text
stringlengths 0
15.3k
|
---|
try: |
import anthropic |
except ModuleNotFoundError: |
raise Exception("attempted to use 'anthropic' LM type, but package `anthropic` is not installed. please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`") |
def _exception_callback(e: Exception, sleep_time: float) -> None: |
eval_logger.warning(f'RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds') |
@retry_on_specific_exceptions(on_exceptions=[anthropic.RateLimitError, anthropic.APIConnectionError, anthropic.APIStatusError], max_retries=None, on_exception_callback=_exception_callback) |
def messages(): |
response = client.messages.create(model=model, max_tokens=max_tokens, temperature=temperature, messages=[{'role': 'user', 'content': f'{prompt}'}], **kwargs) |
return response.content[0].text |
return messages() |
@register_model('anthropic') |
class AnthropicLM(LM): |
REQ_CHUNK_SIZE = 20 |
def __init__(self, batch_size: int=1, model: str='claude-2.0', max_tokens_to_sample: int=256, temperature: float=0, **kwargs) -> None: |
super().__init__() |
try: |
import anthropic |
except ModuleNotFoundError: |
raise Exception("attempted to use 'anthropic' LM type, but package `anthropic` is not installed. please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`") |
self.model = model |
self.client = anthropic.Anthropic() |
self.temperature = temperature |
self.max_tokens_to_sample = max_tokens_to_sample |
self.tokenizer = self.client.get_tokenizer() |
self.kwargs = kwargs |
@property |
def eot_token_id(self): |
raise NotImplementedError('No idea about anthropic tokenization.') |
@property |
def max_length(self) -> int: |
return 2048 |
@property |
def max_gen_toks(self) -> int: |
return self.max_tokens_to_sample |
@property |
def batch_size(self): |
raise NotImplementedError('No support for logits.') |
@property |
def device(self): |
raise NotImplementedError('No support for logits.') |
def tok_encode(self, string: str) -> List[int]: |
return self.tokenizer.encode(string).ids |
def tok_decode(self, tokens: List[int]) -> str: |
return self.tokenizer.decode(tokens) |
def _loglikelihood_tokens(self, requests, disable_tqdm: bool=False): |
raise NotImplementedError('No support for logits.') |
def generate_until(self, requests, disable_tqdm: bool=False) -> List[str]: |
try: |
import anthropic |
except ModuleNotFoundError: |
raise Exception("attempted to use 'anthropic' LM type, but package `anthropic` is not installed. please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`") |
if not requests: |
return [] |
_requests: List[Tuple[str, dict]] = [req.args for req in requests] |
res = [] |
for request in tqdm(_requests, disable=disable_tqdm): |
try: |
inp = request[0] |
request_args = request[1] |
until = request_args.get('until') |
max_gen_toks = request_args.get('max_gen_toks', self.max_length) |
temperature = request_args.get('temperature', self.temperature) |
response = anthropic_completion(client=self.client, model=self.model, prompt=inp, max_tokens_to_sample=max_gen_toks, temperature=temperature, stop=until, **self.kwargs) |
res.append(response) |
self.cache_hook.add_partial('generate_until', request, response) |
except anthropic.APIConnectionError as e: |
eval_logger.critical(f'Server unreachable: {e.__cause__}') |
break |
except anthropic.APIStatusError as e: |
eval_logger.critical(f'API error {e.status_code}: {e.message}') |
break |
return res |
def _model_call(self, inps): |
raise NotImplementedError() |
def _model_generate(self, context, max_length, eos_token_id): |
raise NotImplementedError() |
def loglikelihood(self, requests, disable_tqdm: bool=False): |
raise NotImplementedError('No support for logits.') |
def loglikelihood_rolling(self, requests, disable_tqdm: bool=False): |
raise NotImplementedError('No support for logits.') |
@register_model('anthropic-chat', 'anthropic-chat-completions') |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.