text
stringlengths
0
15.3k
req_args = all_gen_kwargs[0]
until = get_until(req_args)
max_gen_toks = req_args.get('max_gen_toks', self.max_gen_toks)
remaining_length = self.max_length - max_gen_toks
contexts = []
for (context, _) in chunk:
encoded_context = self.tok_encode(context)
encoded_context = encoded_context[-remaining_length:]
contexts.append(self.tok_decode(encoded_context))
output = self.generate(self.model, inputs=contexts, tokens_to_generate=max_gen_toks, end_strings=until, greedy=True)
answers = output['sentences']
continuations = []
for (context, answer) in zip(contexts, answers):
continuations.append(answer[len(context):])
for term in until:
continuations = [answer.split(term)[0] for answer in continuations]
for (request, answer) in zip(chunk, continuations):
self.cache_hook.add_partial('greedy_until', request, answer)
res.append(answer)
return re_ords.get_original(res)
# File: lm-evaluation-harness-main/lm_eval/models/neuralmagic.py
import copy
from typing import List, Optional, Tuple, Union
import numpy
import transformers
from tqdm import tqdm
import lm_eval.models.utils
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM
eval_logger = utils.eval_logger
@register_model('sparseml')
class SparseMLLM(HFLM):
def _create_model(self, pretrained: str, revision: Optional[str]='main', dtype: Optional[str]='auto', trust_remote_code: Optional[bool]=False, **kwargs) -> None:
try:
from sparseml.transformers import SparseAutoModelForCausalLM
except ModuleNotFoundError:
raise Exception('Package `sparseml` is not installed. Please install it via `pip install sparseml[transformers]`')
model_kwargs = kwargs if kwargs else {}
if 'device_map' not in model_kwargs:
if hasattr(self, 'accelerator'):
model_kwargs.update({'device_map': {'': f'cuda:{self.accelerator.local_process_index}'}})
else:
model_kwargs.update({'device_map': {'': str(self.device)}})
relevant_kwarg_names = ['offload_folder', 'device_map']
relevant_kwargs = {k: v for (k, v) in model_kwargs.items() if k in relevant_kwarg_names}
ignored_kwargs = {}
for (k, v) in model_kwargs.items():
if k not in relevant_kwargs.keys():
ignored_kwargs[k] = v
eval_logger.warning(f'The sparseml integration is ignoring the following kwargs that are specified: {ignored_kwargs}')
model = SparseAutoModelForCausalLM.from_pretrained(pretrained, revision=revision, torch_dtype=lm_eval.models.utils.get_dtype(dtype), trust_remote_code=trust_remote_code, **relevant_kwargs)
self._model = model
def _get_config(self, pretrained: str, **kwargs) -> None:
try:
from sparseml.transformers import SparseAutoConfig
except ModuleNotFoundError:
raise Exception('Package `sparseml` is not installed. Please install it via `pip install sparseml[transformers]`')
self._config = SparseAutoConfig.from_pretrained(pretrained_model_name_or_path=pretrained, **kwargs)
def _create_tokenizer(self, pretrained: Union[str, transformers.PreTrainedModel], tokenizer: Optional[Union[str, transformers.PreTrainedTokenizer, transformers.PreTrainedTokenizerFast]], **kwargs) -> None:
try:
from sparseml.transformers import SparseAutoTokenizer
except ModuleNotFoundError:
raise Exception('Package `sparseml` is not installed. Please install it via `pip install sparseml[transformers]`')
if tokenizer:
if isinstance(tokenizer, str):
self.tokenizer = SparseAutoTokenizer.from_pretrained(tokenizer, **kwargs)
else:
assert isinstance(tokenizer, transformers.PreTrainedTokenizer) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
self.tokenizer = tokenizer
else:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = self.model.name_or_path
self.tokenizer = SparseAutoTokenizer.from_pretrained(model_name, **kwargs)
return None
@register_model('deepsparse')
class DeepSparseLM(LM):
_DEFAULT_MAX_LENGTH = 2048
def __init__(self, pretrained: str, tokenizer: Optional[Union[str, transformers.PreTrainedTokenizer, transformers.PreTrainedTokenizerFast]]=None, batch_size: Optional[Union[int, str]]=1, max_gen_toks: Optional[int]=256, max_length: Optional[int]=None):
super().__init__()
try:
import deepsparse
except ModuleNotFoundError:
raise Exception('Package `deepsparse` is not installed. Please install it via `pip install deepsparse[transformers]`')
if isinstance(batch_size, str) and (not batch_size.isdigit()):
eval_logger.warning(f'batch_size={batch_size} is not valid for deepsparse because it is not an integer. Ignoring and using the default of 1.')
batch_size = 1
self.batch_size = int(batch_size)
self._max_length = max_length if max_length else self._DEFAULT_MAX_LENGTH