text
stringlengths 0
15.3k
|
---|
target_tokens = target.split() |
common = collections.Counter(prediction_tokens) & collections.Counter(target_tokens) |
num_same = sum(common.values()) |
if num_same == 0: |
return 0 |
precision = 1.0 * num_same / len(prediction_tokens) |
recall = 1.0 * num_same / len(target_tokens) |
f1 = 2 * precision * recall / (precision + recall) |
return f1 |
grouped_values = collections.defaultdict(lambda : ([], [])) |
for (prediction, reference) in items: |
(group, reference) = reference.split('_') |
if group not in grouped_values: |
grouped_values[group][0].append(normalize_squad(prediction)) |
grouped_values[group][1].append(normalize_squad(reference)) |
f1 = [] |
for group in grouped_values.keys(): |
(p, t) = grouped_values[group] |
f1.append(metric_max_over_ground_truths(_f1_score, p[0], t)) |
return np.mean(f1) |
# File: lm-evaluation-harness-main/lm_eval/tasks/super_glue/record/util.py |
import datasets |
import numpy as np |
import transformers.data.metrics.squad_metrics as squad_metrics |
from lm_eval.api.metrics import metric_max_over_ground_truths |
def doc_to_text(doc): |
(initial_text, *highlights) = doc['passage'].strip().split('\n@highlight\n') |
text = initial_text + '\n\n' |
for highlight in highlights: |
text += f' - {highlight}.\n' |
return text |
def format_answer(query, entity): |
return f' - {query}'.replace('@placeholder', entity) |
def doc_to_target(doc): |
return format_answer(query=doc['query'], entity=doc['answers'][0]) |
def doc_to_choice(doc): |
return [format_answer(query=doc['query'], entity=ans) for ans in doc['entities']] |
def process_docs(dataset: datasets.Dataset): |
def _process_doc(doc): |
return {'passage': doc['passage'], 'query': doc['query'], 'entities': sorted(list(set(doc['entities']))), 'answers': sorted(list(set(doc['answers'])))} |
return dataset.map(_process_doc) |
def process_results(doc, results): |
max_idx = np.argmax(np.array([result[0] for result in results])) |
prediction = doc['entities'][max_idx] |
gold_label_set = doc['answers'] |
f1 = metric_max_over_ground_truths(squad_metrics.compute_f1, prediction, gold_label_set) |
em = metric_max_over_ground_truths(squad_metrics.compute_exact, prediction, gold_label_set) |
return {'f1': f1, 'em': em} |
# File: lm-evaluation-harness-main/lm_eval/tasks/super_glue/wsc/preprocess_wsc.py |
from lm_eval.utils import general_detokenize |
def default_doc_to_text(x): |
raw_passage = x['text'] |
pre = ' '.join(raw_passage.split()[:x['span2_index']]) |
post = raw_passage[len(pre) + len(x['span2_text']) + 1:] |
passage = general_detokenize(pre + ' *{}*'.format(x['span2_text']) + post) |
noun = x['span1_text'] |
pronoun = x['span2_text'] |
text = f'Passage: {passage}\n' + f'Question: In the passage above, does the pronoun "*{pronoun}*" refer to "*{noun}*"?\n' + 'Answer:' |
return text |
# File: lm-evaluation-harness-main/lm_eval/tasks/super_glue/wsc/t5_utils.py |
import re |
from typing import List |
def doc_to_text(x): |
text = re.sub(' X ', ' *' + x['span2_text'] + '* ', _wsc_inputs(x)) |
return 'wsc: ' + text |
def _wsc_inputs(x): |
words = x['text'].split(' ') |
assert x['span2_index'] > 0 |
assert x['span2_index'] < len(words) |
pronoun_index = x['span2_index'] |
def create_input(): |
assert words[pronoun_index] == x['span2_text'] |
return ' '.join([' '.join(words[:pronoun_index]), 'X', ' '.join(words[pronoun_index + 1:])]) |
if x['text'] == 'The boy continued to whip the pony , and eventually the pony threw him over. John laughed out quite loud. "Good for him," he said. ': |
return 'The boy continued to whip the pony , and eventually the pony threw him over. John laughed out quite loud. "Good for X ," he said.' |
if x['text'] == 'When they had eventually calmed down a bit , and had gotten home, Mr. Farley put the magic pebble in an iron safe . Some day they might want to use it , but really for now, what more could they wish for?': |
return 'When they had eventually calmed down a bit , and had gotten home, Mr. Farley put the magic pebble in an iron safe . Some day they might want to use X , but really for now, what more could they wish for?' |
return create_input() |
DETERMINERS = {'a', 'an', 'few', 'her', 'his', 'each', 'every', 'many', 'much', 'my', 'our', 'some', 'that', 'the', 'their', 'these', 'this', 'those', 'which', 'whose', 'your'} |
def clean(s: str) -> str: |
s = s.strip().lower() |
return ' '.join([w for w in s.split(' ') if w not in DETERMINERS]) |
def process_results(docs: dict, resps: List): |
prediction = clean(resps[0]) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.