text
stringlengths 0
15.3k
|
---|
text = text.replace(' :', ':') |
text = text.replace(' ;', ';') |
text = text.replace(' !', '!') |
text = text.replace(' ?', '?') |
text = text.replace(' ,', ',') |
text = text.replace(' .', '.') |
return text |
def _process(doc): |
return {'article': _detokenize(doc['article']), 'options': [_detokenize(option) for option in doc['options']]} |
return dataset.map(_process) |
def process_results(doc, results): |
gold = ['A', 'B', 'C', 'D'].index(doc['answers']) |
r4_1 = np.argmax(results) == gold |
ranks = sorted(results, reverse=True) |
r4_2 = (ranks.index(results[gold]) == 1) + r4_1 |
mrr = 1.0 / (ranks.index(results[gold]) + 1) |
return {'r@1': r4_1, 'r@2': r4_2, 'mrr': mrr} |
# File: lm-evaluation-harness-main/lm_eval/tasks/noticia/utils.py |
import string |
import evaluate |
def clean_text(text: str) -> str: |
text = text.translate(str.maketrans('', '', string.punctuation)) |
text = text.replace('\n', ' ').strip() |
text = ' '.join(text.split()).strip() |
text = text.lower() |
return text |
def rouge1(items): |
return items |
def average_len(items): |
return items |
def rouge1_agg(items): |
refs = list(zip(*items))[0] |
refs = [[clean_text(ref)] for ref in refs] |
preds = [clean_text(x) for x in list(zip(*items))[1]] |
rouge_scorer = evaluate.load('rouge') |
return rouge_scorer.compute(predictions=preds, references=refs)['rouge1'] |
def average_len_agg(items): |
preds = [clean_text(x) for x in list(zip(*items))[1]] |
return sum((len(x.split()) for x in preds)) / len(preds) |
# File: lm-evaluation-harness-main/lm_eval/tasks/okapi/arc_multilingual/utils.py |
import re |
import datasets |
def preprocess(text): |
text = text.strip() |
text = text.replace(' [title]', '. ') |
text = re.sub('\\[.*?\\]', '', text) |
text = text.replace(' ', ' ') |
return text |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
out_doc = {'id': doc['id'], 'query': 'Question: ' + preprocess(doc['instruction']) + '\nAnswer:', 'choices': [preprocess(option) for option in [doc['option_a'], doc['option_b'], doc['option_c'], doc['option_d'], doc['option_e']] if option], 'gold': ['A', 'B', 'C', 'D', 'E'].index(doc['answer'])} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/okapi/hellaswag_multilingual/utils.py |
import re |
import datasets |
def preprocess(text): |
text = text.strip() |
text = text.replace(' [title]', '. ') |
text = re.sub('\\[.*?\\]', '', text) |
text = text.replace(' ', ' ') |
return text |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
ctx = doc['ctx_a'] + ' ' + doc['ctx_b'].capitalize() |
out_doc = {'query': preprocess(doc['activity_label'] + ': ' + ctx), 'choices': [preprocess(ending) for ending in doc['endings']], 'gold': int(doc['label'])} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/okapi/mmlu_multilingual/_generate_configs.py |
import datasets |
import yaml |
from tqdm import tqdm |
def main() -> None: |
dataset_path = 'alexandrainst/m_mmlu' |
for task in tqdm(datasets.get_dataset_infos(dataset_path).keys()): |
file_name = f'm_mmlu_{task}.yaml' |
try: |
with open(f'{file_name}', 'w') as f: |
f.write('# Generated by _generate_configs.py\n') |
yaml.dump({'include': '_default_yaml', 'task': f"{dataset_path.split('/')[-1]}_{task}", 'dataset_name': task}, f) |
except FileExistsError: |
pass |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.