text
stringlengths
0
15.3k
doc: dict
arguments: tuple
idx: int
metadata: Tuple[Optional[str], Optional[int], Optional[int]] = field(default_factory=lambda : (None, None, None))
resps: list = field(default_factory=list)
filtered_resps: dict = field(default_factory=dict)
task_name: Optional[str] = None
doc_id: Optional[int] = None
repeats: Optional[int] = None
def __post_init__(self) -> None:
(self.task_name, self.doc_id, self.repeats) = self.metadata
@property
def args(self):
return self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
# File: lm-evaluation-harness-main/lm_eval/api/metrics.py
import logging
import math
import random
import re
import string
from collections.abc import Iterable
from typing import List
import numpy as np
import sacrebleu
import sklearn.metrics
from lm_eval.api.registry import register_aggregation, register_metric
eval_logger = logging.getLogger('lm-eval')
@register_aggregation('bypass')
def bypass_agg(arr):
return 999
@register_aggregation('mean')
def mean(arr):
return sum(arr) / len(arr)
@register_aggregation('median')
def median(arr):
return arr[len(arr) // 2]
@register_aggregation('perplexity')
def perplexity(items):
return math.exp(-mean(items))
@register_aggregation('weighted_perplexity')
def weighted_perplexity(items):
return math.exp(-weighted_mean(items))
@register_aggregation('bits_per_byte')
def bits_per_byte(items):
return -weighted_mean(items) / math.log(2)
@register_aggregation('f1')
def f1_score(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
fscore = sklearn.metrics.f1_score(golds, preds)
return np.max(fscore)
@register_aggregation('matthews_corrcoef')
def matthews_corrcoef(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
return sklearn.metrics.matthews_corrcoef(golds, preds)
@register_aggregation('bleu')
def bleu(items):
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
(refs, preds) = _sacreformat(refs, preds)
return sacrebleu.corpus_bleu(preds, refs).score
@register_aggregation('chrf')
def chrf(items):
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
(refs, preds) = _sacreformat(refs, preds)
return sacrebleu.corpus_chrf(preds, refs).score
@register_aggregation('ter')
def ter(items):
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
(refs, preds) = _sacreformat(refs, preds)
return sacrebleu.corpus_ter(preds, refs).score
@register_aggregation('brier_score')
def brier_score(items):
(gold, predictions) = list(zip(*items))
(bs, num_class) = np.array(predictions).shape
gold = list(gold)
gold_one_hot = np.eye(num_class)[gold]
return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))
@register_metric(metric='brier_score', higher_is_better=False, output_type=['multiple_choice'], aggregation='brier_score')