repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
Jacobo/grc_ud_perseus_lg
Jacobo
null
26
2
spacy
0
token-classification
false
false
false
null
['grc']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
208,206
| Feature | Description | | --- | --- | | **Name** | `grc_ud_perseus_lg` | | **Version** | `3.2.2` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `experimental_edit_tree_lemmatizer`, `senter` | | **Components** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `experimental_edit_tree_lemmatizer`, `senter` | | **Vectors** | 381105 keys, 381105 unique vectors (100 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (17972 labels for 5 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `POS=INTJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Degree=Cmp\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `POS=X`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON`, `POS=DET`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|Tense=Past\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Imp\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Acc\|Gender=Neut\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Neut\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Degree=Sup\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `POS=VERB\|Tense=Pres\|VerbForm=Inf`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Degree=Cmp\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=X`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=DET` | | **`tagger`** | `---------`, `--p---fa-`, `--s---ma-`, `-3paia---`, `-3paim---`, `-3siia---`, `a`, `c`, `d`, `g`, `i`, `l`, `m`, `n`, `p`, `r`, `u`, `v`, `x--------`, `x-p----d-`, `x-p---nn-`, `x-s---na-` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `4`, `7`, `12`, `16`, `17`, `18`, `20`, `22`, `24`, `30`, `32`, `34`, `38`, `40`, `42`, `45`, `46`, `48`, `51`, `56`, `58`, `60`, `62`, `64`, `66`, `70`, `74`, `77`, `79`, `84`, `86`, `88`, `90`, `93`, `95`, `99`, `100`, `102`, `105`, `107`, `109`, `110`, `112`, `114`, `117`, `118`, `120`, `122`, `124`, `127`, `128`, `132`, `134`, `138`, `144`, `145`, `149`, `151`, `152`, `154`, `155`, `158`, `162`, `164`, `166`, `168`, `169`, `170`, `172`, `173`, `175`, `181`, `182`, `184`, `186`, `81`, `188`, `189`, `190`, `192`, `194`, `197`, `199`, `202`, `204`, `206`, `210`, `212`, `216`, `221`, `223`, `225`, `227`, `229`, `231`, `234`, `236`, `238`, `242`, `247`, `253`, `255`, `262`, `263`, `265`, `269`, `270`, `274`, `276`, `278`, `280`, `282`, `286`, `289`, `291`, `293`, `294`, `296`, `299`, `302`, `305`, `308`, `310`, `313`, `317`, `321`, `323`, `324`, `327`, `331`, `335`, `337`, `340`, `341`, `343`, `345`, `347`, `349`, `350`, `352`, `355`, `357`, `359`, `360`, `363`, `364`, `366`, `369`, `370`, `372`, `375`, `377`, `380`, `382`, `384`, `387`, `393`, `397`, `399`, `401`, `405`, `407`, `408`, `409`, `411`, `413`, `415`, `417`, `419`, `424`, `426`, `429`, `431`, `432`, `434`, `436`, `438`, `440`, `442`, `444`, `446`, `448`, `450`, `454`, `457`, `459`, `461`, `463`, `464`, `467`, `469`, `470`, `475`, `477`, `479`, `482`, `484`, `488`, `491`, `493`, `498`, `500`, `501`, `503`, `505`, `507`, `512`, `517`, `519`, `521`, `523`, `526`, `527`, `531`, `534`, `539`, `542`, `547`, `550`, `554`, `557`, `560`, `565`, `567`, `569`, `572`, `574`, `575`, `576`, `580`, `583`, `588`, `590`, `592`, `595`, `598`, `600`, `602`, `604`, `606`, `607`, `610`, `613`, `619`, `621`, `625`, `630`, `631`, `636`, `638`, `639`, `641`, `644`, `646`, `648`, `652`, `658`, `662`, `663`, `665`, `668`, `672`, `676`, `679`, `681`, `683`, `689`, `691`, `694`, `697`, `699`, `701`, `703`, `705`, `707`, `710`, `714`, `719`, `724`, `728`, `731`, `733`, `735`, `737`, `738`, `740`, `741`, `747`, `750`, `753`, `756`, `757`, `759`, `761`, `763`, `766`, `768`, `770`, `773`, `776`, `779`, `781`, `783`, `784`, `788`, `791`, `793`, `796`, `799`, `802`, `804`, `806`, `809`, `811`, `813`, `817`, `819`, `821`, `823`, `826`, `828`, `830`, `832`, `834`, `838`, `839`, `841`, `843`, `845`, `849`, `852`, `854`, `856`, `858`, `861`, `863`, `867`, `869`, `871`, `875`, `880`, `882`, `885`, `886`, `888`, `895`, `897`, `899`, `900`, `902`, `904`, `907`, `909`, `913`, `916`, `919`, `920`, `922`, `924`, `930`, `932`, `933`, `935`, `938`, `940`, `942`, `945`, `947`, `949`, `952`, `954`, `956`, `958`, `962`, `964`, `968`, `970`, `973`, `975`, `978`, `982`, `983`, `986`, `988`, `990`, `992`, `994`, `998`, `1001`, `1003`, `1006`, `1010`, `1012`, `1015`, `1016`, `1020`, `1024`, `1027`, `1031`, `1036`, `1037`, `1040`, `1043`, `1045`, `1047`, `1049`, `1052`, `1054`, `1056`, `1058`, `1060`, `1063`, `1065`, `1068`, `1071`, `1073`, `1075`, `1077`, `1079`, `1084`, `1086`, `1090`, `1093`, `1094`, `1096`, `1098`, `1100`, `1102`, `1105`, `1107`, `1109`, `1110`, `1114`, `1115`, `1117`, `1119`, `1121`, `1123`, `1126`, `1128`, `1131`, `1133`, `1136`, `1139`, `1141`, `1144`, `1147`, `1149`, `1153`, `1155`, `1157`, `1161`, `1163`, `1165`, `1173`, `1176`, `1178`, `1180`, `1182`, `1186`, `1187`, `1191`, `1193`, `1195`, `1199`, `1202`, `1206`, `1208`, `1210`, `1212`, `1214`, `1217`, `1218`, `1221`, `1224`, `1225`, `1229`, `1230`, `1234`, `1235`, `1237`, `1239`, `1241`, `1243`, `1246`, `1247`, `1250`, `1253`, `1255`, `1257`, `1261`, `1267`, `1268`, `1270`, `1273`, `1275`, `1277`, `1279`, `1282`, `1284`, `1289`, `1291`, `1293`, `1295`, `1299`, `1302`, `1304`, `1306`, `1308`, `1310`, `1312`, `1315`, `1319`, `1321`, `1323`, `1326`, `1328`, `1330`, `1331`, `1335`, `1337`, `1338`, `1342`, `1344`, `1347`, `1349`, `1351`, `1355`, `1357`, `1359`, `1362`, `1367`, `1370`, `1374`, `1377`, `1379`, `1384`, `1387`, `1389`, `1391`, `1393`, `1398`, `1399`, `1401`, `1408`, `1411`, `1416`, `1419`, `1422`, `1425`, `1427`, `1430`, `1431`, `1433`, `1435`, `1438`, `1440`, `1442`, `1443`, `1445`, `1448`, `1450`, `1454`, `1457`, `1460`, `1463`, `1465`, `1467`, `1469`, `1472`, `1475`, `1477`, `1479`, `1480`, `1482`, `1484`, `1486`, `1488`, `1492`, `1494`, `1497`, `1499`, `1504`, `1506`, `1508`, `1511`, `1513`, `1518`, `1521`, `1523`, `1525`, `1526`, `1529`, `1531`, `1533`, `1536`, `1538`, `1542`, `1544`, `1547`, `1549`, `1552`, `1555`, `1557`, `1559`, `1562`, `1565`, `1568`, `1570`, `1573`, `1577`, `1582`, `1584`, `1586`, `1590`, `1591`, `1594`, `1599`, `1602`, `1607`, `1609`, `1611`, `1613`, `1616`, `1618`, `1620`, `1622`, `1623`, `1624`, `1628`, `1629`, `1631`, `1634`, `1636`, `1642`, `1646`, `1648`, `1653`, `1656`, `1658`, `1666`, `1669`, `1670`, `1672`, `1676`, `1681`, `1685`, `1687`, `1688`, `1690`, `1692`, `1694`, `1698`, `1702`, `1704`, `1706`, `1709`, `1713`, `1715`, `1720`, `1721`, `1723`, `1726`, `1728`, `1731`, `1733`, `1736`, `1738`, `1739`, `1745`, `1746`, `1748`, `1750`, `1754`, `1757`, `1759`, `1761`, `1764`, `1767`, `1769`, `1771`, `1775`, `1776`, `1778`, `1780`, `1783`, `1785`, `1787`, `1789`, `1791`, `1792`, `1794`, `1796`, `1797`, `1800`, `1803`, `1806`, `1807`, `1811`, `1813`, `1818`, `1823`, `1825`, `1830`, `1832`, `1835`, `1837`, `1839`, `1840`, `1842`, `1846`, `1849`, `1852`, `1856`, `1858`, `1860`, `1864`, `1866`, `1868`, `1871`, `1873`, `1876`, `1880`, `1883`, `1885`, `1890`, `1891`, `1893`, `1895`, `1898`, `1900`, `1901`, `1903`, `1905`, `1907`, `1908`, `1910`, `1911`, `1913`, `1917`, `1919`, `1921`, `1923`, `1926`, `1930`, `1935`, `1937`, `1939`, `1943`, `1945`, `1946`, `1948`, `1951`, `1954`, `1956`, `1958`, `1961`, `1965`, `1968`, `1970`, `1972`, `1974`, `1978`, `1981`, `1984`, `1986`, `1987`, `1989`, `1993`, `1995`, `1997`, `2001`, `2003`, `2005`, `2006`, `2008`, `2012`, `2015`, `2017`, `2019`, `2023`, `2025`, `2027`, `2028`, `2031`, `2032`, `2035`, `2037`, `2039`, `2041`, `2044`, `2049`, `2051`, `2053`, `2056`, `2059`, `2062`, `2063`, `2065`, `2069`, `2070`, `2072`, `2075`, `2077`, `2079`, `2081`, `2084`, `2086`, `2089`, `2091`, `2095`, `2097`, `2102`, `2105`, `2106`, `2112`, `2114`, `2117`, `2119`, `2121`, `2122`, `2123`, `2127`, `2130`, `2134`, `2136`, `2138`, `2140`, `2143`, `2146`, `2147`, `2149`, `2156`, `2159`, `2160`, `2163`, `2164`, `2169`, `2174`, `2175`, `2178`, `2180`, `2183`, `2185`, `2187`, `2191`, `2195`, `2197`, `2200`, `2203`, `2207`, `2209`, `2211`, `2213`, `2217`, `2221`, `2222`, `2225`, `2227`, `2229`, `2231`, `2234`, `2236`, `2238`, `2240`, `2243`, `2244`, `2246`, `2249`, `2253`, `2257`, `2258`, `2261`, `2264`, `2265`, `2267`, `2271`, `2274`, `2278`, `2280`, `2285`, `2288`, `2289`, `2291`, `2293`, `2296`, `2299`, `2301`, `2302`, `2305`, `2307`, `2309`, `2314`, `2316`, `2320`, `2323`, `2327`, `2328`, `2330`, `2333`, `2339`, `2341`, `2343`, `2346`, `2349`, `2351`, `2356`, `2358`, `2360`, `2363`, `2365`, `2369`, `2371`, `2373`, `2376`, `2382`, `2384`, `2386`, `2388`, `2390`, `2393`, `2397`, `2400`, `2403`, `2404`, `2406`, `2408`, `2409`, `2410`, `2413`, `2415`, `2419`, `2420`, `2422`, `2427`, `2429`, `2431`, `2433`, `2435`, `2438`, `2440`, `2443`, `2445`, `2449`, `2452`, `2454`, `2458`, `2460`, `2461`, `2463`, `2465`, `2467`, `2468`, `2470`, `2473`, `2475`, `2477`, `2478`, `2480`, `2481`, `2483`, `2485`, `2487`, `2490`, `1563`, `2492`, `2494`, `2497`, `2499`, `2502`, `2504`, `2506`, `2509`, `2511`, `2513`, `2516`, `2517`, `2518`, `2520`, `2522`, `2524`, `2526`, `2528`, `2532`, `2534`, `2536`, `2539`, `2541`, `2544`, `2545`, `2548`, `2550`, `2553`, `2554`, `2556`, `2558`, `2560`, `2562`, `2566`, `2567`, `2569`, `2572`, `2573`, `2574`, `2578`, `2580`, `2582`, `2585`, `2589`, `2591`, `2593`, `2595`, `2596`, `2601`, `2604`, `2605`, `2607`, `2609`, `2612`, `2615`, `2617`, `2619`, `2623`, `2626`, `2627`, `2630`, `2632`, `2634`, `2635`, `2637`, `2641`, `2643`, `2645`, `2648`, `2650`, `2653`, `2657`, `2658`, `2660`, `2661`, `2663`, `2666`, `2669`, `2671`, `2673`, `2675`, `2678`, `2680`, `2682`, `2684`, `2686`, `2688`, `2690`, `2692`, `2695`, `2699`, `2703`, `2704`, `2707`, `2709`, `2712`, `2714`, `2716`, `2717`, `2720`, `2722`, `2723`, `2727`, `2728`, `2730`, `2733`, `2734`, `2736`, `2740`, `2742`, `2744`, `2746`, `2748`, `2750`, `2752`, `2754`, `2756`, `2757`, `2758`, `2760`, `2761`, `2763`, `2765`, `2766`, `2768`, `2772`, `2774`, `2777`, `2780`, `2783`, `2787`, `2790`, `2792`, `2793`, `2795`, `2796`, `2798`, `2800`, `2802`, `2803`, `2806`, `2807`, `2809`, `2810`, `2811`, `2813`, `2814`, `2816`, `2817`, `2820`, `2823`, `2824`, `2827`, `2829`, `2832`, `2834`, `2836`, `2839`, `2841`, `2844`, `2847`, `2849`, `2852`, `2854`, `2857`, `2860`, `2862`, `2865`, `2867`, `2869`, `2871`, `2873`, `2874`, `2876`, `2878`, `2880`, `2882`, `2883`, `2885`, `2886`, `2888`, `2889`, `2891`, `2895`, `2898`, `2901`, `2904`, `2906`, `2910`, `2913`, `2915`, `2917`, `2920`, `2926`, `2928`, `2930`, `2932`, `2933`, `2938`, `2940`, `2943`, `2947`, `2948`, `2950`, `2954`, `2955`, `2960`, `2962`, `2965`, `2966`, `2968`, `2970`, `2974`, `2975`, `2977`, `2978`, `2980`, `2981`, `2984`, `2986`, `2988`, `2989`, `2990`, `2992`, `2994`, `2996`, `2998`, `2999`, `3001`, `3004`, `3007`, `3009`, `3011`, `3013`, `3016`, `3017`, `3020`, `3023`, `3025`, `3026`, `3028`, `3030`, `3032`, `3035`, `3041`, `3042`, `3044`, `3048`, `3049`, `3052`, `3054`, `3056`, `3060`, `3063`, `3065`, `3067`, `3070`, `3072`, `3073`, `3076`, `3077`, `3079`, `3080`, `3081`, `3084`, `3088`, `3090`, `3092`, `3095`, `3096`, `3098`, `3101`, `3102`, `3104`, `3106`, `3109`, `3111`, `3112`, `3115`, `3118`, `3120`, `3122`, `3123`, `3126`, `3127`, `3129`, `3130`, `3134`, `3136`, `3139`, `3140`, `3141`, `3144`, `3146`, `3148`, `3149`, `3150`, `3152`, `3154`, `3155`, `3157`, `3159`, `3161`, `3164`, `3165`, `3167`, `3170`, `3172`, `3174`, `3176`, `3180`, `3182`, `3186`, `3189`, `3191`, `3194`, `3197`, `3200`, `3202`, `3204`, `3206`, `3208`, `3213`, `3215`, `3216`, `3218`, `3220`, `3222`, `3225`, `3227`, `3229`, `3231`, `3235`, `3236`, `3239`, `3242`, `3243`, `3245`, `3246`, `3248`, `3250`, `3252`, `3255`, `3257`, `3259`, `3261`, `3263`, `3264`, `3265`, `3269`, `3270`, `3272`, `3275`, `3278`, `3280`, `3281`, `3283`, `3285`, `3289`, `3291`, `3293`, `3295`, `3297`, `3298`, `3299`, `3300`, `3301`, `3304`, `3306`, `3308`, `3311`, `3314`, `3315`, `3317`, `3319`, `3322`, `3323`, `3324`, `3327`, `3329`, `3330`, `3333`, `3336`, `3338`, `3340`, `3342`, `3344`, `3345`, `3348`, `3349`, `3350`, `3352`, `3354`, `3356`, `3359`, `3360`, `3362`, `3364`, `3367`, `3369`, `3373`, `3375`, `3378`, `3382`, `3385`, `3386`, `3388`, `3389`, `3390`, `3394`, `3396`, `3398`, `3399`, `3401`, `3404`, `3406`, `3409`, `3412`, `3414`, `3416`, `3418`, `3420`, `3423`, `3428`, `3432`, `3434`, `3435`, `3437`, `3440`, `3442`, `3443`, `3444`, `3446`, `3448`, `3450`, `3452`, `3454`, `3459`, `3461`, `3462`, `3465`, `3468`, `3469`, `3470`, `3472`, `3475`, `3478`, `3480`, `3483`, `3485`, `3486`, `3489`, `3491`, `3493`, `3496`, `3497`, `3500`, `3502`, `3506`, `3508`, `3512`, `3515`, `3517`, `3519`, `3522`, `3524`, `3527`, `3530`, `3532`, `3535`, `3537`, `3540`, `3542`, `3544`, `3545`, `3547`, `3549`, `3552`, `3554`, `3558`, `3560`, `3562`, `3565`, `3568`, `3570`, `3572`, `3573`, `3576`, `3577`, `3579`, `3582`, `3584`, `3587`, `3589`, `3592`, `3593`, `3594`, `3598`, `3600`, `3603`, `3604`, `3606`, `3608`, `3610`, `3613`, `3615`, `3617`, `3618`, `3620`, `3622`, `3624`, `3626`, `3628`, `3630`, `3632`, `3634`, `3636`, `3637`, `3642`, `3645`, `3648`, `3651`, `3652`, `3654`, `3658`, `3660`, `3663`, `3665`, `3666`, `3669`, `3672`, `3674`, `3677`, `3679`, `3683`, `3685`, `3687`, `3689`, `3690`, `3692`, `3694`, `3696`, `3698`, `3701`, `3702`, `3705`, `3707`, `3709`, `3711`, `3713`, `3716`, `3718`, `3720`, `3721`, `3723`, `3726`, `3727`, `3730`, `3733`, `3737`, `3738`, `3740`, `3745`, `3747`, `3749`, `3753`, `3756`, `3758`, `3761`, `3764`, `3765`, `3768`, `3769`, `3771`, `3772`, `3774`, `3776`, `3779`, `3780`, `3781`, `3784`, `3785`, `3787`, `3788`, `3790`, `3791`, `3793`, `3796`, `3800`, `3804`, `3806`, `3809`, `3811`, `3815`, `3818`, `3819`, `3822`, `3825`, `3829`, `3834`, `3837`, `3839`, `3841`, `3843`, `3845`, `3847`, `3850`, `3852`, `3854`, `3859`, `3860`, `3861`, `3862`, `3865`, `3868`, `3870`, `3873`, `3876`, `3879`, `3881`, `3883`, `3886`, `3888`, `3891`, `3892`, `3894`, `3896`, `3898`, `3900`, `3901`, `3904`, `3905`, `3908`, `3910`, `3912`, `3913`, `3914`, `3917`, `3921`, `3925`, `3927`, `3929`, `3932`, `3934`, `3938`, `3939`, `3941`, `3943`, `3945`, `3947`, `3948`, `3950`, `3952`, `3953`, `3955`, `3956`, `3958`, `3959`, `3961`, `3964`, `3965`, `3967`, `3969`, `3971`, `3974`, `3977`, `3980`, `3983`, `3985`, `3987`, `3989`, `3990`, `3992`, `3994`, `3996`, `4000`, `4004`, `4007`, `4009`, `4012`, `4015`, `4016`, `4019`, `4022`, `896`, `4023`, `4024`, `4026`, `4028`, `4030`, `4033`, `4035`, `4038`, `4042`, `4044`, `4046`, `4048`, `4049`, `4052`, `4056`, `4058`, `4059`, `4061`, `4064`, `4066`, `4067`, `4069`, `4072`, `4075`, `4078`, `4080`, `3655`, `4082`, `4084`, `4086`, `4090`, `4092`, `4094`, `4096`, `4098`, `4101`, `4103`, `4106`, `4108`, `4110`, `4111`, `4112`, `4113`, `4115`, `4117`, `4118`, `4120`, `4121`, `4123`, `4125`, `4127`, `4129`, `4131`, `1952`, `4133`, `4135`, `4137`, `4139`, `4141`, `4143`, `4145`, `4147`, `4149`, `4151`, `4154`, `4156`, `4158`, `4159`, `4160`, `4162`, `4164`, `4165`, `4168`, `4172`, `4174`, `4176`, `4178`, `4179`, `4182`, `4185`, `4186`, `4188`, `4189`, `4190`, `4194`, `4195`, `4197`, `4199`, `4201`, `4204`, `4206`, `4208`, `4211`, `4214`, `4217`, `4219`, `4221`, `4223`, `4227`, `4228`, `4231`, `4235`, `4238`, `4240`, `4244`, `4247`, `4250`, `4251`, `4253`, `4256`, `4258`, `4259`, `4262`, `4265`, `4267`, `4270`, `1014`, `4272`, `4273`, `4276`, `4278`, `4280`, `4284`, `4286`, `4288`, `4290`, `4292`, `4294`, `4295`, `4297`, `4300`, `4303`, `4304`, `4307`, `4309`, `4311`, `4312`, `4314`, `4317`, `4320`, `4326`, `4328`, `4331`, `4333`, `4335`, `4337`, `4339`, `4342`, `4345`, `4347`, `4349`, `4350`, `4352`, `4354`, `4357`, `4359`, `4360`, `4363`, `4366`, `4368`, `4369`, `4372`, `4375`, `4377`, `4380`, `4381`, `4383`, `4385`, `4386`, `4388`, `4391`, `4393`, `4395`, `4398`, `4400`, `4402`, `4404`, `4406`, `4409`, `4410`, `4413`, `4415`, `4418`, `4420`, `4421`, `4423`, `4424`, `4428`, `4429`, `4431`, `4434`, `4435`, `4436`, `4437`, `4439`, `4441`, `4444`, `4446`, `4449`, `4451`, `4452`, `4454`, `4457`, `4459`, `4461`, `4462`, `4464`, `4467`, `4471`, `4474`, `4476`, `4479`, `4480`, `4483`, `4486`, `4488`, `4490`, `4492`, `4495`, `4497`, `4499`, `4502`, `4504`, `4507`, `4511`, `4514`, `4515`, `4518`, `4521`, `4525`, `4527`, `4528`, `4530`, `4533`, `4536`, `4537`, `4538`, `4541`, `4544`, `4546`, `4547`, `4550`, `4551`, `4556`, `4559`, `4562`, `4565`, `4566`, `4568`, `4572`, `4575`, `4577`, `4579`, `4581`, `4586`, `4589`, `4591`, `4593`, `4594`, `4596`, `4597`, `4598`, `4600`, `4601`, `4604`, `4607`, `4609`, `4611`, `4615`, `4619`, `4622`, `4623`, `4624`, `4628`, `4631`, `4634`, `4636`, `4639`, `4642`, `4644`, `4646`, `4648`, `4651`, `4653`, `4655`, `4657`, `4660`, `4661`, `4664`, `4666`, `4667`, `4669`, `4671`, `4673`, `4675`, `4677`, `4679`, `4681`, `4682`, `4684`, `4686`, `4689`, `4692`, `4695`, `4696`, `4700`, `4702`, `4704`, `4706`, `4708`, `4710`, `4712`, `4714`, `4716`, `4719`, `4721`, `4723`, `4727`, `4730`, `4732`, `4733`, `4736`, `4739`, `4741`, `4743`, `4744`, `4747`, `4749`, `4751`, `4752`, `4755`, `4758`, `4760`, `4762`, `4764`, `4766`, `4767`, `4770`, `4772`, `4777`, `4778`, `4780`, `4783`, `4784`, `4787`, `4791`, `4793`, `4796`, `4798`, `4800`, `4802`, `4804`, `4805`, `4807`, `4808`, `4812`, `4817`, `4821`, `4824`, `4825`, `4827`, `4830`, `4834`, `4835`, `4837`, `4839`, `4841`, `4844`, `4845`, `4847`, `4849`, `4851`, `4853`, `4856`, `4858`, `4860`, `4864`, `4866`, `4867`, `4869`, `4870`, `4873`, `4875`, `4876`, `4878`, `4881`, `4883`, `4885`, `4887`, `4889`, `4890`, `4893`, `4895`, `4899`, `4901`, `4903`, `4904`, `4906`, `4908`, `4910`, `4913`, `4916`, `4919`, `4922`, `4924`, `4927`, `4929`, `4933`, `4935`, `4938`, `4939`, `4941`, `4948`, `4949`, `4950`, `4952`, `4954`, `4958`, `4960`, `4962`, `4965`, `4966`, `4968`, `4970`, `4971`, `4972`, `4975`, `4977`, `4979`, `4981`, `4985`, `4986`, `4987`, `4989`, `4991`, `4993`, `4995`, `4998`, `5001`, `5004`, `5005`, `5007`, `5009`, `5011`, `5014`, `5016`, `5019`, `5020`, `5021`, `5023`, `5027`, `5029`, `5031`, `5034`, `5037`, `5040`, `5042`, `5044`, `5046`, `5049`, `5050`, `5052`, `5054`, `5057`, `5060`, `5062`, `5064`, `5066`, `5068`, `5070`, `5071`, `5074`, `5076`, `5078`, `5081`, `5084`, `5086`, `5088`, `5091`, `5093`, `5095`, `5097`, `5098`, `5100`, `5102`, `5105`, `5108`, `5109`, `5112`, `5113`, `5116`, `5117`, `5119`, `5123`, `5124`, `5126`, `5129`, `5131`, `5135`, `5137`, `5140`, `5142`, `5144`, `5147`, `5148`, `5152`, `5154`, `5156`, `5157`, `5158`, `5160`, `5163`, `5164`, `5166`, `5168`, `5170`, `5172`, `5174`, `5178`, `5179`, `5182`, `5185`, `5186`, `5188`, `5190`, `5194`, `5195`, `5197`, `5200`, `5204`, `5205`, `5207`, `5209`, `5211`, `5214`, `5216`, `5219`, `5220`, `5225`, `5226`, `5229`, `5231`, `5233`, `5239`, `5240`, `5242`, `5245`, `5247`, `5249`, `5251`, `5254`, `5256`, `5257`, `5259`, `5261`, `5263`, `5265`, `5267`, `5269`, `5271`, `5274`, `5277`, `5281`, `5283`, `5284`, `5287`, `5290`, `5292`, `5295`, `5296`, `5297`, `5300`, `5302`, `5304`, `5308`, `5311`, `5312`, `5314`, `5316`, `5317`, `5319`, `5320`, `5322`, `5324`, `5326`, `5328`, `5332`, `5333`, `5335`, `5337`, `5339`, `5341`, `5344`, `5347`, `5349`, `5351`, `5352`, `5353`, `5354`, `5356`, `5358`, `5359`, `5360`, `5362`, `5365`, `5367`, `5369`, `5370`, `5372`, `5374`, `5376`, `5379`, `5380`, `5382`, `5386`, `5389`, `5391`, `5394`, `5395`, `5396`, `5398`, `5400`, `5402`, `5405`, `5406`, `5410`, `5411`, `5412`, `5414`, `5416`, `5418`, `5421`, `5424`, `5428`, `5429`, `5431`, `5434`, `5436`, `5440`, `5442`, `5445`, `5447`, `5449`, `5451`, `5453`, `5455`, `5458`, `5461`, `5462`, `5463`, `5466`, `5468`, `5470`, `5472`, `5474`, `5477`, `5481`, `5487`, `5490`, `5492`, `5494`, `5496`, `5498`, `5499`, `5500`, `5503`, `5507`, `5509`, `5512`, `5514`, `5515`, `5516`, `5518`, `5519`, `5522`, `5526`, `5529`, `5532`, `5533`, `5535`, `5537`, `5539`, `5541`, `5544`, `5546`, `5547`, `5550`, `5553`, `5554`, `5556`, `5557`, `5560`, `5563`, `5564`, `5567`, `5569`, `5572`, `5574`, `5576`, `5578`, `5581`, `5585`, `5588`, `5590`, `5593`, `5599`, `5600`, `5601`, `5603`, `5605`, `5607`, `5609`, `5611`, `5612`, `5613`, `5617`, `5618`, `5619`, `5621`, `5622`, `5625`, `5626`, `5628`, `5629`, `5630`, `5631`, `5633`, `5635`, `5637`, `5639`, `5643`, `5646`, `5649`, `5650`, `5653`, `5655`, `5657`, `5660`, `5663`, `5666`, `5668`, `5669`, `5671`, `4327`, `5674`, `5675`, `5677`, `5679`, `5681`, `5683`, `5685`, `5687`, `5689`, `5691`, `5694`, `5696`, `5698`, `5700`, `5702`, `5704`, `5708`, `5710`, `5712`, `5714`, `5715`, `5719`, `5721`, `5723`, `5726`, `5728`, `5733`, `5736`, `5739`, `5742`, `5747`, `5749`, `5750`, `5752`, `5754`, `5759`, `5760`, `5763`, `5766`, `5767`, `5769`, `5771`, `5772`, `5774`, `5776`, `5778`, `5781`, `5783`, `5787`, `5789`, `5794`, `5796`, `5800`, `5803`, `5805`, `5808`, `5811`, `5814`, `5816`, `5818`, `5820`, `5823`, `5826`, `5827`, `5830`, `5832`, `5835`, `5837`, `5838`, `5843`, `5845`, `5846`, `5848`, `5850`, `5852`, `5854`, `5857`, `5859`, `5861`, `5863`, `5865`, `5867`, `5868`, `5870`, `5873`, `5875`, `5877`, `5878`, `5881`, `5883`, `5886`, `5887`, `5889`, `5891`, `5892`, `5894`, `5896`, `5897`, `5900`, `5901`, `5904`, `5906`, `5907`, `5908`, `5910`, `5915`, `5917`, `5920`, `5925`, `5926`, `5928`, `5931`, `5932`, `5934`, `5937`, `5938`, `5941`, `5943`, `5945`, `5946`, `5949`, `5950`, `5952`, `5953`, `5955`, `5956`, `5958`, `5961`, `5964`, `5965`, `5967`, `5969`, `5971`, `5972`, `5973`, `5974`, `5976`, `5979`, `5981`, `5983`, `5985`, `5988`, `5990`, `5993`, `5996`, `5998`, `6000`, `6002`, `6004`, `6006`, `6007`, `6011`, `6013`, `6016`, `6019`, `6020`, `6021`, `6024`, `6028`, `6031`, `6034`, `6035`, `6037`, `6040`, `6042`, `6044`, `6047`, `6048`, `6050`, `6054`, `6055`, `6058`, `6060`, `6062`, `6064`, `6066`, `6067`, `6072`, `6073`, `6076`, `6078`, `6081`, `6082`, `6086`, `6088`, `6090`, `6092`, `6095`, `6099`, `6100`, `6102`, `6105`, `6106`, `6107`, `6109`, `6111`, `6114`, `6117`, `6118`, `6122`, `6124`, `6125`, `6128`, `6130`, `6135`, `6136`, `6137`, `6139`, `6142`, `6145`, `6146`, `6148`, `6151`, `6157`, `6159`, `6161`, `6164`, `6166`, `6170`, `6173`, `6175`, `6178`, `6179`, `6182`, `6185`, `6187`, `6189`, `6192`, `6195`, `6198`, `6200`, `6204`, `6206`, `6209`, `6211`, `6214`, `6216`, `6218`, `6220`, `6222`, `6224`, `6226`, `6227`, `6229`, `6231`, `6232`, `6233`, `6237`, `6244`, `6247`, `6250`, `6253`, `6255`, `6257`, `6259`, `6260`, `6262`, `6263`, `6265`, `6267`, `6268`, `6272`, `6277`, `6279`, `6281`, `6282`, `6285`, `6287`, `6289`, `6290`, `6291`, `6294`, `6296`, `6299`, `6301`, `6304`, `6308`, `6309`, `6310`, `6313`, `6315`, `6318`, `6323`, `6324`, `6326`, `6328`, `6330`, `6331`, `6333`, `6335`, `6338`, `6342`, `6344`, `6346`, `6347`, `6350`, `6352`, `6355`, `6357`, `6360`, `6362`, `6366`, `6367`, `6369`, `6371`, `6375`, `6376`, `6378`, `6380`, `6383`, `6385`, `6387`, `6390`, `6391`, `6393`, `6395`, `6396`, `6399`, `6401`, `6402`, `6403`, `6405`, `6406`, `6407`, `6409`, `6410`, `6413`, `6415`, `6418`, `6420`, `6422`, `6423`, `6425`, `6427`, `6429`, `6432`, `6433`, `6436`, `6439`, `6442`, `6445`, `6446`, `6449`, `6450`, `6453`, `6455`, `6459`, `6461`, `6464`, `6467`, `6469`, `6470`, `6471`, `6473`, `6475`, `6478`, `6479`, `6481`, `6483`, `6486`, `6488`, `6490`, `6492`, `6494`, `6498`, `6502`, `6503`, `6506`, `6507`, `6509`, `6511`, `6515`, `6517`, `6519`, `6522`, `6523`, `6525`, `6527`, `6529`, `6531`, `6533`, `6536`, `6537`, `6538`, `6540`, `6542`, `6544`, `6548`, `6550`, `6554`, `6556`, `6557`, `6558`, `6562`, `6565`, `6569`, `6572`, `6574`, `6575`, `6577`, `6579`, `6583`, `6585`, `6589`, `6591`, `6596`, `6598`, `6600`, `6602`, `6604`, `6606`, `6608`, `6610`, `6612`, `6613`, `6616`, `6618`, `6621`, `6623`, `6626`, `6628`, `6630`, `6631`, `6633`, `6635`, `6638`, `6640`, `6643`, `6645`, `6646`, `6649`, `6651`, `6654`, `6656`, `6659`, `6661`, `6664`, `6666`, `6668`, `6670`, `6671`, `6673`, `6676`, `6678`, `6680`, `6682`, `6684`, `6688`, `6690`, `6691`, `6693`, `6695`, `6696`, `6698`, `6700`, `6702`, `6707`, `6708`, `6710`, `6712`, `6714`, `6716`, `6718`, `6719`, `6721`, `6724`, `6726`, `6727`, `6729`, `6733`, `6736`, `6738`, `6740`, `6744`, `6746`, `6748`, `6749`, `6751`, `6754`, `6756`, `6759`, `6761`, `6764`, `577`, `6766`, `6768`, `6770`, `6773`, `6776`, `6778`, `6780`, `6782`, `6784`, `6786`, `6788`, `6791`, `6793`, `6795`, `6797`, `6798`, `6799`, `6801`, `6802`, `6804`, `6806`, `6809`, `6810`, `6812`, `6814`, `6816`, `6818`, `6820`, `6822`, `6824`, `6826`, `6828`, `6829`, `6831`, `6833`, `6835`, `6837`, `6839`, `6842`, `6844`, `6847`, `6849`, `6852`, `6854`, `6856`, `6858`, `6860`, `6862`, `6865`, `6867`, `6869`, `6871`, `6873`, `6876`, `6878`, `6880`, `6882`, `6883`, `6886`, `6888`, `6890`, `6893`, `6895`, `6898`, `4982`, `6901`, `6903`, `6905`, `6907`, `6909`, `6911`, `6912`, `6914`, `6915`, `6916`, `6917`, `6919`, `6920`, `6922`, `6924`, `6927`, `6929`, `6931`, `6933`, `6935`, `6937`, `6939`, `6940`, `6943`, `6945`, `6947`, `6950`, `6952`, `6955`, `6959`, `6961`, `6964`, `6967`, `6969`, `6972`, `6975`, `6979`, `6982`, `6985`, `6987`, `6989`, `6993`, `6996`, `6998`, `6999`, `7001`, `7004`, `7008`, `7011`, `7013`, `7017`, `7018`, `7019`, `7021`, `7023`, `7024`, `7026`, `7028`, `7032`, `7033`, `7035`, `7038`, `7039`, `7042`, `7043`, `7045`, `7047`, `7050`, `7053`, `7056`, `7057`, `7060`, `7062`, `7065`, `7068`, `7070`, `7073`, `7075`, `7078`, `7080`, `7081`, `7084`, `7086`, `7087`, `7089`, `7091`, `7093`, `7095`, `7097`, `7098`, `7099`, `7102`, `7105`, `7107`, `7110`, `7112`, `7113`, `7115`, `7116`, `7119`, `7121`, `7124`, `7126`, `7129`, `7131`, `7133`, `7135`, `7137`, `7138`, `7140`, `7141`, `7146`, `7148`, `7150`, `7153`, `7154`, `7157`, `7161`, `7163`, `7165`, `7167`, `7169`, `7170`, `7172`, `7175`, `7177`, `7179`, `7181`, `7183`, `7185`, `7187`, `7189`, `7191`, `7194`, `7196`, `7200`, `7205`, `7208`, `7210`, `7212`, `7213`, `7216`, `7218`, `7219`, `7221`, `7223`, `7224`, `7228`, `7231`, `7232`, `7234`, `7236`, `7239`, `7242`, `7244`, `7246`, `7248`, `7250`, `7254`, `7256`, `7257`, `7260`, `7262`, `7264`, `7266`, `7268`, `7270`, `7272`, `7274`, `7278`, `7280`, `7281`, `7283`, `7285`, `7289`, `7293`, `7295`, `7297`, `7299`, `7301`, `7302`, `7304`, `7306`, `7307`, `7308`, `7310`, `7312`, `7315`, `7316`, `7318`, `7320`, `7324`, `7325`, `7327`, `7330`, `7331`, `7333`, `7334`, `7335`, `7336`, `7340`, `7343`, `7345`, `7348`, `7349`, `7351`, `7353`, `7356`, `7358`, `7360`, `7362`, `7364`, `7365`, `7368`, `7371`, `7373`, `7375`, `7377`, `7379`, `7380`, `7381`, `7384`, `7385`, `7388`, `7390`, `7391`, `7393`, `7396`, `7397`, `7399`, `7401`, `7402`, `7404`, `7407`, `7411`, `7415`, `7417`, `7420`, `7422`, `7427`, `7429`, `7431`, `7434`, `7436`, `7438`, `7440`, `7442`, `7445`, `7447`, `7449`, `7451`, `7453`, `7455`, `7457`, `7459`, `7462`, `7463`, `7465`, `7468`, `7469`, `7470`, `7473`, `7475`, `7478`, `7479`, `7481`, `7483`, `7484`, `7485`, `7486`, `7487`, `7488`, `7491`, `7494`, `7495`, `7497`, `7500`, `7502`, `7504`, `7505`, `7507`, `7508`, `7511`, `7513`, `7516`, `7520`, `7523`, `7527`, `7532`, `7534`, `7536`, `7537`, `7539`, `7541`, `7543`, `7545`, `7546`, `7548`, `7551`, `7554`, `7556`, `7558`, `7561`, `7563`, `7566`, `7568`, `7570`, `7571`, `7573`, `7574`, `7576`, `7579`, `7581`, `7584`, `7586`, `7590`, `7592`, `7593`, `7595`, `7597`, `7599`, `7601`, `7603`, `7604`, `7607`, `7610`, `7611`, `7613`, `7615`, `7618`, `7620`, `7624`, `7625`, `7628`, `7630`, `7633`, `7635`, `7637`, `7639`, `7641`, `7642`, `7645`, `7646`, `7649`, `7652`, `7653`, `7654`, `7655`, `7656`, `7657`, `7658`, `7660`, `7662`, `7663`, `7666`, `7668`, `7670`, `7672`, `7675`, `7676`, `7678`, `7679`, `7682`, `7684`, `7686`, `7688`, `7690`, `7692`, `7693`, `7694`, `7695`, `7697`, `7699`, `7700`, `7703`, `7705`, `7706`, `7708`, `7710`, `7711`, `7712`, `7714`, `7716`, `7718`, `7720`, `7722`, `7723`, `7725`, `7726`, `7728`, `7729`, `7731`, `7734`, `7737`, `7739`, `7741`, `7743`, `7745`, `7747`, `7749`, `7751`, `7753`, `7757`, `7759`, `7763`, `7765`, `7769`, `7770`, `7773`, `7775`, `7777`, `7779`, `7780`, `7783`, `7785`, `7787`, `7789`, `7791`, `7793`, `7795`, `7796`, `7799`, `7803`, `7805`, `7809`, `7810`, `7812`, `7815`, `7817`, `7819`, `7822`, `7825`, `7827`, `7831`, `7832`, `7835`, `7837`, `7840`, `7843`, `7845`, `7848`, `7850`, `7854`, `7856`, `7857`, `7858`, `7860`, `7863`, `7864`, `7866`, `7868`, `7869`, `7871`, `7873`, `7874`, `7876`, `7879`, `7880`, `7882`, `7884`, `7886`, `7888`, `7890`, `7894`, `7897`, `7898`, `7899`, `7901`, `7902`, `7903`, `7905`, `7906`, `7907`, `7910`, `7912`, `7915`, `7917`, `7919`, `7920`, `7921`, `7922`, `7925`, `7927`, `7929`, `7931`, `7932`, `7935`, `7937`, `7938`, `7940`, `7942`, `7945`, `7948`, `7950`, `7951`, `7953`, `7956`, `7958`, `7960`, `7964`, `7966`, `7968`, `7969`, `7970`, `7972`, `7976`, `7980`, `7982`, `7985`, `7986`, `7988`, `7991`, `7992`, `7995`, `7997`, `8000`, `8001`, `8003`, `8005`, `8007`, `8010`, `8012`, `8016`, `8018`, `8020`, `8022`, `8023`, `8025`, `8027`, `8030`, `8031`, `8032`, `8035`, `8037`, `8040`, `8042`, `8045`, `8047`, `8050`, `8052`, `8053`, `8055`, `8056`, `8058`, `8059`, `8063`, `8065`, `8067`, `8069`, `8071`, `8072`, `8075`, `8076`, `8077`, `8080`, `8085`, `8087`, `8089`, `8091`, `8092`, `8094`, `8098`, `8100`, `8101`, `8102`, `8105`, `8107`, `8109`, `8113`, `8115`, `8118`, `8121`, `8123`, `8127`, `8129`, `8131`, `8133`, `8136`, `8140`, `8144`, `8149`, `8152`, `8153`, `8156`, `8157`, `8160`, `8162`, `8164`, `8166`, `8169`, `8171`, `8174`, `8177`, `8179`, `8181`, `8183`, `8187`, `8192`, `8195`, `8197`, `8198`, `8199`, `8202`, `8205`, `8207`, `8210`, `8211`, `8212`, `8213`, `8214`, `8216`, `8220`, `8222`, `8224`, `8226`, `8229`, `8232`, `8235`, `8238`, `8239`, `8242`, `8244`, `8246`, `8248`, `8251`, `8254`, `8256`, `8259`, `8262`, `8264`, `8266`, `8268`, `8271`, `8274`, `8275`, `8277`, `8278`, `8280`, `8282`, `8283`, `8286`, `8288`, `8290`, `8292`, `8295`, `8297`, `8299`, `8300`, `8301`, `8303`, `8305`, `8307`, `8309`, `8311`, `8313`, `8315`, `8318`, `8320`, `8322`, `8324`, `8328`, `8332`, `8334`, `8337`, `8339`, `8343`, `8345`, `8348`, `8349`, `8352`, `8354`, `8357`, `8360`, `8363`, `8366`, `8367`, `8369`, `8371`, `8373`, `8374`, `8376`, `8378`, `8381`, `8384`, `8385`, `8387`, `8389`, `8392`, `8394`, `8396`, `8399`, `8400`, `8403`, `8405`, `8407`, `8410`, `8411`, `8413`, `8414`, `8416`, `8419`, `8421`, `8423`, `8425`, `8427`, `8430`, `8433`, `8436`, `8438`, `8440`, `8442`, `8444`, `8447`, `8449`, `8453`, `8456`, `8459`, `8462`, `8464`, `8466`, `8468`, `8470`, `8472`, `8473`, `8477`, `8480`, `8483`, `8485`, `8488`, `8491`, `8492`, `8494`, `8495`, `8496`, `8498`, `8499`, `8502`, `8505`, `8507`, `8509`, `8512`, `8514`, `8516`, `8517`, `8519`, `8520`, `8521`, `8522`, `8524`, `8525`, `8527`, `8528`, `8529`, `8532`, `8534`, `8536`, `8537`, `8539`, `8542`, `8543`, `8546`, `8547`, `8549`, `8552`, `8554`, `8555`, `8558`, `8560`, `8561`, `8563`, `8565`, `8567`, `8568`, `8571`, `8575`, `8577`, `8579`, `8581`, `8583`, `8586`, `8588`, `8591`, `8593`, `8595`, `8597`, `8598`, `8601`, `8603`, `8604`, `8606`, `8608`, `8610`, `8612`, `8614`, `8615