text
stringlengths 0
15.3k
|
---|
return False not in self.done_tracker |
def stop_sequences_criteria(tokenizer: transformers.PreTrainedTokenizer, stop_sequences: List[str], initial_decoder_input_length: int, batch_size: int) -> transformers.StoppingCriteriaList: |
return transformers.StoppingCriteriaList([*[MultiTokenEOSCriteria(sequence, tokenizer, initial_decoder_input_length, batch_size) for sequence in stop_sequences]]) |
def undistribute(iterable): |
return [x for x in itertools.chain.from_iterable(itertools.zip_longest(*[list(x) for x in iterable])) if x is not None] |
def retry_on_specific_exceptions(on_exceptions: List[Type[Exception]], max_retries: Optional[int]=None, backoff_time: float=3.0, backoff_multiplier: float=1.5, on_exception_callback: Optional[Callable[[Exception, float], Any]]=None): |
def decorator(func: Callable): |
@wraps(func) |
def wrapper(*args, **kwargs): |
sleep_time = backoff_time |
attempt = 0 |
while max_retries is None or attempt < max_retries: |
try: |
return func(*args, **kwargs) |
except tuple(on_exceptions) as e: |
if on_exception_callback is not None: |
on_exception_callback(e, sleep_time) |
time.sleep(sleep_time) |
sleep_time *= backoff_multiplier |
attempt += 1 |
return wrapper |
return decorator |
class Collator: |
def __init__(self, arr: List, sort_fn: Callable=lambda x: x, group_fn: Callable=lambda x: x[1], group_by: Union[Literal['gen_kwargs', 'contexts'], None]=None) -> None: |
self._group_by = group_by |
self._sort_fn = lambda x: sort_fn(x[1]) |
self._group_fn = lambda x: group_fn(x[1]) |
self._reorder_indices: List = [] |
self._size = len(arr) |
self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple(enumerate(arr)) |
if self._group_by == 'contexts': |
self._group_by_context() |
elif self._group_by == 'gen_kwargs': |
self._group_by_index() |
def _group_by_index(self) -> None: |
self._arr_with_indices = self.group(self._arr_with_indices, fn=self._group_fn, group_by='gen_kwargs') |
def _group_by_context(self) -> None: |
self._arr_with_indices = self.group(self._arr_with_indices, fn=self._group_fn, group_by='contexts') |
def get_batched(self, n: int=1, batch_fn: Optional[Callable]=None) -> Iterator: |
if self._group_by == 'gen_kwargs': |
for (key, values) in self._arr_with_indices.items(): |
values = self._reorder(values) |
batch = self.get_chunks(values, n=n, fn=batch_fn) |
yield from batch |
elif self._group_by == 'contexts': |
values = self._reorder([value[0] for value in self._arr_with_indices.values()]) |
batch = self.get_chunks(values, n=n, fn=batch_fn) |
yield from batch |
else: |
values = self._reorder(self._arr_with_indices) |
batch = self.get_chunks(values, n=n, fn=batch_fn) |
yield from batch |
def get_cache(self, req_str: Tuple[str, str]=None, cxt_toks: List[int]=None, cont_toks: List[int]=None, logits: torch.Tensor=None) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]: |
if self._group_by == 'contexts': |
cache_hit: List[Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]]] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1])) |
if (cache_size := len(cache_hit)) == 1: |
self._reorder_indices.extend((x[0] for x in cache_hit)) |
yield (req_str, cont_toks, logits) |
else: |
multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size) |
(indices, req_str, cont_toks) = zip(*[(x[0], x[1][0], x[-1][-1]) for x in cache_hit]) |
self._reorder_indices.extend(indices) |
for (c_key, cont_tok, logit) in zip(req_str, cont_toks, multilogits): |
yield (c_key, cont_tok, logit) |
else: |
yield (req_str, cont_toks, logits) |
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator: |
arr = sorted(arr, key=self._sort_fn) |
if not self._group_by == 'contexts': |
self._reorder_indices.extend([x[0] for x in arr]) |
yield from [x[1] for x in arr] |
def get_original(self, newarr: List) -> List: |
res = [None] * self._size |
cov = [False] * self._size |
for (ind, v) in zip(self._reorder_indices, newarr): |
res[ind] = v |
cov[ind] = True |
assert all(cov) |
return res |
def __len__(self): |
return self._size |
@staticmethod |
def group(arr: Iterable, fn: Callable, group_by: Literal['gen_kwargs', 'contexts']='gen_kwargs') -> dict: |
res = collections.defaultdict(list) |
for ob in arr: |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.