text
stringlengths 0
15.3k
|
---|
for (context, _) in chunk: |
inps.append(context) |
until = request_args.pop('until', ['<|endoftext|>']) |
request_args.pop('do_sample', None) |
request_args['temperature'] = request_args.get('temperature', 0) |
out = self.model(sequences=inps, max_new_tokens=self.max_gen_toks - 1, stop=until, **request_args) |
for (resp, (context, args_)) in zip(out.generations, chunk): |
text = resp.text |
until_ = until |
for term in until_: |
if len(term) > 0: |
text = text.split(term)[0] |
res.append(text) |
self.cache_hook.add_partial('generate_until', (context, {'until': until_}), text) |
pbar.update(1) |
pbar.close() |
return re_ord.get_original(res) |
def _encode_pair(self, context: str, continuation: str) -> Tuple[List[int], List[int]]: |
n_spaces = len(context) - len(context.rstrip()) |
if n_spaces > 0: |
continuation = context[-n_spaces:] + continuation |
context = context[:-n_spaces] |
whole_enc = self.tok_encode(context + continuation) |
context_enc = self.tok_encode(context) |
context_enc_len = len(context_enc) |
continuation_enc = whole_enc[context_enc_len:] |
return (context_enc, continuation_enc) |
# File: lm-evaluation-harness-main/lm_eval/models/neuron_optimum.py |
import copy |
import json |
import logging |
import subprocess |
from collections import defaultdict |
from typing import List, Optional, Union |
import torch |
import torch.nn.functional as F |
import transformers |
from packaging import version |
from tqdm import tqdm |
from transformers import GenerationConfig |
from transformers.generation import StoppingCriteriaList |
import lm_eval.models.utils |
from lm_eval import utils |
from lm_eval.api.model import TemplateLM |
from lm_eval.api.registry import register_model |
from lm_eval.models.utils import stop_sequences_criteria |
try: |
NEURON_AVAILABLE = True |
from optimum.neuron import NeuronModelForCausalLM |
from optimum.neuron.generation import TokenSelector |
from optimum.neuron.version import __version__ as optimum_neuron_version |
except ImportError: |
NeuronModelForCausalLM = object |
NEURON_AVAILABLE = False |
logger = logging.getLogger(__name__) |
def get_nc_count() -> Union[int, None]: |
try: |
cmd = 'neuron-ls --json-output' |
result = subprocess.run(cmd, shell=True, capture_output=True) |
print(f'inferring nc_count from `neuron-ls` {result.stdout}') |
json_output = json.loads(result.stdout) |
count = sum([x['nc_count'] for x in json_output]) |
print(f'nc_count={count}') |
return count |
except Exception: |
return None |
def wrap_constant_batch_size(func): |
def _decorator(self, input_ids): |
batch_size = input_ids.shape[0] |
if batch_size < self.batch_size: |
input_ids = torch.concat((input_ids, torch.zeros([self.batch_size - batch_size, *input_ids.size()[1:]], dtype=input_ids.dtype, device=input_ids.device)), dim=0) |
elif batch_size > self.batch_size: |
raise ValueError(f'The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})') |
return func(self, input_ids)[:batch_size] |
return _decorator |
class CustomNeuronModelForCausalLM(NeuronModelForCausalLM): |
def generate(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, stopping_criteria: Optional['StoppingCriteriaList']=None, generation_config: Optional['GenerationConfig']=None, **kwargs) -> torch.LongTensor: |
generation_config = copy.deepcopy(self.generation_config if generation_config is None else generation_config) |
model_kwargs = generation_config.update(**kwargs) |
self._validate_model_kwargs(model_kwargs) |
selector = TokenSelector.create(input_ids, generation_config, self, self.max_length) |
selector.stopping_criteria.append(stopping_criteria) |
(batch_size, sequence_length) = input_ids.shape |
if sequence_length > self.max_length: |
raise ValueError(f'The input sequence length ({sequence_length}) exceeds the model static sequence length ({self.max_length})') |
padded_input_ids = input_ids |
padded_attention_mask = attention_mask |
if batch_size > self.batch_size: |
raise ValueError(f'The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})') |
elif batch_size < self.batch_size: |
logger.warning('Inputs will be padded to match the model static batch size. This will increase latency.') |
padding_shape = [self.batch_size - batch_size, sequence_length] |
padding = torch.full(padding_shape, fill_value=self.config.eos_token_id, dtype=torch.int64) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.