text
stringlengths 0
15.3k
|
---|
self._max_gen_toks = max_gen_toks |
self.batch_sizes = {} |
self.model = deepsparse.TextGeneration(model_path=pretrained, sequence_length=self._max_length, batch_size=batch_size) |
self.tokenizer = tokenizer if tokenizer else self.model.tokenizer |
self.config = self.model.config |
def tok_encode(self, string: str) -> List[int]: |
return self.tokenizer.encode(string) |
def tok_decode(self, tokens: List[int]) -> str: |
return self.tokenizer.decode(tokens) |
@property |
def eot_token_id(self): |
return self.tokenizer.eos_token_id |
@property |
def prefix_token_id(self): |
if self.tokenizer.bos_token_id is not None: |
return self.tokenizer.bos_token_id |
return self.tokenizer.eos_token_id |
@property |
def max_length(self) -> int: |
return self._max_length |
@property |
def max_gen_toks(self) -> int: |
return self._max_gen_toks |
def loglikelihood(self, requests) -> List[Tuple[float, bool]]: |
new_reqs = [] |
for (context, continuation) in [req.args for req in requests]: |
if context == '': |
raise NotImplementedError('Implementing empty context is not supported yet') |
(context_enc, continuation_enc) = self._encode_pair(context, continuation) |
new_reqs.append(((context, continuation), context_enc, continuation_enc)) |
return self._loglikelihood_tokens(new_reqs) |
def _loglikelihood_tokens(self, requests: List[Tuple[Tuple[str, str], List[int], List[int]]], disable_tqdm: bool=False) -> List[Tuple[float, bool]]: |
res = [] |
def _collate(x): |
toks = x[1] + x[2] |
return (-len(toks), tuple(toks)) |
re_ord = utils.Reorderer(requests, _collate) |
for chunk in tqdm(list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm): |
batch_inp = [] |
batch_cache_key = [] |
batch_continuation_enc = [] |
for (cache_key, context_enc, continuation_enc) in chunk: |
inp = (context_enc + continuation_enc)[-(self.max_length + 1):][:-1] |
batch_inp.append(self.tokenizer.decode(inp)) |
batch_cache_key.append(cache_key) |
batch_continuation_enc.append(continuation_enc) |
response = self.model(prompt=batch_inp, max_new_tokens=0, output_scores=True, include_prompt_logits=True) |
for (resp, continuation_enc, cache_key) in zip(response.generations, batch_continuation_enc, batch_cache_key): |
multi_scores = resp.score |
from deepsparse.utils.data import numpy_log_softmax |
multi_logits = numpy_log_softmax(multi_scores, axis=1) |
continuation_multi_logits = multi_logits[-len(continuation_enc):] |
continuation_logits = continuation_multi_logits[numpy.arange(len(continuation_enc)), continuation_enc] |
greedy_tokens = continuation_multi_logits.argmax(axis=1) |
max_equal = greedy_tokens.tolist() == continuation_enc |
answer = (float(continuation_logits.sum()), bool(max_equal)) |
res.append(answer) |
if cache_key is not None: |
self.cache_hook.add_partial('loglikelihood', cache_key, answer) |
return re_ord.get_original(res) |
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]: |
raise NotImplementedError('The method not required by any of our current task integrations so far') |
def generate_until(self, requests: List[Instance]) -> List[str]: |
if not requests: |
return [] |
res = [] |
requests = [req.args for req in requests] |
def _collate(x): |
toks = self.tok_encode(x[0]) |
return (len(toks), x[0]) |
re_ord = utils.Reorderer(requests, _collate) |
def sameuntil_chunks(xs, size): |
ret = [] |
lastuntil = xs[0][1] |
for x in xs: |
if len(ret) >= size or x[1] != lastuntil: |
yield (ret, lastuntil) |
ret = [] |
lastuntil = x[1] |
ret.append(x) |
if ret: |
yield (ret, lastuntil) |
pbar = tqdm(total=len(requests)) |
for (chunk, request_args) in tqdm(list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size))): |
inps = [] |
request_args = copy.deepcopy(request_args) |
self._max_gen_toks = request_args.pop('max_gen_toks', self.max_gen_toks) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.