text
stringlengths 0
15.3k
|
---|
(predictions, references) = zip(*items) |
(references, predictions) = (np.asarray(references), np.asarray(predictions)) |
return sklearn.metrics.f1_score(references, predictions) |
def em(predictions, references): |
_prediction = predictions[0] |
(_group, _reference) = references[0].split('_') |
string_label = ['False', 'True'] |
reference = string_label.index(_reference) |
prediction = string_label.index(_prediction) if _prediction in string_label else not bool(reference) |
return (_group, prediction, reference) |
def agg_em(items): |
grouped_values = collections.defaultdict(lambda : ([], [])) |
for (group, prediction, reference) in items: |
grouped_values[group][0].append(reference) |
grouped_values[group][1].append(prediction) |
group_scores = [] |
for (group, (targets, predictions)) in grouped_values.items(): |
score = float(np.array_equal(targets, predictions)) |
group_scores.append(score) |
return np.mean(group_scores) |
# File: lm-evaluation-harness-main/lm_eval/tasks/super_glue/record/t5_utils.py |
import collections |
import re |
import string |
import numpy as np |
from datasets import Dataset |
from lm_eval.api.metrics import metric_max_over_ground_truths |
def doc_to_text(doc): |
passage = doc['passage'] |
passage = re.sub('(\\.|\\?|\\!|\\"|\\\')\\n@highlight\\n', '\\1 ', passage) |
passage = re.sub('\\n@highlight\\n', '. ', passage) |
return ' '.join(['record query:', doc['query'], 'entities:', ', '.join(doc['entities']), 'passage:', passage]) |
def process_docs(dataset): |
def split_answers(doc): |
split_doc = {**{k: [] for k in doc.keys()}} |
answers = doc.pop('answers') |
for (idx, answer) in enumerate(answers): |
for key in split_doc.keys(): |
if key in doc: |
split_doc[key].append(doc[key]) |
split_doc['answers'].append(answer) |
return split_doc |
dataset = dataset.map(split_answers) |
new_dataset = {} |
for key in dataset.features.keys(): |
new_dataset[key] = [x for row in dataset[key] for x in row] |
return Dataset.from_dict(new_dataset) |
def normalize_squad(answer): |
def _normalize_answer(text, punc_chars, punc_repl): |
def remove_articles(s): |
return re.sub('\\b(a|an|the)\\b', ' ', s) |
def replace_punctuation(s): |
to_replace = set(punc_chars) |
return ''.join((punc_repl if ch in to_replace else ch for ch in s)) |
def white_space_fix(s): |
return ' '.join(s.split()) |
text = text.lower() |
text = replace_punctuation(text) |
text = remove_articles(text) |
text = white_space_fix(text) |
return text |
return _normalize_answer(answer, punc_chars=string.punctuation, punc_repl='') |
def em(predictions, references): |
return (predictions[0], references[0]) |
def f1(predictions, references): |
return (predictions[0], references[0]) |
def squad_em_agg(items): |
def _exact_match_score(prediction, target): |
return target == prediction |
grouped_values = collections.defaultdict(lambda : ([], [])) |
for (prediction, reference) in items: |
(group, reference) = reference.split('_') |
grouped_values[group][0].append(normalize_squad(prediction)) |
grouped_values[group][1].append(normalize_squad(reference)) |
em = [] |
for group in grouped_values.keys(): |
(predictions, targets) = grouped_values[group] |
for p in predictions: |
em.append(metric_max_over_ground_truths(_exact_match_score, p, targets)) |
return np.mean(em) |
def squad_f1_agg(items): |
def _f1_score(prediction, target): |
prediction_tokens = prediction.split() |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.