': '<:rune_8236:602195652235231235>'} masteries_to_emoji = {'1': '<:masteries_1:602201182131322886>', '2': '<:masteries_2:602201195792039967>', '3': '<:masteries_3:602201208505106453>', '4': '<:masteries_4:602201225701883924>', '5': '<:masteries_5:602201238528065557>', '6': '<:masteries_6:602201251069034496>', '7': '<:masteries_7:602201263152693325>'} champ_none_emoji = '<:champ_0:602225831095435294>' invisible_emoji = '<:__:602265603893493761>' champ_name_to_id = {'Aatrox': '266', 'Ahri': '103', 'Akali': '84', 'Alistar': '12', 'Amumu': '32', 'Anivia': '34', 'Annie': '1', 'Ashe': '22', 'Aurelion Sol': '136', 'Azir': '268', 'Bard': '432', 'Blitzcrank': '53', 'Brand': '63', 'Braum': '201', 'Caitlyn': '51', 'Camille': '164', 'Cassiopeia': '69', "Cho'Gath": '31', 'Corki': '42', 'Darius': '122', 'Diana': '131', 'Draven': '119', 'Dr. Mundo': '36', 'Ekko': '245', 'Elise': '60', 'Evelynn': '28', 'Ezreal': '81', 'Fiddlesticks': '9', 'Fiora': '114', 'Fizz': '105', 'Galio': '3', 'Gangplank': '41', 'Garen': '86', 'Gnar': '150', 'Gragas': '79', 'Graves': '104', 'Hecarim': '120', 'Heimerdinger': '74', 'Illaoi': '420', 'Irelia': '39', 'Ivern': '427', 'Janna': '40', 'Jarvan IV': '59', 'Jax': '24', 'Jayce': '126', 'Jhin': '202', 'Jinx': '222', "Kai'Sa": '145', 'Kalista': '429', 'Karma': '43', 'Karthus': '30', 'Kassadin': '38', 'Katarina': '55', 'Kayle': '10', 'Kayn': '141', 'Kennen': '85', "Kha'Zix": '121', 'Kindred': '203', 'Kled': '240', "Kog'Maw": '96', 'LeBlanc': '7', 'Lee Sin': '64', 'Leona': '89', 'Lissandra': '127', 'Lucian': '236', 'Lulu': '117', 'Lux': '99', 'Malphite': '54', 'Malzahar': '90', 'Maokai': '57', 'Master Yi': '11', 'Miss Fortune': '21', 'Wukong': '62', 'Mordekaiser': '82', 'Morgana': '25', 'Nami': '267', 'Nasus': '75', 'Nautilus': '111', 'Neeko': '518', 'Nidalee': '76', 'Nocturne': '56', 'Nunu & Willump': '20', 'Olaf': '2', 'Orianna': '61', 'Ornn': '516', 'Pantheon': '80', 'Poppy': '78', 'Pyke': '555', 'Qiyana': '246', 'Quinn': '133', 'Rakan': '497', 'Rammus': '33', "Rek'Sai": '421', 'Renekton': '58', 'Rengar': '107', 'Riven': '92', 'Rumble': '68', 'Ryze': '13', 'Sejuani': '113', 'Senna': '235', 'Shaco': '35', 'Shen': '98', 'Shyvana': '102', 'Singed': '27', 'Sion': '14', 'Sivir': '15', 'Skarner': '72', 'Sona': '37', 'Soraka': '16', 'Swain': '50', 'Sylas': '517', 'Syndra': '134', 'Tahm Kench': '223', 'Taliyah': '163', 'Talon': '91', 'Taric': '44', 'Teemo': '17', 'Thresh': '412', 'Tristana': '18', 'Trundle': '48', 'Tryndamere': '23', 'Twisted Fate': '4', 'Twitch': '29', 'Udyr': '77', 'Urgot': '6', 'Varus': '110', 'Vayne': '67', 'Veigar': '45', "Vel'Koz": '161', 'Vi': '254', 'Viktor': '112', 'Vladimir': '8', 'Volibear': '106', 'Warwick': '19', 'Xayah': '498', 'Xerath': '101', 'Xin Zhao': '5', 'Yasuo': '157', 'Yorick': '83', 'Yuumi': '350', 'Zac': '154', 'Zed': '238', 'Ziggs': '115', 'Zilean': '26', 'Zoe': '142', 'Zyra': '143'} tft_prices = [INVISIBLE_EMOJI, '<:tft_g1:652142396405972992>', '<:tft_g2:652142435606069248>', '<:tft_g3:652142468007067649>', '<:tft_g4:652142511913041960>', '<:tft_g5:652142572541575181>']
