text
stringlengths 0
15.3k
|
---|
@retry_on_specific_exceptions(on_exceptions=[openai.OpenAIError], max_retries=None, on_exception_callback=_exception_callback) |
def completion(): |
if chat: |
return client.chat.completions.create(**kwargs) |
else: |
return client.completions.create(**kwargs) |
return completion() |
@register_model('openai-completions', 'local-completions') |
class OpenaiCompletionsLM(TemplateLM): |
_DEFAULT_MAX_LENGTH = 2048 |
def __init__(self, model: str, base_url: str=None, tokenizer: Optional[str]=None, tokenizer_backend: Literal['tiktoken', 'huggingface']='tiktoken', truncate: bool=False, max_gen_toks: int=256, batch_size: int=1, seed: int=1234, max_length: Optional[int]=None) -> None: |
super().__init__() |
self.seed = seed |
try: |
import openai |
import tiktoken |
except ModuleNotFoundError: |
raise Exception('attempted to use \'openai\' LM type, but package `openai` or `tiktoken` are not installed. please install these via `pip install lm-eval[openai]` or `pip install -e ."[openai]"`') |
self.model = model |
self.base_url = base_url |
self.tokenizer_backend = tokenizer_backend |
self.truncate = truncate |
self._batch_size = int(batch_size) |
self._max_gen_toks = max_gen_toks |
self._max_length = max_length |
if self.tokenizer_backend == 'huggingface': |
import transformers |
self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer if tokenizer else self.model) |
self.vocab_size = self.tokenizer.vocab |
self.end_of_text_token_id = self.tokenizer.eos_token |
elif self.tokenizer_backend == 'tiktoken': |
if self.base_url: |
eval_logger.warning(f'Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken.') |
self.tokenizer = tiktoken.encoding_for_model(self.model) |
self.vocab_size = self.tokenizer.n_vocab |
self.end_of_text_token_id = self.tokenizer.eot_token |
else: |
raise ValueError(f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}") |
openai.api_key = os.environ['OPENAI_API_KEY'] |
if self.base_url: |
self.client = openai.OpenAI(base_url=self.base_url) |
else: |
self.client = openai.OpenAI() |
@property |
def eot_token_id(self): |
return self.end_of_text_token_id |
@property |
def max_length(self) -> int: |
if self._max_length: |
return self._max_length |
else: |
return self._DEFAULT_MAX_LENGTH |
@property |
def max_gen_toks(self) -> int: |
return self._max_gen_toks |
@property |
def batch_size(self) -> int: |
return self._batch_size |
@property |
def device(self): |
raise NotImplementedError() |
def tok_encode(self, string: str, **kwargs) -> List[int]: |
return self.tokenizer.encode(string) |
def tok_decode(self, tokens: List[int]) -> str: |
return self.tokenizer.decode(tokens) |
def _loglikelihood_tokens(self, requests, disable_tqdm: bool=False) -> List[Tuple[float, bool]]: |
res = [] |
def _collate(x): |
toks = x[1] + x[2] |
return (-len(toks), tuple(toks)) |
re_ord = utils.Reorderer(requests, _collate) |
for chunk in tqdm(list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm): |
inps = [] |
ctxlens = [] |
for (cache_key, context_enc, continuation_enc) in chunk: |
inp = (context_enc + continuation_enc)[-(self.max_length + 1):] |
ctxlen = len(context_enc) - max(0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)) |
inps.append(inp) |
ctxlens.append(ctxlen) |
response = oa_completion(client=self.client, model=self.model, prompt=inps, max_tokens=0, temperature=0.0, logprobs=10, seed=self.seed) |
for (resp, ctxlen, (cache_key, context_enc, continuation_enc)) in zip(response.choices, ctxlens, chunk): |
answer = get_result(resp) |
res.append(answer) |
if cache_key is not None: |
self.cache_hook.add_partial('loglikelihood', cache_key, answer) |
return re_ord.get_original(res) |
def generate_until(self, requests, disable_tqdm: bool=False) -> List[str]: |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.