`, `8617`, `8619`, `8620`, `8621`, `8623`, `8625`, `8627`, `8630`, `8632`, `8633`, `8636`, `8639`, `8641`, `8643`, `8645`, `8647`, `6091`, `8648`, `8651`, `8653`, `8656`, `8658`, `8661`, `8665`, `8666`, `8667`, `8669`, `8671`, `8673`, `8674`, `8675`, `8678`, `8680`, `8682`, `8684`, `8686`, `8688`, `8692`, `8695`, `8697`, `8698`, `8700`, `8703`, `8706`, `8708`, `8709`, `8713`, `8716`, `8718`, `8719`, `8721`, `8723`, `8726`, `8728`, `8730`, `8732`, `8733`, `8735`, `8738`, `8740`, `8742`, `8743`, `8746`, `8747`, `8749`, `8751`, `8753`, `8756`, `8758`, `8760`, `8762`, `8764`, `8765`, `8768`, `8769`, `8771`, `8773`, `8774`, `8776`, `8779`, `8783`, `8787`, `8789`, `8791`, `8793`, `8797`, `8800`, `8804`, `8805`, `8808`, `8810`, `8811`, `8813`, `8814`, `8817`, `8819`, `8820`, `8821`, `8823`, `8825`, `8826`, `8828`, `8831`, `8832`, `8834`, `8836`, `8838`, `8840`, `8842`, `8846`, `8851`, `8853`, `8855`, `8857`, `8860`, `8863`, `8865`, `8866`, `8869`, `8870`, `8871`, `8874`, `8877`, `8879`, `8881`, `8882`, `8885`, `8889`, `8891`, `8893`, `8895`, `8898`, `8899`, `8902`, `8904`, `8905`, `8908`, `8910`, `8913`, `8914`, `8915`, `8917`, `8919`, `8922`, `8923`, `8925`, `8927`, `8930`, `8931`, `8933`, `8935`, `8937`, `8939`, `8943`, `8946`, `8947`, `8948`, `8951`, `8954`, `8956`, `8959`, `8962`, `8963`, `8965`, `8969`, `8971`, `8974`, `8975`, `8977`, `8979`, `8980`, `8981`, `8985`, `8987`, `8990`, `8991`, `8992`, `8994`, `8997`, `8999`, `9001`, `9004`, `9006`, `9008`, `9009`, `9012`, `9013`, `9015`, `9017`, `9019`, `9020`, `9022`, `9024`, `9026`, `9031`, `9035`, `9038`, `9040`, `9042`, `9044`, `9046`, `9048`, `9049`, `9051`, `9053`, `9056`, `9058`, `9062`, `9065`, `9067`, `9068`, `9070`, `9072`, `9074`, `9075`, `9077`, `9079`, `9080`, `9083`, `9085`, `9088`, `9091`, `9094`, `9096`, `9098`, `9100`, `9102`, `9104`, `9105`, `9107`, `9109`, `9110`, `9114`, `9116`, `9118`, `9119`, `9121`, `9123`, `9126`, `9128`, `9130`, `9133`, `9135`, `9138`, `9142`, `9143`, `9145`, `9149`, `9152`, `9154`, `9156`, `9159`, `9162`, `9164`, `9167`, `9168`, `9170`, `9172`, `9175`, `9178`, `9180`, `9181`, `9184`, `9185`, `9187`, `9189`, `9191`, `9195`, `9196`, `9198`, `9201`, `9202`, `9204`, `9205`, `9208`, `9210`, `9212`, `9213`, `9215`, `9217`, `9218`, `9219`, `9221`, `9223`, `9226`, `9228`, `9230`, `9232`, `9234`, `9237`, `9239`, `9241`, `9244`, `9246`, `9248`, `9251`, `9253`, `9255`, `9259`, `9261`, `9263`, `9265`, `9266`, `9269`, `9271`, `9273`, `9275`, `9277`, `9278`, `9279`, `9281`, `9282`, `9284`, `9285`, `9287`, `9290`, `9292`, `9293`, `9294`, `9297`, `9299`, `9301`, `9302`, `9303`, `9305`, `9306`, `9308`, `9310`, `9312`, `9314`, `9316`, `9319`, `9321`, `9324`, `9325`, `9327`, `9329`, `9331`, `9333`, `9334`, `9337`, `9339`, `9342`, `9344`, `9345`, `9346`, `9349`, `9351`, `9353`, `9355`, `9358`, `9360`, `9364`, `9366`, `9368`, `9370`, `9373`, `9377`, `9379`, `9381`, `9385`, `9387`, `9390`, `9392`, `9395`, `9397`, `9398`, `9400`, `9402`, `9403`, `9406`, `9407`, `9409`, `9410`, `9412`, `9416`, `9417`, `9419`, `9421`, `9422`, `9425`, `9427`, `9429`, `9432`, `9436`, `9438`, `9439`, `9441`, `9443`, `9445`, `9447`, `9448`, `9450`, `9453`, `9456`, `9458`, `9460`, `9463`, `9466`, `9469`, `9472`, `9474`, `9477`, `9478`, `9480`, `9482`, `9483`, `9484`, `9485`, `9489`, `9490`, `9492`, `9494`, `9496`, `9498`, `9499`, `9501`, `9503`, `9506`, `9509`, `9510`, `9512`, `9515`, `9516`, `9518`, `9519`, `9521`, `9525`, `9528`, `9530`, `9532`, `9535`, `9538`, `9541`, `9543`, `9544`, `9546`, `9548`, `9549`, `9551`, `9555`, `9556`, `9558`, `9561`, `9562`, `9565`, `9567`, `9569`, `9570`, `9571`, `9572`, `9574`, `9576`, `9580`, `9582`, `9586`, `9589`, `9590`, `9592`, `9595`, `9597`, `9598`, `9602`, `9605`, `9607`, `9609`, `9611`, `9613`, `9615`, `9616`, `9618`, `9621`, `9622`, `9624`, `9627`, `9628`, `9631`, `9632`, `9633`, `9635`, `9637`, `9640`, `9642`, `9644`, `9646`, `9649`, `9653`, `9654`, `9656`, `9657`, `9659`, `9661`, `9663`, `9666`, `9668`, `9670`, `9672`, `9674`, `9676`, `9680`, `9684`, `9686`, `9691`, `9692`, `9697`, `9698`, `9699`, `9700`, `9703`, `9704`, `9705`, `9706`, `9707`, `9708`, `9709`, `9712`, `9715`, `9717`, `9720`, `9722`, `9724`, `9726`, `9729`, `9731`, `9732`, `9733`, `9737`, `9740`, `9741`, `9743`, `9746`, `9747`, `9750`, `9754`, `9755`, `9757`, `9759`, `9761`, `9765`, `9769`, `9771`, `9773`, `9776`, `9779`, `9781`, `9783`, `9785`, `9786`, `9788`, `9790`, `9792`, `9794`, `9795`, `9797`, `9800`, `9803`, `9806`, `9809`, `9811`, `9812`, `9814`, `9817`, `9821`, `9823`, `9825`, `9827`, `9828`, `9829`, `9830`, `9833`, `9836`, `9838`, `9840`, `9841`, `9842`, `9844`, `9846`, `9850`, `9852`, `9855`, `9858`, `9860`, `9863`, `9867`, `9869`, `9871`, `9872`, `9874`, `9876`, `9877`, `9879`, `9881`, `9884`, `9887`, `9889`, `9891`, `9892`, `9894`, `9897`, `9900`, `9905`, `9910`, `9911`, `9913`, `9915`, `9917`, `9920`, `9921`, `9924`, `9926`, `9927`, `9928`, `9933`, `9934`, `9937`, `9939`, `9942`, `9943`, `9945`, `9949`, `9951`, `9952`, `9955`, `9957`, `9959`, `9961`, `9963`, `9965`, `9967`, `9970`, `9972`, `9975`, `9977`, `9978`, `9981`, `9986`, `9988`, `9991`, `9993`, `9995`, `9998`, `10000`, `10002`, `10005`, `10008`, `10009`, `10012`, `10015`, `10016`, `10020`, `10022`, `10025`, `10027`, `10032`, `10035`, `10037`, `10038`, `10040`, `10043`, `10044`, `10046`, `10048`, `10050`, `10052`, `10054`, `10056`, `10058`, `10060`, `10063`, `10065`, `10067`, `10070`, `10072`, `10073`, `10077`, `10079`, `10082`, `10083`, `10084`, `10086`, `10087`, `10090`, `10093`, `10095`, `10096`, `10098`, `10101`, `10104`, `10106`, `10108`, `10111`, `10112`, `10113`, `10114`, `10116`, `10118`, `10122`, `6123`, `10124`, `10126`, `10128`, `10130`, `10132`, `10134`, `10137`, `10138`, `10141`, `10143`, `10146`, `10148`, `10149`, `10152`, `10154`, `10157`, `10159`, `10160`, `10162`, `10163`, `10166`, `10168`, `10171`, `10172`, `10174`, `10176`, `10178`, `10180`, `10182`, `10186`, `10187`, `10189`, `10191`, `10193`, `10195`, `10198`, `10200`, `10202`, `10205`, `10206`, `10209`, `10210`, `10213`, `10214`, `10216`, `10218`, `10219`, `10220`, `10222`, `10225`, `10228`, `10230`, `10232`, `10233`, `10235`, `10238`, `10242`, `10245`, `10247`, `10250`, `10253`, `10255`, `10257`, `10259`, `10260`, `10261`, `10264`, `10267`, `10268`, `10272`, `10275`, `10278`, `10280`, `10281`, `10284`, `10285`, `10287`, `10289`, `10291`, `10293`, `10294`, `10297`, `10298`, `10300`, `10302`, `10303`, `10304`, `10306`, `10307`, `10309`, `10312`, `10313`, `10315`, `10317`, `10319`, `10322`, `10324`, `10326`, `10328`, `10330`, `10334`, `10337`, `10338`, `10340`, `10341`, `10345`, `10347`, `10351`, `10352`, `10353`, `10358`, `10360`, `10361`, `10363`, `10365`, `10368`, `10371`, `10372`, `10373`, `10375`, `10376`, `10379`, `10381`, `10382`, `10385`, `10387`, `10389`, `10391`, `10393`, `10394`, `10395`, `10398`, `10401`, `10404`, `10406`, `10408`, `10411`, `10415`, `10419`, `10421`, `10425`, `10426`, `10429`, `10430`, `10433`, `10435`, `10437`, `10439`, `10442`, `10443`, `10446`, `10448`, `10452`, `10454`, `10457`, `10458`, `10460`, `10462`, `10465`, `4348`, `10468`, `10471`, `10473`, `10476`, `10478`, `10480`, `10482`, `10484`, `10486`, `10488`, `10491`, `10493`, `10495`, `10497`, `10499`, `10502`, `10503`, `10505`, `10508`, `10510`, `10513`, `10515`, `10516`, `10518`, `10520`, `10523`, `10525`, `10526`, `10527`, `10530`, `10533`, `10535`, `10537`, `10539`, `10541`, `10542`, `10544`, `10546`, `10549`, `10550`, `10553`, `10555`, `10558`, `10560`, `10562`, `10566`, `10568`, `10570`, `10572`, `10573`, `10575`, `10577`, `10579`, `10583`, `10585`, `10590`, `10591`, `10592`, `10594`, `10596`, `10599`, `10601`, `10602`, `10603`, `10606`, `10608`, `10610`, `10611`, `10612`, `10615`, `10617`, `10619`, `10621`, `10623`, `10625`, `10626`, `10628`, `10631`, `10633`, `10635`, `10637`, `10641`, `10643`, `10646`, `10649`, `10651`, `10653`, `10656`, `10657`, `1196`, `10659`, `10661`, `10663`, `10666`, `10668`, `10671`, `10674`, `10677`, `10678`, `10682`, `10685`, `10687`, `10689`, `10691`, `10692`, `10694`, `10697`, `10698`, `10702`, `10705`, `10707`, `10710`, `10712`, `10714`, `10716`, `10718`, `10720`, `10721`, `10722`, `10725`, `10726`, `10727`, `10729`, `10730`, `10732`, `10733`, `10735`, `10737`, `10739`, `10741`, `10742`, `10744`, `10746`, `10748`, `10750`, `10751`, `10753`, `10756`, `10759`, `10763`, `10764`, `10767`, `10770`, `10772`, `10775`, `10778`, `10779`, `10781`, `10783`, `10786`, `10788`, `10791`, `10793`, `10795`, `10798`, `10802`, `10804`, `10807`, `10810`, `10814`, `10815`, `10820`, `10822`, `10825`, `10827`, `10829`, `10833`, `10835`, `10837`, `10839`, `10842`, `10845`, `10847`, `10848`, `10850`, `10853`, `10854`, `10856`, `10859`, `10861`, `10864`, `10866`, `10868`, `10872`, `10873`, `10875`, `10876`, `10878`, `10880`, `10882`, `10885`, `10888`, `10889`, `10891`, `10894`, `10896`, `10899`, `10902`, `10905`, `10906`, `10909`, `10911`, `10913`, `10915`, `10916`, `10917`, `10918`, `10921`, `10925`, `10926`, `10928`, `10929`, `10934`, `10937`, `10939`, `10941`, `10942`, `10944`, `10947`, `10949`, `10951`, `10952`, `10954`, `10955`, `10957`, `10960`, `10961`, `10963`, `10964`, `10967`, `10970`, `10971`, `10973`, `10974`, `10975`, `10978`, `10980`, `10982`, `10983`, `10986`, `10989`, `10994`, `10996`, `10997`, `10998`, `11002`, `11005`, `11006`, `11007`, `11009`, `11011`, `11012`, `11014`, `11016`, `11018`, `11020`, `11023`, `11025`, `11026`, `11028`, `11030`, `11032`, `11035`, `11037`, `11038`, `11041`, `11044`, `11045`, `11048`, `11049`, `11050`, `11052`, `11055`, `11058`, `11060`, `11062`, `11064`, `11066`, `11069`, `11073`, `11075`, `11076`, `11077`, `11079`, `11081`, `11084`, `11087`, `11088`, `11090`, `11091`, `11093`, `11094`, `11098`, `11100`, `11103`, `11104`, `11107`, `11109`, `11110`, `11111`, `11114`, `11115`, `11117`, `11120`, `11122`, `11123`, `11125`, `11128`, `11130`, `11133`, `11135`, `11137`, `11139`, `11142`, `11143`, `11145`, `11147`, `11150`, `11153`, `11156`, `11159`, `11163`, `11166`, `11167`, `11170`, `11172`, `11174`, `11177`, `11181`, `11183`, `11187`, `11190`, `11193`, `11196`, `11198`, `11200`, `11202`, `11204`, `11206`, `11207`, `11210`, `11212`, `11214`, `11217`, `11219`, `11220`, `11221`, `11223`, `11225`, `11228`, `11231`, `11234`, `11236`, `11238`, `11241`, `11242`, `11244`, `11246`, `11248`, `11250`, `11251`, `11252`, `11254`, `11256`, `11259`, `11261`, `11263`, `11267`, `11270`, `11273`, `11274`, `11277`, `11280`, `11281`, `11283`, `11286`, `11289`, `11291`, `11293`, `11296`, `11298`, `11301`, `11302`, `11304`, `11307`, `11308`, `11310`, `11311`, `11313`, `11315`, `5198`, `11318`, `11321`, `11324`, `11327`, `11329`, `11331`, `11333`, `11335`, `11338`, `11340`, `11343`, `11346`, `11347`, `11350`, `11351`, `11352`, `11354`, `11357`, `11360`, `11361`, `11362`, `11364`, `11365`, `11367`, `11369`, `11371`, `11373`, `11375`, `11378`, `11381`, `11383`, `11385`, `11387`, `11388`, `11391`, `11393`, `11394`, `11396`, `11398`, `11400`, `11402`, `11404`, `11406`, `11407`, `11409`, `11412`, `11416`, `11418`, `11421`, `11423`, `11426`, `11430`, `11431`, `11433`, `11438`, `11439`, `11442`, `11444`, `11446`, `11448`, `11451`, `11454`, `11457`, `11458`, `11460`, `11462`, `11465`, `11466`, `11467`, `11470`, `11473`, `11474`, `11477`, `11478`, `11480`, `11482`, `11483`, `11487`, `11490`, `11494`, `11496`, `11498`, `11500`, `11504`, `11507`, `11509`, `11511`, `11513`, `11515`, `11517`, `11518`, `11520`, `11523`, `11524`, `11527`, `11528`, `11530`, `11532`, `11535`, `11539`, `11541`, `11544`, `11545`, `11548`, `11551`, `11553`, `11554`, `11557`, `11562`, `11565`, `11568`, `11572`, `11575`, `11577`, `11578`, `11581`, `11582`, `11585`, `11587`, `11589`, `11591`, `11593`, `11596`, `11598`, `11600`, `11603`, `11604`, `11605`, `11607`, `11610`, `11613`, `11616`, `11618`, `11620`, `11623`, `11625`, `11627`, `11629`, `11631`, `11633`, `11635`, `11636`, `11637`, `11640`, `11642`, `11644`, `11646`, `11648`, `11651`, `11654`, `11657`, `11659`, `11661`, `11665`, `11667`, `11668`, `11672`, `11675`, `11677`, `11679`, `11681`, `11684`, `11686`, `11688`, `11690`, `11692`, `11694`, `11697`, `11699`, `11701`, `11705`, `11707`, `11709`, `11710`, `11713`, `11715`, `11718`, `11720`, `11723`, `11725`, `11727`, `11729`, `11732`, `11734`, `11737`, `11740`, `11743`, `11746`, `11748`, `11750`, `11752`, `11753`, `11754`, `11757`, `11759`, `11761`, `11765`, `11766`, `11768`, `11770`, `11771`, `11772`, `11774`, `11775`, `11777`, `11778`, `11781`, `11783`, `11786`, `11789`, `11791`, `11793`, `11795`, `11797`, `11801`, `11803`, `11805`, `11806`, `11809`, `11811`, `11813`, `11816`, `11819`, `11822`, `11824`, `11826`, `11829`, `11833`, `11836`, `11839`, `11841`, `11843`, `11847`, `11848`, `11851`, `11853`, `11856`, `11857`, `11859`, `11862`, `11863`, `11865`, `11866`, `11868`, `11871`, `11873`, `11875`, `11877`, `11879`, `11882`, `11884`, `11886`, `11889`, `11891`, `11894`, `11896`, `11898`, `11899`, `11902`, `11904`, `11906`, `11907`, `11909`, `11911`, `11915`, `11918`, `11922`, `11926`, `11928`, `11931`, `11933`, `11936`, `11937`, `11939`, `11942`, `11945`, `11947`, `11949`, `11951`, `11952`, `11954`, `11956`, `11959`, `11961`, `11964`, `11965`, `11967`, `11969`, `11971`, `11972`, `11974`, `11975`, `11978`, `11981`, `11984`, `11985`, `11988`, `11990`, `11991`, `11993`, `11996`, `11997`, `11998`, `12000`, `12002`, `12004`, `12006`, `12007`, `12009`, `12011`, `12013`, `12016`, `12018`, `12020`, `12022`, `12024`, `12027`, `12030`, `12034`, `12036`, `12042`, `12044`, `12046`, `12048`, `12050`, `12053`, `12056`, `12057`, `12059`, `12061`, `12063`, `12066`, `12069`, `12071`, `12074`, `12077`, `12080`, `12082`, `12085`, `12088`, `12091`, `12094`, `12096`, `12099`, `12101`, `12102`, `12105`, `12107`, `12108`, `12109`, `12111`, `12112`, `12114`, `12115`, `12117`, `12120`, `12121`, `12123`, `12126`, `12129`, `12132`, `12136`, `12138`, `12140`, `12143`, `12145`, `12147`, `12148`, `12149`, `12151`, `12154`, `12155`, `12156`, `12158`, `12159`, `12162`, `12165`, `12168`, `12170`, `12172`, `12173`, `12176`, `12178`, `12180`, `12182`, `12184`, `12187`, `12190`, `12192`, `12193`, `12195`, `12197`, `12199`, `12202`, `12204`, `12206`, `12208`, `12211`, `12213`, `12215`, `12217`, `12218`, `12221`, `12223`, `12224`, `12225`, `12228`, `12230`, `12232`, `12234`, `12236`, `12238`, `12241`, `12243`, `12245`, `12249`, `12251`, `12253`, `12255`, `12256`, `12259`, `12263`, `12265`, `12267`, `12269`, `12272`, `12273`, `12275`, `12277`, `12280`, `12282`, `12283`, `12285`, `12289`, `12291`, `12293`, `12294`, `12296`, `12297`, `12300`, `12301`, `12303`, `12305`, `12306`, `12308`, `12310`, `12311`, `12312`, `12313`, `12315`, `12318`, `12319`, `12321`, `12324`, `12327`, `12328`, `12330`, `12332`, `12333`, `12335`, `12337`, `12340`, `12342`, `12343`, `12346`, `12348`, `12351`, `12355`, `12356`, `12357`, `12360`, `12362`, `12364`, `12366`, `12367`, `12370`, `1850`, `12372`, `12374`, `12377`, `12379`, `12383`, `12385`, `12387`, `12389`, `12391`, `12393`, `12395`, `12397`, `12401`, `12402`, `12403`, `12404`, `12407`, `12409`, `12412`, `12414`, `12416`, `12418`, `12421`, `12422`, `12426`, `12428`, `12430`, `12434`, `12437`, `12438`, `12440`, `12442`, `12445`, `12446`, `12449`, `12451`, `12453`, `12454`, `12455`, `12456`, `12457`, `12458`, `12460`, `12462`, `12464`, `12465`, `12467`, `12470`, `12471`, `12473`, `12476`, `12478`, `12480`, `12482`, `12485`, `12486`, `12488`, `12490`, `12492`, `12496`, `12498`, `12499`, `12501`, `12503`, `12506`, `12509`, `12511`, `12513`, `12515`, `12519`, `12522`, `12524`, `12525`, `12527`, `12529`, `12531`, `12533`, `12534`, `12537`, `12538`, `12540`, `12541`, `12543`, `12544`, `12546`, `12548`, `12551`, `12553`, `12555`, `12557`, `12560`, `12562`, `12563`, `12566`, `12569`, `12572`, `12575`, `12578`, `12581`, `12583`, `12585`, `12589`, `12590`, `12592`, `12593`, `12594`, `12596`, `12597`, `12599`, `12601`, `12602`, `12603`, `12604`, `12606`, `12607`, `12608`, `12612`, `12613`, `12615`, `12617`, `12619`, `12620`, `12622`, `12624`, `12625`, `12628`, `12630`, `12632`, `12634`, `12636`, `12639`, `12642`, `12646`, `12649`, `12651`, `12653`, `12655`, `12657`, `12658`, `12659`, `12662`, `12664`, `12665`, `12667`, `12670`, `12672`, `12674`, `12676`, `12679`, `12681`, `12684`, `12685`, `12686`, `12688`, `12690`, `12691`, `12694`, `12695`, `12697`, `12699`, `12700`, `12701`, `12702`, `12705`, `12707`, `12709`, `12713`, `12716`, `12718`, `12720`, `12722`, `12723`, `12725`, `12726`, `12729`, `12731`, `12734`, `12735`, `12737`, `12738`, `12741`, `12744`, `12748`, `12750`, `12751`, `12754`, `12755`, `12756`, `12759`, `12762`, `12766`, `12767`, `12768`, `12770`, `12772`, `12774`, `12776`, `12778`, `12780`, `12783`, `12786`, `12788`, `12789`, `12791`, `12793`, `12796`, `12799`, `12800`, `12803`, `12805`, `12808`, `12811`, `12813`, `12815`, `12819`, `12821`, `12824`, `12826`, `12830`, `12834`, `12836`, `12839`, `12841`, `12844`, `12846`, `12849`, `12851`, `12854`, `12855`, `12857`, `12861`, `12863`, `12865`, `12867`, `12870`, `12872`, `12874`, `12876`, `12878`, `12881`, `12882`, `12884`, `12885`, `12887`, `12890`, `12892`, `12894`, `12895`, `12897`, `12900`, `12902`, `12903`, `12905`, `12907`, `12910`, `12913`, `12916`, `12918`, `12921`, `12922`, `12924`, `12926`, `12929`, `12933`, `12934`, `12936`, `12939`, `12942`, `12943`, `12945`, `12949`, `12950`, `12952`, `12954`, `12957`, `12959`, `12960`, `12963`, `12965`, `12968`, `12969`, `12971`, `12974`, `12975`, `12978`, `12980`, `12982`, `12984`, `12987`, `12991`, `12993`, `12995`, `12999`, `13000`, `13003`, `13005`, `13009`, `13010`, `13012`, `13015`, `13017`, `13019`, `13021`, `13023`, `13025`, `13028`, `13031`, `13032`, `13035`, `13038`, `13040`, `13041`, `13043`, `13046`, `13048`, `13051`, `13053`, `13057`, `13059`, `13062`, `13063`, `13065`, `13067`, `13069`, `13072`, `13073`, `13077`, `13078`, `13080`, `13083`, `13088`, `13089`, `13090`, `13092`, `13095`, `13096`, `13098`, `13099`, `13102`, `13105`, `13107`, `13108`, `13113`, `13115`, `13118`, `13119`, `13122`, `13125`, `13127`, `13129`, `13131`, `13133`, `13135`, `13137`, `13138`, `13140`, `13142`, `13144`, `13146`, `13148`, `13151`, `13153`, `13154`, `13155`, `13157`, `13158`, `13159`, `13161`, `13163`, `13164`, `13166`, `13168`, `13171`, `13173`, `13175`, `13178`, `13180`, `13183`, `13186`, `13188`, `13191`, `13193`, `13196`, `13199`, `13202`, `13203`, `13206`, `13207`, `13209`, `13211`, `13212`, `13214`, `13217`, `13219`, `13221`, `13223`, `13225`, `13227`, `13229`, `13231`, `13234`, `13236`, `13238`, `13240`, `13242`, `13245`, `13246`, `13248`, `13250`, `13252`, `13253`, `13256`, `13258`, `13259`, `13260`, `13262`, `13263`, `13264`, `13267`, `13269`, `13271`, `13273`, `13278`, `13279`, `13282`, `13284`, `13285`, `13287`, `13289`, `13291`, `13292`, `13294`, `13295`, `13297`, `13299`, `13300`, `13302`, `13304`, `13306`, `13310`, `13312`, `13313`, `13315`, `13318`, `13319`, `13321`, `13324`, `13325`, `13326`, `13328`, `13330`, `13333`, `13336`, `13338`, `13341`, `13343`, `13345`, `13348`, `13352`, `13355`, `13357`, `13360`, `13362`, `13364`, `13367`, `13369`, `13371`, `13374`, `13376`, `13378`, `13380`, `13383`, `13385`, `13388`, `13389`, `13390`, `13392`, `13394`, `13395`, `13399`, `13401`, `13403`, `13407`, `13409`, `13412`, `13414`, `13416`, `13418`, `13421`, `13423`, `13426`, `13429`, `13431`, `13433`, `13437`, `13439`, `13442`, `13444`, `13445`, `13446`, `13447`, `13449`, `13451`, `13454`, `13457`, `13458`, `13460`, `13462`, `13464`, `13467`, `13469`, `13470`, `13472`, `13474`, `13476`, `13480`, `13481`, `13483`, `13485`, `13487`, `13490`, `13492`, `13494`, `13496`, `13498`, `13499`, `13501`, `13503`, `13506`, `13507`, `13510`, `13511`, `13513`, `13516`, `13517`, `13519`, `13521`, `13523`, `13526`, `13528`, `13530`, `13531`, `13534`, `13536`, `13539`, `13542`, `13543`, `13546`, `13548`, `13551`, `13554`, `13555`, `13556`, `13560`, `13561`, `13564`, `13566`, `13567`, `13569`, `13573`, `13576`, `13578`, `13581`, `13584`, `13586`, `13588`, `13592`, `13593`, `13596`, `13598`, `13599`, `13600`, `13604`, `13606`, `13607`, `13609`, `13610`, `13612`, `13615`, `13617`, `13619`, `13621`, `13623`, `13624`, `13627`, `13628`, `13630`, `13632`, `13634`, `13636`, `13638`, `13640`, `13644`, `13647`, `13649`, `13652`, `13655`, `13656`, `13658`, `13659`, `13663`, `13665`, `13666`, `13668`, `13670`, `13672`, `13673`, `13674`, `13677`, `13679`, `13680`, `13682`, `13684`, `13687`, `13688`, `13691`, `13692`, `13696`, `13698`, `13699`, `13700`, `13702`, `13703`, `13707`, `13710`, `13712`, `13714`, `13717`, `13719`, `13721`, `13722`, `13724`, `13725`, `13728`, `13730`, `13732`, `13734`, `13736`, `13738`, `13740`, `13742`, `13744`, `13746`, `13749`, `13752`, `13754`, `13758`, `13760`, `13762`, `13764`, `13766`, `13768`, `13771`, `13773`, `13775`, `13778`, `13780`, `13782`, `13783`, `13786`, `13787`, `13789`, `13792`, `13795`, `13797`, `13799`, `13802`, `13804`, `13806`, `13809`, `13811`, `13813`, `13815`, `13817`, `13818`, `13821`, `13823`, `13826`, `13827`, `13828`, `13829`, `13830`, `13833`, `13834`, `13836`, `13838`, `13839`, `13841`, `13842`, `13845`, `13847`, `13850`, `13851`, `13853`, `13854`, `13857`, `13860`, `13861`, `13863`, `13866`, `13868`, `13870`, `13873`, `13876`, `13877`, `13879`, `13881`, `13882`, `13883`, `13885`, `13886`, `13888`, `13893`, `13895`, `13897`, `13900`, `13902`, `13904`, `13907`, `13908`, `13910`, `13912`, `13914`, `13915`, `13916`, `13919`, `13921`, `13922`, `13923`, `13925`, `13926`, `13927`, `13931`, `13932`, `13935`, `13938`, `13940`, `13943`, `13944`, `13947`, `13950`, `13952`, `13953`, `13955`, `13956`, `13957`, `13959`, `13961`, `13962`, `13964`, `13966`, `13967`, `13968`, `13969`, `13972`, `13973`, `13975`, `13977`, `13979`, `13981`, `13984`, `13986`, `13989`, `13406`, `13993`, `13995`, `13998`, `14000`, `14002`, `14005`, `14007`, `14009`, `14011`, `14014`, `14015`, `14017`, `14022`, `14023`, `14025`, `14027`, `14030`, `14032`, `14034`, `14036`, `14038`, `14039`, `14040`, `14043`, `14045`, `14046`, `14049`, `14053`, `14055`, `14058`, `14059`, `14062`, `14063`, `14065`, `14068`, `14070`, `14071`, `14073`, `14075`, `14078`, `14081`, `14084`, `14086`, `14088`, `14091`, `14093`, `14095`, `14098`, `14102`, `14105`, `14107`, `14108`, `14110`, `14111`, `14114`, `14119`, `14120`, `14122`, `14125`, `14127`, `14129`, `14131`, `14132`, `14134`, `14137`, `14139`, `14142`, `14145`, `14147`, `14149`, `14152`, `14156`, `14158`, `14159`, `14161`, `14163`, `14165`, `14168`, `14170`, `14173`, `14175`, `14176`, `14179`, `14181`, `14183`, `14184`, `14188`, `14190`, `14193`, `14195`, `14197`, `14199`, `14201`, `14203`, `14205`, `14206`, `14208`, `14210`, `14212`, `14214`, `14216`, `14217`, `14218`, `14222`, `14224`, `14226`, `14228`, `14230`, `14232`, `14234`, `14237`, `14240`, `14242`, `14244`, `14246`, `14248`, `14250`, `14252`, `14254`, `14257`, `14258`, `14260`, `14263`, `14265`, `14268`, `14272`, `14275`, `14279`, `14281`, `14283`, `14285`, `14286`, `14287`, `14291`, `14293`, `14295`, `14297`, `10749`, `14299`, `14300`, `14302`, `14303`, `14306`, `14309`, `14312`, `14314`, `14315`, `14318`, `14320`, `14322`, `14323`, `14325`, `14328`, `14329`, `14330`, `14331`, `14333`, `14335`, `14336`, `14340`, `14343`, `14345`, `14347`, `14348`, `14352`, `14355`, `14358`, `14360`, `14362`, `14365`, `14366`, `14367`, `14368`, `14370`, `14371`, `14373`, `14375`, `14378`, `14379`, `14382`, `14384`, `14386`, `14387`, `14390`, `14393`, `14395`, `14397`, `14398`, `14399`, `14400`, `14402`, `14406`, `14407`, `14411`, `14415`, `14417`, `14420`, `14421`, `14423`, `14426`, `14428`, `14429`, `14432`, `14434`, `14437`, `14440`, `14442`, `14444`, `14445`, `14447`, `14450`, `14452`, `14457`, `14459`, `14461`, `14463`, `14465`, `14467`, `14469`, `14471`, `14474`, `14475`, `14476`, `14479`, `14482`, `14485`, `14487`, `14488`, `14491`, `14493`, `14495`, `14496`, `14497`, `14498`, `14499`, `14501`, `14503`, `14505`, `14507`, `14510`, `14512`, `14513`, `14517`, `14518`, `14520`, `14523`, `14524`, `14527`, `14529`, `14530`, `14532`, `14534`, `14535`, `14537`, `14540`, `14542`, `14545`, `14548`, `14549`, `14552`, `14554`, `14555`, `14556`, `14558`, `14561`, `14563`, `14565`, `14566`, `14568`, `14570`, `14573`, `14575`, `14580`, `14584`, `14588`, `14590`, `14592`, `14596`, `14598`, `14599`, `14601`, `14603`, `14605`, `14607`, `14609`, `14610`, `14611`, `14613`, `14614`, `14615`, `14618`, `14620`, `14624`, `14627`, `14628`, `14630`, `14631`, `14634`, `14636`, `14640`, `14641`, `14642`, `14644`, `14645`, `14649`, `14651`, `14652`, `14653`, `14655`, `14658`, `14659`, `14662`, `14664`, `14666`, `14668`, `14671`, `14673`, `14675`, `14676`, `14678`, `14680`, `14684`, `14687`, `14689`, `14691`, `14692`, `14694`, `14695`, `14697`, `14698`, `14701`, `14703`, `14705`, `14706`, `14708`, `14710`, `14713`, `14714`, `14717`, `14718`, `14721`, `14722`, `14723`, `14725`, `14726`, `14728`, `14730`, `14731`, `14734`, `14736`, `14740`, `14742`, `14744`, `14747`, `14749`, `14752`, `14753`, `14756`, `14758`, `14760`, `14761`, `14763`, `14764`, `14766`, `14768`, `14770`, `14772`, `14773`, `14775`, `14777`, `14779`, `14780`, `14783`, `14785`, `14786`, `14789`, `14792`, `14794`, `14797`, `14801`, `14803`, `14805`, `14807`, `14809`, `14811`, `14814`, `14817`, `14819`, `14821`, `14823`, `14825`, `14827`, `14830`, `14832`, `14833`, `14836`, `14837`, `14838`, `14839`, `14841`, `14842`, `14844`, `14845`, `14847`, `14848`, `14850`, `14851`, `14852`, `14853`, `14855`, `14858`, `14861`, `14863`, `14865`, `14866`, `14868`, `14870`, `14872`, `14874`, `14876`, `14878`, `14880`, `14882`, `14885`, `14886`, `14888`, `14890`, `14893`, `14896`, `14898`, `14900`, `14902`, `14904`, `14905`, `14906`, `14908`, `14911`, `14912`, `14915`, `14917`, `14918`, `14921`, `14922`, `14925`, `14927`, `14930`, `14931`, `14933`, `14935`, `14936`, `14937`, `14939`, `14940`, `14941`, `14944`, `14946`, `14948`, `14950`, `14951`, `14954`, `14956`, `14957`, `14959`, `14960`, `14962`, `14964`, `14966`, `14967`, `14969`, `14971`, `14972`, `14974`, `14976`, `14979`, `14981`, `14984`, `14987`, `14988`, `14990`, `14993`, `14996`, `14998`, `14999`, `15000`, `15002`, `15004`, `15005`, `15007`, `15009`, `15012`, `15015`, `15016`, `15018`, `15020`, `15022`, `15026`, `15028`, `15032`, `15035`, `15039`, `15042`, `15044`, `15046`, `15049`, `15051`, `15053`, `15055`, `15057`, `15059`, `15063`, `15064`, `15066`, `15069`, `15071`, `15072`, `15077`, `15078`, `15080`, `15081`, `15083`, `15085`, `15087`, `15088`, `15091`, `15095`, `15097`, `15098`, `15100`, `15102`, `15104`, `15105`, `15106`, `15109`, `15112`, `15113`, `15115`, `15117`, `15120`, `15123`, `15124`, `15126`, `15130`, `15132`, `15134`, `15135`, `15137`, `15139`, `15141`, `15144`, `15147`, `15149`, `15151`, `15154`, `15156`, `15157`, `15161`, `15162`, `15164`, `15167`, `15169`, `15170`, `15172`, `15174`, `15177`, `15180`, `15182`, `15183`, `15185`, `15188`, `15189`, `15193`, `15194`, `15196`, `15197`, `15201`, `15205`, `15206`, `15208`, `15211`, `15213`, `15215`, `15217`, `15220`, `15222`, `15224`, `15226`, `15228`, `15229`, `15232`, `15235`, `15239`, `15241`, `15242`, `15244`, `15247`, `15248`, `15249`, `15252`, `15254`, `15256`, `15258`, `15260`, `15262`, `15264`, `15266`, `15268`, `15269`, `15270`, `15274`, `15276`, `15278`, `15281`, `15282`, `15285`, `15288`, `15290`, `15294`, `15296`, `15297`, `15298`, `15300`, `15302`, `15303`, `15304`, `15305`, `15306`, `15308`, `15309`, `15311`, `15313`, `15315`, `15317`, `15319`, `15322`, `15324`, `15328`, `15329`, `15331`, `15332`, `15334`, `15336`, `15339`, `15341`, `15344`, `15346`, `15348`, `15349`, `15350`, `15352`, `15356`, `15358`, `15362`, `15365`, `15367`, `15368`, `15372`, `15374`, `15377`, `15379`, `15380`, `15382`, `15384`, `15387`, `15389`, `15391`, `15394`, `15396`, `15397`, `15399`, `15403`, `15406`, `15408`, `15410`, `15411`, `15413`, `15418`, `15420`, `15421`, `15423`, `15425`, `15427`, `15429`, `15431`, `15433`, `15437`, `15439`, `15441`, `15443`, `15445`, `15447`, `15451`, `15453`, `15456`, `15457`, `15458`, `15459`, `15460`, `15461`, `15464`, `15467`, `15470`, `15472`, `15474`, `15476`, `15479`, `15482`, `15484`, `15486`, `15488`, `15490`, `15491`, `15493`, `15495`, `15497`, `15498`, `15500`, `11306`, `15501`, `15502`, `15504`, `15507`, `15510`, `15513`, `15515`, `15517`, `15518`, `15522`, `15524`, `15527`, `15528`, `15529`, `15531`, `15533`, `15534`, `15536`, `15537`, `15539`, `15542`, `15543`, `15545`, `15547`, `15548`, `15551`, `15552`, `15554`, `15555`, `15557`, `15559`, `15562`, `15565`, `15566`, `15570`, `15572`, `15575`, `15576`, `15580`, `15583`, `15585`, `15587`, `15589`, `15590`, `15592`, `15594`, `15596`, `15599`, `15601`, `15604`, `15606`, `15608`, `15610`, `15612`, `15614`, `15616`, `15618`, `15620`, `15622`, `15625`, `15627`, `15630`, `15632`, `15634`, `15636`, `15640`, `15641`, `15643`, `15647`, `15648`, `15650`, `15652`, `15654`, `15661`, `15662`, `15666`, `15669`, `15671`, `15672`, `15675`, `15677`, `15679`, `15681`, `15682`, `15684`, `15687`, `15689`, `15691`, `15692`, `15693`, `15694`, `15696`, `15699`, `15700`, `15701`, `15703`, `15706`, `15709`, `15710`, `15712`, `15714`, `15717`, `15719`, `15720`, `15722`, `15724`, `15726`, `15730`, `15732`, `15734`, `15738`, `15740`, `15742`, `15745`, `15747`, `15749`, `15751`, `15752`, `15753`, `15756`, `15758`, `15760`, `15763`, `15765`, `15766`, `15768`, `15769`, `15770`, `15773`, `15776`, `15778`, `15781`, `15783`, `15784`, `15787`, `15788`, `15791`, `15793`, `15796`, `15798`, `15801`, `15803`, `15804`, `15805`, `15806`, `15809`, `15811`, `15812`, `15815`, `15817`, `15819`, `15821`, `15824`, `15825`, `15826`, `15828`, `15831`, `15834`, `15835`, `15838`, `15841`, `15844`, `15845`, `15847`, `15849`, `15851`, `15853`, `15855`, `15858`, `15861`, `15864`, `15865`, `15869`, `15870`, `15872`, `15874`, `15876`, `15879`, `15881`, `15882`, `15884`, `15885`, `15887`, `15889`, `15890`, `15892`, `15895`, `15897`, `15900`, `15902`, `15904`, `15908`, `15910`, `15912`, `15915`, `15918`, `15919`, `15923`, `15925`, `15926`, `15928`, `15929`, `15931`, `15932`, `15933`, `15934`, `15936`, `15937`, `15940`, `15941`, `15942`, `15944`, `15945`, `15947`, `15950`, `15952`, `15954`, `15956`, `15959`, `15961`, `15962`, `15965`, `15969`, `15972`, `15975`, `15976`, `15978`, `15980`, `15981`, `15982`, `15983`, `15985`, `15988`, `15989`, `15991`, `15993`, `15995`, `15997`, `16000`, `16002`, `16004`, `16007`, `16009`, `16010`, `16012`, `16013`, `16015`, `16017`, `16020`, `16023`, `16025`, `16027`, `16029`, `16032`, `16034`, `16036`, `16039`, `16042`, `16045`, `16048`, `16049`, `16050`, `16053`, `16057`, `16058`, `16059`, `1760`, `16061`, `16063`, `16065`, `16067`, `16069`, `16072`, `16073`, `16074`, `16076`, `16078`, `16079`, `16081`, `16083`, `16084`, `16085`, `16088`, `16090`, `16092`, `16094`, `16097`, `16098`, `16102`, `16105`, `16107`, `16110`, `16111`, `16113`, `16115`, `16118`, `16120`, `16121`, `16124`, `16127`, `16130`, `16134`, `16136`, `16139`, `16141`, `16143`, `16146`, `16148`, `16150`, `16152`, `16154`, `16155`, `16156`, `16157`, `16158`, `16160`, `16162`, `16163`, `16165`, `16166`, `16168`, `16169`, `16174`, `16176`, `16178`, `16180`, `16181`, `16184`, `16186`, `16188`, `16190`, `16192`, `16195`, `16197`, `16199