text
stringlengths 0
15.3k
|
---|
import re |
import sys |
import unicodedata |
from lm_eval.filters.extraction import RegexFilter |
class MultiChoiceRegexFilter(RegexFilter): |
"""""" |
def __init__(self, regex_pattern: str='#### (\\-?[0-9\\.\\,]+)', group_select=0, fallback: str='[invalid]', ignore_case=False, ignore_punctuation=False, regexes_to_ignore=None) -> None: |
super().__init__(regex_pattern, group_select, fallback) |
self.ignore_case = ignore_case |
self.ignore_punctuation = ignore_punctuation |
self.regexes_to_ignore = regexes_to_ignore |
def apply(self, resps, docs): |
def find_match(regex, resp, convert_dict={}): |
match = regex.findall(resp) |
if match: |
match = match[self.group_select] |
if isinstance(match, tuple): |
match = [m for m in match if m][0] |
match = match.strip() |
if match and match in convert_dict: |
match = convert_dict[match] |
return match |
punct_tbl = dict.fromkeys((i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P'))) |
def filter_ignores(st): |
if self.regexes_to_ignore is not None: |
for s in self.regexes_to_ignore: |
st = re.sub(s, '', st) |
if self.ignore_case: |
st = st.lower() |
if self.ignore_punctuation: |
st = st.translate(punct_tbl) |
return st |
filtered_resps = [] |
for (r, doc) in zip(resps, docs): |
fallback_regexes = [] |
choice_to_alpha = {} |
next_alpha = 'A' |
without_paren_fallback_regexes = [] |
without_paren_to_target = {} |
choices = doc['choices'] |
for c in choices: |
m = filter_ignores(c.strip()) |
fallback_regexes.append(f'{re.escape(m)}') |
choice_to_alpha[m] = f'({next_alpha})' |
without_paren_fallback_regexes.append(next_alpha) |
without_paren_to_target[next_alpha] = f'({next_alpha})' |
next_alpha = chr(ord(next_alpha) + 1) |
fallback_regex = re.compile('|'.join(fallback_regexes)) |
without_paren_fallback_regex = '|'.join(without_paren_fallback_regexes) |
without_paren_fallback_regex = re.compile(f':[\\s]*({without_paren_fallback_regex})') |
filtered = [] |
for resp in r: |
match = find_match(self.regex, resp) |
if not match: |
match = find_match(fallback_regex, filter_ignores(resp), choice_to_alpha) |
if not match: |
match = find_match(without_paren_fallback_regex, resp, without_paren_to_target) |
if not match: |
match = self.fallback |
filtered.append(match) |
filtered_resps.append(filtered) |
return filtered_resps |
# File: lm-evaluation-harness-main/lm_eval/tasks/mmlusr/answer_only/utils.py |
import datasets |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _helper(doc): |
answer_list = ['A', 'B', 'C', 'D'] |
answer_index = int(doc['answer']) |
answer_letter = answer_list[answer_index] |
out_doc = {'questions': doc['question'], 'choices': [doc['choice1'], doc['choice2'], doc['choice3'], doc['choice4']], 'answer': answer_letter} |
return out_doc |
return dataset.map(_helper) |
# File: lm-evaluation-harness-main/lm_eval/tasks/mmlusr/config.py |
"""""" |
import argparse |
import logging |
import os |
import yaml |
from tqdm import tqdm |
eval_logger = logging.getLogger('lm-eval') |
SUBJECTS = {'abstract_algebra': 'stem', 'anatomy': 'stem', 'astronomy': 'stem', 'business_ethics': 'other', 'clinical_knowledge': 'other', 'college_biology': 'stem', 'college_chemistry': 'stem', 'college_computer_science': 'stem', 'college_mathematics': 'stem', 'college_medicine': 'other', 'college_physics': 'stem', 'computer_security': 'stem', 'conceptual_physics': 'stem', 'econometrics': 'social_sciences', 'electrical_engineering': 'stem', 'elementary_mathematics': 'stem', 'formal_logic': 'humanities', 'global_facts': 'other', 'high_school_biology': 'stem', 'high_school_chemistry': 'stem', 'high_school_computer_science': 'stem', 'high_school_european_history': 'humanities', 'high_school_geography': 'social_sciences', 'high_school_government_and_politics': 'social_sciences', 'high_school_macroeconomics': 'social_sciences', 'high_school_mathematics': 'stem', 'high_school_microeconomics': 'social_sciences', 'high_school_physics': 'stem', 'high_school_psychology': 'social_sciences', 'high_school_statistics': 'stem', 'high_school_us_history': 'humanities', 'high_school_world_history': 'humanities', 'human_aging': 'other', 'human_sexuality': 'social_sciences', 'international_law': 'humanities', 'jurisprudence': 'humanities', 'logical_fallacies': 'humanities', 'machine_learning': 'stem', 'management': 'other', 'marketing': 'other', 'medical_genetics': 'other', 'miscellaneous': 'other', 'moral_disputes': 'humanities', 'moral_scenarios': 'humanities', 'nutrition': 'other', 'philosophy': 'humanities', 'prehistory': 'humanities', 'professional_accounting': 'other', 'professional_law': 'humanities', 'professional_medicine': 'other', 'professional_psychology': 'social_sciences', 'public_relations': 'social_sciences', 'security_studies': 'social_sciences', 'sociology': 'social_sciences', 'us_foreign_policy': 'social_sciences', 'virology': 'other', 'world_religions': 'humanities'} |
GROUPS = ['question_and_answer'] |
def parse_args(): |
parser = argparse.ArgumentParser(description='Generate configuration YAML files for LM Evaluation Harness.') |
parser.add_argument('--base_yaml_path', required=True, help='Path to the base YAML configuration file.') |
parser.add_argument('--save_dir', default='/data/local/cat/lm-evaluation-harness/lm_eval/tasks/mmlusr/question_and_answer') |
parser.add_argument('--task_prefix', default='') |
parser.add_argument('--cot_prompt_path', default=None) |
parser.add_argument('--group_prefix', default='') |
return parser.parse_args() |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.