text
stringlengths 0
15.3k
|
---|
if group_by == 'contexts': |
res[tuple(fn(ob))].append(ob) |
else: |
try: |
hashable_dict = tuple(((key, tuple(value) if isinstance(value, collections.abc.Iterable) else value) for (key, value) in sorted(fn(ob).items()))) |
res[hashable_dict].append(ob) |
except (TypeError, AttributeError): |
res[tuple(fn(ob))].append(ob) |
return res |
@staticmethod |
def get_chunks(_iter, n: int=0, fn=None): |
arr = [] |
_iter = tuple(_iter) |
for (i, x) in enumerate(_iter): |
arr.append(x) |
if len(arr) == (fn(i, _iter) if fn else n): |
yield arr |
arr = [] |
if arr: |
yield arr |
def configure_pad_token(tokenizer: 'PreTrainedTokenizerBase', model_config: Optional['PretrainedConfig']=None) -> 'PreTrainedTokenizerBase': |
if tokenizer.pad_token: |
pass |
elif tokenizer.unk_token: |
tokenizer.pad_token_id = tokenizer.unk_token_id |
elif tokenizer.eos_token: |
tokenizer.pad_token_id = tokenizer.eos_token_id |
elif model_config and getattr(model_config, 'model_type', None) == 'qwen': |
tokenizer.pad_token = '<|endoftext|>' |
elif tokenizer.__class__.__name__ == 'RWKVWorldTokenizer' or tokenizer.__class__.__name__ == 'Rwkv5Tokenizer': |
assert tokenizer.pad_token_id == 0 |
else: |
tokenizer.add_special_tokens({'pad_token': '<|pad|>'}) |
return tokenizer |
# File: lm-evaluation-harness-main/lm_eval/models/vllm_causallms.py |
import copy |
from importlib.metadata import version |
from importlib.util import find_spec |
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union |
from more_itertools import distribute |
from packaging.version import parse as parse_version |
from tqdm import tqdm |
from lm_eval.api.instance import Instance |
from lm_eval.api.model import TemplateLM |
from lm_eval.api.registry import register_model |
from lm_eval.models.utils import Collator, configure_pad_token, undistribute |
from lm_eval.utils import eval_logger, get_rolling_token_windows, make_disjoint_window |
try: |
import ray |
from vllm import LLM, SamplingParams |
from vllm.lora.request import LoRARequest |
from vllm.transformers_utils.tokenizer import get_tokenizer |
except ModuleNotFoundError: |
pass |
if TYPE_CHECKING: |
pass |
eval_logger = eval_logger |
@register_model('vllm') |
class VLLM(TemplateLM): |
_DEFAULT_MAX_LENGTH = 2048 |
def __init__(self, pretrained: str, dtype: Literal['float16', 'bfloat16', 'float32', 'auto']='auto', revision: Optional[str]=None, trust_remote_code: Optional[bool]=False, tokenizer: Optional[str]=None, tokenizer_mode: Literal['auto', 'slow']='auto', tokenizer_revision: Optional[str]=None, add_bos_token: Optional[bool]=False, prefix_token_id: Optional[int]=None, tensor_parallel_size: int=1, quantization: Optional[str]=None, max_gen_toks: int=256, swap_space: int=4, batch_size: Union[str, int]=1, max_batch_size=None, max_length: int=None, max_model_len: int=None, seed: int=1234, gpu_memory_utilization: float=0.9, device: str='cuda', data_parallel_size: int=1, lora_local_path: str=None, **kwargs): |
super().__init__() |
if not find_spec('vllm'): |
raise Exception("attempted to use 'vllm' LM type, but package `vllm` is not installed. Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`") |
assert 'cuda' in device or device is None, 'vLLM only supports CUDA' |
assert max_length is None or max_model_len is None, 'Either max_length or max_model_len may be provided, but not both' |
self._max_length = max_model_len if max_model_len is not None else max_length |
self.tensor_parallel_size = int(tensor_parallel_size) |
self.data_parallel_size = int(data_parallel_size) |
self.model_args = {'model': pretrained, 'gpu_memory_utilization': float(gpu_memory_utilization), 'revision': revision, 'dtype': dtype, 'tokenizer': tokenizer, 'tokenizer_mode': tokenizer_mode, 'tokenizer_revision': tokenizer_revision, 'trust_remote_code': trust_remote_code, 'tensor_parallel_size': int(tensor_parallel_size), 'max_model_len': int(self._max_length) if self._max_length else None, 'swap_space': int(swap_space), 'quantization': quantization, 'seed': int(seed)} |
self.model_args.update(kwargs) |
self.batch_size = 'auto' if isinstance(batch_size, str) and 'auto' in batch_size else batch_size |
if self.data_parallel_size <= 1: |
self.model = LLM(**self.model_args) |
else: |
eval_logger.warning('You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached.') |
self.model_args['worker_use_ray'] = True |
self.batch_size = 'auto' |
eval_logger.info('Manual batching is not compatible with data parallelism.') |
from transformers import AutoConfig |
self._config = AutoConfig.from_pretrained(pretrained, trust_remote_code=trust_remote_code, revision=revision) |
self.tokenizer = get_tokenizer(tokenizer if tokenizer else pretrained, tokenizer_mode=tokenizer_mode, trust_remote_code=trust_remote_code, tokenizer_revision=tokenizer_revision) |
self.tokenizer = configure_pad_token(self.tokenizer) |
self.add_bos_token = add_bos_token |
if 'gemma' in pretrained.lower(): |
self.add_bos_token = True |
eval_logger.info("Found 'gemma' in model name, a BOS token will be used as Gemma series models underperform without it.") |
self.custom_prefix_token_id = prefix_token_id |
if prefix_token_id is not None: |
eval_logger.info(f'Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}') |
self._max_gen_toks = max_gen_toks |
if lora_local_path is not None: |
assert parse_version(version('vllm')) > parse_version('0.3.0'), 'lora adapters only compatible with vllm > v0.3.0.' |
self.lora_request = LoRARequest('finetuned', 1, lora_local_path) |
else: |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.