text
stringlengths 0
15.3k
|
---|
except ModuleNotFoundError: |
raise Exception("Attempted to use 'nemo_lm' model type, but package `nemo` is not installedPlease install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, or installing nemo following https://github.com/NVIDIA/NeMo.") |
def dummy(): |
return |
if trainer.strategy.launcher is not None: |
trainer.strategy.launcher.launch(dummy, trainer=trainer) |
trainer.strategy.setup_environment() |
app_state = AppState() |
return app_state |
@register_model('nemo_lm') |
class NeMoLM(LM): |
def __init__(self, path: str, max_length: int=4096, batch_size: int=1, max_gen_toks: int=256, devices: int=1, num_nodes: int=1, tensor_model_parallel_size: int=1, pipeline_model_parallel_size: int=1, precision: Literal['16-mixed', 'bf16-mixed', '32-true', '64-true', 64, 32, 16, '64', '32', '16', 'bf16']='bf16', **kwargs): |
try: |
from nemo.collections.nlp.modules.common.text_generation_utils import generate |
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy |
from pytorch_lightning.trainer.trainer import Trainer |
self.generate = generate |
except ModuleNotFoundError: |
raise Exception("Attempted to use 'nemo_lm' model type, but package `nemo` is not installedPlease install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, or installing nemo following https://github.com/NVIDIA/NeMo.") |
super().__init__() |
if tensor_model_parallel_size == 1 and pipeline_model_parallel_size == 1 and (devices > 1): |
eval_logger.info(f'The number of data replicas for evaluation is {devices}.') |
eval_logger.info(f'The total number of devices is {devices}.') |
eval_logger.info('No tensor parallelism or pipeline parallelism is applied.') |
elif tensor_model_parallel_size * pipeline_model_parallel_size == devices: |
eval_logger.info(f'Setting tensor parallelism to {tensor_model_parallel_size} and pipeline parallelism to {pipeline_model_parallel_size}.') |
eval_logger.info(f'The total number of devices is {devices}.') |
eval_logger.info('No data parallelism is applied.') |
else: |
raise ValueError('Please set the product of tensor_model_parallel_size and pipeline_model_parallel_sizeequal to the specified number of devices.') |
if num_nodes > 1: |
raise ValueError('A number of nodes greater than 1 is not supported yet. Please set num_nodes as 1.') |
trainer = Trainer(strategy=NLPDDPStrategy(), devices=devices, accelerator='gpu', num_nodes=num_nodes, precision=precision, logger=False, enable_checkpointing=False, use_distributed_sampler=False) |
if tensor_model_parallel_size == 1 and pipeline_model_parallel_size == 1 and (devices > 1): |
self._device = torch.device(f'cuda:{trainer.global_rank}') |
self._rank = trainer.global_rank |
self._world_size = trainer.world_size |
self.model = load_model(path, trainer, tensor_model_parallel_size=tensor_model_parallel_size, pipeline_model_parallel_size=pipeline_model_parallel_size).cuda() |
self.tokenizer = self.model.tokenizer |
self.app_state = setup_distributed_environment(trainer) |
self._max_length = max_length |
self._batch_size = int(batch_size) |
self._max_gen_toks = max_gen_toks |
@classmethod |
def create_from_arg_string(cls, arg_string, additional_config=None): |
args = simple_parse_args_string(arg_string) |
if additional_config: |
args['batch_size'] = additional_config.get('batch_size', 1) |
return cls(**args) |
@property |
def eot_token_id(self): |
try: |
return self.tokenizer.eos_id |
except AttributeError: |
return None |
@property |
def max_length(self): |
return self._max_length |
@property |
def max_gen_toks(self): |
return self._max_gen_toks |
@property |
def batch_size(self): |
return self._batch_size |
@property |
def device(self): |
return self._device |
@property |
def rank(self): |
return self._rank |
@property |
def world_size(self): |
return self._world_size |
@property |
def accelerator(self): |
return self._Accelerator(self.world_size) |
class _Accelerator: |
def __init__(self, world_size): |
self.world_size = world_size |
def wait_for_everyone(self): |
torch.distributed.barrier() |
def gather(self, local_tensor): |
gathered_tensors = [torch.zeros(1, dtype=local_tensor.dtype).cuda() for _ in range(self.world_size)] |
torch.distributed.all_gather(gathered_tensors, local_tensor) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.