`, `16200`, `16201`, `16203`, `16205`, `16206`, `16209`, `16214`, `16217`, `16218`, `16222`, `16223`, `16226`, `16228`, `16230`, `16231`, `16233`, `16236`, `16238`, `16240`, `16244`, `16246`, `16248`, `16251`, `16253`, `16256`, `16257`, `16258`, `16260`, `16262`, `16264`, `16266`, `16267`, `16268`, `16270`, `16273`, `16275`, `16276`, `16278`, `16280`, `16283`, `16286`, `16290`, `16291`, `16294`, `16297`, `16300`, `16303`, `16304`, `16307`, `16309`, `16311`, `16313`, `16315`, `16317`, `16323`, `16325`, `16326`, `16327`, `16330`, `16331`, `16332`, `16334`, `16337`, `16338`, `16340`, `16342`, `16343`, `16344`, `16347`, `16349`, `16351`, `16352`, `16355`, `16357`, `16359`, `16361`, `16363`, `16365`, `16366`, `16367`, `16369`, `16372`, `16375`, `16378`, `16380`, `16383`, `16386`, `16387`, `16390`, `16392`, `16395`, `16396`, `16398`, `16400`, `16402`, `16404`, `16405`, `16408`, `16411`, `16413`, `16414`, `16415`, `16418`, `16420`, `16423`, `16424`, `16427`, `16429`, `16430`, `16431`, `16433`, `16435`, `16439`, `16441`, `16443`, `16445`, `16448`, `16450`, `16452`, `16454`, `16457`, `16460`, `16462`, `16463`, `16467`, `16469`, `16471`, `16473`, `16476`, `16480`, `16482`, `16484`, `16485`, `16487`, `16488`, `16491`, `16492`, `16493`, `16496`, `16499`, `16500`, `16502`, `16503`, `16504`, `16505`, `16506`, `16508`, `16510`, `16512`, `16515`, `16518`, `16519`, `16521`, `16523`, `16525`, `16528`, `16529`, `16530`, `16532`, `16537`, `16540`, `16542`, `16543`, `16545`, `16546`, `16550`, `16553`, `16556`, `16557`, `16559`, `16560`, `16565`, `16567`, `16569`, `16571`, `16573`, `16575`, `16577`, `16579`, `16581`, `16583`, `16584`, `16587`, `16588`, `16589`, `16591`, `16592`, `16593`, `16595`, `16596`, `16599`, `16602`, `16604`, `16606`, `16608`, `16611`, `16613`, `16615`, `16618`, `16620`, `16621`, `16623`, `16625`, `16626`, `16629`, `16630`, `16631`, `16632`, `16634`, `16636`, `16639`, `16641`, `16642`, `16644`, `16646`, `16649`, `16651`, `16653`, `16655`, `16656`, `16658`, `16661`, `16663`, `16667`, `16670`, `16671`, `16673`, `16674`, `16678`, `16679`, `16683`, `16686`, `16688`, `16689`, `16692`, `16694`, `16696`, `16698`, `16700`, `16701`, `16703`, `16704`, `16706`, `16707`, `16710`, `16712`, `16714`, `16717`, `16720`, `16721`, `16722`, `16726`, `16728`, `16731`, `16734`, `16735`, `16737`, `16739`, `16741`, `16743`, `16745`, `16748`, `16752`, `16754`, `16756`, `16758`, `16761`, `16764`, `16766`, `16768`, `16770`, `16772`, `16773`, `16776`, `16779`, `16780`, `16782`, `16785`, `16787`, `16790`, `16792`, `16794`, `16796`, `16799`, `16802`, `16806`, `16807`, `16809`, `16810`, `16815`, `16818`, `16819`, `16821`, `16823`, `16825`, `16827`, `16829`, `16830`, `16831`, `16832`, `16834`, `16835`, `16837`, `16839`, `16841`, `16844`, `16847`, `16850`, `16853`, `16856`, `16858`, `16860`, `16862`, `16863`, `16864`, `16865`, `16866`, `16869`, `16873`, `16875`, `16877`, `16880`, `16881`, `16884`, `16887`, `16889`, `16891`, `16894`, `16896`, `16899`, `16901`, `16903`, `16907`, `16910`, `16913`, `16917`, `16920`, `16922`, `16924`, `16927`, `16929`, `16931`, `16933`, `16934`, `16935`, `16937`, `16939`, `16941`, `16943`, `16945`, `16946`, `16949`, `16951`, `16952`, `16954`, `16955`, `16957`, `16958`, `16960`, `16964`, `16966`, `16967`, `16969`, `16972`, `16975`, `16977`, `16981`, `16982`, `16983`, `16985`, `16987`, `16989`, `16991`, `16993`, `16996`, `16997`, `16999`, `17002`, `17004`, `17006`, `17007`, `17009`, `17013`, `17016`, `17018`, `17020`, `17021`, `17022`, `17025`, `17028`, `17031`, `17033`, `17036`, `17038`, `17040`, `17043`, `17046`, `17050`, `17051`, `17052`, `17053`, `17056`, `17057`, `17059`, `17062`, `17064`, `17066`, `17068`, `17070`, `17073`, `17074`, `17077`, `17080`, `17082`, `17085`, `17086`, `17088`, `17089`, `17092`, `17094`, `17097`, `17100`, `17103`, `17104`, `17107`, `17110`, `17112`, `17113`, `17114`, `17118`, `17120`, `17123`, `17127`, `17129`, `17131`, `17133`, `17135`, `17136`, `17138`, `17141`, `17143`, `17147`, `17148`, `17152`, `17155`, `17157`, `17158`, `17160`, `17161`, `17163`, `17165`, `17167`, `17168`, `17170`, `17172`, `17174`, `17176`, `17178`, `17182`, `17184`, `17188`, `17189`, `17191`, `17192`, `17194`, `17196`, `17198`, `17200`, `17202`, `17204`, `17205`, `17208`, `17210`, `17212`, `17214`, `17216`, `17217`, `17219`, `17221`, `17224`, `17225`, `17227`, `17231`, `17234`, `17235`, `17237`, `17238`, `17241`, `17242`, `17244`, `17246`, `17247`, `17250`, `17251`, `17254`, `17256`, `17258`, `17261`, `17265`, `17268`, `17270`, `17271`, `17272`, `17273`, `17276`, `17278`, `17279`, `17281`, `17282`, `17284`, `17286`, `17287`, `17289`, `17293`, `17295`, `17298`, `17301`, `17302`, `17303`, `17306`, `17307`, `17310`, `17313`, `17317`, `17319`, `17320`, `17322`, `17324`, `17326`, `17328`, `17329`, `17330`, `17333`, `17334`, `17336`, `17338`, `17339`, `17343`, `17344`, `17347`, `17350`, `17353`, `17355`, `17356`, `17358`, `17361`, `17363`, `17365`, `17368`, `17369`, `17372`, `17374`, `17375`, `17376`, `17378`, `17380`, `17383`, `17386`, `17389`, `17392`, `17393`, `17394`, `17396`, `17398`, `17402`, `17404`, `17407`, `17410`, `17412`, `17413`, `17414`, `17418`, `17419`, `17422`, `17423`, `17424`, `17426`, `17429`, `17430`, `17433`, `17435`, `17436`, `17438`, `17440`, `17442`, `17445`, `17447`, `17448`, `17449`, `17450`, `17451`, `17452`, `17454`, `17455`, `17456`, `17460`, `17463`, `17466`, `17467`, `17469`, `17471`, `17472`, `17474`, `17476`, `17477`, `17479`, `17481`, `17483`, `17486`, `17489`, `17494`, `17495`, `17498`, `17500`, `17502`, `17505`, `17509`, `17511`, `17514`, `17515`, `17516`, `17517`, `17519`, `17520`, `17524`, `17528`, `17529`, `17530`, `17532`, `17535`, `17536`, `17539`, `17542`, `17544`, `17547`, `17549`, `17551`, `17553`, `17555`, `17558`, `17560`, `17562`, `17564`, `17566`, `17568`, `17571`, `17573`, `17576`, `17577`, `17579`, `17581`, `17583`, `17585`, `17587`, `17589`, `17591`, `17592`, `17594`, `17595`, `17599`, `17602`, `17606`, `17607`, `17610`, `17613`, `17615`, `17617`, `17619`, `17621`, `17624`, `17626`, `17628`, `17630`, `17632`, `17634`, `17637`, `17640`, `17641`, `17645`, `17646`, `17648`, `17651`, `17653`, `17655`, `17657`, `17659`, `17662`, `17664`, `17665`, `17667`, `17671`, `17672`, `17676`, `17677`, `17681`, `17683`, `17686`, `17688`, `17690`, `17692`, `17694`, `17696`, `17698`, `17700`, `17702`, `17704`, `17707`, `17709`, `17711`, `17713`, `17715`, `17717`, `17719`, `17720`, `17724`, `17727`, `17729`, `17732`, `17733`, `17735`, `17738`, `17740`, `17742`, `17744`, `17746`, `17748`, `17750`, `17754`, `17755`, `17757`, `17759`, `17762`, `17765`, `17766`, `17768`, `17770`, `17773`, `17775`, `17777`, `17779`, `17781`, `17783`, `17786`, `17789`, `17792`, `17796`, `17797`, `17799`, `17802`, `17806`, `17808`, `17810`, `17813`, `17816`, `17819`, `17822`, `17825`, `17826`, `17827`, `17830`, `17832`, `17833`, `17835`, `17837`, `17839`, `17842`, `17844`, `17847`, `17849`, `17851`, `17854`, `17855`, `17857`, `17859`, `17864`, `17867`, `17868`, `17871`, `17873`, `17875`, `17877`, `17879`, `17881`, `17883`, `17886`, `17889`, `17891`, `17893`, `17895`, `17897`, `17899`, `17901`, `17902`, `17907`, `17909`, `17912`, `17914`, `17916`, `17919`, `17921`, `17924`, `17927`, `17929`, `17932`, `17934`, `17937`, `17940`, `17942`, `17943`, `17945`, `17946`, `17948`, `17950`, `17952`, `17956`, `17958`, `17959`, `17962`, `17964`, `17966`, `17970`, `17972`, `17974`, `17976`, `17979`, `17981`, `17983`, `17985`, `17989`, `17990`, `17991`, `17993`, `17995`, `17997`, `18000`, `18002`, `18004`, `18005`, `18007`, `18009`, `18011`, `18012`, `18014`, `18017`, `18020`, `18024`, `18026`, `18029`, `18031`, `18033`, `18035`, `18038`, `18039`, `18042`, `18045`, `18048`, `18050`, `18055`, `18056`, `18059`, `18062`, `18064`, `18067`, `18069`, `18071`, `18072`, `18074`, `18077`, `18080`, `18082`, `18083`, `18085`, `18088`, `18092`, `18093`, `18096`, `18098`, `18100`, `18101`, `18103`, `18105`, `18106`, `18109`, `18111`, `18114`, `18115`, `18117`, `18121`, `18123`, `18125`, `18126`, `18128`, `18129`, `18133`, `18135`, `18138`, `18139`, `18141`, `18144`, `18146`, `18148`, `18152`, `18154`, `18156`, `18158`, `18160`, `18162`, `18163`, `18165`, `18166`, `18168`, `18170`, `18173`, `18175`, `18178`, `18180`, `18182`, `18183`, `18185`, `18187`, `18190`, `18191`, `18193`, `18196`, `18197`, `18198`, `18199`, `18200`, `18201`, `18203`, `18207`, `18208`, `18210`, `18212`, `18213`, `18215`, `18216`, `18218`, `18220`, `18223`, `18227`, `10536`, `18230`, `18233`, `18236`, `18237`, `18240`, `18241`, `18243`, `18246`, `18247`, `18248`, `18251`, `18253`, `18254`, `18256`, `18257`, `18261`, `18262`, `18265`, `18267`, `18268`, `18269`, `18270`, `18272`, `18274`, `18276`, `18278`, `18280`, `18282`, `18283`, `18286`, `18287`, `18289`, `18291`, `18294`, `18297`, `18298`, `18300`, `18303`, `18304`, `18306`, `18313`, `18315`, `18317`, `18318`, `18320`, `18324`, `18327`, `18328`, `18331`, `18333`, `18335`, `18337`, `18338`, `18341`, `18343`, `18345`, `18346`, `18349`, `18351`, `18353`, `18354`, `18355`, `18357`, `18359`, `18361`, `18365`, `18367`, `18370`, `18372`, `18374`, `18377`, `18379`, `18382`, `18383`, `18385`, `18387`, `18389`, `18391`, `18393`, `18395`, `18397`, `18400`, `18401`, `18403`, `18404`, `18407`, `18408`, `18409`, `18411`, `18413`, `18414`, `18415`, `18417`, `18418`, `18419`, `18420`, `18422`, `18424`, `18425`, `18430`, `18431`, `18432`, `18433`, `18435`, `18437`, `18439`, `18441`, `18443`, `18446`, `18448`, `18451`, `18453`, `18455`, `18458`, `18460`, `18462`, `18464`, `18467`, `18470`, `18472`, `18476`, `18478`, `18479`, `18481`, `18484`, `18486`, `18487`, `18490`, `18492`, `18494`, `18496`, `18497`, `18499`, `18503`, `18506`, `18507`, `18509`, `18510`, `18513`, `18515`, `18517`, `18518`, `18520`, `18521`, `18522`, `18523`, `18525`, `18527`, `18529`, `18531`, `18533`, `18534`, `18537`, `18540`, `18542`, `18544`, `18546`, `18548`, `18549`, `18552`, `18556`, `18557`, `18559`, `18561`, `18563`, `18564`, `18565`, `18566`, `18569`, `18570`, `18572`, `18574`, `18578`, `18581`, `18583`, `18584`, `18586`, `18588`, `18590`, `18593`, `18594`, `18599`, `18600`, `18601`, `18604`, `18606`, `18608`, `18610`, `18611`, `18613`, `18614`, `18615`, `18617`, `18618`, `18621`, `18622`, `18625`, `18626`, `18629`, `18630`, `18632`, `18633`, `18636`, `18637`, `18638`, `18641`, `18642`, `18643`, `18648`, `18649`, `18653`, `18655`, `18656`, `18660`, `18661`, `18665`, `18668`, `18670`, `18671`, `18673`, `18675`, `18677`, `18679`, `18681`, `18682`, `18684`, `18686`, `18687`, `18689`, `18690`, `18693`, `18694`, `18696`, `18701`, `18703`, `18705`, `18707`, `18709`, `18711`, `18713`, `18714`, `18717`, `18720`, `18722`, `18724`, `18725`, `18727`, `18729`, `18730`, `18731`, `18733`, `18734`, `18736`, `18738`, `18740`, `18743`, `18746`, `18750`, `18752`, `18754`, `18756`, `18758`, `18760`, `18762`, `18763`, `18765`, `18768`, `18771`, `18773`, `18775`, `18777`, `18778`, `18780`, `18781`, `18784`, `18786`, `18788`, `18789`, `18791`, `18793`, `18796`, `18797`, `18798`, `18799`, `18800`, `18802`, `18804`, `18806`, `18808`, `18811`, `18812`, `18814`, `18816`, `18817`, `18820`, `18823`, `18826`, `18829`, `18832`, `18833`, `18834`, `18835`, `18836`, `18837`, `18841`, `18843`, `18847`, `18850`, `18852`, `18854`, `18857`, `18859`, `18862`, `18863`, `18865`, `18869`, `18872`, `18874`, `18877`, `18880`, `18881`, `18884`, `18887`, `18890`, `18893`, `18894`, `18898`, `18902`, `18904`, `18907`, `18908`, `18910`, `18913`, `18915`, `18918`, `18919`, `18920`, `18922`, `18926`, `18929`, `18931`, `18933`, `18934`, `18937`, `18939`, `18941`, `18943`, `18944`, `18946`, `18949`, `18951`, `18952`, `18954`, `18956`, `18960`, `18964`, `18966`, `18968`, `18970`, `18973`, `18976`, `18977`, `18981`, `18984`, `12663`, `18986`, `18987`, `18989`, `18991`, `18993`, `18995`, `18999`, `19000`, `19001`, `19003`, `19006`, `19007`, `19008`, `19010`, `19012`, `19013`, `19014`, `19017`, `19019`, `19021`, `19023`, `19025`, `19027`, `19030`, `19032`, `19033`, `19035`, `19036`, `19039`, `19040`, `19041`, `19043`, `19045`, `19046`, `19047`, `19049`, `19051`, `19053`, `19055`, `19058`, `19059`, `19061`, `19063`, `19065`, `19067`, `19070`, `19071`, `19073`, `19076`, `19078`, `19081`, `19083`, `19085`, `19087`, `19090`, `19092`, `19094`, `19096`, `19098`, `19101`, `19104`, `19106`, `19107`, `19109`, `19111`, `19112`, `19113`, `19115`, `19117`, `19118`, `19120`, `19122`, `19123`, `19125`, `19127`, `19130`, `19133`, `19136`, `19138`, `19139`, `19141`, `19143`, `19145`, `19147`, `19149`, `19151`, `19153`, `19155`, `19157`, `19158`, `19160`, `19162`, `19164`, `19167`, `19170`, `19171`, `19173`, `19174`, `19176`, `19178`, `19179`, `19181`, `19184`, `19186`, `19189`, `19192`, `19196`, `19199`, `19200`, `19202`, `19203`, `19204`, `19205`, `19208`, `19210`, `19212`, `19213`, `19216`, `19217`, `19219`, `19221`, `19223`, `19224`, `19226`, `19227`, `19228`, `19230`, `19231`, `19233`, `19236`, `19238`, `19240`, `19242`, `19243`, `19246`, `19248`, `19250`, `19252`, `19254`, `19256`, `19258`, `19260`, `19262`, `19263`, `19267`, `19270`, `19273`, `19275`, `19276`, `19279`, `19281`, `19282`, `19284`, `19285`, `19286`, `19290`, `19291`, `19293`, `19295`, `19296`, `19298`, `19301`, `19303`, `19306`, `19307`, `19310`, `19314`, `19317`, `19318`, `19320`, `19322`, `19325`, `19328`, `19330`, `19332`, `19334`, `19336`, `19338`, `19340`, `19342`, `19344`, `19347`, `19349`, `19351`, `19354`, `19357`, `19358`, `19360`, `19363`, `19364`, `19366`, `19367`, `19368`, `19370`, `19372`, `19377`, `19380`, `19382`, `19384`, `19386`, `19388`, `19389`, `19391`, `19394`, `19395`, `19396`, `19398`, `19400`, `19402`, `19405`, `19406`, `19408`, `19409`, `19410`, `19411`, `19412`, `19414`, `19415`, `19416`, `19417`, `19419`, `19421`, `19423`, `19425`, `19426`, `19428`, `19430`, `19431`, `19432`, `19434`, `19437`, `19439`, `19441`, `19444`, `19447`, `19449`, `19452`, `19454`, `19458`, `19461`, `19464`, `19467`, `19469`, `19472`, `19474`, `19478`, `19480`, `19482`, `19483`, `19485`, `19488`, `19491`, `19493`, `19494`, `19495`, `19498`, `19500`, `19502`, `19504`, `19507`, `19508`, `19510`, `19512`, `19514`, `19515`, `19517`, `19519`, `19521`, `19524`, `19525`, `19527`, `19528`, `19529`, `19531`, `19533`, `19534`, `19535`, `19537`, `19539`, `19540`, `19543`, `19546`, `19547`, `19550`, `19553`, `19555`, `19558`, `19560`, `19561`, `19563`, `19565`, `19568`, `19569`, `19570`, `19572`, `19573`, `19575`, `19577`, `19578`, `19579`, `19582`, `19584`, `19586`, `19589`, `19591`, `19592`, `19595`, `19598`, `19601`, `19603`, `19607`, `19609`, `19611`, `19612`, `19615`, `19616`, `19618`, `19620`, `19623`, `19626`, `19629`, `19631`, `19632`, `19633`, `19635`, `19638`, `19642`, `19643`, `19645`, `19647`, `19649`, `19651`, `19654`, `19656`, `19659`, `19660`, `19662`, `19664`, `19665`, `19667`, `19670`, `19673`, `19674`, `19676`, `19678`, `19679`, `19680`, `19681`, `19682`, `19684`, `19687`, `19688`, `19689`, `19690`, `19693`, `19695`, `19696`, `19698`, `19701`, `19702`, `19704`, `19706`, `19709`, `19710`, `19714`, `19719`, `19721`, `19723`, `19724`, `19728`, `19729`, `19732`, `19736`, `19737`, `19738`, `19742`, `19745`, `19747`, `19748`, `19750`, `19753`, `19756`, `19759`, `19762`, `19764`, `19766`, `19768`, `19771`, `19772`, `19773`, `19777`, `19778`, `19779`, `19780`, `19782`, `19783`, `19784`, `19786`, `19787`, `19789`, `19790`, `19791`, `19793`, `19795`, `19797`, `19799`, `19800`, `19802`, `19803`, `19805`, `19807`, `19809`, `19812`, `19814`, `19817`, `19819`, `19820`, `19823`, `19825`, `19827`, `19828`, `19831`, `19833`, `19835`, `19837`, `19840`, `19841`, `19842`, `19843`, `19846`, `19848`, `19850`, `19853`, `19856`, `19858`, `19859`, `19861`, `19862`, `19865`, `19866`, `19867`, `19868`, `19870`, `19871`, `19873`, `19874`, `19876`, `19878`, `19879`, `19882`, `19885`, `19886`, `19887`, `19888`, `19891`, `19893`, `19895`, `19896`, `19898`, `19899`, `19900`, `19902`, `19905`, `19907`, `19910`, `19912`, `19913`, `19914`, `19917`, `19918`, `19921`, `19923`, `19925`, `19927`, `19929`, `19931`, `19933`, `19934`, `19935`, `19938`, `19940`, `19942`, `19944`, `19946`, `19950`, `19953`, `19957`, `19959`, `19962`, `19963`, `19964`, `19968`, `19970`, `19975`, `19977`, `19979`, `19982`, `19983`, `19986`, `19988`, `19990`, `19992`, `19995`, `19998`, `20001`, `20003`, `20007`, `20008`, `20010`, `20011`, `20013`, `20014`, `20015`, `20016`, `20018`, `20022`, `20024`, `20027`, `20029`, `20031`, `20034`, `20036`, `20040`, `20041`, `20043`, `20045`, `20047`, `20050`, `20053`, `20055`, `20056`, `20059`, `20062`, `20064`, `20068`, `20071`, `20075`, `20077`, `20078`, `20080`, `20081`, `20083`, `20085`, `20087`, `20088`, `20090`, `20092`, `20094`, `20095`, `20097`, `20101`, `20105`, `20107`, `20110`, `20113`, `20116`, `20117`, `20120`, `20121`, `20124`, `20126`, `20127`, `20129`, `20131`, `20133`, `20135`, `20136`, `20139`, `20142`, `20143`, `20144`, `20146`, `20149`, `20152`, `20155`, `20157`, `20159`, `20162`, `20164`, `20167`, `20169`, `20172`, `20174`, `20175`, `20176`, `20177`, `20179`, `20180`, `20183`, `20186`, `20187`, `20188`, `20189`, `20191`, `20193`, `20195`, `20196`, `20197`, `20199`, `20201`, `20203`, `20204`, `20206`, `20208`, `20211`, `20213`, `20215`, `20217`, `20219`, `20221`, `20223`, `20226`, `20229`, `20231`, `20234`, `20236`, `20239`, `20241`, `20244`, `20246`, `20248`, `20250`, `20253`, `20256`, `20258`, `20259`, `20260`, `20262`, `20263`, `20265`, `20266`, `20268`, `20270`, `20272`, `20275`, `20277`, `20279`, `20281`, `20283`, `20285`, `20287`, `20290`, `20292`, `20295`, `20297`, `20298`, `20300`, `20302`, `20303`, `20307`, `20310`, `20313`, `20314`, `20315`, `20319`, `20321`, `20323`, `20325`, `20328`, `20330`, `20333`, `20336`, `20339`, `20341`, `20342`, `20344`, `20346`, `20347`, `20349`, `20351`, `20353`, `20355`, `20356`, `20357`, `20358`, `20360`, `20363`, `20365`, `20368`, `20370`, `20373`, `20374`, `20376`, `20377`, `20380`, `20382`, `20383`, `20384`, `20385`, `20386`, `20387`, `20390`, `20393`, `20395`, `20397`, `20399`, `20401`, `20402`, `20403`, `20406`, `20408`, `20411`, `20413`, `20414`, `20416`, `20417`, `20420`, `20423`, `20424`, `20425`, `20427`, `20429`, `20431`, `20433`, `20435`, `20440`, `20442`, `20443`, `20447`, `20449`, `20451`, `20452`, `20455`, `20457`, `20458`, `20460`, `20463`, `20466`, `20468`, `20471`, `20472`, `20475`, `20477`, `20478`, `20480`, `20481`, `20485`, `20487`, `20489`, `20491`, `20494`, `20497`, `20498`, `20499`, `20502`, `20504`, `20505`, `20507`, `20508`, `20509`, `20514`, `20516`, `20518`, `20519`, `20522`, `20525`, `20528`, `20530`, `20532`, `20534`, `20536`, `20538`, `20541`, `20542`, `20544`, `20545`, `20548`, `20550`, `20552`, `20555`, `20557`, `20559`, `20560`, `20561`, `20563`, `20565`, `20567`, `20568`, `20571`, `20572`, `20573`, `20575`, `20578`, `20580`, `20581`, `20584`, `20587`, `20589`, `20590`, `20593`, `20595`, `20597`, `20599`, `20601`, `20603`, `20605`, `20607`, `20609`, `20611`, `20613`, `20615`, `20617`, `20619`, `20623`, `20624`, `20626`, `20628`, `20631`, `20633`, `20634`, `20635`, `20638`, `20639`, `20642`, `20645`, `20647`, `20649`, `20650`, `20652`, `20654`, `20657`, `20658`, `20660`, `20661`, `20662`, `20665`, `20667`, `20668`, `20670`, `20673`, `20676`, `20677`, `20679`, `20680`, `20683`, `20684`, `20687`, `20689`, `20692`, `20694`, `20696`, `20698`, `20699`, `20702`, `20704`, `20706`, `20709`, `20711`, `20713`, `20717`, `20718`, `20719`, `20721`, `20723`, `20725`, `20727`, `20728`, `20731`, `20733`, `20735`, `20737`, `20738`, `20739`, `20740`, `20742`, `20743`, `20744`, `20745`, `20747`, `20750`, `20753`, `20756`, `20759`, `20762`, `20764`, `20765`, `20768`, `20771`, `20772`, `20774`, `20777`, `20778`, `20779`, `20781`, `20784`, `20787`, `20788`, `20791`, `20793`, `20796`, `20799`, `20801`, `20804`, `20806`, `20807`, `20809`, `20810`, `20812`, `20814`, `20817`, `20819`, `20824`, `20826`, `20830`, `20832`, `20836`, `20839`, `20841`, `20842`, `20845`, `20848`, `20850`, `20852`, `20853`, `20855`, `20857`, `20861`, `20864`, `20867`, `20869`, `20871`, `20874`, `20876`, `20879`, `20881`, `20884`, `20886`, `20890`, `20891`, `20892`, `20893`, `20895`, `20898`, `20900`, `20902`, `20903`, `20905`, `20908`, `20909`, `20911`, `20912`, `20914`, `20915`, `20918`, `20920`, `20923`, `20926`, `20928`, `20929`, `20930`, `20931`, `20932`, `20934`, `20935`, `20937`, `20939`, `20942`, `20944`, `20945`, `20947`, `20948`, `20950`, `20952`, `20954`, `20955`, `20957`, `20958`, `20959`, `20961`, `20964`, `20966`, `20969`, `20971`, `20973`, `20975`, `20978`, `20980`, `20982`, `20984`, `20987`, `20990`, `20992`, `20996`, `20999`, `21001`, `21006`, `21007`, `21010`, `21012`, `21015`, `21017`, `21020`, `21023`, `21025`, `21027`, `21028`, `21030`, `21031`, `21034`, `21036`, `21038`, `21040`, `21043`, `21044`, `21046`, `21049`, `21052`, `21054`, `21056`, `21057`, `21060`, `21061`, `21064`, `21067`, `21070`, `21072`, `21074`, `21075`, `21077`, `21078`, `21079`, `21081`, `21083`, `21085`, `21087`, `21089`, `21093`, `21096`, `21099`, `21100`, `21102`, `21104`, `21109`, `21111`, `21112`, `21114`, `21115`, `21116`, `21118`, `21121`, `21123`, `21128`, `21129`, `21132`, `21135`, `21138`, `21140`, `21142`, `21143`, `21146`, `21147`, `21149`, `21151`, `21154`, `21158`, `21161`, `21164`, `21167`, `21170`, `21172`, `21174`, `21176`, `21178`, `21180`, `21181`, `21183`, `21185`, `21187`, `21189`, `21192`, `21194`, `21198`, `21200`, `21202`, `21205`, `21207`, `21210`, `21212`, `21215`, `21217`, `21220`, `21221`, `21223`, `21226`, `21227`, `21228`, `21231`, `21232`, `21233`, `21235`, `21239`, `21241`, `21244`, `21247`, `21248`, `21250`, `21252`, `21254`, `21256`, `21258`, `21260`, `21262`, `21263`, `21264`, `21266`, `21267`, `21269`, `21271`, `21274`, `21277`, `21278`, `21280`, `21282`, `21283`, `21284`, `21287`, `21291`, `21292`, `21294`, `21296`, `21298`, `21299`, `21302`, `21303`, `21304`, `21306`, `21307`, `21309`, `21311`, `21315`, `21317`, `21321`, `21323`, `21325`, `21327`, `21329`, `21332`, `21334`, `21337`, `21338`, `21340`, `21342`, `21344`, `21347`, `21349`, `21352`, `21354`, `21355`, `21357`, `21360`, `21361`, `21364`, `21368`, `21369`, `21372`, `21373`, `21375`, `21377`, `21378`, `21379`, `21380`, `21382`, `21383`, `21386`, `21388`, `21390`, `21392`, `21393`, `21395`, `21396`, `21397`, `21400`, `21403`, `21404`, `21407`, `21409`, `21410`, `21412`, `21414`, `21416`, `21417`, `21418`, `21420`, `21421`, `21423`, `21425`, `21429`, `21432`, `21434`, `21436`, `21440`, `21442`, `21444`, `21446`, `21447`, `21448`, `21450`, `21452`, `21454`, `21456`, `21458`, `21460`, `21463`, `21465`, `21466`, `18252`, `21468`, `21469`, `21474`, `21476`, `21479`, `21482`, `21483`, `21486`, `21488`, `21490`, `21492`, `21493`, `21494`, `21495`, `21498`, `21500`, `21505`, `21507`, `21508`, `21510`, `21511`, `21513`, `21515`, `21516`, `21518`, `21520`, `21521`, `21522`, `21525`, `21527`, `21529`, `21531`, `21532`, `21534`, `21537`, `21539`, `21541`, `1558`, `21544`, `21547`, `21550`, `21551`, `21554`, `21556`, `21557`, `21559`, `21561`, `21562`, `21564`, `21566`, `21568`, `21571`, `21573`, `21576`, `21579`, `21581`, `21583`, `21585`, `21587`, `21589`, `21591`, `21595`, `21596`, `21598`, `21599`, `21601`, `21602`, `21604`, `21605`, `21608`, `21609`, `21612`, `21613`, `21615`, `21616`, `21617`, `21619`, `21620`, `21622`, `21624`, `21626`, `21628`, `21630`, `21631`, `21632`, `21634`, `21637`, `21639`, `21641`, `21644`, `21646`, `21647`, `21648`, `21649`, `21651`, `21652`, `21655`, `21657`, `21660`, `21663`, `21664`, `21666`, `21668`, `21670`, `21671`, `21672`, `21674`, `21676`, `21678`, `21680`, `21682`, `21685`, `21687`, `21689`, `21691`, `21692`, `21696`, `21697`, `21701`, `21702`, `21704`, `21706`, `21710`, `21712`, `21713`, `21714`, `21718`, `21721`, `21723`, `21724`, `21726`, `21727`, `21729`, `21731`, `21735`, `21737`, `21739`, `21740`, `21743`, `21746`, `21748`, `21751`, `21752`, `21754`, `21756`, `21758`, `21759`, `21763`, `21765`, `21767`, `21769`, `21771`, `21772`, `21776`, `21780`, `21783`, `21784`, `21785`, `21787`, `21791`, `21793`, `21796`, `21799`, `21801`, `21803`, `21805`, `21808`, `21810`, `21812`, `21814`, `21817`, `21819`, `21821`, `21823`, `21825`, `21827`, `21828`, `21830`, `21831`, `21832`, `21833`, `21834`, `21836`, `21838`, `21840`, `21843`, `21845`, `21847`, `21851`, `21854`, `21855`, `21857`, `21860`, `21862`, `21865`, `21866`, `21868`, `21871`, `21873`, `21874`, `21875`, `21877`, `21878`, `21879`, `21881`, `21884`, `21886`, `21888`, `21889`, `21890`, `21894`, `18179`, `21896`, `21897`, `21899`, `21900`, `21901`, `21903`, `21904`, `21905`, `21908`, `21910`, `21912`, `21914`, `21916`, `21918`, `21920`, `21922`, `21923`, `21924`, `21926`, `21928`, `21929`, `21931`, `21932`, `21934`, `21937`, `21940`, `21943`, `21946`, `21949`, `21950`, `21951`, `21955`, `21958`, `21959`, `21961`, `21962`, `21966`, `21968`, `21970`, `21972`, `21973`, `21976`, `21978`, `21980`, `21984`, `21986`, `21988`, `21990`, `21992`, `21993`, `21996`, `21997`, `22000`, `22002`, `22004`, `22005`, `22007`, `22010`, `22012`, `22014`, `22016`, `22019`, `22020`, `22024`, `22026`, `22028`, `22030`, `22032`, `22036`, `22038`, `22039`, `22041`, `22045`, `22046`, `22049`, `22051`, `22053`, `22057`, `22058`, `22061`, `22063`, `22066`, `22068`, `22070`, `22072`, `22074`, `22076`, `22077`, `22079`, `22080`, `22081`, `22084`, `22087`, `22089`, `22091`, `22093`, `22095`, `22096`, `22097`, `22099`, `22101`, `22104`, `22106`, `22108`, `22111`, `22113`, `22115`, `22117`, `22119`, `22122`, `22123`, `22125`, `22129`, `22131`, `22134`, `22137`, `22138`, `22140`, `22143`, `22145`, `22148`, `22150`, `22151`, `22156`, `22157`, `22159`, `22160`, `22162`, `22164`, `22167`, `22169`, `22171`, `22174`, `22175`, `22178`, `22179`, `22181`, `22182`, `22184`, `22187`, `22188`, `22191`, `22194`, `22196`, `22197`, `22198`, `22200`, `22202`, `22205`, `22207`, `22209`, `22211`, `22214`, `22215`, `22217`, `22221`, `22225`, `22228`, `22230`, `22233`, `22235`, `22236`, `22237`, `22239`, `22240`, `22242`, `22243`, `22246`, `22248`, `22249`, `22250`, `22252`, `22256`, `22257`, `22259`, `22262`, `22265`, `22267`, `22269`, `22273`, `22275`, `22277`, `22279`, `22281`, `22282`, `22284`, `22286`, `22288`, `22290`, `22292`, `22293`, `22295`, `22297`, `22299`, `22301`, `22303`, `17994`, `22305`, `22308`, `22309`, `22312`, `22313`, `22315`, `22316`, `22318`, `22319`, `22320`, `22321`, `22323`, `22326`, `22327`, `22332`, `22334`, `22336`, `22337`, `22339`, `22341`, `22342`, `22343`, `22344`, `22346`, `22348`, `22350`, `22351`, `22353`, `22355`, `22357`, `22359`, `22361`, `22362`, `22363`, `22364`, `22366`, `22368`, `22371`, `22373`, `22375`, `22380`, `22383`, `22385`, `22387`, `22389`, `22391`, `22394`, `22396`, `22399`, `22401`, `22403`, `22406`, `22408`, `22410`, `22412`, `22413`, `22415`, `22418`, `22420`, `22422`, `22424`, `22425`, `22427`, `22428`, `22430`, `22432`, `22435`, `22438`, `22441`, `22442`, `22443`, `22444`, `22448`, `22450`, `22451`, `22452`, `22454`, `22456`, `22458`, `22460`, `22462`, `22463`, `22465`, `22466`, `22468`, `22469`, `22470`, `22473`, `22474`, `22475`, `22477`, `22479`, `22481`, `22484`, `22487`, `22489`, `22491`, `22494`, `22496`, `22498`, `22500`, `22505`, `22507`, `22509`, `22511`, `22512`, `22514`, `22516`, `22517`, `22520`, `22523`, `14243`, `22524`, `22528`, `22530`, `22532`, `22535`, `22537`, `22540`, `22542`, `22544`, `22545`, `22547`, `22549`, `22552`, `22553`, `22555`, `22557`, `22559`, `22560`, `22562`, `22564`, `22566`, `22569`, `22570`, `22572`, `22573`, `22574`, `22577`, `22579`, `22581`, `22584`, `22588`, `22589`, `22591`, `22593`, `22595`, `22597`, `22598`, `22600`, `22601`, `22602`, `22604`, `22607`, `22610`, `22612`, `22613`, `22617`, `22618`, `22620`, `22621`, `22622`, `22624`, `22626`, `22627`, `22629`, `22630`, `22634`, `22635`, `22636`, `22637`, `22639`, `22641`, `22645`, `22648`, `22649`, `22650`, `22651`, `22653`, `22654`, `22656`, `22658`, `22659`, `22661`, `22663`, `22666`, `22668`, `22670`, `22671`, `22674`, `22676`, `22678`, `22680`, `22681`, `22683`, `22684`, `22687`, `22688`, `22690`, `22692`, `22695`, `22696`, `22699`, `22702`, `22705`, `22707`, `22708`, `22711`, `22713`, `22716`, `22718`, `22719`, `22720`, `22721`, `22723`, `22727`, `22729`, `22733`, `22735`, `22737`, `22739`, `22741`, `22743`, `22745`, `22747`, `22749`, `22753`, `22754`, `22755`, `22757`, `22759`, `22761`, `22763`, `22766`, `22767`, `22768`, `22772`, `22774`, `22776`, `22778`, `22782`, `22784`, `22786`, `22788`, `22790`, `22793`, `22796`, `22797`, `22801`, `22803`, `22806`, `22808`, `22810`, `22812`, `22813`, `22814`, `22818`, `22819`, `22821`, `22824`, `22827`, `22829`, `22831`, `22833`, `22835`, `22836`, `22839`, `22841`, `22843`, `22846`, `22848`, `22850`, `22852`, `22855`, `22856`, `22858`, `22859`, `22861`, `22863`, `22865`, `22867`, `22869`, `22871`, `22872`, `22875`, `22877`, `22879`, `22880`, `22882`, `22885`, `22886`, `22888`, `22890`, `22892`, `22894`, `22897`, `22899`, `22902`, `22903`, `22908`, `22911`, `22913`, `22915`, `22916`, `22919`, `22922`, `22924`, `22925`, `22927`, `22929`, `22932`, `22933`, `22936`, `22938`, `22941`, `22943`, `22945`, `22946`, `22947`, `22948`, `22949`, `22950`, `22952`, `22953`, `22954`, `22956`, `22957`, `22959`, `22961`, `22964`, `22966`, `22968`, `22970`, `22972`, `22974`, `22976`, `22977`, `22979`, `22981`, `22982`, `22983`, `22984`, `22987`, `22989`, `22992`, `22993`, `22995`, `22996`, `22997`, `22998`, `23001`, `23004`, `23007`, `23009`, `23010`, `23011`, `23014`, `23016`, `23019`, `23023`, `23025`, `23028`, `23029`, `23031`, `23033`, `23035`, `23037`, `23039`, `23040`, `23041`, `23044`, `23047`, `23050`, `23051`, `23053`, `23056`, `23057`, `23058`, `23060`, `23062`, `1439`, `23064`, `23065`, `23068`, `23071`, `23072`, `23074`, `23075`, `23079`, `23080`, `23083`, `23084`, `23085`, `23086`, `23089`, `23093`, `23095`, `23097`, `23098`, `23099`, `23101`, `23102`, `23105`, `23107`, `23109`, `23111`, `23114`, `23115`, `23117`, `23119`, `23120`, `23121`, `23123`, `23124`, `23126`, `23129`, `23131`, `23132`, `23133`, `23135`, `23138`, `23140`, `23141`, `23144`, `23146`, `23148`, `23150`, `23151`, `23154`, `23156`, `23157`, `23160`, `23161`, `23163`, `23165`, `23167`, `23169`, `23171`, `23172`, `23173`, `23174`, `23176`, `23178`, `23180`, `23182`, `23183`, `23184`, `23186`, `23188`, `23190`, `23196`, `23199`, `23201`, `23204`, `23205`, `23206`, `23207`, `23209`, `23210`, `23212`, `23214`, `23217`, `23218`, `23220`, `23222`, `23223`, `23226`, `23228`, `23230`, `23233`, `23235`, `23237`, `23238`, `23241`, `23242`, `23245`, `23246`, `23249`, `23251`, `23253`, `23255`, `23256`, `23257`, `23258`, `23260`, `23262`, `23264`, `23265`, `23266`, `23267`, `23269`, `23271`, `23273`, `23275`, `23277`, `23278`, `23280`, `23281`, `23283`, `23287`, `23288`, `23289`, `23291`, `23293`, `23296`, `23298`, `23300`, `23302`, `23304`, `23308`, `23310`, `23313`, `23315`, `23316`, `23317`, `23319`, `23321`, `23322`, `23325`, `23327`, `23329`, `23330`, `23331`, `23333`, `23335`, `23337`, `23339`, `23340`, `23342`, `23344`, `23345`, `23347`, `23348`, `23350`, `23352`, `23354`, `23356`, `23359`, `23363`, `23365`, `23367`, `23369`, `23370`, `23371`, `23373`, `23375`, `23378`, `23381`, `23384`, `23388`, `23389`, `23391`, `23392`, `23393`, `23395`, `23397`, `23399`, `23400`, `23404`, `23406`, `23408`, `23411`, `23412`, `23415`, `23417`, `23420`, `23422`, `23423`, `23425`, `23426`, `23428`, `23430`, `23431`, `23433`, `23435`, `23437`, `23439`, `23441`, `23444`, `23447`, `23449`, `23451`, `23453`, `23456`, `23459`, `23462`, `23465`, `23467`, `23468`, `23470`, `23473`, `23475`, `23477`, `23478`, `23480`, `23482`, `23483`, `23484`, `23487`, `23490`, `23492`, `23494`, `23495`, `23497`, `23501`, `23503`, `23504`, `23505`, `23507`, `23510`, `23511`, `23514`, `23515`, `23517`, `23519`, `23523`, `23525`, `23527`, `23528`, `23530`, `23534`, `23536`, `23540`, `23542`, `23544`, `23546`, `23548`, `23549`, `23551`, `23553`, `23555`, `23558`, `23560`, `23563`, `23567`, `23569`, `23571`, `23572`, `23574`, `23576`, `23578`, `23581`, `23583`, `23584`, `23585`, `23587`, `23590`, `23593`, `23594`, `23597`, `23599`, `23600`, `23601`, `23602`, `23604`, `23605`, `23607`, `23610`, `23612`, `23617`, `23619`, `23621`, `23622`, `23625`, `23626`, `23627`, `23630`, `23631`, `23633`, `23634`, `23636`, `23639`, `23641`, `23643`, `23645`, `23647`, `23649`, `23650`, `23652`, `23654`, `23656`, `23657`, `23660`, `23662`, `23666`, `23669`, `23670`, `23672`, `23677`, `23679`, `23682`, `23684`, `23686`, `23688`, `23690`, `23692`, `23693`, `23695`, `23698`, `23699`, `23702`, `23705`, `23707`, `23708`, `23710`, `23711`, `23712`, `23715`, `23716`, `23718`, `23720`, `23721`, `23724`, `23726`, `23728`, `23729`, `23730`, `23732`, `23733`, `23736`, `23739`, `23742`, `23744`, `23745`, `23747`, `23749`, `23751`, `23754`, `23756`, `23758`, `23760`, `23762`, `23763`, `23764`, `23766`, `23767`, `23770`, `23772`, `23774`, `23779`, `23781`, `23783`, `23785`, `23787`, `23789`, `23793`, `23796`, `23797`, `23798`, `23800`, `23801`, `23802`, `23804`, `23805`, `23807`, `23808`, `23810`, `23813`, `23816`, `23819`, `23823`, `23824`, `23825`, `23827`, `23829`, `23831`, `23833`, `23835`, `23837`, `23840`, `23843`, `23846`, `23847`, `23850`, `23852`, `23854`, `23856`, `23858`, `23859`, `23860`, `23862`, `23864`, `23865`, `23867`, `23869`, `23871`, `23873`, `23875`, `23876`, `23879`, `23881`, `23882`, `23884`, `23886`, `23888`, `23890`, `23892`, `23894`, `23896`, `23899`, `23901`, `23904`, `23905`, `23907`, `23909`, `23912`, `23913`, `23916`, `23919`, `23921`, `23923`, `23926`, `23927`, `23929`, `23931`, `23933`, `23935`, `23936`, `23938`, `23939`, `23941`, `23944`, `23946`, `23948`, `23951`, `23953`, `23955`, `23958`, `23960`, `23961`, `23963`, `23965`, `23968`, `23970`, `23971`, `23974`, `23977`, `23978`, `23980`, `23983`, `23985`, `23988`, `23989`, `23991`, `23995`, `23998`, `24000`, `24002`, `24003`, `24005`, `24009`, `24013`, `24016`, `24018`, `24021`, `24023`, `24025`, `24027`, `24028`, `24030`, `24031`, `24033`, `24037`, `24039`, `24042`, `24044`, `24047`, `24050`, `24051`, `24053`, `24056`, `24059`, `24062`, `24064`, `24067`, `24070`, `24073`, `24076`, `24079`, `24081`, `24082`, `24084`, `24086`, `24089`, `24091`, `24093`, `24095`, `24097`, `24099`, `24101`, `24102`, `24104`, `24106`, `24108`, `24109`, `24111`, `24114`, `24116`, `24118`, `24120`, `24122`, `24124`, `24126`, `24128`, `24129`, `24131`, `24132`, `24135`, `24137`, `24138`, `24140`, `24141`, `24142`, `24144`, `24145`, `24147`, `24149`, `24150`, `24152`, `24154`, `24155`, `24157`, `24160`, `24163`, `24164`, `24168`, `24170`, `24172`, `24175`, `24176`, `24177`, `24178`, `24180`, `24181`, `24184`, `24185`, `24186`, `24189`, `24192`, `24193`, `24194`, `24196`, `24198`, `24201`, `24203`, `24205`, `24209`, `24211`, `24214`, `24217`, `24219`, `24220`, `24222`, `24225`, `24227`, `24231`, `24233`, `24234`, `24236`, `24237`, `24240`, `24241`, `24243`, `24244`, `24245`, `24246`, `24247`, `24248`, `24250`, `24251`, `24253`, `24254`, `24255`, `24257`, `24260`, `24262`, `24264`, `24266`, `24269`, `24271`, `24275`, `24278`, `24280`, `24282`, `24283`, `24286`, `24287`, `24288`, `24291`, `24294`, `24296`, `24298`, `24300`, `24303`, `24306`, `24307`, `24308`, `24309`, `24311`, `24315`, `24317`, `24318`, `24319`, `24320`, `24322`, `24323`, `24326`, `24329`, `24331`, `24332`, `24334`, `24337`, `24339`, `24341`, `24343`, `24346`, `24349`, `24350`, `24351`, `24353`, `24355`, `24358`, `24363`, `24367`, `24369`, `24370`, `24372`, `24375`, `24377`, `24379`, `24381`, `24383`, `24385`, `24388`, `24390`, `24392`, `24393`, `24394`, `24397`, `24400`, `24401`, `24403`, `24405`, `24407`, `24410`, `24412`, `24413`, `24416`, `24418`, `24420`, `24421`, `24424`, `24427`, `24429`, `24431`, `24433`, `24436`, `24439`, `24440`, `24441`, `24443`, `24445`, `24447`, `24450`, `24452`, `24453`, `24456`, `24458`, `24461`, `24463`, `24465`, `24467`, `24468`, `24469`, `24470`, `24473`, `24474`, `24475`, `24477`, `24480`, `24483`, `24484`, `24485`, `24488`, `24492`, `24495`, `24496`, `24499`, `24500`, `24502`, `24504`, `24506`, `24508`, `24510`, `24513`, `24514`, `24516`, `24518`, `24522`, `24526`, `24528`, `24534`, `24535`, `24537`, `24539`, `24540`, `24543`, `24545`, `24546`, `24549`, `24550`, `24552`, `24554`, `24556`, `24558`, `24560`, `24561`, `24562`, `24564`, `24565`, `24568`, `24570`, `24573`, `24576`, `24577`, `24580`, `24582`, `24584`, `24586`, `24588`, `24590`, `24592`, `24594`, `24595`, `24597`, `24599`, `815`, `24600`, `24601`, `24603`, `24605`, `24608`, `24609`, `24611`, `24612`, `24614`, `24616`, `24619`, `24620`, `24623`, `24625`, `24626`, `24627`, `24629`, `24632`, `24633`, `24635`, `24637`, `24639`, `24641`, `24643`, `24645`, `24647`, `24651`, `24654`, `24655`, `24656`, `24658`, `24660`, `24665`, `24667`, `24670`, `24673`, `24675`, `24680`, `24681`, `24683`, `24685`, `24687`, `24690`, `24691`, `24693`, `24694`, `24696`, `24697`, `24698`, `24700`, `24704`, `24706`, `24708`, `24710`, `24713`, `24716`, `24717`, `24718`, `24720`, `24722`, `24725`, `24728`, `24730`, `24735`, `24737`, `24740`, `24742`, `24745`, `24747`, `24749`, `24751`, `24753`, `24755`, `24757`, `24759`, `24761`, `24763`, `24765`, `24766`, `24768`, `24770`, `24771`, `24772`, `24774`, `24777`, `24779`, `24782`, `24784`, `24786`, `24788`, `24790`, `24792`, `24795`, `24797`, `24799`, `24800`, `24804`, `24806`, `24807`, `24809`, `24810`, `24812`, `24814`, `24817`, `24818`, `24820`, `24821`, `24823`, `24825`, `24827`, `24828`, `24830`, `24831`, `24834`, `24836`, `24838`, `24842`, `24845`, `24847`, `24849`, `24850`, `24853`, `24855`, `24856`, `24858`, `24862`, `24865`, `24868`, `24869`, `24871`, `24874`, `24877`, `24879`, `24881`, `24883`, `24884`, `24887`, `24889`, `24891`, `24893`, `24896`, `24899`, `24901`, `24902`, `24905`, `24907`, `24909`, `24910`, `24911`, `24912`, `24913`, `24914`, `24916`, `24917`, `24918`, `24919`, `24923`, `24925`, `24927`, `24929`, `24931`, `24934`, `24936`, `24938`, `24941`, `24944`, `24947`, `24950`, `24953`, `24955`, `24957`, `24959`, `24960`, `24961`, `24962`, `24965`, `24966`, `24969`, `24971`, `24974`, `24977`, `24979`, `24980`, `24983`, `24984`, `24986`, `24987`, `24988`, `24990`, `24993`, `24995`, `24999`, `25001`, `25003`, `25004`, `25007`, `25009`, `25010`, `25014`, `25016`, `25018`, `25020`, `25021`, `25023`, `25025`, `25027`, `25028`, `25030`, `25031`, `25033`, `25036`, `25038`, `25041`, `25043`, `25045`, `25048`, `25050`, `25052`, `25053`, `25054`, `25056`, `25057`, `25058`, `25059`, `25062`, `25063`, `25064`, `25067`, `25068`, `25069`, `25072`, `25077`, `25080`, `25083`, `25085`, `25087`, `25090`, `25094`, `25095`, `25096`, `25100`, `25103`, `25105`, `25109`, `25112`, `25114`, `25117`, `25120`, `25121`, `25123`, `25127`, `25129`, `25130`, `25131`, `25134`, `25136`, `25139`, `25141`, `25144`, `25146`, `25148`, `25151`, `25154`, `25158`, `25160`, `25162`, `25165`, `25166`, `25171`, `25173`, `25175`, `25177`, `25179`, `25181`, `25183`, `25185`, `25186`, `25188`, `25190`, `25193`, `25196`, `25197`, `25199`, `25201`, `25203`, `25204`, `25207`, `25210`, `25212`, `25214`, `25215`, `25218`, `25219`, `25223`, `25225`, `25227`, `25230`, `25231`, `25232`, `25234`, `25237`, `25239`, `25241`, `25243`, `25245`, `25247`, `25251`, `25253`, `25254`, `25256`, `25257`, `25259`, `25260`, `25262`, `25263`, `25266`, `25270`, `25272`, `25275`, `25277`, `25279`, `25283`, `25284`, `25287`, `25291`, `25293`, `25295`, `25297`, `25298`, `25301`, `25304`, `25306`, `25307`, `25310`, `25313`, `25315`, `25317`, `25320`, `25322`, `25324`, `25327`, `25329`, `25331`, `25334`, `25336`, `25339`, `25340`, `25344`, `25346`, `25348`, `25350`, `25351`, `25352`, `25354`, `25355`, `25356`, `25357`, `25360`, `25361`, `25363`, `25366`, `25369`, `25370`, `25374`, `25375`, `25378`, `25380`, `25384`, `25386`, `25390`, `25391`, `25392`, `25393`, `25394`, `25395`, `25396`, `25398`, `25401`, `25405`, `25407`, `25409`, `25411`, `25413`, `25416`, `25419`, `25420`, `25423`, `25425`, `25427`, `25430`, `25433`, `25435`, `25437`, `25439`, `25441`, `25443`, `25444`, `25447`, `25450`, `25451`, `25453`, `25457`, `25460`, `25464`, `25468`, `25469`, `25470`, `25473`, `25475`, `25476`, `25477`, `25479`, `25481`, `25483`, `25484`, `25487`, `25488`, `25492`, `25494`, `25496`, `25497`, `25500`, `25504`, `25505`, `25507`, `25509`, `25510`, `25512`, `25514`, `25517`, `25519`, `25521`, `25522`, `25523`, `25524`, `25525`, `25527`, `25528`, `25529`, `25532`, `25535`, `25537`, `25538`, `25540`, `25542`, `25544`, `25547`, `25549`, `25552`, `25555`, `25557`, `25560`, `25561`, `25562`, `25564`, `25567`, `25569`, `25572`, `25574`, `25576`, `25578`, `25579`, `25583`, `25585`, `25587`, `25589`, `25590`, `2890`, `25592`, `25594`, `25598`, `25599`, `25602`, `25604`, `25607`, `25609`, `25610`, `25612`, `25613`, `25615`, `25617`, `25619`, `25593`, `25621`, `25623`, `25625`, `25627`, `25628`, `25629`, `25631`, `25635`, `25637`, `25640`, `25641`, `25643`, `25645`, `25647`, `25649`, `25651`, `25652`, `25655`, `25657`, `25659`, `25662`, `25664`, `25665`, `25667`, `25670`, `25675`, `25676`, `25677`, `25679`, `25682`, `25685`, `25687`, `25688`, `25690`, `25691`, `25692`, `25694`, `25696`, `25698`, `25700`, `25702`, `25705`, `25706`, `25707`, `25710`, `25712`, `25714`, `25716`, `25718`, `25719`, `25722`, `25725`, `25726`, `25729`, `25730`, `25732`, `25734`, `25737`, `25739`, `25741`, `25744`, `25746`, `25747`, `25749`, `25752`, `25755`, `25757`, `25759`, `25761`, `25763`, `25765`, `25766`, `25768`, `25771`, `25775`, `25777`, `25779`, `25780`, `25781`, `25783`, `25784`, `25785`, `25786`, `25788`, `25790`, `25792`, `25794`, `25795`, `25798`, `25799`, `25801`, `25803`, `25804`, `25807`, `25809`, `25810`, `25812`, `25813`, `25815`, `25816`, `25819`, `25821`, `25823`, `25824`, `25826`, `25828`, `25830`, `25832`, `25833`, `25836`, `25838`, `25840`, `25844`, `25846`, `25847`, `25849`, `25851`, `25853`, `25855`, `25858`, `25860`, `25862`, `25863`, `25866`, `25868`, `25870`, `25873`, `25875`, `25877`, `25879`, `25882`, `25885`, `25888`, `25890`, `25893`, `25895`, `25897`, `25899`, `25901`, `25903`, `25904`, `25905`, `25907`, `25910`, `25913`, `25915`, `25917`, `25920`, `25921`, `25922`, `25924`, `25929`, `25933`, `25935`, `25938`, `25941`, `25943`, `25946`, `25950`, `25952`, `25953`, `25957`, `25958`, `25959`, `25961`, `25963`, `25966`, `25968`, `25970`, `25972`, `25974`, `25976`, `25979`, `25980`, `25984`, `25989`, `25991`, `25994`, `25996`, `25998`, `26000`, `26003`, `26006`, `26008`, `26009`, `26013`, `26015`, `26018`, `26019`, `26021`, `26023`, `26026`, `26031`, `26033`, `26037`, `26039`, `26041`, `26044`, `26046`, `26047`, `26048`, `26051`, `26052`, `26054`, `26056`, `26059`, `26063`, `26064`, `26065`, `26069`, `26071`, `26073`, `26074`, `26076`, `26077`, `26079`, `26082`, `26086`, `26090`, `26093`, `26095`, `26098`, `26100`, `26104`, `26106`, `26107`, `26110`, `26112`, `26115`, `26116`, `26118`, `26120`, `26121`, `26123`, `26125`, `26126`, `26127`, `26128`, `26130`, `26132`, `26135`, `26137`, `26138`, `26141`, `26143`, `26145`, `26148`, `26151`, `26154`, `26156`, `26158`, `26160`, `26162`, `26165`, `26167`, `26169`, `26170`, `26172`, `26173`, `26175`, `26176`, `26178`, `26181`, `26185`, `26186`, `26189`, `26190`, `26192`, `26194`, `26197`, `26198`, `26200`, `26202`, `26204`, `26205`, `26206`, `26207`, `26211`, `26213`, `26215`, `26218`, `26221`, `26223`, `26224`, `26227`, `26229`, `26233`, `26235`, `26236`, `26238`, `26241`, `26243`, `26244`, `26246`, `26249`, `26250`, `26252`, `26254`, `26257`, `26259`, `26261`, `26264`, `26266`, `26268`, `26272`, `26274`, `26277`, `26279`, `26280`, `26282`, `26284`, `26286`, `26288`, `26291`, `26294`, `26297`, `26298`, `26300`, `26301`, `26303`, `26305`, `26306`, `26308`, `26311`, `26314`, `26316`, `26317`, `26321`, `26323`, `26325`, `26328`, `26329`, `26332`, `26335`, `26336`, `26337`, `26340`, `26342`, `26343`, `26346`, `26348`, `26349`, `26351`, `26352`, `26354`, `26356`, `26357`, `26358`, `26360`, `26362`, `26363`, `26368`, `26369`, `26372`, `26376`, `26377`, `26378`, `26381`, `26383`, `26386`, `26389`, `26390`, `26393`, `26394`, `26397`, `26399`, `26400`, `26402`, `26406`, `26408`, `26409`, `26410`, `26413`, `26415`, `26419`, `26422`, `26424`, `26428`, `26429`, `26430`, `26432`, `26433`, `26436`, `26437`, `26439`, `26441`, `26443`, `26446`, `26449`, `26451`, `26455`, `26458`, `26459`, `26462`, `26465`, `26467`, `26469`, `26472`, `26476`, `26477`, `26479`, `26480`, `26482`, `26485`, `26488`, `26491`, `26493`, `26495`, `26497`, `26498`, `26500`, `26502`, `26504`, `26508`, `26510`, `26513`, `26518`, `26521`, `26523`, `26525`, `26527`, `26530`, `26531`, `26534`, `26536`, `26539`, `26540`, `26543`, `26545`, `26548`, `26549`, `26550`, `26552`, `26555`, `26557`, `26558`, `26560`, `26562`, `26564`, `26566`, `26569`, `26571`, `26573`, `26575`, `26576`, `26577`, `26579`, `26581`, `26582`, `26584`, `26586`, `26589`, `26592`, `26593`, `26595`, `26597`, `26599`, `26603`, `26605`, `26607`, `26610`, `26612`, `26613`, `26614`, `26617`, `26618`, `26621`, `26623`, `26626`, `26630`, `26631`, `26634`, `26635`, `26637`, `26639`, `26642`, `26643`, `26645`, `26649`, `26651`, `26652`, `26654`, `26656`, `26657`, `26660`, `26662`, `26666`, `26668`, `26671`, `26673`, `26675`, `26676`, `26680`, `26682`, `26684`, `26686`, `26688`, `26689`, `26694`, `26695`, `26697`, `26700`, `26704`, `26706`, `26709`, `26711`, `26713`, `26716`, `26717`, `26719`, `26720`, `26722`, `26725`, `26728`, `26732`, `26734`, `26736`, `26738`, `26740`, `26742`, `26745`, `26746`, `26747`, `26750`, `26754`, `26755`, `26759`, `26761`, `26762`, `26764`, `26767`, `26768`, `26769`, `26771`, `26772`, `26774`, `26776`, `26778`, `26780`, `26783`, `26785`, `26787`, `26790`, `26791`, `26795`, `26799`, `26803`, `26806`, `26809`, `26811`, `26813`, `26816`, `26817`, `26819`, `26823`, `26824`, `26826`, `26828`, `26830`, `26832`, `26833`, `26835`, `26838`, `26840`, `26844`, `26846`, `26847`, `26849`, `26852`, `26854`, `26855`, `26857`, `26860`, `26862`, `26864`, `26865`, `26867`, `26870`, `26872`, `26876`, `26877`, `26878`, `26880`, `26881`, `26883`, `26885`, `26888`, `26890`, `26891`, `26893`, `26898`, `26900`, `26902`, `26904`, `26907`, `26909`, `26910`, `26911`, `26913`, `26916`, `26918`, `26919`, `26921`, `26922`, `26924`, `26926`, `26929`, `26930`, `26932`, `26934`, `26936`, `26937`, `26940`, `26941`, `26944`, `26947`, `26948`, `26951`, `26954`, `26956`, `26958`, `26959`, `26961`, `26963`, `26964`, `26966`, `26969`, `26972`, `26974`, `26976`, `26978`, `26980`, `26984`, `26986`, `26987`, `26988`, `26991`, `26992`, `26994`, `26997`, `26998`, `27000`, `27002`, `27004`, `27007`, `27008`, `27010`, `27013`, `27015`, `27017`, `27020`, `27022`, `27024`, `27027`, `27029`, `27031`, `27032`, `27035`, `27037`, `27040`, `27042`, `27044`, `27046`, `27049`, `27052`, `27053`, `27057`, `27059`, `27061`, `27064`, `27066`, `27067`, `27068`, `27070`, `27072`, `27075`, `27076`, `27078`, `27081`, `27083`, `27085`, `27086`, `27087`, `27089`, `27093`, `27096`, `27098`, `27099`, `27103`, `27105`, `27106`, `27107`, `27108`, `27112`, `27114`, `27117`, `27118`, `27120`, `27121`, `27122`, `27124`, `27126`, `27127`, `27128`, `27129`, `27133`, `27134`, `27138`, `27141`, `27144`, `27147`, `27149`, `27151`, `27152`, `27154`, `27155`, `27156`, `27159`, `27161`, `27162`, `27164`, `27166`, `27168`, `27170`, `27172`, `27174`, `27175`, `27180`, `27182`, `27184`, `27186`, `27189`, `27190`, `27191`, `27196`, `27197`, `27198`, `27200`, `27203`, `27205`, `27206`, `27209`, `27210`, `27212`, `27214`, `27216`, `27218`, `27220`, `27223`, `27225`, `27227`, `27230`, `27233`, `27235`, `27236`, `27240`, `27241`, `27242`, `27243`, `27244`, `27246`, `27249`, `27250`, `27251`, `27254`, `27257`, `27258`, `27260`, `27264`, `27266`, `27267`, `27269`, `27271`, `27273`, `27275`, `27278`, `27280`, `27281`, `27282`, `27284`, `27286`, `27290`, `27292`, `27294`, `27295`, `27297`, `27298`, `27299`, `27304`, `27306`, `27308`, `27310`, `27312`, `27314`, `27316`, `27317`, `27320`, `27324`, `27326`, `27327`, `27328`, `27330`, `27335`, `27336`, `27340`, `27344`, `27347`, `27349`, `27353`, `27355`, `27356`, `27360`, `27362`, `27364`, `27368`, `27371`, `27373`, `27375`, `27379`, `27381`, `27384`, `27386`, `27388`, `27389`, `27390`, `27391`, `27392`, `27395`, `27397`, `27399`, `27400`, `27402`, `27404`, `27405`, `27409`, `27411`, `27413`, `27416`, `27419`, `27420`, `27421`, `27426`, `27428`, `27430`, `27431`, `27432`, `27434`, `27438`, `27439`, `27441`, `27446`, `27448`, `27450`, `27451`, `27453`, `27455`, `27456`, `27459`, `27461`, `27462`, `27465`, `27468`, `27469`, `27473`, `27474`, `27476`, `27480`, `27482`, `27483`, `27486`, `27489`, `27492`, `27494`, `27497`, `27499`, `27501`, `27503`, `27504`, `27505`, `27508`, `27510`, `27512`, `27513`, `27516`, `27519`, `27521`, `27523`, `27524`, `27529`, `27532`, `27533`, `27537`, `27539`, `27542`, `27545`, `27547`, `27551`, `27552`, `27554`, `27557`, `27561`, `27564`, `27565`, `27568`, `27570`, `27573`, `27575`, `27576`, `27578`, `27580`, `27581`, `27584`, `27588`, `27591`, `27595`, `27598`, `27602`, `27604`, `27607`, `27609`, `27613`, `27616`, `27618`, `27621`, `27623`, `27626`, `27629`, `27632`, `27634`, `27636`, `27639`, `27641`, `27643`, `27646`, `27652`, `27654`, `27655`, `27656`, `27658`, `27659`, `27662`, `27663`, `27664`, `27666`, `27667`, `27669`, `27672`, `27674`, `27676`, `27679`, `27681`, `27685`, `27688`, `27691`, `27692`, `27694`, `27697`, `27698`, `27700`, `27702`, `27704`, `27708`, `27709`, `27712`, `27714`, `27717`, `27719`, `27721`, `27723`, `27725`, `27728`, `27729`, `27732`, `27735`, `27737`, `27740`, `27742`, `27745`, `27747`, `27749`, `27751`, `27754`, `27755`, `27757`, `27759`, `27761`, `27763`, `27764`, `27768`, `27770`, `27771`, `27772`, `27773`, `27776`, `27778`, `27781`, `27783`, `27786`, `27789`, `27791`, `27794`, `27795`, `27797`, `27799`, `27802`, `27803`, `27808`, `27809`, `27811`, `27813`, `27815`, `27816`, `27819`, `27821`, `27822`, `27824`, `27826`, `27828`, `27830`, `27832`, `27834`, `27836`, `27839`, `27843`, `27845`, `27848`, `27850`, `27851`, `27854`, `27856`, `27859`, `27863`, `27866`, `27869`, `27872`, `27874`, `27878`, `27882`, `27883`, `27886`, `27889`, `27891`, `27895`, `27897`, `27898`, `27900`, `27901`, `27902`, `27904`, `27906`, `27908`, `27909`, `27910`, `27914`, `27916`, `27918`, `27920`, `27922`, `27924`, `27925`, `27927`, `27929`, `27931`, `27933`, `27937`, `27938`, `27940`, `27941`, `27944`, `27947`, `27951`, `27953`, `27955`, `27957`, `27958`, `27960`, `27962`, `27964`, `27966`, `27968`, `27969`, `27970`, `27972`, `27974`, `27975`, `27979`, `27980`, `27982`, `27984`, `27987`, `27990`, `27992`, `27993`, `27996`, `27998`, `27999`, `28000`, `28003`, `28006`, `28008`, `28012`, `28013`, `28014`, `28018`, `28022`, `28024`, `28026`, `28028`, `28031`, `28033`, `28035`, `28036`, `28038`, `28040`, `28043`, `28045`, `28047`, `28048`, `28049`, `28051`, `28053`, `28054`, `28057`, `28059`, `28061`, `28062`, `28064`, `28065`, `28068`, `28070`, `28072`, `28074`, `28076`, `28078`, `28081`, `28082`, `28085`, `28087`, `28088`, `28090`, `28091`, `28093`, `28096`, `28098`, `28103`, `28105`, `28106`, `28109`, `28113`, `28116`, `28117`, `28119`, `28122`, `28127`, `28128`, `28132`, `28133`, `28135`, `28137`, `28139`, `28141`, `28142`, `28144`, `28148`, `28150`, `28153`, `28156`, `28160`, `28163`, `28165`, `28167`, `28171`, `28173`, `28176`, `28179`, `28180`, `28183`, `28185`, `28187`, `28191`, `28192`, `28194`, `28196`, `28198`, `28201`, `28205`, `28206`, `28208`, `28210`, `28212`, `28214`, `28216`, `28218`, `28220`, `28221`, `28224`, `28227`, `28229`, `28231`, `28233`, `28234`, `28235`, `28236`, `28238`, `28240`, `28242`, `28245`, `28246`, `28249`, `28252`, `28253`, `28254`, `28258`, `28260`, `28262`, `28264`, `28266`, `28268`, `28270`, `28271`, `28272`, `28274`, `28275`, `28277`, `28278`, `28280`, `28282`, `28284`, `28285`, `28288`, `28290`, `28292`, `28293`, `28296`, `28297`, `28299`, `28302`, `28303`, `28306`, `28307`, `28311`, `28312`, `28313`, `28314`, `28316`, `28318`, `28319`, `28321`, `28322`, `28324`, `28326`, `28328`, `28330`, `28331`, `28333`, `28335`, `28337`, `28340`, `28342`, `28343`, `28345`, `28346`, `28349`, `28350`, `28352`, `28353`, `28358`, `28360`, `28362`, `28365`, `28368`, `28370`, `28371`, `28373`, `28374`, `28376`, `28379`, `28381`, `28384`, `28387`, `28389`, `28391`, `28392`, `28394`, `28395`, `28397`, `28400`, `28404`, `28406`, `28408`, `28410`, `28411`, `28413`, `28416`, `28417`, `28418`, `28419`, `28420`, `28422`, `28423`, `28424`, `28428`, `28432`, `28435`, `28437`, `28440`, `28442`, `28443`, `28446`, `28448`, `28451`, `28452`, `28456`, `28458`, `28460`, `28462`, `28463`, `28467`, `28469`, `28471`, `28472`, `28473`, `28474`, `28475`, `28476`, `28478`, `28479`, `28482`, `28483`, `28486`, `28489`, `28490`, `28491`, `28492`, `28494`, `28496`, `28497`, `28499`, `28502`, `28503`, `28505`, `28506`, `28508`, `28510`, `28512`, `28517`, `28520`, `28521`, `28522`, `28526`, `28531`, `28533`, `28535`, `28536`, `28537`, `28538`, `28542`, `28546`, `28547`, `28548`, `28550`, `28552`, `28554`, `28556`, `28558`, `28560`, `28561`, `28562`, `28564`, `28566`, `28568`, `28570`, `28572`, `28573`, `28575`, `28577`, `28579`, `28580`, `28581`, `28582`, `28584`, `28585`, `28588`, `28590`, `28594`, `28596`, `28598`, `28602`, `28604`, `28605`, `28607`, `28609`, `28610`, `28613`, `28615`, `28616`, `28619`, `28620`, `28622`, `28624`, `28625`, `28627`, `28629`, `28630`, `28631`, `28633`, `28635`, `28637`, `28639`, `28642`, `28644`, `28645`, `28646`, `28649`, `28653`, `28656`, `28658`, `28660`, `28663`, `28666`, `28668`, `28671`, `28673`, `28675`, `28676`, `28678`, `28680`, `28681`, `28683`, `28685`, `28687`, `28690`, `28691`, `28694`, `28697`, `28700`, `28702`, `28704`, `28706`, `28708`, `28709`, `28710`, `28714`, `28716`, `28718`, `28721`, `28722`, `28725`, `28728`, `28731`, `28734`, `28736`, `28738`, `28740`, `28741`, `28742`, `28743`, `28745`, `28748`, `28750`, `28752`, `28754`, `28756`, `28758`, `28760`, `28762`, `28765`, `28766`, `28768`, `28771`, `28773`, `28775`, `28777`, `28779`, `28782`, `28783`, `28786`, `28788`, `28789`, `28791`, `28792`, `28794`, `28795`, `28796`, `28798`, `28799`, `28801`, `28803`, `28804`, `28806`, `28808`, `28809`, `28811`, `28814`, `28817`, `28819`, `28822`, `28823`, `28826`, `28828`, `28829`, `28831`, `28832`, `28833`, `28835`, `28837`, `28839`, `28840`, `28843`, `28844`, `28846`, `28847`, `28849`, `28851`, `28853`, `28855`, `28856`, `28858`, `28860`, `28862`, `28864`, `28866`, `28869`, `28872`, `28873`, `28877`, `28879`, `28882`, `28884`, `28887`, `28888`, `28891`, `28893`, `28896`, `28898`, `28902`, `28906`, `28909`, `28912`, `28915`, `28916`, `28918`, `28921`, `28922`, `28923`, `28926`, `28927`, `28928`, `28930`, `28932`, `28936`, `28938`, `28940`, `28941`, `28945`, `28949`, `28950`, `28951`, `28954`, `28956`, `28958`, `28961`, `28963`, `28967`, `28970`, `28973`, `28975`, `28977`, `28981`, `28983`, `28985`, `28986`, `28987`, `28988`, `28991`, `28994`, `28997`, `29000`, `29001`, `29003`, `29004`, `29005`, `29008`, `29010`, `29013`, `29015`, `29019`, `29022`, `29024`, `29025`, `29027`, `29031`, `29033`, `29035`, `29036`, `29038`, `29040`, `29042`, `29043`, `29044`, `29046`, `29047`, `29050`, `29053`, `29059`, `29060`, `29062`, `29064`, `29068`, `29072`, `29074`, `29076`, `29078`, `29080`, `29082`, `29083`, `29085`, `29087`, `29088`, `29092`, `29094`, `29096`, `29098`, `29099`, `29101`, `29103`, `29106`, `29110`, `29112`, `29115`, `29118`, `29119`, `29121`, `29125`, `29128`, `29130`, `29134`, `29137`, `29138`, `29141`, `29144`, `29147`, `29149`, `29151`, `29152`, `29153`, `29154`, `29156`, `29159`, `29161`, `29163`, `29164`, `29165`, `29168`, `29171`, `29173`, `29175`, `29177`, `29179`, `29183`, `29184`, `29186`, `29188`, `29190`, `29192`, `29194`, `29197`, `29198`, `29201`, `29203`, `29205`, `29206`, `29209`, `29211`, `29212`, `29216`, `29217`, `29219`, `29222`, `29224`, `29225`, `29227`, `29229`, `29231`, `29234`, `29236`, `29238`, `29240`, `29241`, `29243`, `29245`, `29247`, `29248`, `29249`, `29251`, `29252`, `29253`, `29254`, `29256`, `29258`, `29259`, `29260`, `29262`, `29263`, `29265`, `29269`, `29270`, `29271`, `29272`, `29274`, `29276`, `29277`, `29279`, `29282`, `29285`, `29286`, `29288`, `29290`, `29292`, `29294`, `29296`, `29299`, `29300`, `29301`, `29306`, `29307`, `29308`, `29309`, `29310`, `29311`, `29314`, `29316`, `29318`, `29320`, `29324`, `29327`, `29329`, `29331`, `29332`, `29333`, `29336`, `29338`, `29340`, `29342`, `29343`, `29344`, `29346`, `29347`, `29348`, `29350`, `29351`, `29352`, `29357`, `29359`, `29360`, `29361`, `29362`, `29363`, `29364`, `29367`, `29369`, `29371`, `29372`, `29375`, `29377`, `29378`, `29379`, `29380`, `29382`, `29385`, `29386`, `29387`, `29389`, `29391`, `29392`, `29394`, `29395`, `29397`, `29398`, `29399`, `29401`, `29402`, `29404`, `29406`, `29408`, `29409`, `29410`, `29412`, `29414`, `29415`, `29416`, `29418`, `29419`, `29420`, `29421`, `29424`, `29426`, `29427`, `29429`, `29431`, `29433`, `29436`, `29438`, `29439`, `29441`, `29444`, `29445`, `29447`, `29448`, `29452`, `29454`, `29455`, `29457`, `29458`, `29460`, `29461`, `29462`, `29465`, `29467`, `29469`, `29472`, `29474`, `29478`, `29479`, `29480`, `29482`, `29483`, `29486`, `29487`, `29488`, `29491`, `29495`, `29497`, `29498`, `29500`, `29502`, `29505`, `29508`, `29510`, `29512`, `29514`, `29517`, `29518`, `29519`, `29521`, `29522`, `29524`, `29525`, `29529`, `29531`, `29533`, `29538`, `29540`, `29543`, `29545`, `29546`, `29547`, `29548`, `29551`, `29554`, `29557`, `29559`, `29561`, `29566`, `29571`, `29575`, `29576`, `29578`, `29580`, `29584`, `29585`, `29587`, `29588`, `29591`, `29593`, `29594`, `29595`, `29597`, `29599`, `29602`, `29605`, `29606`, `29609`, `29612`, `29614`, `29616`, `29618`, `29620`, `29622`, `29625`, `29626`, `29628`, `29630`, `29633`, `29636`, `29638`, `29639`, `29642`, `29644`, `29647`, `29649`, `29651`, `29654`, `29656`, `29657`, `29658`, `29660`, `29662`, `29665`, `29666`, `29668`, `29670`, `29672`, `29674`, `29676`, `29677`, `29679`, `29680`, `29683`, `29686`, `29688`, `29690`, `29691`, `29692`, `29693`, `29696`, `29697`, `29699`, `29701`, `29704`, `29705`, `29709`, `29711`, `29714`, `29717`, `29719`, `29721`, `29722`, `29724`, `29728`, `29730`, `29731`, `29732`, `29733`, `29735`, `29737`, `29741`, `29743`, `29744`, `29747`, `29749`, `29750`, `29752`, `29754`, `29757`, `29760`, `29761`, `29764`, `29766`, `29767`, `29768`, `29771`, `29772`, `29775`, `29777`, `29780`, `29781`, `29784`, `29785`, `29786`, `29788`, `29791`, `29794`, `29798`, `29799`, `29803`, `29805`, `29806`, `29807`, `29808`, `29811`, `29813`, `29814`, `29815`, `29818`, `29820`, `29822`, `29825`, `29829`, `29830`, `29831`, `29833`, `29834`, `29835`, `29836`, `29839`, `29842`, `29843`, `29845`, `29847`, `29848`, `29851`, `29853`, `29854`, `29857`, `29860`, `29864`, `29866`, `29867`, `29870`, `29871`, `29873`, `29874`, `29875`, `29877`, `29878`, `29880`, `29882`, `29885`, `29887`, `29889`, `29891`, `29893`, `29894`, `29897`, `29899`, `29902`, `29903`, `29904`, `29906`, `29909`, `29911`, `29913`, `29915`, `29917`, `29920`, `29922`, `29923`, `29924`, `29925`, `29928`, `29931`, `29933`, `29936`, `29937`, `29938`, `29940`, `29942`, `29945`, `29949`, `29951`, `29954`, `29956`, `29959`, `29962`, `29964`, `29966`, `29967`, `29969`, `29970`, `29971`, `29973`, `29977`, `29979`, `29982`, `29983`, `29984`, `29986`, `29987`, `29990`, `29993`, `29994`, `29996`, `29998`, `30000`, `30001`, `30004`, `30006`, `30007`, `30009`, `30011`, `30013`, `30016`, `30018`, `30020`, `30021`, `30023`, `30026`, `30028`, `30032`, `30033`, `30034`, `30036`, `30038`, `30042`, `30044`, `30045`, `30047`, `30049`, `30050`, `30052`, `30054`, `30056`, `30059`, `30060`, `30063`, `30064`, `30066`, `30068`, `30070`, `30073`, `30076`, `30078`, `30080`, `30082`, `30084`, `30086`, `30088`, `30089`, `30091`, `30093`, `30094`, `30095`, `30098`, `30101`, `30103`, `30105`, `30108`, `30110`, `30111`, `30114`, `30116`, `30118`, `30121`, `30123`, `30126`, `30129`, `30131`, `30133`, `30135`, `30136`, `30138`, `30142`, `30144`, `30146`, `30147`, `30149`, `30151`, `30152`, `30154`, `30156`, `30157`, `30158`, `30160`, `30162`, `30163`, `30166`, `30169`, `30171`, `30173`, `30175`, `30177`, `30179`, `30180`, `30182`, `30185`, `30188`, `30191`, `30194`, `30195`, `30196`, `30198`, `30200`, `30203`, `30206`, `30207`, `30211`, `30212`, `30214`, `30216`, `30218`, `30221`, `30222`, `30223`, `30227`, `30228`, `30230`, `30231`, `30233`, `30235`, `30237`, `30239`, `30241`, `30242`, `30243`, `30245`, `30248`, `30250`, `30252`, `30254`, `30257`, `30259`, `30261`, `30265`, `30270`, `30273`, `30275`, `30276`, `30277`, `30280`, `30282`, `30285`, `30287`, `30288`, `30289`, `30291`, `30294`, `30296`, `30298`, `30301`, `30303`, `30305`, `30307`, `30308`, `30309`, `30311`, `30312`, `30313`, `30316`, `30319`, `30321`, `30323`, `30325`, `30327`, `30328`, `30331`, `30334`, `30336`, `30339`, `30341`, `30343`, `30345`, `30348`, `30351`, `30353`, `30355`, `30357`, `30359`, `30360`, `30363`, `30365`, `30367`, `30368`, `30370`, `30372`, `30375`, `30376`, `30378`, `30380`, `30382`, `30384`, `30385`, `30386`, `30388`, `30389`, `30392`, `30394`, `30396`, `30400`, `30402`, `30404`, `30406`, `30410`, `30413`, `30414`, `30416`, `30418`, `30421`, `30422`, `30424`, `30427`, `30428`, `30430`, `30431`, `30434`, `30436`, `30438`, `30440`, `30444`, `30446`, `30447`, `30450`, `30452`, `30455`, `30457`, `30459`, `30460`, `30462`, `30464`, `30465`, `30467`, `30470`, `30471`, `30473`, `30477`, `30478`, `30479`, `30480`, `30483`, `30485`, `30487`, `30488`, `30490`, `30492`, `30495`, `30497`, `30499`, `30500`, `30502`, `30503`, `30505`, `30507`, `30509`, `30510`, `30512`, `30514`, `30516`, `30519`, `30521`, `30523`, `30524`, `30527`, `30531`, `30532`, `30534`, `30536`, `30537`, `30539`, `30540`, `30541`, `30543`, `30546`, `30548`, `30550`, `30553`, `30555`, `30559`, `30560`, `30563`, `30565`, `30566`, `30567`, `30569`, `30572`, `30573`, `30575`, `30577`, `30580`, `30581`, `30583`, `30585`, `30587`, `30589`, `30591`, `30592`, `30594`, `30596`, `30598`, `30600`, `30603`, `30604`, `30605`, `30606`, `30608`, `30610`, `30613`, `30616`, `30618`, `30620`, `30621`, `30625`, `30628`, `30631`, `30632`, `30633`, `30636`, `30637`, `30639`, `30641`, `30642`, `30644`, `30646`, `30648`, `30651`, `30654`, `30655`, `30657`, `30660`, `30