class Preciousstone: def __init__(self): self.preciousStone = [] def storePreciousStone(self,name): self.preciousStone.append(name) if( len(self.preciousStone) > 5): del(self.preciousStone[0]) def displayPreciousStone(self): if( len(self.preciousStone) > 0): print(' '.join(self.preciousStone)) preciousstone = Preciousstone() while(1): print('1.Store 2.Display 3.Exit') n = int(input('Enter your choice:')) if n == 1: stone = input("Enter the stone name:") preciousstone.storePreciousStone(stone) if n == 2: preciousstone.displayPreciousStone() if n == 3: break
class Preciousstone: def __init__(self): self.preciousStone = [] def store_precious_stone(self, name): self.preciousStone.append(name) if len(self.preciousStone) > 5: del self.preciousStone[0] def display_precious_stone(self): if len(self.preciousStone) > 0: print(' '.join(self.preciousStone)) preciousstone = preciousstone() while 1: print('1.Store 2.Display 3.Exit') n = int(input('Enter your choice:')) if n == 1: stone = input('Enter the stone name:') preciousstone.storePreciousStone(stone) if n == 2: preciousstone.displayPreciousStone() if n == 3: break
class BufferList: def __init__(self, maxlen): self.data = [] self.maxlen = maxlen def append(self, el): if len(self.data) == self.maxlen: popped = self.data.pop(0) else: popped = None self.data.append(el) return popped def peek(self, i): return self.data[-i-1] def __len__(self): return len(self.data)
class Bufferlist: def __init__(self, maxlen): self.data = [] self.maxlen = maxlen def append(self, el): if len(self.data) == self.maxlen: popped = self.data.pop(0) else: popped = None self.data.append(el) return popped def peek(self, i): return self.data[-i - 1] def __len__(self): return len(self.data)
actor_name = input("Enter the actor's name: ") initial_points = int(input("Enter the points form academy: ")) judges_count = int(input("Enter the number of jury: ")) points_needed = 1250.5 for jury in range(judges_count): judges_name = input("Enter the name of jury: ") points_from_judge = float(input("Enter the points from the jury: ")) initial_points += ((len(judges_name) * points_from_judge) / 2) if initial_points > points_needed: print(f"Congratulations, {actor_name} got a nominee for leading role with {initial_points:.1f}!") break if initial_points <= points_needed: print(f"Sorry, {actor_name} you need {points_needed - initial_points:.1f} more!")
actor_name = input("Enter the actor's name: ") initial_points = int(input('Enter the points form academy: ')) judges_count = int(input('Enter the number of jury: ')) points_needed = 1250.5 for jury in range(judges_count): judges_name = input('Enter the name of jury: ') points_from_judge = float(input('Enter the points from the jury: ')) initial_points += len(judges_name) * points_from_judge / 2 if initial_points > points_needed: print(f'Congratulations, {actor_name} got a nominee for leading role with {initial_points:.1f}!') break if initial_points <= points_needed: print(f'Sorry, {actor_name} you need {points_needed - initial_points:.1f} more!')
