text
stringlengths 0
15.3k
|
---|
arr = [] |
if arr: |
yield arr |
class MultiChoice: |
def __init__(self, choices) -> None: |
self.choices = choices |
def __contains__(self, values) -> bool: |
for value in values.split(','): |
if len(fnmatch.filter(self.choices, value)) == 0: |
eval_logger.info('Available tasks to choose:') |
for choice in self.choices: |
eval_logger.info(f' - {choice}') |
raise ValueError("'{}' is not in task list".format(value)) |
return True |
def __iter__(self) -> Iterator: |
for choice in self.choices: |
yield choice |
class Grouper: |
def __init__(self, arr, fn) -> None: |
self.size = len(arr) |
arr = list(enumerate(arr)) |
def group_return_dict(arr, fn): |
res = collections.defaultdict(list) |
for ob in arr: |
res[fn(ob)].append(ob) |
return res |
arr = group_return_dict(arr, lambda x: fn(x[1])) |
self.arr = arr |
self._grouped = None |
def get_grouped(self): |
if self._grouped: |
return self._grouped |
grouped = {} |
for key in self.arr.keys(): |
grouped[key] = [y[1] for y in self.arr[key]] |
self._grouped = grouped |
return grouped |
def get_original(self, grouped_dict): |
res = [None] * self.size |
cov = [False] * self.size |
assert grouped_dict.keys() == self.arr.keys() |
for key in grouped_dict.keys(): |
for ((ind, _), v) in zip(self.arr[key], grouped_dict[key]): |
res[ind] = v |
cov[ind] = True |
assert all(cov) |
return res |
def pad_and_concat(max_length: int, tensors: List[torch.Tensor], padding_side: Literal['right', 'left']='right'): |
assert padding_side == 'left' or padding_side == 'right', f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'" |
for (i, tensor) in enumerate(tensors): |
if len(tensor.shape) == 2: |
tensor = tensor.squeeze(0) |
tensor_len = tensor.shape[0] |
if tensor_len < max_length: |
if padding_side == 'right': |
tensors[i] = torch.cat([tensor, torch.zeros(max_length - tensor_len, dtype=torch.long, device=tensor.device)], dim=0).unsqueeze(0) |
else: |
tensors[i] = torch.cat([torch.zeros(max_length - tensor_len, dtype=torch.long, device=tensor.device), tensor], dim=0).unsqueeze(0) |
else: |
tensors[i] = tensor.unsqueeze(0) |
return torch.cat(tensors, dim=0) |
def clear_torch_cache() -> None: |
gc.collect() |
torch.cuda.empty_cache() |
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype: |
if isinstance(dtype, str) and dtype != 'auto': |
_torch_dtype = getattr(torch, dtype) |
else: |
_torch_dtype = dtype |
return _torch_dtype |
class MultiTokenEOSCriteria(transformers.StoppingCriteria): |
def __init__(self, sequence: str, tokenizer: transformers.PreTrainedTokenizer, initial_decoder_input_length: int, batch_size: int) -> None: |
self.initial_decoder_input_length = initial_decoder_input_length |
self.done_tracker = [False] * batch_size |
self.sequence = sequence |
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False) |
self.sequence_id_len = len(self.sequence_ids) + 2 |
self.tokenizer = tokenizer |
def __call__(self, input_ids, scores, **kwargs) -> bool: |
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length:] |
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len:] |
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch) |
for (i, done) in enumerate(self.done_tracker): |
if not done: |
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.