663`, `30665`, `30667`, `30668`, `30669`, `30671`, `30674`, `30676`, `30677`, `30678`, `30680`, `30681`, `30683`, `30685`, `30687`, `30690`, `30691`, `30692`, `30696`, `30699`, `30701`, `30702`, `30704`, `30706`, `30708`, `30711`, `30713`, `30715`, `30717`, `30719`, `30721`, `30722`, `30724`, `30726`, `30729`, `30732`, `30733`, `30734`, `30736`, `30738`, `30739`, `30740`, `30743`, `30744`, `30746`, `30748`, `30751`, `30753`, `30755`, `30756`, `30759`, `30762`, `30766`, `30768`, `30771`, `30772`, `30775`, `30777`, `30780`, `30782`, `30784`, `30787`, `30788`, `30790`, `30792`, `30794`, `30797`, `30801`, `30804`, `30806`, `30807`, `30809`, `30813`, `30815`, `30821`, `30822`, `30825`, `30826`, `30828`, `30829`, `30831`, `30835`, `30836`, `30838`, `30839`, `30840`, `30842`, `30843`, `30845`, `30847`, `30849`, `30851`, `30852`, `30854`, `30857`, `30859`, `30861`, `30862`, `30863`, `30865`, `30867`, `30868`, `30871`, `30872`, `30875`, `30877`, `30879`, `30882`, `30883`, `30884`, `30888`, `30889`, `30891`, `30892`, `30894`, `30896`, `30898`, `30901`, `30902`, `30904`, `30907`, `30909`, `30912`, `30914`, `30918`, `30920`, `30922`, `30926`, `30928`, `30929`, `30931`, `30933`, `30936`, `30938`, `30940`, `30942`, `30945`, `30948`, `30952`, `30955`, `30959`, `30962`, `30966`, `30968`, `30971`, `30975`, `30977`, `30980`, `30982`, `30985`, `30987`, `30989`, `30991`, `30993`, `30997`, `30998`, `31000`, `31002`, `31004`, `31005`, `31008`, `31010`, `31013`, `31014`, `31018`, `31021`, `31022`, `31023`, `31026`, `31028`, `31030`, `31032`, `31034`, `31037`, `31040`, `31042`, `31044`, `31046`, `31049`, `31051`, `31053`, `31055`, `31057`, `31059`, `31061`, `31063`, `31064`, `31067`, `31070`, `31071`, `31072`, `31074`, `31076`, `31078`, `31080`, `31083`, `31085`, `31088`, `31089`, `31091`, `31092`, `31095`, `31097`, `31099`, `31101`, `31106`, `31107`, `31109`, `31110`, `31111`, `31113`, `31116`, `31118`, `31122`, `31126`, `31127`, `31129`, `31131`, `31135`, `31137`, `31139`, `31140`, `31142`, `31147`, `31151`, `31153`, `31155`, `31157`, `31159`, `31162`, `31165`, `31168`, `31172`, `31174`, `31176`, `31178`, `31182`, `31184`, `31185`, `31187`, `31189`, `31191`, `31194`, `31196`, `31198`, `31203`, `31204`, `31209`, `31213`, `31215`, `31216`, `31217`, `31219`, `31220`, `31223`, `31226`, `31228`, `31230`, `31231`, `31233`, `31234`, `31236`, `31238`, `31240`, `31242`, `31245`, `31247`, `31249`, `31251`, `31255`, `31257`, `31258`, `31262`, `31264`, `31266`, `31268`, `31270`, `31271`, `31275`, `31277`, `31279`, `31281`, `31283`, `31284`, `31287`, `31288`, `31290`, `31292`, `31294`, `31298`, `31300`, `31301`, `31303`, `31304`, `31306`, `31309`, `31311`, `31314`, `31316`, `31318`, `31321`, `31323`, `31325`, `31328`, `31330`, `31332`, `31334`, `31337`, `31339`, `31341`, `31344`, `31347`, `31349`, `31350`, `31352`, `31355`, `31356`, `31358`, `31360`, `31361`, `31362`, `31363`, `31366`, `31369`, `31370`, `31372`, `31374`, `31376`, `31377`, `31380`, `31383`, `31384`, `31387`, `31389`, `31390`, `31392`, `31394`, `31395`, `31397`, `31399`, `31401`, `31405`, `31408`, `31409`, `31412`, `31415`, `31417`, `31418`, `31420`, `31422`, `31423`, `31425`, `31427`, `31428`, `31432`, `31434`, `31436`, `31438`, `31442`, `31445`, `31449`, `31451`, `31452`, `31454`, `31457`, `31458`, `31459`, `31461`, `31464`, `31466`, `31469`, `31472`, `31474`, `31477`, `31479`, `31480`, `31481`, `31483`, `31485`, `31487`, `31489`, `31492`, `31493`, `31495`, `31498`, `31500`, `31502`, `31507`, `31509`, `31511`, `31513`, `31514`, `31515`, `31517`, `31520`, `31521`, `31523`, `31524`, `31527`, `31529`, `31531`, `31533`, `31534`, `31535`, `31538`, `31541`, `31543`, `31546`, `31548`, `31550`, `31554`, `31556`, `31559`, `31561`, `31564`, `31566`, `31568`, `31570`, `31572`, `31574`, `31575`, `31578`, `31579`, `31581`, `31583`, `31584`, `31585`, `31587`, `31590`, `31592`, `31594`, `31596`, `31599`, `31600`, `31603`, `31606`, `31609`, `31612`, `31616`, `31618`, `31621`, `31623`, `31626`, `31629`, `31631`, `31634`, `31637`, `31640`, `31641`, `31643`, `31644`, `31647`, `31649`, `31651`, `31655`, `31660`, `31662`, `31666`, `31669`, `31671`, `31673`, `31674`, `31677`, `31680`, `31681`, `31683`, `31685`, `31688`, `31691`, `31692`, `31695`, `31697`, `31698`, `31701`, `31705`, `31707`, `31709`, `31711`, `31714`, `31715`, `31718`, `31720`, `31722`, `31725`, `31728`, `31732`, `31735`, `31737`, `31739`, `31742`, `31743`, `31745`, `31747`, `31749`, `31753`, `31755`, `31757`, `31759`, `31761`, `31762`, `31766`, `31768`, `31770`, `31772`, `24930`, `31775`, `31777`, `31782`, `31785`, `31786`, `31789`, `31791`, `31796`, `31797`, `31798`, `31802`, `31804`, `31806`, `31810`, `31812`, `31815`, `31817`, `31821`, `31824`, `31825`, `31827`, `31829`, `31832`, `31835`, `31837`, `31839`, `31843`, `31845`, `31846`, `31848`, `31849`, `31852`, `31853`, `31856`, `31858`, `31860`, `31863`, `31864`, `31866`, `31867`, `31868`, `31870`, `31873`, `31877`, `31879`, `31883`, `31885`, `31887`, `31889`, `31894`, `31895`, `31897`, `31899`, `31900`, `31901`, `31904`, `31906`, `31908`, `31910`, `31912`, `31914`, `31916`, `31918`, `31920`, `31921`, `31923`, `31924`, `31927`, `31928`, `31930`, `31932`, `31933`, `31935`, `31936`, `31938`, `31942`, `31944`, `31946`, `31948`, `31950`, `31951`, `31953`, `31956`, `31959`, `31963`, `31965`, `31966`, `31968`, `31970`, `31972`, `31974`, `31979`, `31980`, `31982`, `31985`, `31987`, `31989`, `31991`, `31992`, `31995`, `31997`, `31998`, `32000`, `32002`, `32004`, `32005`, `32007`, `32009`, `32013`, `32015`, `32016`, `32019`, `32021`, `32022`, `32026`, `32028`, `32030`, `32031`, `32033`, `32036`, `32038`, `32040`, `32042`, `32044`, `32047`, `32049`, `32051`, `32054`, `32056`, `32058`, `32061`, `32064`, `32067`, `32071`, `32075`, `32077`, `32079`, `32081`, `32083`, `32085`, `32087`, `32090`, `32091`, `32092`, `32093`, `32095`, `32097`, `32099`, `32100`, `32102`, `32104`, `32105`, `32108`, `32110`, `32111`, `32113`, `32117`, `32119`, `32122`, `32123`, `32124`, `32127`, `32130`, `32132`, `32133`, `32136`, `32137`, `32139`, `32141`, `32144`, `32145`, `32147`, `32149`, `32153`, `32156`, `32159`, `32161`, `32162`, `32163`, `32164`, `32167`, `32169`, `32173`, `32175`, `32177`, `32179`, `32181`, `32183`, `32185`, `32187`, `32189`, `32193`, `32196`, `32197`, `32201`, `32205`, `32207`, `32210`, `32213`, `32216`, `32219`, `32221`, `32223`, `32226`, `32229`, `32230`, `32232`, `32234`, `32236`, `32238`, `32239`, `32241`, `32242`, `32245`, `32249`, `32251`, `32253`, `32255`, `32256`, `32257`, `32259`, `32260`, `32262`, `32264`, `32266`, `32268`, `32272`, `32275`, `32277`, `32280`, `32281`, `32284`, `32286`, `32287`, `32289`, `32290`, `32292`, `32293`, `32294`, `32296`, `32298`, `32300`, `32302`, `32306`, `32308`, `32309`, `32311`, `32313`, `32315`, `32318`, `32322`, `32326`, `32327`, `32328`, `32331`, `32333`, `32335`, `32337`, `32339`, `32341`, `32342`, `32343`, `32346`, `32348`, `32350`, `32351`, `32352`, `32354`, `32356`, `32358`, `32362`, `32364`, `32367`, `32368`, `32369`, `32371`, `32374`, `32377`, `32378`, `32379`, `32381`, `32382`, `32383`, `32384`, `32386`, `32387`, `32389`, `32392`, `32394`, `32395`, `32398`, `32399`, `32402`, `32404`, `32406`, `32407`, `32408`, `32411`, `32414`, `32416`, `32418`, `32419`, `32421`, `32426`, `32428`, `32430`, `32433`, `32434`, `32437`, `32439`, `32441`, `32444`, `32445`, `32447`, `32451`, `32453`, `32455`, `32456`, `32460`, `32462`, `32463`, `32466`, `32468`, `32469`, `32471`, `32474`, `32478`, `32482`, `32484`, `32487`, `32493`, `32496`, `32498`, `32500`, `32503`, `32504`, `32505`, `32509`, `32511`, `32514`, `32518`, `32519`, `32521`, `32523`, `32524`, `32525`, `32526`, `32527`, `32529`, `32531`, `32533`, `32536`, `32537`, `32540`, `32543`, `32547`, `32549`, `32550`, `32554`, `32555`, `32559`, `32562`, `32566`, `32568`, `32571`, `32573`, `32575`, `32577`, `32578`, `32580`, `32581`, `32583`, `32586`, `32587`, `32590`, `32592`, `32594`, `32597`, `32599`, `32601`, `32603`, `32605`, `32608`, `32609`, `32610`, `32611`, `32613`, `32614`, `32618`, `32620`, `32623`, `32625`, `32628`, `32630`, `32632`, `32633`, `32636`, `32638`, `32640`, `32643`, `32645`, `32646`, `32648`, `32650`, `32651`, `32653`, `32656`, `32658`, `32661`, `32664`, `32666`, `32669`, `32670`, `32672`, `32676`, `32677`, `32679`, `32683`, `32685`, `32688`, `32690`, `32692`, `32694`, `32695`, `32698`, `32702`, `32704`, `32707`, `32711`, `32713`, `32714`, `32716`, `32718`, `32721`, `32723`, `32725`, `32728`, `32729`, `32731`, `32733`, `32735`, `32738`, `32741`, `32742`, `32744`, `32748`, `32750`, `32753`, `32756`, `32757`, `32759`, `32761`, `32763`, `32764`, `32767`, `32769`, `32772`, `32776`, `32778`, `32780`, `32784`, `32786`, `32789`, `32792`, `32795`, `32798`, `32800`, `32803`, `32804`, `32806`, `32809`, `32810`, `32812`, `32814`, `32817`, `32819`, `32820`, `32822`, `32827`, `32829`, `32830`, `32832`, `32835`, `32836`, `32840`, `32842`, `32843`, `32844`, `32846`, `32847`, `32850`, `32853`, `32855`, `32859`, `32860`, `32862`, `32863`, `32865`, `32867`, `32869`, `32872`, `32875`, `32878`, `32880`, `32881`, `32883`, `32886`, `32889`, `32892`, `32896`, `32898`, `32900`, `32902`, `32905`, `32906`, `32908`, `32910`, `32911`, `32914`, `32919`, `32920`, `32921`, `32923`, `32925`, `32928`, `32930`, `32932`, `32935`, `32937`, `32940`, `32942`, `32944`, `32946`, `32948`, `32949`, `32952`, `32954`, `32957`, `32959`, `32962`, `32964`, `32967`, `32969`, `32971`, `32973`, `32975`, `32978`, `32980`, `32982`, `32983`, `32985`, `32987`, `32988`, `32989`, `32993`, `32995`, `32996`, `32997`, `33000`, `33004`, `33005`, `33007`, `33011`, `33013`, `33014`, `33017`, `33019`, `33022`, `33026`, `33027`, `33030`, `33034`, `33036`, `33038`, `33040`, `33042`, `33043`, `33046`, `33050`, `33054`, `33056`, `33057`, `33059`, `33061`, `33062`, `33064`, `33068`, `33069`, `33072`, `33073`, `33077`, `33079`, `33082`, `33085`, `33086`, `33088`, `33090`, `33092`, `33095`, `33098`, `33100`, `33102`, `33104`, `33106`, `33108`, `33110`, `33111`, `33113`, `33115`, `33117`, `33119`, `33121`, `33123`, `33125`, `33127`, `33129`, `33131`, `33133`, `33135`, `33137`, `33140`, `33142`, `33145`, `33147`, `33149`, `33153`, `33155`, `33157`, `33159`, `33162`, `33164`, `33167`, `33168`, `33170`, `33173`, `33175`, `33176`, `33178`, `33180`, `33182`, `33184`, `33186`, `33189`, `33191`, `33193`, `33195`, `33197`, `33198`, `33199`, `33201`, `33202`, `33203`, `33206`, `33208`, `33210`, `33213`, `33214`, `33216`, `33219`, `33222`, `33225`, `33227`, `33230`, `33231`, `33233`, `33235`, `33238`, `33239`, `33240`, `33242`, `33243`, `33245`, `33247`, `33250`, `33253`, `33254`, `33255`, `33257`, `33258`, `33260`, `33263`, `33265`, `33266`, `33268`, `33269`, `33272`, `33274`, `33276`, `33279`, `33282`, `33285`, `33286`, `33288`, `33291`, `33293`, `33297`, `33299`, `33302`, `33305`, `33307`, `33309`, `33312`, `33314`, `33316`, `33318`, `33321`, `33323`, `33325`, `33328`, `33329`, `33331`, `33333`, `33336`, `33339`, `33341`, `33344`, `33345`, `33346`, `33347`, `33348`, `33352`, `33353`, `33354`, `33357`, `33361`, `33365`, `33367`, `33369`, `33371`, `33374`, `33378`, `33381`, `33383`, `33385`, `33386`, `33388`, `33389`, `33391`, `33393`, `33395`, `33396`, `33398`, `33399`, `33400`, `33402`, `33405`, `33406`, `33407`, `33409`, `33413`, `33415`, `33416`, `33418`, `33422`, `33423`, `33425`, `33426`, `33428`, `33429`, `33431`, `33432`, `33433`, `33435`, `33436`, `33438`, `33439`, `33441`, `33444`, `33446`, `33447`, `33448`, `33451`, `33452`, `33454`, `33456`, `33459`, `33461`, `33464`, `33466`, `33469`, `33472`, `33475`, `33476`, `33478`, `33480`, `33483`, `33485`, `33486`, `33488`, `33491`, `33493`, `33495`, `33497`, `33499`, `33502`, `33505`, `33506`, `33507`, `33508`, `33510`, `33511`, `33513`, `33515`, `33516`, `33517`, `33518`, `33519`, `33521`, `33522`, `33524`, `33528`, `33530`, `33532`, `33534`, `33535`, `33536`, `33538`, `33540`, `33541`, `33542`, `33543`, `33545`, `33546`, `33547`, `33548`, `33550`, `33552`, `33553`, `33555`, `33556`, `33559`, `33560`, `33562`, `33565`, `33566`, `33569`, `33571`, `33572`, `33573`, `33576`, `33578`, `33582`, `33584`, `33586`, `33587`, `33589`, `33591`, `33593`, `33595`, `33596`, `33598`, `33600`, `33603`, `33606`, `33607`, `33608`, `33610`, `33613`, `33616`, `33618`, `33621`, `33623`, `33625`, `33626`, `33629`, `33630`, `33631`, `33633`, `33636`, `33638`, `33640`, `33643`, `33646`, `33648`, `33649`, `33651`, `33653`, `33655`, `33657`, `33660`, `33662`, `33663`, `33667`, `33669`, `33670`, `33673`, `33674`, `33677`, `33680`, `33681`, `33682`, `33683`, `33686`, `33687`, `33689`, `33690`, `33691`, `33694`, `33696`, `33698`, `33701`, `33704`, `33705`, `33708`, `33712`, `33713`, `33714`, `33715`, `33718`, `33720`, `33721`, `33724`, `33728`, `33730`, `33732`, `33733`, `33736`, `33738`, `33741`, `33744`, `33748`, `33751`, `33752`, `33754`, `33756`, `33758`, `33761`, `33763`, `33765`, `33768`, `33770`, `33772`, `33775`, `33776`, `33778`, `33781`, `33783`, `33785`, `33789`, `33791`, `33793`, `33796`, `33798`, `33800`, `33802`, `33804`, `33806`, `33810`, `33812`, `33814`, `33817`, `33820`, `33822`, `33824`, `33827`, `33829`, `33831`, `33832`, `33833`, `33836`, `33838`, `33839`, `33840`, `33842`, `33844`, `33846`, `33848`, `33850`, `33851`, `33853`, `33855`, `33858`, `33861`, `33862`, `33864`, `33866`, `33869`, `33870`, `33871`, `33875`, `33878`, `33881`, `33884`, `33885`, `33886`, `33887`, `33888`, `33890`, `33892`, `33893`, `33895`, `33896`, `33897`, `33902`, `33906`, `33908`, `33913`, `33916`, `33918`, `33919`, `33920`, `33922`, `33925`, `33927`, `33928`, `33931`, `33933`, `33934`, `33937`, `33938`, `33940`, `33941`, `33942`, `33944`, `33946`, `33948`, `33949`, `33952`, `33953`, `33955`, `33956`, `33959`, `33960`, `33963`, `33964`, `33966`, `33967`, `33969`, `33971`, `33974`, `33975`, `33976`, `33979`, `33980`, `33981`, `33982`, `33984`, `33985`, `33988`, `33990`, `33992`, `33993`, `33994`, `33995`, `33997`, `33998`, `34002`, `34003`, `34004`, `34009`, `34011`, `34013`, `34016`, `34018`, `34020`, `34024`, `34026`, `34027`, `34028`, `34031`, `34034`, `34038`, `34041`, `34042`, `34045`, `34047`, `34049`, `34050`, `34051`, `34054`, `34056`, `34059`, `34061`, `34062`, `34065`, `34067`, `34068`, `34069`, `34071`, `34072`, `34073`, `34076`, `34078`, `34080`, `34081`, `34083`, `34085`, `34088`, `34090`, `34093`, `34095`, `34096`, `34098`, `34102`, `34105`, `34108`, `34110`, `34112`, `34114`, `34116`, `34119`, `34121`, `34123`, `34124`, `34127`, `34131`, `34132`, `34134`, `34136`, `34138`, `34139`, `34142`, `34144`, `34145`, `34146`, `34149`, `34152`, `34153`, `34156`, `34159`, `34163`, `34164`, `34166`, `34168`, `34170`, `34171`, `34172`, `34174`, `34176`, `34178`, `34180`, `34182`, `34184`, `34186`, `34189`, `34191`, `34193`, `34197`, `34200`, `34201`, `34202`, `34204`, `34208`, `34210`, `34212`, `34214`, `34215`, `34217`, `34220`, `34223`, `34224`, `34226`, `34230`, `34232`, `34235`, `34238`, `34240`, `34243`, `34246`, `34247`, `34248`, `34252`, `34253`, `34254`, `34258`, `34261`, `34262`, `34263`, `34268`, `34270`, `34271`, `34273`, `34275`, `34277`, `34279`, `34281`, `34284`, `34286`, `34288`, `34290`, `34292`, `34296`, `34298`, `34300`, `34302`, `34303`, `34305`, `34306`, `34307`, `34308`, `34311`, `34312`, `34314`, `34316`, `34318`, `34322`, `34324`, `34325`, `34326`, `34328`, `34329`, `34333`, `34335`, `34337`, `34340`, `34342`, `34345`, `34347`, `34348`, `34351`, `34352`, `34353`, `34356`, `34359`, `34360`, `34362`, `34364`, `34367`, `34370`, `34372`, `34373`, `34374`, `34375`, `34377`, `34379`, `34381`, `34385`, `34386`, `34389`, `34391`, `34393`, `34397`, `34400`, `34401`, `34402`, `34405`, `34406`, `34408`, `34410`, `34411`, `34412`, `34414`, `34417`, `34418`, `34420`, `34421`, `34422`, `34423`, `34424`, `34426`, `34430`, `34432`, `34436`, `34438`, `34439`, `34441`, `34443`, `34444`, `34445`, `34447`, `34449`, `34453`, `34455`, `34457`, `34459`, `34461`, `34463`, `34464`, `34467`, `34469`, `34471`, `34474`, `34476`, `34478`, `34480`, `34482`, `34484`, `34486`, `34487`, `34489`, `34490`, `34493`, `34495`, `34497`, `34501`, `34503`, `34505`, `34507`, `34509`, `34512`, `34514`, `34515`, `34516`, `34517`, `34518`, `34520`, `34522`, `34524`, `34526`, `34529`, `34533`, `34536`, `34538`, `34541`, `34542`, `34546`, `34549`, `34551`, `34554`, `34556`, `34559`, `34562`, `34563`, `34565`, `34569`, `34571`, `34572`, `34575`, `34577`, `34578`, `34579`, `34580`, `34582`, `34584`, `34586`, `34589`, `34590`, `34592`, `34593`, `34594`, `34596`, `34599`, `34601`, `34604`, `34605`, `34607`, `34609`, `34612`, `34613`, `34615`, `34616`, `34617`, `34620`, `34622`, `34623`, `34625`, `34627`, `34629`, `34632`, `34633`, `34634`, `34635`, `34637`, `34638`, `34640`, `34643`, `34646`, `34650`, `34651`, `34653`, `34655`, `34656`, `34657`, `34660`, `34662`, `34663`, `34665`, `34667`, `34670`, `34673`, `34674`, `34676`, `34678`, `34680`, `34682`, `34684`, `34685`, `34687`, `34689`, `34692`, `34694`, `34696`, `34699`, `34702`, `34703`, `34704`, `34706`, `34708`, `34709`, `34710`, `34712`, `34714`, `34716`, `34719`, `34721`, `34722`, `34725`, `34726`, `34727`, `34730`, `34731`, `34733`, `34735`, `34737`, `34738`, `34740`, `34741`, `34743`, `34745`, `34747`, `34749`, `34750`, `34754`, `34756`, `34758`, `34760`, `34762`, `34763`, `34764`, `34767`, `34769`, `34772`, `34774`, `34776`, `34777`, `34779`, `34780`, `34783`, `34786`, `34789`, `34791`, `34794`, `34796`, `34797`, `34799`, `34802`, `34804`, `34805`, `34808`, `34809`, `34810`, `34811`, `34813`, `34817`, `34819`, `34822`, `34824`, `34826`, `34828`, `34830`, `34832`, `34834`, `34837`, `34840`, `34841`, `34845`, `34848`, `34849`, `34850`, `34853`, `34855`, `34857`, `34859`, `34860`, `34864`, `34865`, `34866`, `34868`, `34870`, `34872`, `34875`, `34877`, `34879`, `34881`, `34882`, `34884`, `34886`, `34888`, `34890`, `34893`, `34896`, `34898`, `34899`, `34901`, `34902`, `34903`, `34906`, `34909`, `34911`, `34912`, `34914`, `34916`, `34920`, `34921`, `34924`, `34926`, `34928`, `34930`, `34932`, `34934`, `34937`, `34939`, `34941`, `34945`, `34947`, `34950`, `34954`, `34957`, `34959`, `34961`, `34962`, `34965`, `34968`, `34970`, `34972`, `34976`, `34977`, `34980`, `34981`, `34982`, `34984`, `34985`, `34987`, `34988`, `34990`, `34993`, `34994`, `34997`, `35001`, `35003`, `35005`, `35008`, `35011`, `35014`, `35016`, `35018`, `35019`, `35020`, `35021`, `35022`, `35025`, `35027`, `35029`, `35030`, `35034`, `35036`, `35037`, `35040`, `35042`, `35043`, `35044`, `35045`, `35048`, `35051`, `35053`, `35055`, `35056`, `35057`, `35061`, `35063`, `35066`, `35068`, `35070`, `35071`, `35072`, `35074`, `35076`, `35078`, `35082`, `35084`, `35086`, `35089`, `35091`, `35093`, `35095`, `35097`, `35098`, `35099`, `35100`, `35102`, `35103`, `35105`, `35109`, `35110`, `35113`, `35114`, `35116`, `35119`, `35121`, `35123`, `35124`, `35125`, `35128`, `35130`, `35132`, `35133`, `35134`, `35135`, `35137`, `35139`, `35142`, `35143`, `35146`, `35148`, `35149`, `35151`, `35153`, `35154`, `35155`, `35156`, `35158`, `35159`, `35161`, `35163`, `35165`, `35167`, `35168`, `35170`, `35173`, `35174`, `35175`, `35177`, `35179`, `35180`, `35183`, `35185`, `35187`, `35191`, `35193`, `35194`, `35196`, `35199`, `35200`, `35202`, `35204`, `35205`, `35207`, `35208`, `35211`, `35212`, `35214`, `35216`, `35217`, `35220`, `35223`, `35225`, `35227`, `35231`, `35233`, `35235`, `35238`, `35239`, `35241`, `35243`, `35246`, `35250`, `35253`, `35255`, `35256`, `35257`, `35260`, `35263`, `35265`, `35266`, `35269`, `35271`, `35272`, `35274`, `35277`, `35282`, `35285`, `35286`, `35287`, `35288`, `35291`, `35293`, `35295`, `35297`, `35298`, `35299`, `35300`, `35302`, `35305`, `35306`, `35308`, `35310`, `35311`, `35313`, `35314`, `35315`, `35316`, `35318`, `35321`, `35323`, `35324`, `35325`, `35329`, `35331`, `35333`, `35336`, `35338`, `35339`, `35340`, `9826`, `35341`, `35343`, `35344`, `35345`, `35347`, `35349`, `35352`, `35355`, `35358`, `35361`, `35365`, `35366`, `35367`, `35368`, `35370`, `35372`, `35373`, `35374`, `35375`, `35376`, `35378`, `35379`, `35381`, `35385`, `35388`, `35389`, `35390`, `35392`, `35394`, `35396`, `35397`, `35399`, `35403`, `35405`, `35408`, `35410`, `35411`, `35412`, `35415`, `35416`, `35421`, `35424`, `35425`, `35427`, `35429`, `35431`, `35433`, `35435`, `35439`, `35440`, `35441`, `35443`, `35446`, `35449`, `35451`, `35452`, `35455`, `35458`, `35459`, `35462`, `35464`, `35466`, `35468`, `35470`, `35471`, `35473`, `35475`, `35476`, `35479`, `35480`, `35481`, `34066`, `35483`, `35484`, `35485`, `35488`, `35489`, `35491`, `35493`, `35495`, `35496`, `35497`, `35498`, `35499`, `35501`, `35504`, `35506`, `35508`, `35509`, `35510`, `35512`, `35515`, `35517`, `35519`, `35520`, `35521`, `35523`, `35524`, `35527`, `35528`, `35532`, `35534`, `35536`, `35540`, `35541`, `35542`, `35543`, `35545`, `35547`, `35549`, `35552`, `35553`, `35557`, `35560`, `35561`, `35563`, `35567`, `35568`, `35571`, `35574`, `35576`, `35578`, `35580`, `35583`, `35584`, `35585`, `35588`, `35590`, `35593`, `35594`, `35596`, `35598`, `35602`, `35603`, `35606`, `35607`, `35608`, `35609`, `35612`, `35614`, `35617`, `35619`, `35621`, `35623`, `35624`, `35626`, `35627`, `35628`, `35631`, `35634`, `35636`, `35639`, `35641`, `35642`, `35643`, `35646`, `35648`, `35650`, `35653`, `35655`, `35656`, `35660`, `35662`, `35663`, `35665`, `35668`, `35670`, `35672`, `35673`, `35676`, `35680`, `35683`, `35684`, `16179`, `35686`, `35689`, `35693`, `35694`, `35695`, `35698`, `35700`, `35702`, `35703`, `35705`, `35707`, `35708`, `35709`, `35711`, `35714`, `35716`, `35718`, `35720`, `35721`, `35724`, `35725`, `35726`, `35728`, `35729`, `35731`, `35732`, `35734`, `35736`, `35739`, `35744`, `35747`, `35749`, `35750`, `35752`, `35754`, `35757`, `35759`, `35761`, `35762`, `35764`, `35767`, `35769`, `35772`, `35774`, `35777`, `35778`, `35780`, `35782`, `35784`, `35785`, `35787`, `35789`, `35791`, `35793`, `35797`, `35799`, `35800`, `35801`, `35803`, `35805`, `35808`, `35811`, `35813`, `35815`, `35819`, `35822`, `35824`, `35825`, `35827`, `35830`, `35831`, `35832`, `35833`, `35835`, `35838`, `35841`, `35843`, `35846`, `35849`, `35850`, `35851`, `35853`, `35856`, `35857`, `35859`, `35862`, `35863`, `35864`, `35865`, `35867`, `35868`, `35871`, `35873`, `35875`, `35877`, `35880`, `35881`, `35883`, `35885`, `35886`, `35888`, `35890`, `35892`, `35894`, `35896`, `35899`, `35903`, `35907`, `35909`, `35911`, `35913`, `35915`, `35917`, `35918`, `35920`, `35921`, `35924`, `35925`, `35926`, `35928`, `35931`, `35933`, `35935`, `35937`, `35938`, `35940`, `35943`, `35945`, `35947`, `35948`, `35951`, `35952`, `35955`, `35956`, `35958`, `35962`, `35963`, `35964`, `35966`, `35969`, `35972`, `35973`, `35976`, `35977`, `35979`, `35981`, `35983`, `35986`, `35987`, `35989`, `35990`, `35994`, `35997`, `35999`, `36001`, `36004`, `36006`, `36009`, `36012`, `36015`, `36019`, `36021`, `36023`, `36025`, `36026`, `36029`, `36030`, `36032`, `36036`, `36038`, `36041`, `36044`, `36046`, `36047`, `36050`, `36053`, `36054`, `36057`, `36059`, `36060`, `36062`, `36065`, `36066`, `36068`, `36069`, `36070`, `36073`, `36074`, `36076`, `36079`, `36081`, `36083`, `36084`, `36085`, `36086`, `36088`, `36090`, `36092`, `36094`, `36095`, `36097`, `36099`, `36100`, `36101`, `36103`, `36104`, `36107`, `36109`, `36111`, `36112`, `36113`, `36114`, `36116`, `36118`, `36120`, `36122`, `36124`, `36127`, `36128`, `36130`, `36133`, `36137`, `36138`, `36139`, `36143`, `36144`, `36146`, `36148`, `36152`, `36156`, `36157`, `36159`, `36161`, `36163`, `36167`, `36169`, `36171`, `36173`, `36174`, `36176`, `36179`, `36181`, `36182`, `36184`, `36186`, `36188`, `36189`, `36192`, `36195`, `36197`, `36199`, `36201`, `36203`, `36205`, `36208`, `36209`, `36211`, `36212`, `36213`, `36215`, `36217`, `36218`, `36220`, `36222`, `36224`, `36227`, `36228`, `36229`, `36230`, `36231`, `36233`, `36234`, `36237`, `36240`, `36243`, `36245`, `36247`, `36248`, `36250`, `36252`, `36255`, `36258`, `36259`, `36260`, `36263`, `36265`, `36267`, `36268`, `36270`, `36272`, `36275`, `36278`, `36279`, `36282`, `36284`, `36286`, `36287`, `36289`, `36292`, `36294`, `36297`, `36298`, `36301`, `36304`, `36308`, `36309`, `36311`, `36313`, `36316`, `36320`, `36321`, `36322`, `36324`, `36325`, `36327`, `36329`, `36330`, `36335`, `36338`, `36339`, `36342`, `36345`, `36346`, `36348`, `36350`, `36352`, `36355`, `36357`, `36359`, `36360`, `36363`, `36364`, `36367`, `36370`, `36375`, `36378`, `36383`, `36385`, `36386`, `36390`, `36391`, `36392`, `36395`, `36396`, `36398`, `36400`, `36401`, `36405`, `36407`, `36409`, `36410`, `36412`, `36414`, `36415`, `36417`, `36419`, `36422`, `36424`, `36425`, `36427`, `36430`, `36433`, `36436`, `36438`, `36441`, `36444`, `36445`, `36447`, `36450`, `36452`, `36457`, `36458`, `36463`, `36465`, `36467`, `36470`, `36472`, `36473`, `36474`, `36476`, `36478`, `36479`, `36481`, `36484`, `36486`, `36487`, `36489`, `36491`, `36492`, `36493`, `36495`, `36497`, `36498`, `36500`, `36502`, `36504`, `36505`, `36506`, `36508`, `36509`, `36513`, `36514`, `36516`, `36517`, `36519`, `36520`, `36521`, `36522`, `36526`, `36529`, `36530`, `36534`, `36537`, `36539`, `36541`, `36542`, `36543`, `36545`, `36546`, `36550`, `36554`, `36555`, `36557`, `36559`, `36561`, `36563`, `36564`, `36567`, `36569`, `36570`, `36571`, `36573`, `36574`, `36575`, `36577`, `36578`, `36582`, `36584`, `36585`, `36587`, `36589`, `36590`, `36592`, `36596`, `36597`, `36599`, `36600`, `36603`, `36606`, `36607`, `36608`, `36609`, `36610`, `36612`, `36614`, `36617`, `36620`, `36621`, `36622`, `36623`, `36626`, `36629`, `36630`, `36634`, `36638`, `36639`, `36641`, `36643`, `36646`, `36648`, `36649`, `36651`, `36654`, `36656`, `36657`, `36659`, `36662`, `36664`, `36666`, `36670`, `36672`, `36674`, `36677`, `36682`, `36684`, `36685`, `36686`, `36687`, `36689`, `36690`, `36692`, `36694`, `36697`, `36698`, `36699`, `36700`, `36701`, `36702`, `36705`, `36706`, `36707`, `36710`, `36712`, `36714`, `36717`, `36720`, `36722`, `36724`, `36726`, `36730`, `36732`, `36733`, `36735`, `36738`, `36740`, `36741`, `36743`, `36745` | | **`senter`** | `I`, `S` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 99.86 | | `MORPH_ACC` | 99.85 | | `TAG_ACC` | 99.86 | | `DEP_UAS` | 96.21 | | `DEP_LAS` | 96.06 | | `SENTS_P` | 96.03 | | `SENTS_R` | 97.98 | | `SENTS_F` | 97.00 | | `LEMMA_ACC` | 99.23 | | `TOK2VEC_LOSS` | 8130025.70 | | `MORPHOLOGIZER_LOSS` | 198657.34 | | `TAGGER_LOSS` | 82571.83 | | `PARSER_LOSS` | 1897454.65 | | `EXPERIMENTAL_EDIT_TREE_LEMMATIZER_LOSS` | 163169.90 | | `SENTER_LOSS` | 17920.46 |
Jacobo/grc_ud_perseus_lge
Jacobo
null
26
3
spacy
0
token-classification
false
false
false
null
['grc']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
79,407