print("hello world") a = 3 b = 4 c = a * b print(c)
print('hello world') a = 3 b = 4 c = a * b print(c)
################################################# ### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ### ################################################# def get_resize_target(img_sz, crop_target, do_crop=False): if crop_target is None: return None ch,r,c = img_sz target_r,target_c = crop_target ratio = (min if do_crop else max)(r/target_r, c/target_c) return ch,round(r/ratio),round(c/ratio)
def get_resize_target(img_sz, crop_target, do_crop=False): if crop_target is None: return None (ch, r, c) = img_sz (target_r, target_c) = crop_target ratio = (min if do_crop else max)(r / target_r, c / target_c) return (ch, round(r / ratio), round(c / ratio))
def func3(a): a/0; def func2(a, b): func3(a); def func1(a, b, c): func2(a, b); if __name__ == "__main__": func1(12, 0, 89)
def func3(a): a / 0 def func2(a, b): func3(a) def func1(a, b, c): func2(a, b) if __name__ == '__main__': func1(12, 0, 89)
def setup(): global pg pg = createGraphics(1000, 1000) noLoop() def draw(): pg.beginDraw() pg.colorMode(HSB, 360, 100, 100, 100) pg.background(0, 0, 25) pg.stroke(60, 7, 86, 100) pg.noFill() for i in range(100): pg.ellipse(random(pg.width), random(pg.height), 100, 100) pg.endDraw() pg.save('image.png') exit()
def setup(): global pg pg = create_graphics(1000, 1000) no_loop() def draw(): pg.beginDraw() pg.colorMode(HSB, 360, 100, 100, 100) pg.background(0, 0, 25) pg.stroke(60, 7, 86, 100) pg.noFill() for i in range(100): pg.ellipse(random(pg.width), random(pg.height), 100, 100) pg.endDraw() pg.save('image.png') exit()
n=list(map(int,input("Enter the list").split(","))) le=max(n) while max(n)==le: n.remove(max(n)) print(max(n))
n = list(map(int, input('Enter the list').split(','))) le = max(n) while max(n) == le: n.remove(max(n)) print(max(n))
for i in range(int(input())): text = input().replace('.', '') countOpen = 0 countDiamonds = 0 for char in text: if char == '<': countOpen += 1 elif char == '>' and countOpen > 0: countDiamonds += 1 countOpen -= 1 print(countDiamonds)
for i in range(int(input())): text = input().replace('.', '') count_open = 0 count_diamonds = 0 for char in text: if char == '<': count_open += 1 elif char == '>' and countOpen > 0: count_diamonds += 1 count_open -= 1 print(countDiamonds)
def read_n_values(n): print("Please enter", n, "values.") values = [] for i in range(n): values.append(input("Value {}: ".format(i + 1))) return values def compute_average(values): # set sum to first value of list total_sum = values[0] # iterate over remaining values and add them up for value in values[1:]: total_sum += value return float(total_sum) / len(values) values = read_n_values(3) print("Average:", compute_average(values))
def read_n_values(n): print('Please enter', n, 'values.') values = [] for i in range(n): values.append(input('Value {}: '.format(i + 1))) return values def compute_average(values): total_sum = values[0] for value in values[1:]: total_sum += value return float(total_sum) / len(values) values = read_n_values(3) print('Average:', compute_average(values))
load("@rules_python//python:python.bzl", "py_binary", "py_library", "py_test") def py3_library(*args, **kwargs): py_library( srcs_version = "PY3", *args, **kwargs ) def py3_binary(name, main = None, *args, **kwargs): if main == None: main = "%s.py" % (name) py_binary( name = name, main = main, legacy_create_init = False, python_version = "PY3", *args, **kwargs ) def py3_test(*args, **kwargs): py_test( legacy_create_init = False, python_version = "PY3", srcs_version = "PY3", *args, **kwargs )
load('@rules_python//python:python.bzl', 'py_binary', 'py_library', 'py_test') def py3_library(*args, **kwargs): py_library(*args, srcs_version='PY3', **kwargs) def py3_binary(name, main=None, *args, **kwargs): if main == None: main = '%s.py' % name py_binary(*args, name=name, main=main, legacy_create_init=False, python_version='PY3', **kwargs) def py3_test(*args, **kwargs): py_test(*args, legacy_create_init=False, python_version='PY3', srcs_version='PY3', **kwargs)
