text
stringlengths 0
15.3k
|
---|
def apply(self, instances: List[Instance]) -> None:
|
(resps, docs) = zip(*((inst.resps, inst.doc) for inst in instances))
|
(resps, docs) = (list(resps), list(docs))
|
for f in self.filters:
|
resps = f().apply(resps, docs)
|
for (inst, resp) in zip(instances, resps):
|
inst.filtered_resps[self.name] = resp
|
# File: lm-evaluation-harness-main/lm_eval/api/group.py
|
import abc
|
from dataclasses import asdict, dataclass
|
from inspect import getsource
|
from typing import Any, Callable, List, Optional, Union
|
@dataclass
|
class AggMetricConfig(dict):
|
metric: Optional[str] = None
|
aggregation: Optional[str] = 'mean'
|
weight_by_size: Optional[str] = False
|
filter_list: Optional[Union[str, list]] = 'none'
|
def __post_init__(self):
|
if self.aggregation != 'mean':
|
raise ValueError(f"Currently, only 'mean' is supported for automatically aggregating scores across groups' subtasks. Got '{self.aggregation}'.")
|
if isinstance(self.filter_list, str):
|
self.filter_list = [self.filter_list]
|
@dataclass
|
class GroupConfig(dict):
|
group: Optional[str] = None
|
group_alias: Optional[str] = None
|
task: Optional[Union[str, list]] = None
|
aggregate_metric_list: Optional[Union[List[AggMetricConfig], AggMetricConfig, dict]] = None
|
metadata: Optional[dict] = None
|
def __getitem__(self, item):
|
return getattr(self, item)
|
def __setitem__(self, item, value):
|
return setattr(self, item, value)
|
def __post_init__(self):
|
if self.aggregate_metric_list is not None:
|
if isinstance(self.aggregate_metric_list, dict):
|
self.aggregate_metric_list = [self.aggregate_metric_list]
|
self.aggregate_metric_list = [AggMetricConfig(**item) if isinstance(item, dict) else item for item in self.aggregate_metric_list]
|
def to_dict(self, keep_callable: bool=False) -> dict:
|
cfg_dict = asdict(self)
|
for (k, v) in list(cfg_dict.items()):
|
if callable(v):
|
cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
|
return cfg_dict
|
def serialize_function(self, value: Union[Callable, str], keep_callable=False) -> Union[Callable, str]:
|
if keep_callable:
|
return value
|
else:
|
try:
|
return getsource(value)
|
except (TypeError, OSError):
|
return str(value)
|
class ConfigurableGroup(abc.ABC):
|
def __init__(self, config: Optional[dict]=None) -> None:
|
self._config = GroupConfig(**config)
|
@property
|
def group(self):
|
return self._config.group
|
@property
|
def group_alias(self):
|
return self._config.group_alias
|
@property
|
def version(self):
|
return self._config.version
|
@property
|
def config(self):
|
return self._config.to_dict()
|
@property
|
def group_name(self) -> Any:
|
return self._config.group
|
def __repr__(self):
|
return f'ConfigurableGroup(group={self.group},group_alias={self.group_alias})'
|
# File: lm-evaluation-harness-main/lm_eval/api/instance.py
|
from dataclasses import dataclass, field
|
from typing import Literal, Optional, Tuple
|
OutputType = Literal['loglikelihood', 'loglikelihood_rolling', 'generate_until', 'multiple_choice']
|
@dataclass
|
class Instance:
|
request_type: OutputType
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.