text
stringlengths 0
15.3k
|
---|
class AnthropicChatLM(AnthropicLM): |
REQ_CHUNK_SIZE = 20 |
def __init__(self, model: str, batch_size: int=1, max_tokens: int=256, temperature: float=0, **kwargs) -> None: |
super().__init__() |
try: |
import anthropic |
except ModuleNotFoundError: |
raise Exception("attempted to use 'anthropic' LM type, but package `anthropic` is not installed. please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`") |
self.model = model |
self.client = anthropic.Anthropic() |
self.temperature = temperature |
self.max_tokens = max_tokens |
self.tokenizer = self.client.get_tokenizer() |
self.kwargs = kwargs |
@property |
def max_gen_toks(self) -> int: |
return self.max_tokens |
def generate_until(self, requests) -> List[str]: |
try: |
import anthropic |
except ModuleNotFoundError: |
raise Exception("attempted to use 'anthropic' LM type, but package `anthropic` is not installed. please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`") |
if not requests: |
return [] |
_requests: List[Tuple[str, dict]] = [req.args for req in requests] |
res = [] |
for request in tqdm(_requests): |
try: |
inp = request[0] |
request_args = request[1] |
until = request_args.get('until') |
max_tokens = request_args.get('max_gen_toks', self.max_length) |
temperature = request_args.get('temperature', self.temperature) |
response = anthropic_chat(client=self.client, model=self.model, prompt=inp, max_tokens=max_tokens, temperature=temperature, stop=until, **self.kwargs) |
res.append(response) |
self.cache_hook.add_partial('generate_until', request, response) |
except anthropic.APIConnectionError as e: |
eval_logger.critical(f'Server unreachable: {e.__cause__}') |
break |
except anthropic.APIStatusError as e: |
eval_logger.critical(f'API error {e.status_code}: {e.message}') |
break |
return res |
# File: lm-evaluation-harness-main/lm_eval/models/dummy.py |
import random |
from tqdm import tqdm |
from lm_eval.api.model import LM |
from lm_eval.api.registry import register_model |
@register_model('dummy') |
class DummyLM(LM): |
def __init__(self) -> None: |
super().__init__() |
@classmethod |
def create_from_arg_string(cls, arg_string, additional_config=None): |
return cls() |
def loglikelihood(self, requests, disable_tqdm: bool=False): |
res = [] |
for _ in tqdm(requests, disable=disable_tqdm): |
res.append((-random.random(), False)) |
return res |
def generate_until(self, requests, disable_tqdm: bool=False): |
res = [] |
for (ctx, _) in tqdm(requests, disable=disable_tqdm): |
res.append('lol') |
assert ctx.strip() != '' |
return res |
def loglikelihood_rolling(self, requests, disable_tqdm: bool=False): |
res = [] |
for _ in tqdm(requests, disable=disable_tqdm): |
res.append(-random.random()) |
return res |
# File: lm-evaluation-harness-main/lm_eval/models/gguf.py |
import logging |
import time |
import requests |
from requests.exceptions import RequestException |
from tqdm import tqdm |
from lm_eval.api.model import LM |
from lm_eval.api.registry import register_model |
logger = logging.getLogger(__name__) |
def get_result(logprobs, context_length): |
is_greedy = True |
offsets = logprobs['text_offset'] |
tokens = logprobs['tokens'] |
tokens_logprobs = logprobs['token_logprobs'] |
idx = 0 |
while offsets[idx] < context_length: |
idx += 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.