text
stringlengths
0
15.3k
add_special_tokens = False or self.add_bos_token
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(self, strings: List[str], padding_side: str='left', left_truncate_len: int=None, truncation: bool=False):
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
add_special_tokens = False or self.add_bos_token
encoding = self.tokenizer(strings, truncation=truncation, padding='longest', return_tensors='pt', add_special_tokens=add_special_tokens)
if left_truncate_len:
encoding['input_ids'] = encoding['input_ids'][:, -left_truncate_len:]
encoding['attention_mask'] = encoding['attention_mask'][:, -left_truncate_len:]
self.tokenizer.padding_side = old_padding_side
return (encoding['input_ids'], encoding['attention_mask'])
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
@wrap_constant_batch_size
def _model_call(self, input_ids: torch.Tensor):
(_, sequence_length) = input_ids.shape
with torch.inference_mode():
cache_ids = torch.arange(0, sequence_length, dtype=torch.int32).split(1)
input_ids_split = input_ids.split(1, dim=1)
return torch.concat([self.model.forward(input_ids=input_id, cache_ids=cache_id, return_dict=False)[0] for (input_id, cache_id) in zip(input_ids_split, cache_ids)], dim=1)
def _model_generate(self, context, max_length, stop, **generation_kwargs):
with torch.inference_mode():
if 'do_sample' not in generation_kwargs.keys():
generation_kwargs['do_sample'] = False
stopping_criteria = stop_sequences_criteria(self.tokenizer, stop + [self.tokenizer.decode([self.config.eos_token_id])], 1, context.shape[0])
return self.model.generate(input_ids=context, max_length=max_length, stopping_criteria=stopping_criteria, pad_token_id=self.eot_token_id, use_cache=True, **generation_kwargs)
def _select_cont_toks(self, logits, contlen=None, inplen=None):
assert contlen and inplen, 'Must pass input len and cont. len to select scored logits for causal LM'
logits = logits[inplen - contlen:inplen]
return logits
def loglikelihood_rolling(self, requests, disable_tqdm: bool=False):
loglikelihoods = []
adaptive_batch_size = None
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm or self.rank != 0):
rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(token_list=self.tok_encode(string), prefix_token=self.prefix_token_id, max_seq_len=self.max_length, context_len=1)))
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
pad_amnt = 0
if self.world_size > 1:
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
pad_amnt = max(gathered) - gathered[self.rank]
if pad_amnt > 0:
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
string_nll = self._loglikelihood_tokens(rolling_token_windows, disable_tqdm=True, override_bs=adaptive_batch_size)
if self.world_size > 1 and pad_amnt > 0:
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
else:
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _loglikelihood_tokens(self, requests, disable_tqdm: bool=False, override_bs=None):
res = []
def _collate(x):
toks = x[1] + x[2]
return (-len(toks), tuple(toks))
re_ord = utils.Reorderer(requests, _collate)
n_reordered_requests = len(re_ord.get_reordered())
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=self.batch_size, fn=None)
for chunk in tqdm(chunks, disable=disable_tqdm or self.rank != 0):
inps = []
cont_toks_list = []
inplens = []
conts = []
encoder_attns = []
padding_len_inp = None
padding_len_cont = None
for (_, context_enc, continuation_enc) in chunk:
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
inp = torch.tensor((context_enc + continuation_enc)[-(self.max_length + 1):][:-1], dtype=torch.long, device=self.device)
(inplen,) = inp.shape
padding_len_inp = max(padding_len_inp, inplen) if padding_len_inp is not None else inplen
inps.append(inp)
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
call_kwargs = {}
batched_inps = lm_eval.models.utils.pad_and_concat(padding_len_inp, inps, padding_side='right')
multi_logits = F.log_softmax(self._model_call(batched_inps, **call_kwargs), dim=-1)
for ((cache_key, _, _), logits, inplen, cont_toks) in zip(chunk, multi_logits, inplens, cont_toks_list):
contlen = len(cont_toks)
ctx_len = inplen + (logits.shape[0] - padding_len_inp)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0)
greedy_tokens = logits.argmax(dim=-1)
cont_toks = torch.tensor(cont_toks, dtype=torch.long, device=self.device).unsqueeze(0)
max_equal = (greedy_tokens == cont_toks).all()