text
stringlengths 0
15.3k
|
---|
if not requests: |
return [] |
res = [] |
requests = [req.args for req in requests] |
def _collate(x): |
toks = self.tok_encode(x[0]) |
return (len(toks), x[0]) |
re_ord = utils.Reorderer(requests, _collate) |
def sameuntil_chunks(xs, size): |
ret = [] |
lastuntil = xs[0][1] |
for x in xs: |
if len(ret) >= size or x[1] != lastuntil: |
yield (ret, lastuntil) |
ret = [] |
lastuntil = x[1] |
ret.append(x) |
if ret: |
yield (ret, lastuntil) |
for (chunk, request_args) in tqdm(list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm): |
inps = [] |
self._max_gen_toks = request_args.get('max_gen_toks', self.max_gen_toks) |
for (context, _) in chunk: |
context_enc = self.tok_encode(context) |
inp = context_enc[-(self.max_length - self.max_gen_toks):] |
inps.append(inp) |
until = request_args.get('until', ['<|endoftext|>']) |
request_args['temperature'] = request_args.get('temperature', 0) |
response = oa_completion(client=self.client, model=self.model, prompt=inps, max_tokens=self.max_gen_toks, stop=until, seed=self.seed, **{k: v for (k, v) in request_args.items() if k not in {'do_sample', 'max_gen_toks', 'until'}}) |
for (resp, (context, args_)) in zip(response.choices, chunk): |
s = getattr(resp, 'text') |
until_ = until |
for term in until_: |
if len(term) > 0: |
s = s.split(term)[0] |
self.cache_hook.add_partial('generate_until', (context, {'until': until_}), s) |
res.append(s) |
return re_ord.get_original(res) |
def _model_call(self, inps): |
raise NotImplementedError() |
def _model_generate(self, context, max_length, eos_token_id): |
raise NotImplementedError() |
def loglikelihood_rolling(self, requests, disable_tqdm: bool=False) -> List[float]: |
loglikelihoods = [] |
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm): |
rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(token_list=self.tok_encode(string), prefix_token=self.eot_token_id, max_seq_len=self.max_length, context_len=1))) |
rolling_token_windows = [(None,) + x for x in rolling_token_windows] |
string_nll = self._loglikelihood_tokens(rolling_token_windows, disable_tqdm=True) |
string_nll = [x[0] for x in string_nll] |
string_nll = sum(string_nll) |
loglikelihoods.append(string_nll) |
return loglikelihoods |
@register_model('openai-chat-completions', 'local-chat-completions') |
class OpenaiChatCompletionsLM(LM): |
def __init__(self, model: str='gpt-3.5-turbo', base_url: str=None, truncate: bool=False, **kwargs) -> None: |
super().__init__() |
try: |
import openai |
except ModuleNotFoundError: |
raise Exception("attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`") |
self.model = model |
self.base_url = base_url |
self.truncate = truncate |
if self.base_url: |
self.client = openai.OpenAI(base_url=self.base_url) |
else: |
self.client = openai.OpenAI() |
@property |
def max_length(self) -> int: |
return 2048 |
@property |
def max_gen_toks(self) -> int: |
return 256 |
@property |
def batch_size(self): |
raise NotImplementedError() |
@property |
def device(self): |
raise NotImplementedError() |
def generate_until(self, requests, disable_tqdm: bool=False) -> List[str]: |
res = defaultdict(list) |
re_ords = {} |
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1])) |
for (key, reqs) in grouper.get_grouped().items(): |
re_ords[key] = utils.Reorderer([req.args for req in reqs], lambda x: (-len(x[0]), x[0])) |
pbar = tqdm(total=len(requests), disable=disable_tqdm or self.rank != 0) |
for (key, re_ord) in re_ords.items(): |
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.