| Feature | Description | | --- | --- | | **Name** | `grc_ud_perseus_lge` | | **Version** | `3.2.2` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `experimental_edit_tree_lemmatizer`, `senter` | | **Components** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `experimental_edit_tree_lemmatizer`, `senter` | | **Vectors** | 381105 keys, 381105 unique vectors (100 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (3230 labels for 5 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `POS=INTJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Degree=Cmp\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `POS=X`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PART`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON`, `POS=DET`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|Tense=Past\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Imp\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Acc\|Gender=Neut\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Neut\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Voc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Degree=Sup\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `POS=VERB\|Tense=Pres\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Dat\|Number=Sing\|POS=DET`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pqp\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=DET`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=X`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=DET`, `Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Inf\|Voice=Act` | | **`tagger`** | `---------`, `--p---fa-`, `--s---ma-`, `-3paia---`, `-3paim---`, `-3siia---`, `Ne`, `a`, `c`, `d`, `g`, `i`, `l`, `m`, `n`, `p`, `r`, `u`, `v`, `x` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `4`, `7`, `11`, `12`, `13`, `15`, `17`, `19`, `25`, `27`, `29`, `33`, `35`, `37`, `40`, `41`, `43`, `46`, `48`, `50`, `52`, `54`, `56`, `59`, `61`, `63`, `65`, `67`, `70`, `72`, `76`, `77`, `79`, `81`, `83`, `84`, `86`, `88`, `91`, `92`, `94`, `96`, `98`, `101`, `102`, `104`, `108`, `114`, `115`, `116`, `118`, `119`, `124`, `126`, `128`, `130`, `131`, `132`, `134`, `135`, `137`, `143`, `144`, `146`, `148`, `150`, `151`, `152`, `154`, `156`, `159`, `161`, `163`, `167`, `169`, `171`, `173`, `175`, `177`, `179`, `181`, `182`, `184`, `186`, `188`, `191`, `193`, `194`, `197`, `200`, `203`, `205`, `206`, `210`, `212`, `213`, `215`, `217`, `219`, `220`, `223`, `225`, `227`, `228`, `231`, `232`, `233`, `235`, `238`, `240`, `243`, `247`, `249`, `251`, `252`, `253`, `255`, `257`, `259`, `261`, `266`, `268`, `269`, `271`, `273`, `275`, `277`, `279`, `281`, `283`, `285`, `287`, `290`, `293`, `296`, `297`, `299`, `302`, `305`, `307`, `308`, `310`, `312`, `314`, `316`, `318`, `319`, `325`, `330`, `333`, `336`, `339`, `344`, `346`, `348`, `351`, `352`, `353`, `358`, `360`, `363`, `366`, `368`, `371`, `374`, `378`, `380`, `381`, `383`, `385`, `387`, `388`, `390`, `393`, `396`, `398`, `402`, `404`, `406`, `408`, `410`, `412`, `417`, `422`, `426`, `429`, `431`, `432`, `434`, `435`, `438`, `441`, `444`, `446`, `448`, `451`, `453`, `456`, `458`, `460`, `463`, `468`, `471`, `474`, `476`, `479`, `481`, `483`, `485`, `487`, `490`, `492`, `494`, `495`, `497`, `499`, `501`, `504`, `506`, `508`, `510`, `513`, `515`, `519`, `521`, `523`, `527`, `530`, `531`, `533`, `535`, `536`, `538`, `541`, `545`, `549`, `550`, `552`, `554`, `555`, `557`, `560`, `562`, `565`, `567`, `569`, `571`, `575`, `577`, `580`, `583`, `584`, `586`, `588`, `590`, `592`, `595`, `597`, `600`, `602`, `607`, `608`, `612`, `614`, `616`, `618`, `620`, `622`, `625`, `627`, `629`, `631`, `633`, `635`, `637`, `639`, `643`, `644`, `646`, `648`, `650`, `652`, `654`, `658`, `661`, `663`, `665`, `667`, `669`, `671`, `673`, `675`, `679`, `681`, `685`, `687`, `690`, `693`, `695`, `696`, `699`, `701`, `706`, `707`, `709`, `711`, `713`, `715`, `716`, `719`, `721`, `723`, `725`, `727`, `729`, `732`, `734`, `736`, `738`, `740`, `742`, `744`, `746`, `748`, `750`, `752`, `753`, `755`, `758`, `761`, `764`, `767`, `768`, `770`, `773`, `775`, `777`, `780`, `783`, `787`, `790`, `792`, `794`, `797`, `799`, `801`, `805`, `807`, `810`, `812`, `814`, `816`, `819`, `821`, `824`, `826`, `828`, `830`, `834`, `837`, `839`, `842`, `844`, `846`, `849`, `851`, `853`, `855`, `858`, `860`, `862`, `865`, `867`, `870`, `875`, `878`, `880`, `881`, `883`, `884`, `886`, `890`, `892`, `893`, `895`, `897`, `899`, `900`, `902`, `904`, `908`, `912`, `914`, `916`, `919`, `922`, `924`, `930`, `931`, `934`, `936`, `938`, `940`, `942`, `944`, `945`, `948`, `949`, `951`, `953`, `954`, `958`, `960`, `962`, `964`, `965`, `967`, `970`, `971`, `973`, `974`, `976`, `977`, `979`, `982`, `984`, `986`, `987`, `991`, `993`, `995`, `997`, `1003`, `1005`, `1006`, `1010`, `1012`, `1014`, `1016`, `1018`, `1020`, `1023`, `1025`, `1028`, `1030`, `1032`, `1034`, `1036`, `1038`, `1040`, `1041`, `1043`, `1045`, `1047`, `1050`, `1053`, `1054`, `1057`, `1061`, `1064`, `1065`, `1066`, `1069`, `1072`, `1074`, `1079`, `1081`, `1083`, `1084`, `1086`, `1089`, `1091`, `1095`, `1097`, `1100`, `1104`, `1105`, `1108`, `1110`, `1114`, `1119`, `1121`, `1123`, `1126`, `1128`, `1131`, `1133`, `1136`, `1138`, `1140`, `1142`, `1144`, `1146`, `1148`, `1150`, `1151`, `1153`, `1155`, `1158`, `1161`, `1162`, `1164`, `1167`, `1169`, `1171`, `1173`, `1175`, `1177`, `1179`, `1182`, `1184`, `1185`, `1186`, `1188`, `1190`, `1191`, `1193`, `1195`, `1198`, `1200`, `1204`, `1206`, `1208`, `1210`, `1212`, `1214`, `1218`, `1220`, `1222`, `1225`, `1227`, `1231`, `1232`, `1234`, `1235`, `1239`, `1241`, `1244`, `1245`, `1248`, `1250`, `1253`, `1256`, `1257`, `1259`, `1260`, `1262`, `1264`, `1266`, `1268`, `1271`, `1273`, `1275`, `1277`, `1279`, `1282`, `1284`, `1286`, `1287`, `1289`, `1291`, `1295`, `1297`, `1299`, `1301`, `1303`, `1305`, `1307`, `1309`, `1310`, `1312`, `1313`, `1315`, `1317`, `1318`, `1320`, `1324`, `1327`, `1328`, `1330`, `1332`, `1334`, `1335`, `1336`, `1338`, `1339`, `1340`, `1343`, `1344`, `1347`, `1349`, `1351`, `1353`, `1356`, `1359`, `1361`, `1363`, `1365`, `1366`, `1368`, `1370`, `1372`, `1374`, `1378`, `1380`, `1383`, `1385`, `1387`, `1389`, `1392`, `1394`, `1397`, `1399`, `1401`, `1403`, `1405`, `1406`, `1408`, `1411`, `1413`, `1415`, `1416`, `1419`, `1420`, `1422`, `1423`, `1427`, `1429`, `1431`, `1433`, `1436`, `1437`, `1439`, `1441`, `1443`, `1444`, `1447`, `1448`, `1450`, `1452`, `1453`, `1456`, `1457`, `1458`, `1460`, `1462`, `1464`, `1465`, `1467`, `1470`, `1471`, `1473`, `1475`, `1479`, `1481`, `1483`, `1485`, `1487`, `1489`, `1491`, `1494`, `1497`, `1499`, `1500`, `1502`, `1505`, `1507`, `1509`, `1510`, `1512`, `1515`, `1517`, `1518`, `1520`, `1521`, `1524`, `1527`, `1528`, `1530`, `1531`, `1532`, `1535`, `1537`, `1539`, `1540`, `1541`, `1543`, `1544`, `1546`, `1550`, `1551`, `1553`, `1554`, `1555`, `1559`, `1561`, `1562`, `1564`, `1566`, `1568`, `1571`, `1573`, `1576`, `1578`, `1580`, `1582`, `1584`, `1587`, `1588`, `1591`, `1593`, `1595`, `1599`, `1601`, `1604`, `1605`, `1607`, `1610`, `1611`, `1613`, `1615`, `1618`, `1620`, `1622`, `1624`, `1626`, `1628`, `1631`, `1633`, `1635`, `1637`, `1640`, `1642`, `1644`, `1646`, `1648`, `1651`, `1653`, `1656`, `1659`, `1661`, `1663`, `1664`, `1666`, `1669`, `1670`, `1672`, `1674`, `1675`, `1679`, `1682`, `1684`, `1686`, `1689`, `1691`, `1693`, `1697`, `1700`, `1703`, `1707`, `1708`, `1710`, `1712`, `1714`, `1716`, `1718`, `1721`, `1724`, `1726`, `1730`, `1733`, `1736`, `1738`, `1740`, `1744`, `1058`, `1745`, `1747`, `1751`, `1753`, `1755`, `1756`, `1758`, `1759`, `1761`, `1765`, `1767`, `1769`, `1771`, `1773`, `1776`, `1778`, `1783`, `1787`, `1788`, `1790`, `1792`, `1793`, `1795`, `1797`, `1799`, `1801`, `1804`, `1806`, `1809`, `1810`, `1812`, `1813`, `1815`, `1818`, `1820`, `1822`, `1824`, `1826`, `1830`, `1834`, `1835`, `1837`, `1838`, `1840`, `1842`, `1845`, `1846`, `1849`, `1852`, `1853`, `1856`, `1858`, `1861`, `1863`, `1865`, `1868`, `1870`, `1872`, `1875`, `1876`, `1880`, `1882`, `1884`, `1886`, `1887`, `1889`, `1891`, `1892`, `1894`, `1896`, `1899`, `1901`, `1905`, `1906`, `1910`, `1912`, `1914`, `1916`, `1918`, `1920`, `1923`, `1925`, `1928`, `1930`, `1931`, `1933`, `1936`, `1938`, `1940`, `1943`, `1945`, `1946`, `1947`, `1950`, `1952`, `1954`, `1956`, `1958`, `1960`, `1962`, `1965`, `1968`, `1971`, `1975`, `1978`, `1980`, `1982`, `1984`, `1986`, `1987`, `1989`, `1991`, `1993`, `1995`, `1996`, `1998`, `2000`, `2002`, `2004`, `2006`, `2008`, `2010`, `2013`, `2015`, `2018`, `2021`, `2023`, `2025`, `2028`, `2030`, `2032`, `2033`, `2035`, `2036`, `2040`, `2042`, `2044`, `2045`, `2046`, `2050`, `2052`, `2055`, `2056`, `2058`, `2061`, `2063`, `2064`, `2066`, `2068`, `2071`, `2073`, `2075`, `2076`, `2078`, `2080`, `2083`, `2087`, `2089`, `2093`, `2096`, `2098`, `2100`, `2102`, `2104`, `2106`, `2109`, `2111`, `2114`, `2116`, `2119`, `2122`, `2124`, `2126`, `2129`, `2131`, `2135`, `2138`, `2141`, `2143`, `2145`, `2147`, `2149`, `2151`, `2152`, `2153`, `2154`, `2155`, `2157`, `2159`, `2162`, `2164`, `2166`, `2168`, `2170`, `2172`, `2174`, `2176`, `2181`, `2183`, `2185`, `2187`, `2189`, `2191`, `2193`, `2195`, `2197`, `2199`, `2200`, `2201`, `2203`, `2204`, `2205`, `2207`, `2208`, `2209`, `2210`, `2212`, `2214`, `2216`, `2218`, `2222`, `2226`, `2229`, `2231`, `2233`, `2235`, `2236`, `2238`, `2239`, `2241`, `2243`, `2245`, `2248`, `2251`, `2254`, `2256`, `2258`, `2261`, `2263`, `2266`, `2268`, `2270`, `2272`, `2275`, `2277`, `2279`, `2282`, `2284`, `2287`, `2289`, `2291`, `2293`, `2295`, `2297`, `2299`, `2302`, `2304`, `2306`, `2308`, `2310`, `2312`, `2314`, `2317`, `2319`, `2320`, `2322`, `2324`, `2326`, `2328`, `2330`, `2332`, `2334`, `2336`, `2338`, `2340`, `2053`, `2342`, `2345`, `2347`, `2349`, `2350`, `2352`, `2354`, `2357`, `2359`, `2360`, `2363`, `2088`, `2365`, `2367`, `2369`, `2371`, `2373`, `2378`, `2381`, `2382`, `2384`, `2386`, `2389`, `2392`, `2396`, `2399`, `2401`, `2404`, `2406`, `2408`, `2410`, `2412`, `2414`, `2416`, `2418`, `2421`, `2423`, `2424`, `2426`, `2428`, `2431`, `2433`, `2434`, `2436`, `2437`, `2438`, `2439`, `2441`, `2443`, `2447`, `2449`, `2451`, `2452`, `2455`, `2457`, `2459`, `2460`, `2461`, `2464`, `2466`, `2469`, `2470`, `2471`, `2475`, `2477`, `2479`, `2481`, `2484`, `2486`, `2488`, `2491`, `2493`, `2496`, `2497`, `2499`, `2501`, `2503`, `2504`, `2505`, `2507`, `2509`, `2512`, `2514`, `2516`, `2518`, `2519`, `2521`, `2524`, `2526`, `2528`, `2530`, `2532`, `2534`, `2536`, `2538`, `2539`, `2540`, `2543`, `2546`, `2549`, `2552`, `2556`, `2557`, `2559`, `2561`, `2563`, `2565`, `2567`, `2568`, `2570`, `2573`, `2576`, `2578`, `2579`, `2581`, `2583`, `2585`, `2587`, `2588`, `2590`, `2592`, `2594`, `2597`, `2599`, `2600`, `2601`, `2602`, `2605`, `2608`, `2609`, `2611`, `2612`, `2613`, `2615`, `2617`, `2618`, `2622`, `2624`, `2627`, `2630`, `2632`, `2635`, `2636`, `2638`, `2640`, `2642`, `2644`, `2647`, `2648`, `2649`, `2650`, `2652`, `2654`, `2655`, `2659`, `2662`, `2663`, `2668`, `2671`, `2674`, `2676`, `2678`, `2679`, `2682`, `2687`, `2689`, `2691`, `2694`, `2696`, `2698`, `2700`, `2703`, `2705`, `2707`, `2710`, `2713`, `2715`, `2717`, `2719`, `2721`, `2723`, `2725`, `2727`, `2729`, `2732`, `2734`, `2736`, `2738`, `2741`, `2742`, `2744`, `2745`, `2747`, `2748`, `2750`, `2752`, `2754`, `2759`, `2763`, `2765`, `2767`, `2770`, `2772`, `2776`, `2779`, `2781`, `2783`, `2784`, `2787`, `2789`, `2791`, `2793`, `2796`, `2798`, `2801`, `2803`, `2805`, `2807`, `2808`, `2811`, `2816`, `2819`, `2821`, `2822`, `2823`, `2825`, `2826`, `2827`, `2829`, `2830`, `2832`, `2835`, `2840`, `2842`, `2844`, `2846`, `2850`, `2853`, `2854`, `2856`, `2858`, `2860`, `2862`, `2865`, `2867`, `2868`, `2870`, `2872`, `2874`, `2877`, `2879`, `2882`, `2883`, `2884`, `2887`, `2891`, `2892`, `2894`, `2896`, `2780`, `2898`, `2900`, `2902`, `2904`, `2907`, `2909`, `2912`, `2913`, `2916`, `2918`, `2919`, `2921`, `2923`, `2925`, `2926`, `2928`, `2931`, `2934`, `2936`, `2938`, `2940`, `2941`, `2943`, `2946`, `2950`, `2952`, `2954`, `2955`, `2957`, `2961`, `2963`, `2966`, `2967`, `2969`, `2970`, `2971`, `2974`, `2977`, `2979`, `2981`, `2983`, `2985`, `2986`, `2989`, `2991`, `2992`, `682`, `2994`, `2997`, `3000`, `3003`, `3006`, `3008`, `3010`, `3012`, `3014`, `3017`, `3019`, `3020`, `3022`, `3024`, `3025`, `3027`, `3028`, `3030`, `3033`, `3036`, `3037`, `3040`, `3043`, `3046`, `3048`, `3050`, `3052`, `3056`, `3057`, `3059`, `3063`, `3065`, `3068`, `3070`, `3073`, `3076`, `3078`, `3079`, `3081`, `3084`, `3087`, `3090`, `3092`, `3094`, `3096`, `3098`, `3100`, `3103`, `3107`, `3110`, `3111`, `3113`, `3114`, `3116`, `3119`, `3120`, `3121`, `3125`, `3127`, `3130`, `3132`, `3133`, `3134`, `3137`, `3138`, `3140`, `3142`, `3144`, `3148`, `3150`, `3151`, `3152`, `3155`, `3157`, `3159`, `3160`, `3162`, `3163`, `3164`, `3165`, `3167`, `3168`, `3170`, `3172`, `3175`, `3178`, `3180`, `3182`, `3185`, `3188`, `3191`, `3193`, `3196`, `3199`, `3201`, `3203`, `3205`, `3206`, `3209`, `3210`, `3211`, `3213`, `3214`, `3217`, `3219`, `3221`, `3223`, `3225`, `3227`, `3228`, `3230`, `3232`, `3235`, `3236`, `3239`, `3241`, `3243`, `3246`, `3248`, `3250`, `3252`, `3255`, `3261`, `3262`, `3264`, `3267`, `3269`, `3273`, `3276`, `3278`, `3279`, `3281`, `3284`, `3285`, `3287`, `3289`, `3292`, `3294`, `3296`, `3299`, `3300`, `3303`, `3306`, `3309`, `3312`, `3314`, `3318`, `3320`, `3323`, `3326`, `3328`, `3330`, `3333`, `3336`, `3338`, `3340`, `3343`, `3346`, `3351`, `3352`, `3353`, `3355`, `3358`, `3361`, `3362`, `3366`, `3368`, `3370`, `3372`, `3374`, `3378`, `3381`, `3383`, `3385`, `3386`, `3389`, `3391`, `3393`, `3397`, `3400`, `3402`, `3404`, `3407`, `3410`, `3411`, `3413`, `3415`, `3416`, `3418`, `3421`, `3422`, `3423`, `3424`, `3426`, `3428`, `3430`, `3433`, `3435`, `3438`, `3441`, `3444`, `3447`, `3449`, `3451`, `3453`, `3455`, `3457`, `3460`, `3462`, `3464`, `3465`, `3467`, `3469`, `3472`, `3475`, `3478`, `3480`, `3482`, `3484`, `3488`, `3491`, `3493`, `3496`, `3498`, `3500`, `3502`, `3505`, `3507`, `3510`, `3512`, `3513`, `3514`, `3516`, `3517`, `3519`, `3523`, `3525`, `3527`, `3529`, `3531`, `3532`, `3534`, `3538`, `3540`, `3542`, `3544`, `3546`, `3550`, `3552`, `3555`, `3557`, `3561`, `3563`, `3564`, `3567`, `3569`, `3571`, `3573`, `3575`, `3576`, `3578`, `3582`, `3584`, `3587`, `3589`, `3593`, `3595`, `3597`, `3599`, `3602`, `3604`, `3606`, `3609`, `3613`, `3615`, `3616`, `3618`, `3621`, `3622`, `3623`, `3625`, `3626`, `3628`, `3631`, `3633`, `3634`, `3637`, `3641`, `3643`, `3645`, `3647`, `3648`, `3650`, `3652`, `3654`, `3657`, `3659`, `3660`, `3664`, `3666`, `3667`, `3669`, `3671`, `3672`, `3675`, `3678`, `3682`, `3683`, `3685`, `3690`, `3691`, `3693`, `3695`, `3697`, `3698`, `3701`, `3704`, `3707`, `3709`, `3712`, `3713`, `3715`, `3717`, `3719`, `3722`, `3724`, `3726`, `3729`, `3731`, `3734`, `3736`, `3738`, `3741`, `3744`, `3746`, `3750`, `3753`, `3756`, `3758`, `3762`, `3764`, `3765`, `3767`, `3769`, `3771`, `3772`, `3775`, `3777`, `3779`, `3781`, `3782`, `3785`, `3789`, `3791`, `3796`, `3799`, `3800`, `3802`, `3805`, `3807`, `3808`, `3810`, `3812`, `3815`, `3817`, `3818`, `3820`, `3822`, `3824`, `3825`, `3827`, `3829`, `3831`, `3833`, `3835`, `3837`, `3839`, `3841`, `3845`, `3847`, `3850`, `3852`, `3853`, `3855`, `3857`, `3859`, `3861`, `3863`, `3864`, `3867`, `3869`, `3872`, `3875`, `3877`, `3881`, `3882`, `3886`, `3887`, `3890`, `3891`, `3892`, `3894`, `3897`, `3898`, `3900`, `3902`, `3905`, `3907`, `3910`, `3913`, `3915`, `3917`, `3921`, `3922`, `3924`, `3926`, `3928`, `3930`, `3933`, `3936`, `3940`, `3943`, `3946`, `3950`, `3952`, `3955`, `3957`, `3960`, `3962`, `3964`, `3967`, `3969`, `3972`, `3975`, `3977`, `3979`, `3982`, `3984`, `3987`, `3988`, `3989`, `3992`, `3995`, `3997`, `4000`, `4002`, `4004`, `4006`, `4009`, `4010`, `4012`, `4016`, `4018`, `4020`, `4022`, `4025`, `4026`, `4027`, `4029`, `4031`, `4033`, `4035`, `4036`, `4038`, `4040`, `4043`, `4045`, `4046`, `4048`, `4050`, `4053`, `4055`, `4058`, `4060`, `4062`, `4064`, `4066`, `4071`, `4074`, `4076`, `4079`, `4080`, `4082`, `4084`, `4086`, `4087`, `4090`, `4092`, `4093`, `4096`, `4098`, `4099`, `4102`, `4105`, `4107`, `4109`, `4112`, `4115`, `4117`, `4120`, `4122`, `4123`, `4125`, `4127`, `4129`, `4131`, `4133`, `4135`, `4137`, `4139`, `4140`, `4141`, `4144`, `4146`, `4148`, `4151`, `4154`, `4156`, `4158`, `4159`, `4162`, `4164`, `4167`, `4169`, `4172`, `4173`, `4175`, `4176`, `4178`, `4179`, `4181`, `4183`, `4185`, `4187`, `4189`, `4190`, `4192`, `4194`, `4196`, `4199`, `4201`, `4203`, `4205`, `4207`, `4208`, `4211`, `4213`, `4216`, `4219`, `4222`, `4224`, `4225`, `4226`, `4228`, `4229`, `4231`, `4235`, `4236`, `4237`, `4238`, `4240`, `4241`, `4243`, `4246`, `4248`, `4250`, `4252`, `4254`, `4257`, `4260`, `4262`, `4264`, `4266`, `4268`, `4270`, `4273`, `4275`, `4277`, `4280`, `4283`, `4285`, `4287`, `4289`, `4292`, `4293`, `4295`, `4297`, `4301`, `4303`, `4305`, `4307`, `4308`, `4310`, `4313`, `4316`, `4318`, `4320`, `4322`, `4323`, `4324`, `4326`, `4328`, `4330`, `4332`, `4334`, `4337`, `4339`, `4341`, `4343`, `4344`, `4347`, `4349`, `4352`, `4354`, `4356`, `4357`, `4360`, `4364`, `4366`, `4369`, `4371`, `4374`, `4376`, `4380`, `4383`, `915`, `4385`, `4388`, `4389`, `4391`, `4394`, `4395`, `4397`, `4399`, `4401`, `4402`, `4405`, `4407`, `4408`, `4410`, `4413`, `4416`, `4419`, `4420`, `4423`, `4425`, `4430`, `4433`, `4435`, `4437`, `4440`, `4442`, `4444`, `4445`, `4447`, `4450`, `4453`, `4456`, `4458`, `4461`, `4462`, `4464`, `4466`, `4468`, `4470`, `4472`, `4473`, `4474`, `4475`, `4477`, `4479`, `4482`, `4484`, `4486`, `4488`, `4491`, `4494`, `4495`, `4499`, `4500`, `4502`, `4506`, `4508`, `4509`, `4511`, `4513`, `4515`, `4516`, `4520`, `4522`, `4523`, `4526`, `4528`, `4531`, `4532`, `4536`, `4538`, `4542`, `4546`, `4548`, `4552`, `4555`, `4557`, `4559`, `4561`, `4563`, `4567`, `4569`, `4573`, `4577`, `4578`, `4579`, `4581`, `4583`, `4584`, `4586`, `4587`, `4589`, `4590`, `4592`, `4593`, `4594`, `4596`, `4601`, `4602`, `4605`, `4606`, `4608`, `4610`, `4612`, `4614`, `4617`, `4619`, `4621`, `4623`, `4625`, `4627`, `4628`, `4630`, `4633`, `4635`, `4637`, `4640`, `4642`, `4645`, `4647`, `4648`, `4650`, `4653`, `4655`, `4659`, `4660`, `4663`, `4666`, `4667`, `4671`, `4672`, `4675`, `4676`, `4679`, `4681`, `4683`, `4686`, `4689`, `4690`, `4693`, `4695`, `4698`, `4701`, `4704`, `4706`, `4709`, `4711`, `4714`, `4716`, `4717`, `4719`, `4723`, `4725`, `4727`, `4729`, `4732`, `4734`, `4738`, `4740`, `4742`, `4744`, `4746`, `4748`, `4750`, `4753`, `4755`, `4761`, `4763`, `4765`, `4768`, `4770`, `4773`, `4775`, `4777`, `4778`, `4780`, `4782`, `4786`, `4787`, `4789`, `4792`, `4794`, `4797`, `4799`, `4800`, `4803`, `4808`, `4811`, `4813`, `4816`, `4819`, `4822`, `4824`, `4826`, `4827`, `4828`, `4830`, `4831`, `4834`, `4835`, `4837`, `4838`, `4839`, `4841`, `4842`, `4843`, `4844`, `4846`, `4849`, `4851`, `4853`, `4856`, `4858`, `4861`, `4865`, `4869`, `4872`, `4873`, `4875`, `4877`, `4878`, `4880`, `4882`, `4886`, `4887`, `4891`, `4893`, `4895`, `4897`, `4899`, `4902`, `4904`, `4906`, `4908`, `4910`, `4911`, `4913`, `4915`, `4916`, `4918`, `4920`, `4922`, `4925`, `4928`, `4930`, `4933`, `4935`, `4938`, `4940`, `4943`, `4945`, `4948`, `4952`, `4957`, `4960`, `4962`, `4963`, `4964`, `4966`, `4968`, `4972`, `4974`, `4976`, `4978`, `4979`, `4981`, `4985`, `4988`, `4991`, `4992`, `4993`, `4995`, `4997`, `4998`, `5001`, `5002`, `5005`, `5009`, `5011`, `5013`, `5015`, `5016`, `5021`, `5024`, `5026`, `5029`, `5030`, `5032`, `5035`, `5039`, `5040`, `5043`, `5048`, `5051`, `5053`, `5055`, `5058`, `5060`, `5063`, `5065`, `5068`, `5070`, `5071`, `5073`, `5075`, `5077`, `5078`, `5079`, `5081`, `5083`, `5085`, `5087`, `5089`, `5091`, `5093`, `5096`, `5098`, `5100`, `5102`, `5105`, `5107`, `5108`, `5111`, `5113`, `5114`, `5116`, `5118`, `5121`, `5123`, `5126`, `5128`, `5130`, `5132`, `5133`, `5136`, `5137`, `5139`, `5142`, `5143`, `5145`, `5146`, `5148`, `5149`, `5152`, `5156`, `5159`, `5160`, `5162` | | **`senter`** | `I`, `S` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 94.43 | | `MORPH_ACC` | 89.26 | | `TAG_ACC` | 94.38 | | `DEP_UAS` | 74.25 | | `DEP_LAS` | 67.99 | | `SENTS_P` | 97.28 | | `SENTS_R` | 98.17 | | `SENTS_F` | 97.72 | | `LEMMA_ACC` | 86.86 | | `TOK2VEC_LOSS` | 8715952.30 | | `MORPHOLOGIZER_LOSS` | 2141389.08 | | `TAGGER_LOSS` | 756871.60 | | `PARSER_LOSS` | 6287014.48 | | `EXPERIMENTAL_EDIT_TREE_LEMMATIZER_LOSS` | 1374805.23 | | `SENTER_LOSS` | 55253.29 |
Jacobo/grc_ud_perseus_trf
Jacobo
null
26
10
spacy
0
token-classification
false
false
false
cc
['grc']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
57,029
# Ancient Greek model for spaCy trained with the Perseus UD dataset and xlm-roberta-base | Feature | Description | | --- | --- | | **Name** | `grc_ud_perseus_trf` | | **Version** | `3.1.3` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `morphologizer`, `lemmatizer`, `tagger`, `parser`, `senter` | | **Components** | `transformer`, `morphologizer`, `lemmatizer`, `tagger`, `parser`, `senter` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `CC BY-NC-SA 2.5` | | **Author** | [Diogenet](diogenet.ucsd.edu) | ### Label Scheme <details> <summary>View label scheme (821 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `POS=INTJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Degree=Cmp\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `POS=X`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON`, `POS=DET`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|Tense=Past\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Imp\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Acc\|Gender=Neut\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Neut\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Degree=Sup\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `POS=VERB\|Tense=Pres\|VerbForm=Inf`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` | | **`tagger`** | `---------`, `--p---fa-`, `--s---ma-`, `-3paia---`, `-3paim---`, `-3siia---`, `a`, `c`, `d`, `g`, `i`, `l`, `m`, `n`, `p`, `r`, `u`, `v`, `x--------`, `x-p----d-`, `x-p---nn-` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`senter`** | `I`, `S` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 96.18 | | `MORPH_ACC` | 92.27 | | `LEMMA_ACC` | 92.23 | | `TAG_ACC` | 96.10 | | `DEP_UAS` | 77.44 | | `DEP_LAS` | 71.71 | | `SENTS_P` | 94.76 | | `SENTS_R` | 97.10 | | `SENTS_F` | 95.92 | | `TRANSFORMER_LOSS` | 181536.33 | | `MORPHOLOGIZER_LOSS` | 111651.32 | | `TAGGER_LOSS` | 98969.26 | | `PARSER_LOSS` | 1961334.93 | | `SENTER_LOSS` | 76738.85 |
Jacobo/grc_ud_proiel_dioberto
Jacobo
null
26
2
spacy
1
token-classification
false
false
false
null
['grc']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
92,094
| Feature | Description | | --- | --- | | **Name** | `grc_ud_proiel_dioberto` | | **Version** | `3.2.0` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `transformer`, `morphologizer`, `tagger`, `parser`, `experimental_edit_tree_lemmatizer`, `lemmatizer`, `senter` | | **Components** | `transformer`, `morphologizer`, `tagger`, `parser`, `experimental_edit_tree_lemmatizer`, `lemmatizer`, `senter` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (3178 labels for 5 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=SCONJ`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid,Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Degree=Pos\|POS=ADV`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=INTJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Rel`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Voc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NUM`, `POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=X`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Act` | | **`tagger`** | `A-`, `C-`, `Df`, `Dq`, `Du`, `F-`, `G-`, `I-`, `Ma`, `Mo`, `Nb`, `Ne`, `Pc`, `Pd`, `Pi`, `Pk`, `Pp`, `Pr`, `Ps`, `Px`, `R-`, `S-`, `V-` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `4`, `5`, `13`, `15`, `20`, `21`, `23`, `25`, `30`, `32`, `38`, `40`, `43`, `45`, `46`, `51`, `52`, `54`, `55`, `57`, `60`, `61`, `63`, `67`, `69`, `73`, `74`, `76`, `80`, `83`, `85`, `90`, `91`, `93`, `95`, `97`, `98`, `100`, `102`, `104`, `106`, `111`, `113`, `114`, `116`, `118`, `119`, `123`, `125`, `126`, `128`, `130`, `132`, `133`, `135`, `137`, `139`, `145`, `147`, `149`, `150`, `152`, `155`, `156`, `159`, `165`, `167`, `169`, `171`, `172`, `174`, `176`, `179`, `182`, `185`, `188`, `189`, `192`, `193`, `195`, `197`, `200`, `201`, `206`, `208`, `212`, `215`, `217`, `219`, `223`, `225`, `231`, `233`, `240`, `242`, `244`, `246`, `251`, `253`, `255`, `257`, `260`, `262`, `264`, `266`, `271`, `274`, `279`, `281`, `282`, `284`, `286`, `290`, `292`, `294`, `296`, `298`, `300`, `303`, `305`, `307`, `310`, `313`, `315`, `317`, `321`, `325`, `327`, `329`, `330`, `333`, `335`, `338`, `342`, `344`, `346`, `348`, `351`, `355`, `357`, `361`, `363`, `365`, `367`, `369`, `373`, `375`, `377`, `379`, `381`, `383`, `384`, `386`, `389`, `391`, `393`, `395`, `397`, `398`, `401`, `404`, `406`, `408`, `410`, `415`, `416`, `418`, `420`, `425`, `427`, `429`, `435`, `437`, `439`, `441`, `445`, `447`, `450`, `453`, `455`, `456`, `460`, `463`, `465`, `467`, `469`, `472`, `473`, `478`, `480`, `483`, `485`, `486`, `490`, `491`, `495`, `496`, `498`, `500`, `502`, `504`, `507`, `510`, `511`, `513`, `515`, `518`, `522`, `524`, `526`, `530`, `534`, `539`, `541`, `543`, `547`, `550`, `552`, `554`, `556`, `559`, `561`, `563`, `567`, `569`, `573`, `575`, `578`, `581`, `582`, `584`, `585`, `587`, `588`, `590`, `592`, `593`, `595`, `598`, `599`, `600`, `604`, `606`, `608`, `610`, `611`, `613`, `616`, `618`, `621`, `623`, `624`, `626`, `628`, `630`, `632`, `634`, `636`, `638`, `640`, `642`, `644`, `646`, `648`, `649`, `652`, `655`, `660`, `662`, `663`, `665`, `667`, `670`, `674`, `675`, `677`, `680`, `682`, `684`, `686`, `690`, `693`, `695`, `697`, `698`, `702`, `705`, `708`, `710`, `712`, `714`, `716`, `719`, `720`, `723`, `726`, `728`, `729`, `731`, `733`, `734`, `736`, `739`, `741`, `742`, `744`, `747`, `748`, `750`, `752`, `754`, `759`, `762`, `764`, `768`, `770`, `771`, `773`, `775`, `777`, `778`, `782`, `784`, `785`, `790`, `792`, `794`, `798`, `800`, `802`, `803`, `805`, `807`, `809`, `810`, `811`, `813`, `815`, `816`, `819`, `821`, `823`, `824`, `826`, `828`, `831`, `833`, `835`, `837`, `839`, `841`, `844`, `846`, `848`, `849`, `850`, `853`, `855`, `857`, `860`, `862`, `867`, `871`, `873`, `875`, `879`, `882`, `884`, `886`, `889`, `890`, `892`, `895`, `881`, `897`, `899`, `901`, `902`, `904`, `907`, `909`, `911`, `913`, `916`, `918`, `921`, `924`, `927`, `930`, `932`, `934`, `937`, `939`, `942`, `945`, `948`, `950`, `952`, `955`, `956`, `959`, `961`, `964`, `965`, `968`, `972`, `974`, `976`, `978`, `979`, `981`, `984`, `986`, `988`, `991`, `994`, `996`, `999`, `1001`, `1004`, `1006`, `1008`, `1011`, `1015`, `1017`, `1019`, `1021`, `1024`, `1025`, `1027`, `1028`, `1030`, `1032`, `1034`, `1035`, `1037`, `1040`, `1042`, `1044`, `1047`, `1049`, `1052`, `1055`, `1058`, `1060`, `1062`, `1064`, `1068`, `1070`, `1072`, `1075`, `1076`, `1081`, `1084`, `1086`, `1087`, `1088`, `1090`, `1093`, `1095`, `1097`, `1100`, `1102`, `1103`, `1104`, `1108`, `1110`, `1112`, `1115`, `1117`, `1119`, `1121`, `1123`, `1126`, `1128`, `1130`, `1132`, `1135`, `1137`, `1138`, `1141`, `1144`, `1146`, `1148`, `1149`, `1152`, `1154`, `1158`, `1160`, `1161`, `1164`, `1166`, `1168`, `1170`, `1171`, `1174`, `1177`, `1179`, `1182`, `1184`, `1187`, `1189`, `1191`, `1194`, `1197`, `1200`, `1202`, `1206`, `1208`, `1213`, `1216`, `1218`, `1220`, `1222`, `1224`, `1226`, `1227`, `1229`, `1232`, `1234`, `1237`, `1240`, `1242`, `1246`, `1250`, `1254`, `1257`, `1259`, `1260`, `1263`, `1268`, `1271`, `1273`, `1275`, `1278`, `1283`, `1286`, `1288`, `1290`, `1291`, `1292`, `1293`, `1295`, `1298`, `1301`, `1303`, `1305`, `1307`, `1309`, `1311`, `1313`, `1315`, `1317`, `1321`, `1323`, `1325`, `1327`, `1329`, `1333`, `1335`, `1338`, `1340`, `1342`, `1345`, `1347`, `1349`, `1353`, `1356`, `1358`, `1361`, `1364`, `1365`, `1367`, `1370`, `1372`, `1376`, `1377`, `1379`, `1383`, `1387`, `1389`, `1391`, `1393`, `1395`, `1398`, `1399`, `1402`, `1404`, `1406`, `1408`, `1413`, `1416`, `1419`, `1421`, `1423`, `1426`, `1431`, `1433`, `1435`, `1436`, `1438`, `1439`, `1441`, `1443`, `1446`, `1448`, `1450`, `1452`, `1454`, `1455`, `1456`, `1460`, `1462`, `1465`, `1466`, `1468`, `1470`, `1473`, `1475`, `1478`, `1480`, `1481`, `1484`, `1485`, `1488`, `1490`, `1492`, `1494`, `1497`, `1501`, `1504`, `1507`, `1510`, `1512`, `1514`, `1516`, `1517`, `1518`, `1520`, `1524`, `1528`, `1530`, `1532`, `1534`, `1535`, `1537`, `1539`, `1541`, `1543`, `1546`, `1548`, `1550`, `1552`, `1555`, `1556`, `1558`, `1560`, `1564`, `1565`, `1567`, `1569`, `601`, `1570`, `1574`, `1576`, `1581`, `1583`, `1585`, `1587`, `1590`, `1594`, `1596`, `1598`, `1600`, `1603`, `1605`, `1608`, `1611`, `1613`, `1615`, `1617`, `1619`, `1620`, `1623`, `1625`, `1627`, `1630`, `1632`, `1634`, `1636`, `1638`, `1641`, `1644`, `1648`, `1652`, `1654`, `1656`, `1660`, `1663`, `1665`, `1667`, `1669`, `1671`, `1674`, `1677`, `1679`, `1681`, `1684`, `1686`, `1688`, `1690`, `1694`, `1696`, `1698`, `1700`, `1702`, `1705`, `1708`, `1710`, `1711`, `1712`, `1714`, `1716`, `1719`, `1721`, `1723`, `1725`, `1727`, `1729`, `1730`, `1734`, `1735`, `1737`, `1739`, `1741`, `1742`, `1743`, `1745`, `1748`, `1750`, `1751`, `1753`, `1754`, `1757`, `1758`, `1760`, `1762`, `1765`, `1768`, `1770`, `1771`, `1773`, `1775`, `1777`, `1780`, `1784`, `1786`, `1788`, `1790`, `1792`, `1794`, `1797`, `1799`, `1802`, `1804`, `1806`, `1810`, `1811`, `1813`, `1815`, `1817`, `1819`, `1820`, `1823`, `1825`, `1827`, `1828`, `1830`, `1833`, `1834`, `1836`, `1838`, `1843`, `1844`, `1846`, `1850`, `1852`, `1854`, `1856`, `1858`, `1860`, `1862`, `1866`, `1868`, `1871`, `1873`, `1876`, `1880`, `1882`, `1884`, `1888`, `1891`, `1895`, `1897`, `1899`, `1901`, `1903`, `1904`, `1907`, `1910`, `1913`, `1915`, `1917`, `1919`, `1921`, `1924`, `1928`, `1930`, `1933`, `1936`, `1938`, `1941`, `1943`, `1945`, `1949`, `1950`, `1952`, `1954`, `1955`, `1958`, `1961`, `1965`, `1967`, `1969`, `1971`, `1973`, `1976`, `1979`, `1980`, `1983`, `1986`, `1987`, `1989`, `1990`, `1994`, `1998`, `2001`, `2004`, `2007`, `2009`, `2010`, `2013`, `2015`, `2017`, `2020`, `2021`, `2024`, `2025`, `2028`, `2030`, `2032`, `2034`, `2038`, `2040`, `2044`, `2046`, `2049`, `2051`, `2053`, `2055`, `2056`, `2058`, `2060`, `2063`, `2065`, `2066`, `2069`, `2071`, `2073`, `2075`, `2077`, `2079`, `2080`, `2083`, `2086`, `2088`, `2089`, `2094`, `2097`, `2101`, `2104`, `2106`, `2109`, `2112`, `2114`, `2116`, `2117`, `2120`, `2124`, `2126`, `2128`, `2129`, `2131`, `2135`, `2138`, `2140`, `2142`, `2145`, `2147`, `2149`, `2151`, `2153`, `2157`, `2159`, `2163`, `2165`, `2167`, `2169`, `2171`, `2173`, `2174`, `2178`, `2179`, `2181`, `2185`, `2190`, `2192`, `2194`, `2197`, `2199`, `2201`, `2203`, `2204`, `2206`, `2207`, `2210`, `2211`, `2213`, `2214`, `2217`, `2219`, `2221`, `2225`, `2227`, `2231`, `2235`, `2237`, `2239`, `2240`, `2243`, `2245`, `2247`, `2250`, `2252`, `2255`, `2257`, `2260`, `2261`, `2264`, `2267`, `2269`, `2272`, `2274`, `2276`, `2277`, `2279`, `2281`, `2283`, `2286`, `2288`, `2290`, `2291`, `2292`, `2295`, `2297`, `2300`, `2302`, `2305`, `2308`, `2310`, `2312`, `2314`, `2316`, `2318`, `2319`, `2323`, `2324`, `2327`, `2329`, `2331`, `2332`, `2335`, `2338`, `2340`, `2342`, `2343`, `2345`, `2348`, `2352`, `2354`, `2356`, `2358`, `2361`, `2363`, `2366`, `2367`, `2368`, `2371`, `2373`, `2375`, `2378`, `2380`, `2382`, `2384`, `2386`, `2390`, `2392`, `2393`, `2395`, `2397`, `2401`, `2403`, `2405`, `2406`, `2407`, `2409`, `2411`, `2413`, `2415`, `2417`, `2418`, `2419`, `2421`, `2423`, `2425`, `2427`, `2430`, `2433`, `2435`, `2439`, `2441`, `2442`, `2446`, `2449`, `2450`, `2452`, `2454`, `2457`, `2460`, `2464`, `2466`, `2468`, `2470`, `2472`, `2474`, `2476`, `2478`, `2480`, `2481`, `2483`, `2487`, `2489`, `2492`, `2494`, `2497`, `2501`, `2502`, `2504`, `2506`, `2507`, `2509`, `2511`, `2515`, `2516`, `2518`, `2519`, `2522`, `2526`, `2529`, `2530`, `2532`, `2534`, `2536`, `2539`, `2540`, `2542`, `2545`, `2546`, `2547`, `2549`, `2551`, `2554`, `2555`, `2556`, `2557`, `2558`, `2560`, `2562`, `2563`, `2566`, `2569`, `2572`, `2575`, `2577`, `2578`, `2581`, `2583`, `2586`, `2590`, `2592`, `2595`, `2598`, `2600`, `2602`, `2605`, `2609`, `2612`, `2614`, `2616`, `2619`, `2621`, `2624`, `2626`, `2628`, `2630`, `2632`, `2634`, `2638`, `2640`, `2642`, `2644`, `2647`, `2651`, `2653`, `2656`, `2657`, `2659`, `2661`, `2663`, `2666`, `2667`, `2670`, `2671`, `2673`, `2675`, `2677`, `2678`, `2680`, `2682`, `2684`, `2685`, `2687`, `2689`, `2690`, `2691`, `2693`, `2696`, `2698`, `2700`, `2703`, `2704`, `2706`, `2711`, `2714`, `2716`, `2717`, `2719`, `2721`, `2723`, `2725`, `2727`, `2729`, `2731`, `2734`, `2737`, `2739`, `2740`, `2743`, `2745`, `2748`, `2751`, `2754`, `2758`, `2760`, `2762`, `2763`, `2765`, `2767`, `2770`, `2772`, `2774`, `2777`, `2779`, `2781`, `2783`, `2786`, `2788`, `2790`, `2791`, `2794`, `2796`, `2799`, `2801`, `2803`, `2805`, `2807`, `2808`, `2810`, `2813`, `2815`, `2820`, `2824`, `2826`, `2828`, `2830`, `2835`, `2836`, `2839`, `2842`, `2845`, `2847`, `2849`, `2851`, `2852`, `2854`, `2858`, `2861`, `2863`, `2864`, `2866`, `2868`, `2869`, `2872`, `2874`, `2876`, `2879`, `2882`, `2887`, `2889`, `2891`, `2893`, `2895`, `2898`, `2899`, `2901`, `2904`, `2905`, `2906`, `2909`, `2912`, `2917`, `2919`, `2922`, `2925`, `2927`, `2930`, `2931`, `2932`, `2934`, `2935`, `2938`, `2942`, `2943`, `2944`, `2946`, `2950`, `2952`, `2953`, `2955`, `2957`, `2959`, `2962`, `2965`, `2969`, `2971`, `2974`, `2976`, `2978`, `2979`, `2981`, `2984`, `2988`, `2990`, `2992`, `2994`, `3000`, `3002`, `3004`, `3007`, `3011`, `3014`, `3016`, `3018`, `3023`, `3024`, `3026`, `3028`, `3029`, `3030`, `3032`, `3033`, `3036`, `3038`, `3040`, `3042`, `3044`, `3046`, `3049`, `3052`, `3053`, `3054`, `3057`, `3059`, `3062`, `3066`, `3069`, `3071`, `3073`, `3076`, `3080`, `3081`, `3083`, `3085`, `3087`, `3089`, `3091`, `3093`, `3096`, `3099`, `3102`, `3104`, `3107`, `3109`, `3110`, `3112`, `3113`, `3116`, `3118`, `3120`, `3122`, `3125`, `3128`, `3131`, `3133`, `3135`, `3138`, `3141`, `3142`, `3145`, `3149`, `3151`, `3154`, `3156`, `3158`, `3160`, `3162`, `3164`, `3166`, `3168`, `3171`, `3173`, `3177`, `3181`, `3183`, `3185`, `3187`, `3189`, `3191`, `3193`, `3195`, `3197`, `3198`, `3200`, `3202`, `3203`, `3205`, `3208`, `3210`, `3212`, `3213`, `3216`, `3217`, `3219`, `3222`, `3225`, `3227`, `3229`, `3231`, `3232`, `3233`, `3236`, `3238`, `3240`, `3242`, `3245`, `3247`, `3248`, `3250`, `3253`, `3255`, `3258`, `3262`, `3264`, `3266`, `3269`, `3272`, `3274`, `3277`, `3279`, `3282`, `3283`, `3286`, `3289`, `3290`, `3293`, `3295`, `3298`, `3301`, `3303`, `3305`, `3308`, `3311`, `3314`, `3316`, `3318`, `3320`, `3322`, `3324`, `3325`, `3328`, `3330`, `3332`, `3334`, `3336`, `3338`, `3340`, `3342`, `3345`, `3348`, `3352`, `3355`, `3358`, `3359`, `3361`, `3363`, `3366`, `3367`, `3369`, `3371`, `3374`, `3376`, `3378`, `3381`, `3384`, `3386`, `3389`, `3392`, `3394`, `3396`, `3398`, `3402`, `3404`, `3407`, `3409`, `3411`, `3413`, `3415`, `3416`, `3418`, `3420`, `3422`, `3424`, `3426`, `3427`, `3429`, `3431`, `3434`, `3436`, `3438`, `3440`, `3443`, `3447`, `3451`, `3453`, `3455`, `3457`, `3461`, `3463`, `3464`, `3466`, `3468`, `3470`, `3472`, `3474`, `3476`, `3477`, `3478`, `3479`, `3481`, `3483`, `3484`, `3485`, `3488`, `3490`, `3493`, `3495`, `3497`, `3498`, `3502`, `3504`, `3505`, `3506`, `3508`, `3511`, `3512`, `3514`, `3516`, `3520`, `3522`, `3523`, `3525`, `3527`, `3529`, `3534`, `3537`, `3539`, `3542`, `3544`, `3547`, `3550`, `3553`, `3555`, `3558`, `3561`, `3562`, `3564`, `3566`, `3567`, `3569`, `3572`, `3574`, `3576`, `3579`, `3583`, `3585`, `3587`, `3590`, `3594`, `3596`, `3598`, `3600`, `3603`, `3606`, `3607`, `3611`, `3613`, `3614`, `3616`, `3618`, `3619`, `3621`, `3623`, `3626`, `3628`, `3630`, `3633`, `3634`, `3635`, `3637`, `3639`, `3640`, `3643`, `3645`, `3647`, `3648`, `3649`, `3650`, `3652`, `3654`, `3657`, `3658`, `3660`, `3662`, `3665`, `3666`, `3667`, `3669`, `3671`, `3672`, `3674`, `3678`, `3680`, `3682`, `3684`, `3686`, `3688`, `3690`, `3691`, `3694`, `3698`, `3699`, `3700`, `3702`, `3705`, `3709`, `3711`, `3712`, `3714`, `3716`, `3718`, `3720`, `3722`, `3724`, `3726`, `3728`, `3730`, `3734`, `3736`, `3738`, `3741`, `3743`, `3745`, `3747`, `3749`, `3751`, `3753`, `3757`, `3760`, `3762`, `3765`, `3768`, `3770`, `3771`, `3772`, `3774`, `3777`, `3778`, `3780`, `3783`, `3786`, `3789`, `3793`, `3794`, `3795`, `3796`, `3798`, `3800`, `3803`, `3806`, `3807`, `3810`, `3813`, `3816`, `3818`, `3821`, `3823`, `3825`, `3827`, `3829`, `3831`, `3833`, `3835`, `3836`, `3840`, `3844`, `3847`, `3849`, `3853`, `3855`, `3858`, `3860`, `3862`, `3864`, `3867`, `3869`, `3873`, `3875`, `3878`, `3880`, `3883`, `3886`, `3889`, `3891`, `3893`, `3896`, `3898`, `3899`, `3901`, `3903`, `3907`, `3909`, `3911`, `3913`, `3914`, `3915`, `3917`, `3918`, `3922`, `3925`, `3926`, `3929`, `3931`, `3934`, `3936`, `3938`, `3942`, `3945`, `3950`, `3952`, `3955`, `3956`, `3959`, `3962`, `3964`, `3966`, `3968`, `3972`, `3974`, `3976`, `3978`, `3981`, `3983`, `3987`, `3988`, `3989`, `3991`, `3993`, `3995`, `3998`, `4000`, `4003`, `4005`, `4007`, `4009`, `4010`, `4013`, `4014`, `4017`, `4018`, `4021`, `4024`, `4027`, `4029`, `4031`, `4033`, `4037`, `4039`, `4041`, `4043`, `4044`, `4046`, `4048`, `4051`, `4053`, `4054`, `4056`, `4058`, `4060`, `4061`, `4063`, `4065`, `4066`, `4068`, `4069`, `4072`, `4074`, `4076`, `4077`, `4078`, `4081`, `4083`, `4085`, `4086`, `4089`, `4091`, `4093`, `4095`, `4097`, `4099`, `4101`, `4104`, `4106`, `4109`, `4111`, `4113`, `4114`, `4116`, `4118`, `4120`, `4123`, `4125`, `4127`, `4130`, `4132`, `4135`, `4136`, `4138`, `4139`, `4141`, `4142`, `4144`, `4147`, `4148`, `4149`, `4151`, `4153`, `4155`, `4156`, `4159`, `4161`, `4164`, `4166`, `4168`, `4170`, `4172`, `4173`, `4175`, `4177`, `4178`, `4182`, `4184`, `4187`, `4189`, `4192`, `4194`, `4196`, `4199`, `4202`, `4204`, `4208`, `4210`, `4211`, `4212`, `4214`, `4216`, `4219`, `4220`, `4223`, `4226`, `4228`, `4230`, `4233`, `4235`, `4236`, `4237`, `4238`, `4239`, `4241`, `4243`, `4245`, `4249`, `4252`, `4253`, `4255`, `4257`, `4258`, `4263`, `4265`, `4269`, `4270`, `4273`, `4275`, `4278`, `4280`, `4283`, `4284`, `4286`, `4288`, `4290`, `4291`, `4296`, `4300`, `4302`, `4304`, `4306`, `4307`, `4310`, `4312`, `4315`, `4316`, `4319`, `4320`, `4322`, `4323`, `4325`, `4328`, `4329`, `4331`, `4332`, `4334`, `4335`, `4337`, `4338`, `4339`, `4342`, `4343`, `4345`, `4348`, `4350`, `4352`, `4355`, `4356`, `4358`, `4359`, `4360`, `4361`, `4364`, `4365`, `4367`, `4369`, `4371`, `4372`, `4375`, `4376`, `4378`, `4381`, `4382`, `4383`, `4385`, `4388`, `4389`, `4391`, `4394`, `4395`, `4397`, `4398`, `4400`, `4402`, `4403`, `4406`, `4408`, `4409`, `4413`, `4414`, `4415`, `4417`, `4419`, `4421`, `4423`, `4425`, `4427`, `4428`, `4430`, `4433`, `4434`, `4436`, `4438`, `4440`, `4442`, `4444`, `4448`, `4450`, `4452`, `4454`, `4456`, `4458`, `4459`, `4460`, `4462`, `4465`, `4468`, `4469`, `4471`, `4473`, `4474`, `4476`, `4479`, `4481`, `4482`, `4484`, `4488`, `4490`, `4492`, `4493`, `4497`, `4499`, `4500`, `4505`, `4506`, `4508`, `4510`, `4511`, `4513`, `4515`, `4516`, `4519`, `4522`, `4523`, `4525`, `4528`, `4530`, `4531`, `4533`, `4536`, `4538`, `4540`, `4543`, `4544`, `4546`, `4548`, `4550`, `4551`, `4552`, `4554`, `4555`, `4556`, `4558`, `4560`, `4564`, `4565`, `4567`, `4569`, `4570`, `4572`, `4574`, `4577`, `4581`, `4584`, `4587`, `4590`, `4593`, `4597`, `4599`, `4601`, `4603`, `4607`, `4608`, `4612`, `4614`, `4617`, `4620`, `4621`, `4625`, `4627`, `4629`, `4634`, `4637`, `4640`, `4642`, `4645`, `4648`, `4651`, `4653`, `4654`, `4656`, `4659`, `4661`, `4662`, `4664`, `4665`, `4668`, `4670`, `4673`, `4674`, `4675`, `4678`, `4680`, `4682`, `4685`, `4686`, `4688`, `4692`, `4695`, `4696`, `4699`, `4702`, `4704`, `4705`, `4706`, `4709`, `4712`, `4713`, `4717`, `4718`, `4720`, `4722`, `4724`, `4725`, `4726`, `4727`, `4729`, `4732`, `4735`, `4736`, `4739`, `4743`, `4745`, `4747`, `4749`, `4751`, `4752` | | **`senter`** | `I`, `S` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 