try: test = int(input().strip()) while test!=0: k,d0,d1 = map(int,input().strip().split()) d2 = (d1+d0)%10 if k == 2: if (d1+d0)%3 == 0: print("YES") continue else: print("NO") continue elif k == 3: if (d1+d2+d0)%3 == 0: print("YES") continue else: print("NO") continue else: a = (2*(d1+d0))%10 b = (4*(d1+d0))%10 c = (8*(d1+d0))%10 d = (6*(d1+d0))%10 su = d1+d2+d0+((a+b+c+d)*((k-3)//4)) if (k-3)%4 == 1: su += a elif (k-3)%4 == 2: su += a+b elif (k-3)%4 == 3: su += a+b+c if su%3 == 0: print("YES") continue else: print("NO") continue test -=1 except: pass
try: test = int(input().strip()) while test != 0: (k, d0, d1) = map(int, input().strip().split()) d2 = (d1 + d0) % 10 if k == 2: if (d1 + d0) % 3 == 0: print('YES') continue else: print('NO') continue elif k == 3: if (d1 + d2 + d0) % 3 == 0: print('YES') continue else: print('NO') continue else: a = 2 * (d1 + d0) % 10 b = 4 * (d1 + d0) % 10 c = 8 * (d1 + d0) % 10 d = 6 * (d1 + d0) % 10 su = d1 + d2 + d0 + (a + b + c + d) * ((k - 3) // 4) if (k - 3) % 4 == 1: su += a elif (k - 3) % 4 == 2: su += a + b elif (k - 3) % 4 == 3: su += a + b + c if su % 3 == 0: print('YES') continue else: print('NO') continue test -= 1 except: pass
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # # Python wrapper for PointDataView # # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # 07/20/09 njensen Initial Creation. # # # ## # This is a base file that is not intended to be overridden. ## class PointDataView: def __init__(self, javaPointDataView): self.__javaPdv = javaPointDataView self.__keys = [] keyset = self.__javaPdv.getContainer().getParameters() itr = keyset.iterator() while itr.hasNext(): self.__keys.append(str(itr.next())) def __getitem__(self, key): result = None strValType = self.getType(key) if strValType == 'FLOAT': result = self.__javaPdv.getFloat(key) elif strValType == 'STRING': result = self.__javaPdv.getString(key) elif strValType == 'INT': result = self.__javaPdv.getInt(key) elif strValType == 'LONG': result = self.__javaPdv.getLong(key) return result def getType(self, key): val = self.__javaPdv.getType(key) if val: val = str(val) return val def has_key(self, key): return self.__keys.__contains__(key) def keys(self): return self.__keys def __contains__(self, key): return self.has_key(key) def getFillValue(self, key): # TODO if we get fill value support in pointdata, hook that up return -9999.0 def getNumberAllLevels(self, key): strValType = self.getType(key) jlevels = self.__javaPdv.getNumberAllLevels(key) levels = [] for level in jlevels: level = str(level) if strValType == 'FLOAT': levels.append(float(level)) elif strValType == 'STRING': levels.append(str(level)) elif strValType == 'INT': levels.append(int(level)) elif strValType == 'LONG': levels.append(long(level)) return levels
class Pointdataview: def __init__(self, javaPointDataView): self.__javaPdv = javaPointDataView self.__keys = [] keyset = self.__javaPdv.getContainer().getParameters() itr = keyset.iterator() while itr.hasNext(): self.__keys.append(str(itr.next())) def __getitem__(self, key): result = None str_val_type = self.getType(key) if strValType == 'FLOAT': result = self.__javaPdv.getFloat(key) elif strValType == 'STRING': result = self.__javaPdv.getString(key) elif strValType == 'INT': result = self.__javaPdv.getInt(key) elif strValType == 'LONG': result = self.__javaPdv.getLong(key) return result def get_type(self, key): val = self.__javaPdv.getType(key) if val: val = str(val) return val def has_key(self, key): return self.__keys.__contains__(key) def keys(self): return self.__keys def __contains__(self, key): return self.has_key(key) def get_fill_value(self, key): return -9999.0 def get_number_all_levels(self, key): str_val_type = self.getType(key) jlevels = self.__javaPdv.getNumberAllLevels(key) levels = [] for level in jlevels: level = str(level) if strValType == 'FLOAT': levels.append(float(level)) elif strValType == 'STRING': levels.append(str(level)) elif strValType == 'INT': levels.append(int(level)) elif strValType == 'LONG': levels.append(long(level)) return levels