text
stringlengths 0
15.3k
|
---|
if not weight_by_size: |
sizes = [1] * len(sizes) |
assert len(metrics) == len(sizes) |
return sum([metric * size for (metric, size) in zip(metrics, sizes)]) / sum(sizes) |
# File: lm-evaluation-harness-main/lm_eval/api/model.py |
import abc |
import hashlib |
import json |
import logging |
import os |
from typing import Dict, List, Optional, Tuple, Type, TypeVar |
import transformers |
from sqlitedict import SqliteDict |
from tqdm import tqdm |
from lm_eval import utils |
eval_logger = logging.getLogger('lm-eval') |
T = TypeVar('T', bound='LM') |
class LM(abc.ABC): |
def __init__(self) -> None: |
self._rank = 0 |
self._world_size = 1 |
self.cache_hook = CacheHook(None) |
@abc.abstractmethod |
def loglikelihood(self, requests) -> List[Tuple[float, bool]]: |
pass |
@abc.abstractmethod |
def loglikelihood_rolling(self, requests) -> List[Tuple[float]]: |
pass |
@abc.abstractmethod |
def generate_until(self, requests) -> List[str]: |
pass |
def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str: |
raise NotImplementedError("To use this model with chat templates, please implement the 'apply_chat_template' method for your model type.") |
@classmethod |
def create_from_arg_string(cls: Type[T], arg_string: str, additional_config: Optional[dict]=None) -> T: |
additional_config = {} if additional_config is None else additional_config |
args = utils.simple_parse_args_string(arg_string) |
args2 = {k: v for (k, v) in additional_config.items() if v is not None} |
return cls(**args, **args2) |
@classmethod |
def create_from_arg_obj(cls: Type[T], arg_dict: dict, additional_config: Optional[dict]=None) -> T: |
additional_config = {} if additional_config is None else additional_config |
additional_config = {k: v for (k, v) in additional_config.items() if v is not None} |
return cls(**arg_dict, **additional_config) |
@property |
def rank(self): |
return self._rank |
@property |
def world_size(self): |
return self._world_size |
@property |
def tokenizer_name(self) -> str: |
raise NotImplementedError("To use this model with chat templates, please implement the 'tokenizer_name' property.") |
@property |
def chat_template(self) -> str: |
raise NotImplementedError("To use this model with chat templates, please implement the 'chat_template' property.") |
def set_cache_hook(self, cache_hook) -> None: |
self.cache_hook = cache_hook |
def hash_args(attr, args): |
dat = json.dumps([attr] + list(args)) |
return hashlib.sha256(dat.encode('utf-8')).hexdigest() |
class CacheHook: |
def __init__(self, cachinglm) -> None: |
if cachinglm is None: |
self.dbdict = None |
return |
self.dbdict = cachinglm.dbdict |
def add_partial(self, attr, req, res) -> None: |
if self.dbdict is None: |
return |
hsh = hash_args(attr, req) |
self.dbdict[hsh] = res |
class CachingLM: |
def __init__(self, lm, cache_db) -> None: |
self.lm = lm |
self.cache_db = cache_db |
if os.path.dirname(cache_db): |
os.makedirs(os.path.dirname(cache_db), exist_ok=True) |
self.dbdict = SqliteDict(cache_db, autocommit=True) |
lm.set_cache_hook(self.get_cache_hook()) |
Subsets and Splits