98.07 | | `MORPH_ACC` | 93.56 | | `TAG_ACC` | 98.27 | | `DEP_UAS` | 84.10 | | `DEP_LAS` | 80.49 | | `SENTS_P` | 68.92 | | `SENTS_R` | 71.15 | | `SENTS_F` | 70.01 | | `LEMMA_ACC` | 95.20 | | `TRANSFORMER_LOSS` | 2016246.15 | | `MORPHOLOGIZER_LOSS` | 64528.42 | | `TAGGER_LOSS` | 9384.69 | | `PARSER_LOSS` | 2636859.08 | | `EXPERIMENTAL_EDIT_TREE_LEMMATIZER_LOSS` | 3634379.36 | | `SENTER_LOSS` | 10348.21 |
Jacobo/grc_ud_proiel_lg
Jacobo
null
28
5
spacy
1
token-classification
false
false
false
null
['grc']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
75,602
| Feature | Description | | --- | --- | | **Name** | `grc_ud_proiel_lg` | | **Version** | `3.4.2` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer` | | **Components** | `tok2vec`, `morphologizer`, `tagger`, `senter`, `parser`, `attribute_ruler`, `lemmatizer` | | **Vectors** | -1 keys, 200000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1083 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=SCONJ`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid,Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Degree=Pos\|POS=ADV`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=INTJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Rel`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Voc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NUM`, `POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=X`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Act` | | **`tagger`** | `A-`, `C-`, `Df`, `Dq`, `Du`, `F-`, `G-`, `I-`, `Ma`, `Mo`, `Nb`, `Ne`, `Pc`, `Pd`, `Pi`, `Pk`, `Pp`, `Pr`, `Ps`, `Px`, `R-`, `S-`, `V-` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `vocative`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 97.30 | | `MORPH_ACC` | 90.58 | | `TAG_ACC` | 97.50 | | `SENTS_F` | 59.66 | | `SENTS_P` | 58.89 | | `SENTS_R` | 60.45 | | `DEP_UAS` | 80.68 | | `DEP_LAS` | 76.26 | | `LEMMA_ACC` | 98.02 | | `TOK2VEC_LOSS` | 36594926.90 | | `MORPHOLOGIZER_LOSS` | 456602.28 | | `TAGGER_LOSS` | 123935.06 | | `PARSER_LOSS` | 9426927.85 |
Jainil30/wav2vec2-base-csa-10-rev3
Jainil30
wav2vec2
12
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,264
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-csa-10-rev3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5869 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 18.7934 | 25.0 | 200 | 3.5869 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
JaviBJ/sagemaker-distilbert-emotion
JaviBJ
distilbert
10
8
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,286
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 1.0 | 500 | 0.2469 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
JazibEijaz/bert-base-uncased-finetuned-swag-e1-b16-l5e5
JazibEijaz
bert
12
70
transformers
0
multiple-choice
true
false
false
apache-2.0
null
['swag']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,215
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag-e1-b16-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5202 - Accuracy: 0.7997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.701 | 1.0 | 4597 | 0.5202 | 0.7997 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
Jean-Baptiste/camembert-ner-with-dates
Jean-Baptiste
camembert
7
25,512
transformers
12
token-classification
true
false
false
null
['fr']
['Jean-Baptiste/wikiner_fr']
null
0
0
0
0
1
0
1
[]
false
true
true
3,391
# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag). ## Introduction [camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates. Model was trained on enriched version of wikiner-fr dataset (~170 634 sentences). On my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%). Dateparser library can still be be used on the output of this model in order to convert text to python datetime object (https://dateparser.readthedocs.io/en/latest/). ## How to use camembert-ner-with-dates with HuggingFace ##### Load camembert-ner-with-dates and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9776379466056824, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'DATE', 'score': 0.9793774570737567, 'word': 'le 1er avril 1976 dans le', 'start': 15, 'end': 41}, {'entity_group': 'PER', 'score': 0.9958226680755615, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.995087186495463, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9953305125236511, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9961076378822327, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9960325956344604, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9957776467005411, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'DATE', 'score': 0.994030773639679, 'word': 'le 3 janvier 1977 à', 'start': 198, 'end': 218}, {'entity_group': 'ORG', 'score': 0.9720810294151306, 'word': "d'Apple Computer", 'start': 240, 'end': 257}, {'entity_group': 'DATE', 'score': 0.9924157659212748, 'word': '30 ans et', 'start': 272, 'end': 282}, {'entity_group': 'DATE', 'score': 0.9934852868318558, 'word': 'le 9 janvier 2015.', 'start': 363, 'end': 382}] ``` ## Model performances (metric: seqeval) Global ``` 'precision': 0.928 'recall': 0.928 'f1': 0.928 ``` By entity ``` Label LOC: (precision:0.929, recall:0.932, f1:0.931, support:9510) Label PER: (precision:0.952, recall:0.965, f1:0.959, support:9399) Label MISC: (precision:0.878, recall:0.844, f1:0.860, support:5364) Label ORG: (precision:0.848, recall:0.883, f1:0.865, support:2299) Label DATE: Not relevant because of method used to add date tag on wikiner dataset (estimated f1 ~90%) ```
Jean-Baptiste/camembert-ner
Jean-Baptiste
camembert
8
432,064
transformers
61
token-classification
true
false
false
mit
['fr']
['Jean-Baptiste/wikiner_fr']
null
1
0
1
0
2
2
0
[]
false
true
true
2,924
# camembert-ner: model fine-tuned from camemBERT for NER task. ## Introduction [camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. Model was trained on wikiner-fr dataset (~170 634 sentences). Model was validated on emails/chat data and overperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9472818374633789, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.9838564991950989, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.9831605950991312, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9834540486335754, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9841555754343668, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9843501806259155, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9841533899307251, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'ORG', 'score': 0.9468960364659628, 'word': 'Apple Computer', 'start': 243, 'end': 257}] ``` ## Model performances (metric: seqeval) Overall precision|recall|f1 -|-|- 0.8859|0.8971|0.8914 By entity entity|precision|recall|f1 -|-|-|- PER|0.9372|0.9598|0.9483 ORG|0.8099|0.8265|0.8181 LOC|0.8905|0.9005|0.8955 MISC|0.8175|0.8117|0.8146 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
Jean-Baptiste/roberta-large-ner-english
Jean-Baptiste
roberta
10
880,967
transformers
22
token-classification
true
true
false
mit
['en']
['conll2003']
null
1
0
1
0
3
3
0
[]
false
true
true
3,122
# roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use roberta-large-ner-english with HuggingFace ##### Load roberta-large-ner-english and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
Jean-Baptiste/roberta-ticker
Jean-Baptiste
roberta
8
46
transformers
0
token-classification
true
false
false
null
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,127
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers ## Introduction This is a model specifically designed to identify tickers in text. Model was trained on transformed dataset from following Kaggle dataset: https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020 ## How to use roberta-ticker with HuggingFace ##### Load roberta-ticker and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-ticker") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-ticker") ##### Process text sample from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("I am going to buy 100 shares of cake tomorrow") [{'entity_group': 'TICKER', 'score': 0.9612462520599365, 'word': ' cake', 'start': 32, 'end': 36}] nlp("I am going to eat a cake tomorrow") [] ``` ## Model performances ``` precision: 0.914157 recall: 0.788824 f1: 0.846878 ```
Jeevesh8/feather_berts
Jeevesh8
null
7
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
334
First 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading next 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts1/).
Jeevesh8/feather_berts1
Jeevesh8
null
7
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
335
Second 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading first 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts/).
Jeska/BertjeWDialData
Jeska
bert
22
7
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,231
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialData This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 297 | 2.2419 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALL
Jeska
bert
20
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,595
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1739 | 1.0 | 1542 | 2.0150 | | 2.0759 | 2.0 | 3084 | 1.9918 | | 2.0453 | 3.0 | 4626 | 2.0132 | | 1.9936 | 4.0 | 6168 | 1.9341 | | 1.9659 | 5.0 | 7710 | 1.9140 | | 1.9545 | 6.0 | 9252 | 1.9418 | | 1.9104 | 7.0 | 10794 | 1.9179 | | 1.8991 | 8.0 | 12336 | 1.9157 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALL03
Jeska
bert
23
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,631
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1951 | 1.0 | 1542 | 2.0285 | | 2.0918 | 2.0 | 3084 | 1.9989 | | 2.0562 | 3.0 | 4626 | 2.0162 | | 2.0012 | 4.0 | 6168 | 1.9330 | | 1.9705 | 5.0 | 7710 | 1.9151 | | 1.9571 | 6.0 | 9252 | 1.9419 | | 1.9113 | 7.0 | 10794 | 1.9175 | | 1.8988 | 8.0 | 12336 | 1.9143 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALL04
Jeska
bert
33
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,597
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly
Jeska
bert
17
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,965
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2122 | 1.0 | 871 | 2.0469 | | 2.0961 | 2.0 | 1742 | 2.0117 | | 2.0628 | 3.0 | 2613 | 2.0040 | | 2.0173 | 4.0 | 3484 | 1.9901 | | 1.9772 | 5.0 | 4355 | 1.9711 | | 1.9455 | 6.0 | 5226 | 1.9785 | | 1.917 | 7.0 | 6097 | 1.9380 | | 1.8933 | 8.0 | 6968 | 1.9651 | | 1.8708 | 9.0 | 7839 | 1.9915 | | 1.862 | 10.0 | 8710 | 1.9310 | | 1.8545 | 11.0 | 9581 | 1.9422 | | 1.8231 | 12.0 | 10452 | 1.9310 | | 1.8141 | 13.0 | 11323 | 1.9362 | | 1.7939 | 14.0 | 12194 | 1.9334 | | 1.8035 | 15.0 | 13065 | 1.9197 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly02
Jeska
bert
19
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,811
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly02 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2438 | 1.0 | 871 | 2.1122 | | 2.1235 | 2.0 | 1742 | 2.0784 | | 2.0712 | 3.0 | 2613 | 2.0679 | | 2.0034 | 4.0 | 3484 | 2.0546 | | 1.9375 | 5.0 | 4355 | 2.0277 | | 1.8911 | 6.0 | 5226 | 2.0364 | | 1.8454 | 7.0 | 6097 | 1.9812 | | 1.808 | 8.0 | 6968 | 2.0175 | | 1.7716 | 9.0 | 7839 | 2.0286 | | 1.7519 | 10.0 | 8710 | 1.9653 | | 1.7358 | 11.0 | 9581 | 1.9817 | | 1.7084 | 12.0 | 10452 | 1.9633 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly03
Jeska
bert
17
7
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,436
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 24.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 435 | 2.0751 | | 2.1982 | 2.0 | 870 | 2.0465 | | 2.0841 | 3.0 | 1305 | 2.0420 | | 2.0374 | 4.0 | 1740 | 2.0325 | | 1.9731 | 5.0 | 2175 | 2.0075 | | 1.9248 | 6.0 | 2610 | 2.0219 | | 1.8848 | 7.0 | 3045 | 1.9770 | | 1.8848 | 8.0 | 3480 | 2.0093 | | 1.8419 | 9.0 | 3915 | 2.0298 | | 1.804 | 10.0 | 4350 | 1.9681 | | 1.7817 | 11.0 | 4785 | 1.9938 | | 1.7472 | 12.0 | 5220 | 1.9654 | | 1.7075 | 13.0 | 5655 | 1.9797 | | 1.6976 | 14.0 | 6090 | 1.9691 | | 1.6748 | 15.0 | 6525 | 1.9568 | | 1.6748 | 16.0 | 6960 | 1.9618 | | 1.6528 | 17.0 | 7395 | 1.9843 | | 1.6335 | 18.0 | 7830 | 1.9265 | | 1.6179 | 19.0 | 8265 | 1.9598 | | 1.5992 | 20.0 | 8700 | 1.9331 | | 1.583 | 21.0 | 9135 | 1.9795 | | 1.5699 | 22.0 | 9570 | 2.0073 | | 1.5703 | 23.0 | 10005 | 1.9308 | | 1.5703 | 24.0 | 10440 | 1.9285 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly05
Jeska
bert
17
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,812
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly05 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9349 | 1.0 | 871 | 2.9642 | | 2.9261 | 2.0 | 1742 | 2.9243 | | 2.8409 | 3.0 | 2613 | 2.8895 | | 2.7308 | 4.0 | 3484 | 2.8394 | | 2.6042 | 5.0 | 4355 | 2.7703 | | 2.4671 | 6.0 | 5226 | 2.7522 | | 2.3481 | 7.0 | 6097 | 2.6339 | | 2.2493 | 8.0 | 6968 | 2.6224 | | 2.1233 | 9.0 | 7839 | 2.5637 | | 2.0194 | 10.0 | 8710 | 2.4896 | | 1.9178 | 11.0 | 9581 | 2.4689 | | 1.8588 | 12.0 | 10452 | 2.4663 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly07
Jeska
bert
17
4
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,124
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly07 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 18.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3589 | 1.0 | 871 | 2.2805 | | 2.2563 | 2.0 | 1742 | 2.2501 | | 2.1936 | 3.0 | 2613 | 2.2419 | | 2.11 | 4.0 | 3484 | 2.2301 | | 2.0311 | 5.0 | 4355 | 2.2320 | | 1.969 | 6.0 | 5226 | 2.2276 | | 1.9148 | 7.0 | 6097 | 2.1621 | | 1.8569 | 8.0 | 6968 | 2.1876 | | 1.7978 | 9.0 | 7839 | 2.2011 | | 1.7602 | 10.0 | 8710 | 2.1280 | | 1.7166 | 11.0 | 9581 | 2.1644 | | 1.6651 | 12.0 | 10452 | 2.1246 | | 1.6141 | 13.0 | 11323 | 2.1264 | | 1.5759 | 14.0 | 12194 | 2.1143 | | 1.5478 | 15.0 | 13065 | 2.0982 | | 1.5311 | 16.0 | 13936 | 2.0993 | | 1.5187 | 17.0 | 14807 | 2.0979 | | 1.4809 | 18.0 | 15678 | 2.0338 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly09
Jeska
bert
17
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,811
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly09 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2439 | 1.0 | 871 | 2.1102 | | 2.1235 | 2.0 | 1742 | 2.0785 | | 2.0709 | 3.0 | 2613 | 2.0689 | | 2.0033 | 4.0 | 3484 | 2.0565 | | 1.9386 | 5.0 | 4355 | 2.0290 | | 1.8909 | 6.0 | 5226 | 2.0366 | | 1.8449 | 7.0 | 6097 | 1.9809 | | 1.8078 | 8.0 | 6968 | 2.0177 | | 1.7709 | 9.0 | 7839 | 2.0289 | | 1.7516 | 10.0 | 8710 | 1.9645 | | 1.7354 | 11.0 | 9581 | 1.9810 | | 1.7073 | 12.0 | 10452 | 1.9631 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly128
Jeska
bert
17
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,812
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly128 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2326 | 1.0 | 871 | 2.1509 | | 2.1375 | 2.0 | 1742 | 2.1089 | | 2.0442 | 3.0 | 2613 | 2.0655 | | 2.0116 | 4.0 | 3484 | 2.0433 | | 1.9346 | 5.0 | 4355 | 2.0134 | | 1.9056 | 6.0 | 5226 | 1.9956 | | 1.8295 | 7.0 | 6097 | 2.0287 | | 1.8204 | 8.0 | 6968 | 2.0173 | | 1.7928 | 9.0 | 7839 | 2.0251 | | 1.7357 | 10.0 | 8710 | 2.0148 | | 1.7318 | 11.0 | 9581 | 1.9274 | | 1.7311 | 12.0 | 10452 | 1.9314 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataQA20k
Jeska
bert
17
6
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,332
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataQA20k This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1713 | 1.0 | 1542 | 2.0098 | | 2.0736 | 2.0 | 3084 | 1.9853 | | 2.0543 | 3.0 | 4626 | 2.0134 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje
Jeska
bert
18
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,131
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.4666 | 1.0 | 1320 | 2.3355 | 0.5768 | | 1.5293 | 2.0 | 2640 | 1.1118 | 0.8144 | | 0.8031 | 3.0 | 3960 | 0.6362 | 0.8803 | | 0.2985 | 4.0 | 5280 | 0.5119 | 0.8958 | | 0.1284 | 5.0 | 6600 | 0.5023 | 0.8931 | | 0.0842 | 6.0 | 7920 | 0.5246 | 0.9022 | | 0.0414 | 7.0 | 9240 | 0.5581 | 0.9013 | | 0.0372 | 8.0 | 10560 | 0.5721 | 0.9004 | | 0.0292 | 9.0 | 11880 | 0.5469 | 0.9141 | | 0.0257 | 10.0 | 13200 | 0.5871 | 0.9059 | | 0.0189 | 11.0 | 14520 | 0.6181 | 0.9049 | | 0.0104 | 12.0 | 15840 | 0.6184 | 0.9068 | | 0.009 | 13.0 | 17160 | 0.6013 | 0.9049 | | 0.0051 | 14.0 | 18480 | 0.6205 | 0.9059 | | 0.0035 | 15.0 | 19800 | 0.6223 | 0.9068 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2
Jeska
bert
17
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,132
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5112 - Accuracy: 0.9004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.1505 | 1.0 | 1320 | 3.3293 | 0.3793 | | 2.7333 | 2.0 | 2640 | 2.2295 | 0.6133 | | 2.0189 | 3.0 | 3960 | 1.5134 | 0.7587 | | 1.2504 | 4.0 | 5280 | 1.0765 | 0.8282 | | 0.7733 | 5.0 | 6600 | 0.7937 | 0.8629 | | 0.5217 | 6.0 | 7920 | 0.6438 | 0.8784 | | 0.3148 | 7.0 | 9240 | 0.5733 | 0.8857 | | 0.2067 | 8.0 | 10560 | 0.5362 | 0.8912 | | 0.1507 | 9.0 | 11880 | 0.5098 | 0.8903 | | 0.1024 | 10.0 | 13200 | 0.5078 | 0.8976 | | 0.0837 | 11.0 | 14520 | 0.5054 | 0.8967 | | 0.0608 | 12.0 | 15840 | 0.5062 | 0.8958 | | 0.0426 | 13.0 | 17160 | 0.5072 | 0.9013 | | 0.0374 | 14.0 | 18480 | 0.5110 | 0.9040 | | 0.0346 | 15.0 | 19800 | 0.5112 | 0.9004 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog
Jeska
bert
17
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,133
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog This model is a fine-tuned version of [outputDA/checkpoint-7710](https://huggingface.co/outputDA/checkpoint-7710) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5025 - Accuracy: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.9925 | 1.0 | 1320 | 3.0954 | 0.4223 | | 2.5041 | 2.0 | 2640 | 1.9762 | 0.6563 | | 1.8061 | 3.0 | 3960 | 1.3196 | 0.7952 | | 1.0694 | 4.0 | 5280 | 0.9304 | 0.8510 | | 0.6479 | 5.0 | 6600 | 0.6875 | 0.8821 | | 0.4408 | 6.0 | 7920 | 0.5692 | 0.8976 | | 0.2542 | 7.0 | 9240 | 0.5291 | 0.8949 | | 0.1709 | 8.0 | 10560 | 0.5038 | 0.9059 | | 0.1181 | 9.0 | 11880 | 0.4885 | 0.9049 | | 0.0878 | 10.0 | 13200 | 0.4900 | 0.9049 | | 0.0702 | 11.0 | 14520 | 0.4930 | 0.9086 | | 0.0528 | 12.0 | 15840 | 0.4987 | 0.9113 | | 0.0406 | 13.0 | 17160 | 0.5009 | 0.9113 | | 0.0321 | 14.0 | 18480 | 0.5017 | 0.9104 | | 0.0308 | 15.0 | 19800 | 0.5025 | 0.9077 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
Jeska
bert
17
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,148
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 | | 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 | | 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 | | 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 | | 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 | | 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 | | 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 | | 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 | | 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 | | 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 | | 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 | | 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 | | 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 | | 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 | | 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
Jeska
bert
29
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,038
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Accuracy: 0.9031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 330 | 3.9692 | 0.2249 | | 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 | | 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 | | 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 | | 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 | | 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 | | 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 | | 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 | | 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 | | 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 | | 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 | | 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 | | 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 | | 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 | | 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 | | 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 | | 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 | | 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 | | 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 | | 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 | | 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 | | 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 | | 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 | | 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 | | 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 | | 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 | | 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 | | 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 | | 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 | | 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTjeDIAL
Jeska
bert
18
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,369
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTjeDIAL This model is a fine-tuned version of [Jeska/BertjeWDialDataQA20k](https://huggingface.co/Jeska/BertjeWDialDataQA20k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Accuracy: 0.6322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4418 | 1.0 | 1457 | 2.3866 | 0.5406 | | 1.7742 | 2.0 | 2914 | 1.9365 | 0.6069 | | 1.1313 | 3.0 | 4371 | 1.8355 | 0.6322 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/autonlp-vaccinfaq-22144706
Jeska
bert
9
3
transformers
0
text-classification
true
false
false
null
['unk']
['Jeska/autonlp-data-vaccinfaq']
27.135492487925884
0
0
0
0
0
0
0
autonlp
false
true
true
1,207
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Jiangjie/loren
Jiangjie
null
27
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,010
`LOREN` is an interpretable fact verification model trained on [FEVER](https://fever.ai), which aims to predict the veracity of a textual claim against a trustworthy knowledge source such as Wikipedia. `LOREN` also decomposes the verification and makes accurate and faithful phrase-level veracity predictions without any phrasal veracity supervision. This repo hosts the following pre-trained models for `LOREN`: - `fact_checking/`: the verification models based on BERT (large) and RoBERTa (large), respectively. - `mrc_seq2seq/`: the generative machine reading comprehension model based on BART (base). - `evidence_retrieval/`: the evidence sentence ranking models, which are copied directly from [KGAT](https://github.com/thunlp/KernelGAT). More technical details can be found at [this GitHub Repo](https://github.com/jiangjiechen/LOREN). Please check out our AAAI 2022 paper for more details: "[LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification](https://arxiv.org/abs/2012.13577)".
Jihyun22/bert-base-finetuned-nli
Jihyun22
bert
10
5
transformers
1
text-classification
true
false
false
null
null
['klue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,442
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.7357 | 0.156 | | No log | 2.0 | 392 | 0.5952 | 0.0993 | | 0.543 | 3.0 | 588 | 0.5630 | 0.099 | | 0.543 | 4.0 | 784 | 0.5670 | 0.079 | | 0.543 | 5.0 | 980 | 0.5795 | 0.078 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
LysandreJik/testing
LysandreJik
distilbert
24
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,061
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6644 - Accuracy: 0.6814 - F1: 0.8105 - Combined Score: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
Jinhwan/krelectra-base-mecab
Jinhwan
electra
6
9
transformers
1
null
true
false
false
apache-2.0
['ko']
null
null
0
0
0
0
0
0
0
['korean']
false
true
true
870
# KrELECTRA-base-mecab Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer) ## Usage ### Load model and tokenizer ```python >>> from transformers import AutoTokenizer, AutoModelForPreTraining >>> model = AutoModelForPreTraining.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']) [2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
Jiva/xlm-roberta-large-it-mnli
Jiva
xlm-roberta
8
202
transformers
4
zero-shot-classification
true
false
false
mit
['it']
['multi_nli', 'glue']
null
2
0
2
0
0
0
0
['text-classification', 'pytorch', 'tensorflow']
true
true
true
5,228
# XLM-roBERTa-large-it-mnli ## Version 0.1 | | matched-it acc | mismatched-it acc | | -------------------------------------------------------------------------------- |----------------|-------------------| | XLM-roBERTa-large-it-mnli | 84.75 | 85.39 | ## Model Description This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline). ## Intended Usage This model is intended to be used for zero-shot text classification of italian texts. Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the [XLM Roberata paper](https://arxiv.org/abs/1911.02116) For English-only classification, it is recommended to use [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True) ``` You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another: ```python # we will classify the following wikipedia entry about Sardinia" sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." # we can specify candidate labels in Italian: candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] classifier(sequence_to_classify, candidate_labels) # {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'], # 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]} ``` The default hypothesis template is the English, `This text is {}`. With this model better results are achieving when providing a translated template: ```python sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] hypothesis_template = "si parla di {}" # classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) # 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli') tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli') premise = sequence hypothesis = f'si parla di {}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ``` ## Training ## Version 0.1 The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model. | metric | value | |----------------- |------- | | learning_rate | 4e-6 | | optimizer | AdamW | | batch_size | 80 | | mcc | 0.77 | | train_loss | 0.34 | | eval_loss | 0.40 | | stopped_at_step | 9754 | ## Version 0.0 This model was pre-trained on set of 100 languages, as described in [the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.
JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector
JonatanGk
roberta
14
14
transformers
1
text-classification
true
false
false
apache-2.0
['es']
['catalonia_independence']
null
1
1
0
0
0
0
0
['spanish']
true
true
true
3,019
# roberta-base-bne-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.9415 - Accuracy: 0.7881 <details> ## Model description The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 378 | 0.5534 | 0.7558 | | 0.6089 | 2.0 | 756 | 0.5315 | 0.7643 | | 0.2678 | 3.0 | 1134 | 0.7336 | 0.7816 | | 0.0605 | 4.0 | 1512 | 0.8809 | 0.7866 | | 0.0605 | 5.0 | 1890 | 0.9415 | 0.7881 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Junqueras, sobre la decisión judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegará de Europa" ) # Output: [{'label': 'FAVOR', 'score': 0.9936726093292236}] independence_analysis( "El desafío independentista queda adormecido, y eso que el Gobierno ha sido muy claro en que su propuesta para Cataluña es una agenda de reencuentro, centrada en inversiones e infraestructuras") # Output: [{'label': 'AGAINST', 'score': 0.7508948445320129}] independence_analysis( "Desconvocada la manifestación del domingo en Barcelona en apoyo a Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.9966907501220703}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(SPANISH).ipynb#scrollTo=uNMOXJz38W6U) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish
JonatanGk
roberta
14
142
transformers
4
text-classification
true
false
false
null
['es']
null
null
0
0
0
0
0
0
0
['spanish']
false
true
true
2,421
# roberta-base-bne-finetuned-ciberbullying-spanish This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect ciberbullying on Spanish. It achieves the following results on the evaluation set: - Loss: 0.1657 - Accuracy: 0.9607 ## Training and evaluation data I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 360k sentences. ## Training procedure <details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.1512 | 1.0 | 22227 | 0.9501 | 0.1418 | | 0.1253 | 2.0 | 44454 | 0.9567 | 0.1499 | | 0.0973 | 3.0 | 66681 | 0.9594 | 0.1397 | | 0.0658 | 4.0 | 88908 | 0.9607 | 0.1657 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-bne-finetuned-ciberbullying-spanish" bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) bullying_analysis( "Desde que te vi me enamoré de ti." ) # Output: [{'label': 'Not_bullying', 'score': 0.9995710253715515}] bullying_analysis( "Eres tan fea que cuando eras pequeña te echaban de comer por debajo de la puerta." ) # Output: [{'label': 'Bullying', 'score': 0.9918262958526611}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(SPANISH).ipynb) ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
JonatanGk/roberta-base-bne-finetuned-hate-speech-offensive-spanish
JonatanGk
roberta
13
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,472
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2869 - Accuracy: 0.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3222 | 1.0 | 1255 | 0.2869 | 0.9012 | | 0.2418 | 2.0 | 2510 | 0.3125 | 0.8987 | | 0.1726 | 3.0 | 3765 | 0.4120 | 0.8943 | | 0.0685 | 4.0 | 5020 | 0.5239 | 0.8919 | | 0.0245 | 5.0 | 6275 | 0.5910 | 0.8947 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
JonatanGk/roberta-base-bne-finetuned-sqac
JonatanGk
roberta
13
8
transformers
1
question-answering
true
false
false
apache-2.0
null
['sqac']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.2066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9924 | 1.0 | 1196 | 0.8670 | | 0.474 | 2.0 | 2392 | 0.8923 | | 0.1637 | 3.0 | 3588 | 1.2066 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector
JonatanGk
roberta
14
11
transformers
1
text-classification
true
false
false
apache-2.0
['ca']
['catalonia_independence']
null
1
1
0
0
0
0
0
['catalan']
true
true
true
3,094
# roberta-base-ca-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.6065 - Accuracy: 0.7612 <details> ## Training and evaluation data The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 377 | 0.6311 | 0.7453 | | 0.7393 | 2.0 | 754 | 0.6065 | 0.7612 | | 0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 | | 0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 | | 0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol." ) # Output: [{'label': 'AGAINST', 'score': 0.7457581758499146}] independence_analysis( "Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.7436802983283997}] independence_analysis( "Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou" ) # Output: [{'label': 'FAVOR', 'score': 0.9040119647979736}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(CATALAN).ipynb#scrollTo=j29NHJtOyAVU) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan
JonatanGk
roberta
10
4
transformers
1
text-classification
true
false
false
null
['ca']
null
null
0
0
0
0
0
0
0
['catalan']
false
true
true
3,010
# roberta-base-ca-finetuned-cyberbullying-catalan This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan. It achieves the following results on the evaluation set: - Loss: 0.1508 - Accuracy: 0.9665 ## Training and evaluation data I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at [roberta-base-bne-finetuned-cyberbullying-spanish](https://huggingface.co/JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish) ## Training procedure <details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan" bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) bullying_analysis( "Des que et vaig veure m'en vaig enamorar de tu." ) # Output: [{'label': 'Not_bullying', 'score': 0.9996786117553711}] bullying_analysis( "Ets tan lletja que et donaven de menjar per sota la porta." ) # Output: [{'label': 'Bullying', 'score': 0.9927878975868225}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(CATALAN).ipynb) ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
JonatanGk/roberta-base-ca-finetuned-hate-speech-offensive-catalan
JonatanGk
roberta
13
4
transformers
1
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,469
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4137 - Accuracy: 0.8778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3699 | 1.0 | 1255 | 0.3712 | 0.8669 | | 0.3082 | 2.0 | 2510 | 0.3401 | 0.8766 | | 0.2375 | 3.0 | 3765 | 0.4137 | 0.8778 | | 0.1889 | 4.0 | 5020 | 0.4671 | 0.8733 | | 0.1486 | 5.0 | 6275 | 0.5205 | 0.8749 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
JonatanGk/roberta-base-ca-finetuned-tecla
JonatanGk
roberta
14
4
transformers
1
text-classification
true
false
false
apache-2.0
null
['tecla']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,477
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the tecla dataset. It achieves the following results on the evaluation set: - Loss: 0.9354 - Accuracy: 0.7362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8465 | 1.0 | 6888 | 0.8222 | 0.6990 | | 0.6966 | 2.0 | 13776 | 0.7872 | 0.7157 | | 0.5643 | 3.0 | 20664 | 0.8060 | 0.7268 | | 0.4435 | 4.0 | 27552 | 0.8470 | 0.7333 | | 0.3206 | 5.0 | 34440 | 0.9354 | 0.7362 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
JorgeSarry/est5base-simplify
JorgeSarry
mt5
8
1,813
transformers
0
text2text-generation
true
false
false
null
['es']
null
null
0
0
0
0
0
0
0
[]
false
true
true
208
This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish WikiEdits for sentence simplification. You can use it with the command "simplify:"
JorgeSarry/est5base
JorgeSarry
t5
7
44
transformers
0
text2text-generation
true
false
false
null
['es']
null
null
0
0
0
0
0
0
0
[]
false
true
true
591
This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings left following the procedure outlined here https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90 The original model has 582M parameters, with 384M of them being input and output embeddings. After shrinking the sentencepiece vocabulary from 250K to 30K (top 10K English and top 20K Spanish tokens) the number of model parameters reduced to 244M parameters, resulting on a model size reduced from 2.2GB to 0.9GB - 42% of the original one.
Jorgeutd/albert-base-v2-finetuned-ner
Jorgeutd
albert
9
8
transformers
1
token-classification
true
false
false
apache-2.0
['en']
['conll2003']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
2,551
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-ner This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0626 - Precision: 0.9252 - Recall: 0.9330 - F1: 0.9291 - Accuracy: 0.9848 ## Model description More information needed ## limitations #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 | | No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 | | 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 | | 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 | | 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2
Jorgeutd
bert
11
7
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['adecorpusv2']
null
0
0
0
0
0
0
0
['sagemaker', 'bert-base-uncased', 'text classification']
true
true
true
1,054
## bert-base-uncased This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. - Problem type: Text Classification(adverse drug effects detection). ## Hyperparameters ```json { "do_eval": true, "do_train": true, "fp16": true, "load_best_model_at_end": true, "model_name": "bert-base-uncased", "num_train_epochs": 10, "per_device_eval_batch_size": 16, "per_device_train_batch_size": 16, "learning_rate":5e-5 } ``` ## Validation Metrics | key | value | | --- | ----- | | eval_accuracy | 0.9298021697511167 | | eval_auc | 0.8902672664394546 | | eval_f1 | 0.827315541601256 | | eval_loss | 0.17835010588169098 | | eval_recall | 0.8234375 | | eval_precision | 0.831230283911672 | ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I got a rash from taking acetaminophen"}' https://api-inference.huggingface.co/models/Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2 ``` """
Jorgeutd/bert-base-uncased-finetuned-surveyclassification
Jorgeutd
bert
10
79
transformers
0
text-classification
true
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,361
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-surveyclassification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on a custom survey dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Accuracy: 0.9097 - F1: 0.9097 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains. #### How to use You can use this model with Transformers *pipeline* for Text Classification. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") model = AutoModelForSequenceClassification.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") text_classifier = pipeline("text-classification", model=model,tokenizer=tokenizer, device=0) example = "The agent on the phone was very helpful and nice to me." results = text_classifier(example) print(results) ``` ## Training and evaluation data Custom survey dataset. ## Training procedure SageMaker notebook instance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4136 | 1.0 | 902 | 0.2818 | 0.9097 | 0.9097 | | 0.2213 | 2.0 | 1804 | 0.2990 | 0.9077 | 0.9077 | | 0.1548 | 3.0 | 2706 | 0.3507 | 0.9026 | 0.9026 | | 0.1034 | 4.0 | 3608 | 0.4692 | 0.9011 | 0.9011 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Jorgeutd/bert-large-uncased-finetuned-ner
Jorgeutd
bert
10
5,855
transformers
2
token-classification
true
false
false
apache-2.0
['en']
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,958
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 - Precision: 0.9505 - Recall: 0.9575 - F1: 0.9540 - Accuracy: 0.9886 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1997 | 1.0 | 878 | 0.0576 | 0.9316 | 0.9257 | 0.9286 | 0.9837 | | 0.04 | 2.0 | 1756 | 0.0490 | 0.9400 | 0.9513 | 0.9456 | 0.9870 | | 0.0199 | 3.0 | 2634 | 0.0557 | 0.9436 | 0.9540 | 0.9488 | 0.9879 | | 0.0112 | 4.0 | 3512 | 0.0602 | 0.9443 | 0.9569 | 0.9506 | 0.9881 | | 0.0068 | 5.0 | 4390 | 0.0631 | 0.9451 | 0.9589 | 0.9520 | 0.9882 | | 0.0044 | 6.0 | 5268 | 0.0638 | 0.9510 | 0.9567 | 0.9538 | 0.9885 | | 0.003 | 7.0 | 6146 | 0.0722 | 0.9495 | 0.9560 | 0.9527 | 0.9885 | | 0.0016 | 8.0 | 7024 | 0.0762 | 0.9491 | 0.9595 | 0.9543 | 0.9887 | | 0.0018 | 9.0 | 7902 | 0.0769 | 0.9496 | 0.9542 | 0.9519 | 0.9883 | | 0.0009 | 10.0 | 8780 | 0.0778 | 0.9505 | 0.9575 | 0.9540 | 0.9886 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Jorgeutd/sagemaker-roberta-base-emotion
Jorgeutd
roberta
11
12
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['emotion']
null
2
0
2
0
0
0
0
['sagemaker', 'roberta-base', 'text classification']
true
true
true
791
## roberta-base This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. - Problem type: Multi Class Text Classification (emotion detection). It achieves the following results on the evaluation set: - Loss: 0.1613253802061081 - f1: 0.9413321705151999 ## Hyperparameters ```json { "epochs": 10, "train_batch_size": 16, "learning_rate": 3e-5, "weight_decay":0.01, "load_best_model_at_end": true, "model_name":"roberta-base", "do_eval": True, "load_best_model_at_end":True } ``` ## Validation Metrics | key | value | | --- | ----- | | eval_accuracy | 0.941 | | eval_f1 | 0.9413321705151999 | | eval_loss | 0.1613253802061081| | eval_recall | 0.941 | | eval_precision | 0.9419519436781406 |
JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k
JorisCos
null
3
70
asteroid
1
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri1Mix', 'enh_single']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,635
## Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepclean_16k
JorisCos
null
3
15,357
asteroid
2
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri2Mix', 'sep_clean']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,510
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 15.243671356901526 si_sdr_imp: 15.243034178473609 sdr: 15.668108919568112 sdr_imp: 15.578229918028036 sir: 25.295100756629957 sir_imp: 25.205219921301754 sar: 16.307682590197313 sar_imp: -51.64989963759405 stoi: 0.9394951175291422 stoi_imp: 0.22640192740016568 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
JorisCos
null
3
510
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri2Mix', 'sep_clean']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,574
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k
JorisCos
null
3
291
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri2Mix', 'sep_noisy']
null
0
0
0
0
1
1
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,698
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 10.617130949793383 si_sdr_imp: 12.551811412989263 sdr: 11.231867464482065 sdr_imp: 13.059765009747343 sir: 24.461138352988346 sir_imp: 24.371856452307703 sar: 11.5649982725426 sar_imp: 4.662525705768228 stoi: 0.8701085138712695 stoi_imp: 0.2245418019822898 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k
JorisCos
null
3
10
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri2Mix', 'sep_noisy']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,750
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k` Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 9.944424856077259 si_sdr_imp: 11.939395359731192 sdr: 10.701526190782072 sdr_imp: 12.481757547845662 sir: 22.633644975545575 sir_imp: 22.45666740833025 sar: 11.131644100944868 sar_imp: 4.248489589311784 stoi: 0.852048619949357 stoi_imp: 0.2071994899565506 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
JorisCos
null
3
3
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri3Mix', 'sep_clean']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,519
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri3Mix_sepclean_8k
JorisCos
null
3
4
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri3Mix', 'sep_clean']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,499
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.581797049575108 si_sdr_imp: 11.977037288467368 sdr' 9.305885208641385 sdr_imp: 12.3943409734845 sir: 16.42030534048559 sir_imp: 19.508759460400984 sar: 10.641943911079238 sar_imp: -56.4345187842095 stoi: 0.8365148408724333 stoi_imp: 0.24401766199806396 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k
JorisCos
null
3
15
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri3Mix', 'sep_noisy']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,635
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k
JorisCos
null
3
3
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri3Mix', 'sep_noisy']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'ConvTasNet', 'audio-to-audio']
false
true
true
1,646
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.978836560066222 si_sdr_imp: 10.388889689413096 sdr: 6.8651365291740225 sdr_imp: 10.928018056925016 sir: 14.997089638783114 sir_imp: 18.08248357801549 sar: 8.127504792061933 sar_imp: -0.7869320540959925 stoi: 0.7669414686111115 stoi_imp: 0.20416563213078837 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k
JorisCos
null
3
5,590
asteroid
5
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri1Mix', 'enh_single']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'DCCRNet', 'audio-to-audio', 'speech-enhancement']
false
true
true
1,598
## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_kernel_size: 400 stft_n_filters: 512 stft_stride: 100 masknet: architecture: DCCRN-CL n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 12 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.329767398333798 si_sdr_imp: 9.879986092474098 sdr: 13.87279932997016 sdr_imp: 10.370136530757103 sir: Infinity sir_imp: NaN sar: 13.87279932997016 sar_imp: 10.370136530757103 stoi: 0.9140907015623948 stoi_imp: 0.11817087802185405 ``` License notice: This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
JorisCos
null
3
4,455
asteroid
2
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri1Mix', 'enh_single']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'DCUNet', 'audio-to-audio']
false
true
true
1,601
## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
JorisCos
null
3
226
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri1Mix', 'enh_single']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'DPRNNTasNet', 'audio-to-audio']
false
true
true
1,725
## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 1 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 2 n_filters: 64 stride: 1 masknet: bidirectional: true bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 1 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.7228101708889 si_sdr_imp: 11.2730288650292 sdr: 15.35661405197161 sdr_imp: 11.853951252758595 sir: Infinity sir_imp: NaN sar: 15.35661405197161 sar_imp: 11.853951252758595 stoi: 0.9300461826351578 stoi_imp: 0.13412635909461715 ``` License notice: This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DPTNet_Libri1Mix_enhsingle_16k
JorisCos
null
3
521
asteroid
0
audio-to-audio
true
false
false
cc-by-sa-4.0
null
['Libri1Mix', 'enh_single']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'DPTNet', 'audio-to-audio']
false
true
true
1,788
## Asteroid model `JorisCos/DPTNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 16 n_filters: 64 stride: 8 masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.829670037349064 si_sdr_imp: 11.379888731489366 sdr: 15.395712644737149 sdr_imp: 11.893049845524112 sir: Infinity sir_imp: NaN sar: 15.395712644737149 sar_imp: 11.893049845524112 stoi: 0.9301948391058859 stoi_imp: 0.13427501556534832 ``` License notice: This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPTNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/VAD_Net
JorisCos
null
3
7
asteroid
0
null
true
false
false
cc-by-sa-4.0
null
['LibriVAD']
null
0
0
0
0
0
0
0
['asteroid', 'audio', 'VADNet', 'VAD', 'Voice Activity Detection']
false
true
true
1,505
## Asteroid model `JorisCos/VAD_Net` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: segment: 3 train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/full_not_causal_f1/ help: null masknet: bn_chan: 128 causal: false hid_chan: 512 mask_act: relu n_blocks: 3 n_repeats: 5 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On LibriVAD min test set : ```yml accuracy: 0.8196149023502931, precision: 0.8305009048356607, recall: 0.8869202491310206, f1_score: 0.8426184545700124 ``` License notice: This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/). "VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
Josmar/BART_Finetuned_CNN_dailymail
Josmar
bart
8
4
transformers
0
text2text-generation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
221
# BART_Finetuned_CNN_dailymail The following repo contains a [bart-base](https://huggingface.co/facebook/bart-base) model that was finetuned using the dataset [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail)
Jour/m2m100_418M-fr
Jour
m2m_100
16
7
transformers
0
translation
true
false
false
mit
null
['kde4']
null
0
0
0
0
0
0
0
['translation', 'generated_from_trainer']
true
true
true
894
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-fr This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.0+cpu - Datasets 1.16.1 - Tokenizers 0.10.3
JuliusAlphonso/dear-jarvis-monolith-xed-en
JuliusAlphonso
distilbert
8
3
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
426
## Model description This model was trained on the XED dataset and achieved validation loss: 0.5995 validation acc: 84.28% (ROC-AUC) Labels are based on Plutchik's model of emotions and may be combined: ![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png) ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
JuliusAlphonso/dear-jarvis-v5
JuliusAlphonso
distilbert
8
3
transformers
0
text-classification
true
false
false
apache-2.0
null
[]
null
0
0
0
0
0
0
0
[]
false
true
true
1,246
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dear-jarvis-v5 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 470 | 0.3106 | | 0.3452 | 2.0 | 940 | 0.3064 | | 0.2692 | 3.0 | 1410 | 0.3148 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
Jungwoo/distilbert-base-uncased-finetuned-cola
Jungwoo
distilbert
19
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7470 - Matthews Correlation: 0.5414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5237 | 1.0 | 535 | 0.5327 | 0.4248 | | 0.347 | 2.0 | 1070 | 0.5105 | 0.5239 | | 0.2344 | 3.0 | 1605 | 0.6639 | 0.5224 | | 0.1672 | 4.0 | 2140 | 0.7470 | 0.5414 | | 0.1228 | 5.0 | 2675 | 0.8352 | 0.5377 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
JunzheJosephZhu/MultiDecoderDPRNN
JunzheJosephZhu
null
41
0
asteroid
0
null
false
false
false
cc-by-sa-4.0
null
['Wsj0MixVar', 'sep_clean']
null
0
0
0
0
1
1
0
['asteroid', 'audio', 'MultiDecoderDPRNN']
false
true
true
2,166
## Asteroid model ## Description: - Code: The code corresponding to this pretrained model can be found [here](https://github.com/JunzheJosephZhu/asteroid/tree/master/egs/wsj0-mix-var/Multi-Decoder-DPRNN). - [Paper](https://ieeexplore.ieee.org/document/9414205): "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021). - Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use. - [Project Page](https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/) - [Original research repo](https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN) This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. It was trained on the `sep_count` task of the Wsj0MixVar dataset. ## Training config: ```yaml filterbank: n_filters: 64 kernel_size: 8 stride: 4 masknet: n_srcs: [2, 3, 4, 5] bn_chan: 128 hid_size: 128 chunk_size: 128 hop_size: 64 n_repeats: 8 mask_act: 'sigmoid' bidirectional: true dropout: 0 use_mulcat: false training: epochs: 200 batch_size: 2 num_workers: 2 half_lr: yes lr_decay: yes early_stop: yes gradient_clipping: 5 optim: optimizer: adam lr: 0.001 weight_decay: 0.00000 data: train_dir: "data/{}speakers/wav8k/min/tr" valid_dir: "data/{}speakers/wav8k/min/cv" task: sep_count sample_rate: 8000 seglen: 4.0 minlen: 2.0 loss: lambda: 0.05 ``` ## Results: ```yaml 'Accuracy': 0.9723333333333334, 'P-Si-SNR': 10.36027378628496 ``` ### License notice: This work "MultiDecoderDPRNN" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "MultiDecoderDPRNN" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joseph Zhu.
bush/autonlp-bp-29016523
bush
bert
9
3
transformers
0
text-classification
true
false
false
null
['en']
['Jush/autonlp-data-bp']
3.273303707756322
0
0
0
0
0
0
0
autonlp
false
true
true
1,185
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 29016523 - CO2 Emissions (in grams): 3.273303707756322 ## Validation Metrics - Loss: 0.6093757748603821 - Accuracy: 0.8333333333333334 - Macro F1: 0.7937936978656889 - Micro F1: 0.8333333333333334 - Weighted F1: 0.8239843785760546 - Macro Precision: 0.8988882462566673 - Micro Precision: 0.8333333333333334 - Weighted Precision: 0.8404982541824647 - Macro Recall: 0.7805142534864643 - Micro Recall: 0.8333333333333334 - Weighted Recall: 0.8333333333333334 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jush/autonlp-bp-29016523 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Jzz/FidicBERT
Jzz
roberta
14
4
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
268
FidicBERT is a pre-trained language model to analyze legal text. It is built by further training the Roberta language model in the legal domain, using an extensive legal and contract corpus and thereby fine-tuning for classifying and clustering contractual documents.
K024/mt5-zh-ja-en-trimmed
K024
mt5
7
936
transformers
14
translation
true
false
false
cc-by-nc-sa-4.0
['zh', 'ja', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
1,190
This model is finetuned from [mt5-base](https://huggingface.co/google/mt5-base). The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found [here](https://gist.github.com/K024/4a100a0f4f4b07208958e0f3244da6ad). Usage: ```python from transformers import ( T5Tokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline, ) path = "K024/mt5-zh-ja-en-trimmed" pipe = Text2TextGenerationPipeline( model=MT5ForConditionalGeneration.from_pretrained(path), tokenizer=T5Tokenizer.from_pretrained(path), ) sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。" res = pipe(sentence, max_length=100, num_beams=4) res[0]['generated_text'] ``` Training data: ``` wikimedia-en-ja wikimedia-en-zh wikimedia-ja-zh wikititles-ja-en wikititles-zh-en wikimatrix-ja-zh news-commentary-en-ja news-commentary-en-zh news-commentary-ja-zh ted2020-en-ja ted2020-en-zh ted2020-ja-zh ``` License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
KBLab/albert-base-swedish-cased-alpha
KBLab
albert
8
34
transformers
0
null
true
false
false
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
6,157
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KBLab/bert-base-swedish-cased-ner
KBLab
bert
12
121
transformers
4
token-classification
true
true
true
null
['sv']
null
null
1
0
1
0
1
1
0
[]
false
true
true
6,163
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KBLab/bert-base-swedish-cased
KBLab
bert
10
13,954
transformers
5
fill-mask
true
true
true
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
6,156
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formated): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easisest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KBLab/bart-base-swedish-cased
KBLab
bart
7
41
transformers
2
text2text-generation
true
false
false
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,468
## KB-BART A [BART](https://arxiv.org/abs/1910.13461) model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with [Fairseq](https://github.com/pytorch/fairseq), and converted to be compatible with Huggingface. Training code can be found [here](https://github.com/kb-labb/kb_bart). ## Usage ```python from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast, AutoTokenizer model = BartForConditionalGeneration.from_pretrained("KBLab/bart-base-swedish-cased") tok = AutoTokenizer.from_pretrained("KBLab/bart-base-swedish-cased") model.eval() input_ids = tok.encode( "Jag har ätit en utsökt <mask> på restaurang vid <mask> .", return_tensors="pt" ) # Simple greedy search output_ids = model.generate( input_ids, min_length=15, max_length=25, num_beams=1, do_sample=False, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang vid havet på restaurang vid havet.</s>' # Sampling output_ids = model.generate( input_ids, min_length=15, max_length=20, num_beams=1, do_sample=True, ) tok.decode(output_ids[0]) #'</s><s> Jag har ätit en utsökt god mat som de tagit in på restaurang vid avröjda</s>' # Beam search output_ids = model.generate( input_ids, min_length=15, max_length=25, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=True, num_return_sequences=6 ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet. Jag har varit ute och gått en sväng.</s><pad><pad>' # Diverse beam generation output_ids = model.generate( input_ids, min_length=50, max_length=100, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=False, num_return_sequences=6, num_beam_groups=8, diversity_penalty=2.0, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang. Jag har varit på restaurang i två dagar... Jag..,..!!!.. Så.. Nu.. Hej.. Vi.. Här.</s>' ``` ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
KBLab/bert-base-swedish-cased-new
KBLab
bert
7
56
transformers
0
fill-mask
true
false
false
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,357
# 🤗 BERT Swedish This BERT model was trained using the 🤗 transformers library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. To avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py Training was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps. The model has three sister models trained on the same dataset: - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
KBLab/bert-base-swedish-cased-reallysimple-ner
KBLab
megatron-bert
8
142
transformers
0
token-classification
true
false
false
null
['sv']
['KBLab/sucx3_ner']
null
0
0
0
0
0
0
0
['token-classification', 'sequence-tagger-model', 'bert']
false
true
true
670
# KB-BERT for NER ## Cased data This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and cased data. For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags. The model was trained on the training data only, with the best model chosen by its performance on the validation data. You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner
KBLab/bert-base-swedish-lowermix-reallysimple-ner
KBLab
bert
8
2,713
transformers
0
token-classification
true
false
false
null
['sv']
['KBLab/sucx3_ner']
null
0
0
0
0
0
0
0
['token-classification', 'sequence-tagger-model', 'bert']
false
true
true
703
# KB-BERT for NER ## Mixed cased and uncased data This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and partially lowercased data. For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags. The model was trained on the training data only, with the best model chosen by its performance on the validation data. You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner
KBLab/megatron-bert-base-swedish-cased-600k
KBLab
megatron-bert
7
31
transformers
0
fill-mask
true
false
false
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,125
# Megatron-BERT-base Swedish 600k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 600k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) used the same setup, but was instead trained for only 125k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
KBLab/megatron-bert-base-swedish-cased-125k
KBLab
megatron-bert
7
21
transformers
0
fill-mask
true
false
false
null
['sv']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,120
# Megatron-BERT-base Swedish 125k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 125k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) used the same setup, but was instead trained for 600k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
KBLab/sentence-bert-swedish-cased
KBLab
bert
16
658
sentence-transformers
6
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
11,524
# KBLab/sentence-bert-swedish-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model. A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/). **Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default. | Model version | Teacher Model | Max Sequence Length | |---------------|---------|----------| | v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 | | v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 | | v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 | <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"] model = SentenceTransformer('KBLab/sentence-bert-swedish-cased') embeddings = model.encode(sentences) print(embeddings) ``` ### Loading an older model version (Sentence-Transformers) Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model: ```bash git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased ``` Then you can load the model by pointing to the local folder where you cloned the model: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased") ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad'] # Load model from HuggingFace Hub # To load an older version, e.g. v1.0, add the argument revision="v1.0" tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased') model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ### Loading an older model (Hugginfface Transformers) To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code: ```python AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0") AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0") ``` ## Evaluation Results <!--- Describe how your model was evaluated --> The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below. | Model version | Pearson | Spearman | |---------------|---------|----------| | v1.0 | 0.9183 | 0.9114 | | v1.1 | 0.9183 | 0.9114 | | v2.0 | **0.9283** | **0.9130** | The following code snippet can be used to reproduce the above results: ```python from sentence_transformers import SentenceTransformer import pandas as pd df = pd.read_csv( "sweparaphrase-dev-165.csv", sep="\t", header=None, names=[ "original_id", "source", "type", "sentence_swe1", "sentence_swe2", "score", "sentence1", "sentence2", ], ) model = SentenceTransformer("KBLab/sentence-bert-swedish-cased") sentences1 = df["sentence_swe1"].tolist() sentences2 = df["sentence_swe2"].tolist() # Compute embedding for both lists embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) # Compute cosine similarity after normalizing embeddings1 /= embeddings1.norm(dim=-1, keepdim=True) embeddings2 /= embeddings2.norm(dim=-1, keepdim=True) cosine_scores = embeddings1 @ embeddings2.t() sentence_pair_scores = cosine_scores.diag() df["model_score"] = sentence_pair_scores.cpu().tolist() print(df[["score", "model_score"]].corr(method="spearman")) print(df[["score", "model_score"]].corr(method="pearson")) ``` ### Sweparaphrase v2.0 In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning. | Model version | Data split | Pearson | Spearman | |---------------|------------|------------|------------| | v1.0 | train | 0.8355 | 0.8256 | | v1.1 | train | **0.8383** | **0.8302** | | v2.0 | train | 0.8209 | 0.8059 | | v1.0 | dev | 0.8682 | 0.8774 | | v1.1 | dev | **0.8739** | **0.8833** | | v2.0 | dev | 0.8638 | 0.8668 | | v1.0 | test | 0.8356 | 0.8476 | | v1.1 | test | **0.8393** | **0.8550** | | v2.0 | test | 0.8232 | 0.8213 | ### SweFAQ v2.0 When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0. | Model version | Data split | Accuracy | |---------------|------------|------------| | v1.0 | train | 0.5262 | | v1.1 | train | 0.6236 | | v2.0 | train | **0.7106** | | v1.0 | dev | 0.4636 | | v1.1 | dev | 0.5818 | | v2.0 | dev | **0.6727** | | v1.0 | test | 0.4495 | | v1.1 | test | 0.5229 | | v2.0 | test | **0.5871** | Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim). ## Training An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/). Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles. The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180513 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 8e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 5000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> This model was trained by KBLab, a data lab at the National Library of Sweden. You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ . ``` @misc{rekathati2021introducing, author = {Rekathati, Faton}, title = {The KBLab Blog: Introducing a Swedish Sentence Transformer}, url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/}, year = {2021} } ``` ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
KBLab/wav2vec2-base-voxpopuli-sv-swedish
KBLab
wav2vec2
8
65
transformers
0
automatic-speech-recognition
true
false
false
cc-by-nc-4.0
['sv-SE']
['common_voice', 'NST Swedish ASR Database']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'voxpopuli']
false
true
true
1,646
# Wav2vec 2.0 base-voxpopuli-sv-swedish Finetuned version of Facebooks [VoxPopuli-sv base](https://huggingface.co/facebook/wav2vec2-base-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
KBLab/wav2vec2-large-voxpopuli-sv-swedish
KBLab
wav2vec2
9
8
transformers
0
automatic-speech-recognition
true
false
true
cc-by-nc-4.0
['sv-SE']
['common_voice', 'NST Swedish ASR Database']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'voxpopuli']
true
true
true
2,341
# Wav2vec 2.0 large-voxpopuli-sv-swedish **PLEASE NOTE that [this](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) model performs better and has a less restrictive license.** Additionally pretrained and finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.95%**. WER for Common Voice test set is **10.99%** directly and **7.82%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. ## Training This model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
KBLab/wav2vec2-large-voxrex-swedish
KBLab
wav2vec2
10
642
transformers
2
automatic-speech-recognition
true
false
false
cc0-1.0
['sv']
['common_voice', 'NST Swedish ASR Database', 'P4']
null
0
0
0
0
1
1
0
['audio', 'automatic-speech-recognition', 'speech', 'hf-asr-leaderboard']
true
true
true
2,562
# Wav2vec 2.0 large VoxRex Swedish (C) **Disclaimer:** This is a work in progress. See [VoxRex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) for more details. **Update 2022-01-10:** Updated to VoxRex-C version. **Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026). Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **2.5%**. WER for Common Voice test set is **8.49%** directly and **7.37%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. # Performance\* ![Comparison](comparison.png "Comparison") <center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center> ## Training This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>. ![WER during training](chart_1.svg "WER") ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
KBLab/wav2vec2-large-voxrex
KBLab
wav2vec2
6
27
transformers
2
automatic-speech-recognition
true
false
false
cc0-1.0
['sv']
null
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'voxrex']
false
true
true
521
# Wav2vec 2.0 large VoxRex (C) **Disclaimer:** This is a work in progress.<br> **Update 2022-01-08:** Updated to VoxRex-C version, use git to get the older (B) version.<br> **Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026). This model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections. ![Accuracy during training](accuracy.svg "Accuracy")
KBLab/wav2vec2-large-xlsr-53-swedish
KBLab
wav2vec2
9
39
transformers
1
automatic-speech-recognition
true
false
true
apache-2.0
['sv-SE']
['common_voice', 'NST Swedish ASR Database']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,915
# Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = '[,?.!\\-;:"“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **WER**: 14.298610% **CER**: 4.925294% ## Training First the XLSR model was further pre-trained for 50 epochs with a corpus consisting of 1000 hours spoken Swedish from various radio stations. Secondly [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/) was used for fine tuning as well as [Common Voice](https://commonvoice.mozilla.org/en/datasets). Lastly only Common Voice dataset was used for final finetuning. The [Fairseq](https://github.com/fairseq) scripts were used.
KES/T5-KES
KES
t5
8
2,577
transformers
1
text2text-generation
true
false
false
cc-by-nc-sa-4.0
['en']
['jfleg']
null
0
0
0
0
0
0
0
['sentence correction', 'text2text-generation']
false
true
true
1,706
# Model This model utilises T5-base pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was fine-tuned for sentence correction on normal English translations and positional English translations of local Caribbean English Creole. This model will be updated periodically as more data is compiled. For more on the Caribbean English Creole checkout the library [Caribe](https://pypi.org/project/Caribe/). ___ # Re-training/Fine Tuning The results of fine-tuning resulted in a final accuracy of 90% # Usage ```python from happytransformer import HappyTextToText, TTSettings pre_trained_model="T5" model = HappyTextToText(pre_trained_model, "KES/T5-KES") arguments = TTSettings(num_beams=4, min_length=1) sentence = "Wat iz your nam" correction = model.generate_text("grammar: "+sentence, args=arguments) if(correction.text.find(" .")): correction.text=correction.text.replace(" .", ".") print(correction.text) # Correction: "What is your name?". ``` ___ # Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES") model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES") text = "I am lived with my parenmts " inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt') output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True) correction=tokenizer.batch_decode(output, skip_special_tokens=True) print("".join(correction)) #Correction: I am living with my parents. ``` ___
KES/T5-TTParser
KES
t5
8
3
transformers
1
text2text-generation
true
false
false
cc-by-nc-sa-4.0
['en']
['Custom dataset', 'Creolised JFLEG']
null
0
0
0
0
0
0
0
['Trinidad and Tobago English Parser', 'text2text-generation', 'Caribe']
false
true
true
1,059
# Trinidad English Creole Parser This model was trained as a parser to Trinidad English Creole. --- # Model This model utilises T5-base pre-trained model. It was fine tuned using a combination of a custom dataset and creolised [JFLEG](https://arxiv.org/abs/1702.04066) dataset. JFLEG dataset was creolised using the file encoding feature of the Caribe library. For more on Caribbean Creole checkout the library [Caribe](https://pypi.org/project/Caribe/). ___ # Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KES/T5-TTParser") model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-TTParser") txt = "Ah have live with mi paremnts en London" inputs = tokenizer("grammar:"+txt, truncation=True, return_tensors='pt') output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True) correction=tokenizer.batch_decode(output, skip_special_tokens=True) print("".join(correction)) #Correction: Ah live with meh parents in London. ```
KETI-AIR/ke-t5-base-ko
KETI-AIR
t5
9
209
transformers
2
text2text-generation
true
true
true
apache-2.0
['ko']
null
null
3
0
1
2
0
0
0
['t5']
false
true
true
6,699
# Model Card for ke-t5-base-ko # Model Details ## Model Description - **Developed by:** Korea Electronics Technology Institute Artificial Intelligence Research Center - **Shared by [Optional]:** More information needed - **Model type:** Text2Text Generation - **Language(s) (NLP):** More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** T5 - **Resources for more information:** - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - [KE-T5 Github Repo](https://github.com/AIRC-KETI/ke-t5) - [Paper](https://aclanthology.org/2021.findings-emnlp.33/) - [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) # Uses ## Direct Use This model can be used for the task of Text2Text Generation ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. See the [t5-base model card](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ``` ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** ``` - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Korea Electronics Technology Institute Artificial Intelligence Research Center in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base-ko") model = AutoModelForSeq2SeqLM.from_pretrained("KETI-AIR/ke-t5-base-ko") ``` </details>
KETI-AIR/ke-t5-base-newslike
KETI-AIR
t5
9
7
transformers
0
text2text-generation
true
true
true
apache-2.0
['ko', 'en']
null
null
0
0
0
0
0
0
0
['t5']
false
true
true
2,382
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-base-newslike") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base-newslike") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
KETI-AIR/ke-t5-base
KETI-AIR
t5
9
1,530
transformers
5
text2text-generation
true
true
true
apache-2.0
['en', 'ko']
null
null
2
0
1
1
0
0
0
['t5']
false
true
true
8,301
# Model Card for ke-t5-base # Model Details ## Model Description The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html): > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task. T5-Base is the checkpoint with 220 million parameters. - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. - **Shared by [Optional]:** Korea Electronics Technology Institute Artificial Intelligence Research Center - **Model type:** Text Generation - **Language(s) (NLP):**More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** T5 - **Resources for more information:** - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - [KE-T5 Github Repo](https://github.com/AIRC-KETI/ke-t5) - [Paper](https://aclanthology.org/2021.findings-emnlp.33/) - [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) # Uses ## Direct Use The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model: > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. See the [t5-base model card](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details. ### Factors More information needed ### Metrics More information needed ## Results For full results for T5-Base, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14. # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Google Cloud TPU Pods - **Hours used:** More information needed - **Cloud Provider:** GCP - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ``` ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Korea Electronics Technology Institute Artificial Intelligence Research Center in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("KETI-AIR/ke-t5-base") ``` See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples. </details>
KETI-AIR/ke-t5-large-ko
KETI-AIR
t5
9
325
transformers
0
text2text-generation
true
true
true
apache-2.0
['ko']
null
null
0
0
0
0
0
0
0
['t5']
false
true
true
2,379
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large-ko") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large-ko") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
KETI-AIR/ke-t5-large-newslike
KETI-AIR
t5
9
8
transformers
1
text2text-generation
true
true
true
apache-2.0
['ko', 'en']
null
null
0
0
0
0
0
0
0
['t5']
false
true
true
2,384
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large-newslike") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large-newslike") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
KETI-AIR/ke-t5-large
KETI-AIR
t5
9
2,078
transformers
3
text2text-generation
true
true
true
apache-2.0
['en', 'ko']
null
null
0
0
0
0
0
0
0
['t5']
false
true
true
2,373
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
KETI-AIR/ke-t5-small-ko
KETI-AIR
t5
9
33
transformers
0
text2text-generation
true
true
true
apache-2.0
['ko']
null
null
0
0
0
0
0
0
0
['t5']
false
true
true
2,379
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-small-ko") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-small-ko") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```