text
stringlengths
0
15.3k
def _collate_gen(_requests):
return (-len(_requests[0][1]), _requests[0][0])
re_ords = Collator(requests, _collate_gen, group_by='gen_kwargs')
chunks = re_ords.get_batched(n=int(self.batch_size) if self.batch_size != 'auto' else 0, batch_fn=None)
pbar = tqdm(total=len(requests), disable=disable_tqdm or self.rank != 0, desc='Running generate_until requests')
for chunk in chunks:
(context_and_encoding, all_gen_kwargs) = zip(*chunk)
(context, context_encoding) = zip(*context_and_encoding)
gen_kwargs = all_gen_kwargs[0]
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs)
if 'until' in kwargs.keys():
until = kwargs.pop('until')
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}")
else:
raise ValueError(f'Expected `kwargs` to be of type `dict` but got {gen_kwargs}')
eos = self.tokenizer.decode(self.eot_token_id)
if not until:
until = [eos]
else:
until.append(eos)
if 'max_gen_toks' in kwargs.keys():
max_gen_toks = kwargs.pop('max_gen_toks')
else:
max_gen_toks = self.max_gen_toks
max_ctx_len = self.max_length - max_gen_toks
context_encoding = [x[-max_ctx_len:] for x in context_encoding]
cont = self._model_generate(requests=context_encoding, generate=True, max_tokens=max_gen_toks, stop=until, **kwargs)
for (output, context) in zip(cont, context):
generated_text = output.outputs[0].text
res.append(generated_text)
self.cache_hook.add_partial('generate_until', (context, gen_kwargs), generated_text)
pbar.update(1)
pbar.close()
return re_ords.get_original(res)
def _loglikelihood_tokens(self, requests: List[Tuple[Tuple[str, str], List[int], List[int]]], disable_tqdm: bool=False) -> List[Tuple[float, bool]]:
res = []
def _collate(x):
toks = x[1] + x[2]
return (-len(toks), tuple(toks))
re_ord = Collator(requests, sort_fn=_collate)
chunks = re_ord.get_batched(n=int(self.batch_size) if self.batch_size != 'auto' else 0, batch_fn=None)
pbar = tqdm(total=len(requests), disable=disable_tqdm, desc='Running loglikelihood requests')
for chunk in chunks:
inputs = []
ctxlens = []
for (cache_key, context_enc, continuation_enc) in chunk:
inp = (context_enc + continuation_enc)[-self.max_length:]
ctxlen = len(context_enc) - max(0, len(context_enc) + len(continuation_enc) - self.max_length)
inputs.append(inp)
ctxlens.append(ctxlen)
outputs = self._model_generate(requests=inputs, generate=False)
for (output, ctxlen, (cache_key, _, _), inp) in zip(outputs, ctxlens, chunk, inputs):
answer = self._parse_logprobs(tokens=inp, outputs=output, ctxlen=ctxlen)
res.append(answer)
if cache_key is not None:
self.cache_hook.add_partial('loglikelihood', cache_key, answer)
pbar.update(1)
pbar.close()
return re_ord.get_original(res)
@staticmethod
def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
continuation_logprobs_dicts = outputs.prompt_logprobs
def coerce_logprob_to_num(logprob):
return getattr(logprob, 'logprob', logprob)
continuation_logprobs_dicts = [{token: coerce_logprob_to_num(logprob) for (token, logprob) in logprob_dict.items()} if logprob_dict is not None else None for logprob_dict in continuation_logprobs_dicts]
continuation_logprobs = sum((logprob_dict.get(token) for (token, logprob_dict) in zip(tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:])))
is_greedy = True
for (token, logprob_dict) in zip(tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]):
if logprob_dict:
top_token = max(logprob_dict, key=logprob_dict.get)
if top_token != token:
is_greedy = False
break
return (continuation_logprobs, is_greedy)
@staticmethod
def modify_gen_kwargs(kwargs: dict) -> dict:
do_sample = kwargs.pop('do_sample', None)
if do_sample is False and 'temperature' not in kwargs:
eval_logger.debug('Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ...')
kwargs['temperature'] = 0.0
kwargs['skip_special_tokens'] = kwargs.get('skip_special_tokens', False)
kwargs['spaces_between_special_tokens'] = kwargs.get('spaces_between_special_tokens', False)
return kwargs
# File: lm-evaluation-harness-main/lm_eval/prompts/__init__.py
import ast
import os
from typing import Dict
from lm_eval import utils
from lm_eval.utils import eval_logger