text
stringlengths 0
15.3k
|
---|
class SummScreenFD(_SCROLLSSummaryTask): |
DATASET_NAME = 'summ_screen_fd' |
class QMSum(_SCROLLSSummaryTask): |
DATASET_NAME = 'qmsum' |
def _process_doc(self, doc): |
return [_process_doc_prepended_question(doc)] |
def doc_to_text(self, doc): |
return f"{doc['text']}\n\nQuestion: {doc['question']}\nAnswer:" |
# File: lm-evaluation-harness-main/lm_eval/tasks/squad_completion/task.py |
import re |
from typing import List |
import numpy as np |
from lm_eval.api.instance import Instance |
from lm_eval.api.task import ConfigurableTask |
class SQUADCompletion(ConfigurableTask): |
VERSION = 0 |
DATASET_PATH = 'hazyresearch/based-squad' |
DATASET_NAME = 'default' |
def __init__(self, **kwargs): |
super().__init__(config={'metadata': {'version': self.VERSION}}) |
def has_training_docs(self): |
return False |
def has_validation_docs(self): |
return True |
def has_test_docs(self): |
return False |
def validation_docs(self): |
return self.dataset['validation'] |
def doc_to_text(self, doc): |
return doc['text'] |
def doc_to_target(self, doc): |
return doc['value'] |
def construct_requests(self, doc, ctx, **kwargs): |
return [Instance(request_type='generate_until', doc=doc, arguments=(ctx, {'until': ['\n'], 'max_gen_toks': 48}), idx=0, **kwargs)] |
def process_results(self, doc, results): |
continuation = results |
return {'contains': contains_score(continuation[0], [doc['value']])} |
def aggregation(self): |
return {'contains': np.mean} |
def higher_is_better(self): |
return {'contains': True} |
def contains_score(prediction: str, labels: List[str]): |
return max((int(bool(re.search(re.compile(re.escape(label), re.IGNORECASE), prediction))) for label in labels)) |
# File: lm-evaluation-harness-main/lm_eval/tasks/squadv2/task.py |
"""""" |
from functools import partial |
from math import exp |
import datasets |
from packaging import version |
from lm_eval.api.instance import Instance |
from lm_eval.api.task import ConfigurableTask |
_CITATION = "\n@misc{rajpurkar2018know,\n title={Know What You Don't Know: Unanswerable Questions for SQuAD},\n author={Pranav Rajpurkar and Robin Jia and Percy Liang},\n year={2018},\n eprint={1806.03822},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" |
def _squad_metric(predictions, references): |
squad_metric = datasets.load_metric('squad_v2') |
return squad_metric.compute(predictions=predictions, references=references) |
def _squad_agg(key, items): |
(predictions, references) = zip(*items) |
return _squad_metric(predictions=predictions, references=references).get(key, 0) |
class SQuAD2(ConfigurableTask): |
VERSION = 3 |
DATASET_PATH = 'squad_v2' |
DATASET_NAME = None |
def __init__(self, config=None): |
super().__init__(config={'metadata': {'version': self.VERSION}}) |
assert version.parse(datasets.__version__) >= version.parse('1.11.0'), 'datasets v1.11.0 or later required for SQuAD' |
def has_training_docs(self): |
return True |
def has_validation_docs(self): |
return True |
def has_test_docs(self): |
return False |
def training_docs(self): |
return self.dataset['train'] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.