repo_id
stringlengths 4
122
| author
stringlengths 2
38
⌀ | model_type
stringlengths 2
33
⌀ | files_per_repo
int64 2
39k
| downloads_30d
int64 0
33.7M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.87k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
33
⌀ | languages
stringlengths 2
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringlengths 6
258
⌀ | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
46
| prs_closed
int64 0
34
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 2
classes | has_text
bool 1
class | text_length
int64 201
598k
| readme
stringlengths 0
598k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tamitani/xlm-roberta-base-finetuned-panx-de
|
tamitani
|
xlm-roberta
| 11 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,319 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_email-roberta-large-v1-2-40
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,532 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_email-roberta-large-v1-2-40
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_email-roberta-large-v1-2-40")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_iot-roberta-large-v1-2-6
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,526 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_iot-roberta-large-v1-2-6
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_iot-roberta-large-v1-2-6")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_general-roberta-large-v1-2-96
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,536 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_general-roberta-large-v1-2-96
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_general-roberta-large-v1-2-96")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
mingdinghan/q-FrozenLake-v1-4x4-noSlippery
|
mingdinghan
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 400 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mingdinghan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
jojoUla/bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR100-40
|
jojoUla
|
bert
| 15 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,305 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR100-40
This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.1928 | 1.0 | 1 | 5.0343 |
| 3.8865 | 2.0 | 2 | 4.7751 |
| 4.0526 | 3.0 | 3 | 2.2212 |
| 2.3444 | 4.0 | 4 | 1.6810 |
| 1.596 | 5.0 | 5 | 1.3135 |
| 1.6805 | 6.0 | 6 | 1.2568 |
| 1.1736 | 7.0 | 7 | 1.5288 |
| 1.2663 | 8.0 | 8 | 1.4556 |
| 1.3703 | 9.0 | 9 | 1.1139 |
| 0.9768 | 10.0 | 10 | 1.0658 |
| 1.0132 | 11.0 | 11 | 1.2556 |
| 0.9896 | 12.0 | 12 | 1.1046 |
| 1.1184 | 13.0 | 13 | 1.0522 |
| 0.8142 | 14.0 | 14 | 1.3122 |
| 0.706 | 15.0 | 15 | 1.0713 |
| 0.7227 | 16.0 | 16 | 1.4111 |
| 0.7169 | 17.0 | 17 | 0.5603 |
| 0.7922 | 18.0 | 18 | 1.0911 |
| 0.7763 | 19.0 | 19 | 0.6882 |
| 0.5832 | 20.0 | 20 | 1.4459 |
| 0.7265 | 21.0 | 21 | 1.5459 |
| 0.7249 | 22.0 | 22 | 0.9200 |
| 0.5397 | 23.0 | 23 | 1.0976 |
| 0.5063 | 24.0 | 24 | 1.1201 |
| 0.6569 | 25.0 | 25 | 1.0701 |
| 0.472 | 26.0 | 26 | 1.7735 |
| 0.6124 | 27.0 | 27 | 1.3597 |
| 0.6042 | 28.0 | 28 | 0.9292 |
| 0.5232 | 29.0 | 29 | 1.4994 |
| 0.4961 | 30.0 | 30 | 1.2059 |
| 0.371 | 31.0 | 31 | 1.2648 |
| 0.4746 | 32.0 | 32 | 1.0907 |
| 0.4901 | 33.0 | 33 | 1.2564 |
| 0.5066 | 34.0 | 34 | 1.9231 |
| 0.6352 | 35.0 | 35 | 1.0160 |
| 0.5672 | 36.0 | 36 | 1.2958 |
| 0.5139 | 37.0 | 37 | 0.9384 |
| 0.5583 | 38.0 | 38 | 1.9518 |
| 0.5443 | 39.0 | 39 | 1.4243 |
| 0.5935 | 40.0 | 40 | 1.3882 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pjrodriguez/unit_1_lunar_lander
|
pjrodriguez
| null | 40 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
flogau/a2c_cartpole
|
flogau
| null | 3 | 0 | null | 0 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 268 |
# Modèle entraîné pour l'environnement Cartpole-v1
Pour utiliser le modèle, télécharger le fichier zip "a2c_cartpole.zip" puis dans votre script python charger votre modèle de la manière suivante :
model = A2C.load("a2c_cartpole")
Le modèle est prêt à être utilisé.
Même chose pour le fichier a2c_panda_reach.zip
|
calvincbzhang/q-FrozenLake-v1-4x4-noSlippery
|
calvincbzhang
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 402 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="calvincbzhang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
calvincbzhang/q-Taxi-v3
|
calvincbzhang
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 369 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="calvincbzhang/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_audio-roberta-large-v1-2-0
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,530 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_audio-roberta-large-v1-2-0
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_audio-roberta-large-v1-2-0")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_lists-roberta-large-v1-2-93
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,532 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_lists-roberta-large-v1-2-93
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_lists-roberta-large-v1-2-93")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
YoriV/Pyramids-training-unity
|
YoriV
| null | 18 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
| false | true | true | 839 |
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: YoriV/Pyramids-training-unity
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
nhiro3303/Reinforce-Pixelcopter-PLE-v0
|
nhiro3303
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
anthol/bert-finetuned-ner
|
anthol
|
bert
| 12 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,518 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0616
- Precision: 0.9310
- Recall: 0.9497
- F1: 0.9403
- Accuracy: 0.9864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0884 | 1.0 | 1756 | 0.0697 | 0.9128 | 0.9283 | 0.9205 | 0.9819 |
| 0.0322 | 2.0 | 3512 | 0.0660 | 0.9267 | 0.9473 | 0.9369 | 0.9859 |
| 0.0175 | 3.0 | 5268 | 0.0616 | 0.9310 | 0.9497 | 0.9403 | 0.9864 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
kibrq/greedy-intersection
|
kibrq
| null | 9 | 0 |
transformers
| 0 | null | true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,460 |
To load this model, use the following code:
```py
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM, AutoConfig
tokenizer = PreTrainedTokenizerFast.from_pretrained('kibrq/greedy-intersection')
config = AutoConfig.from_pretrained('kibrq/greedy-intersection', trust_remote_code = True)
config._from_tokenizer(freegroup_dimension, tokenizer)
model = AutoModelForCausalLM.from_config(config, trust_remote_code = True)
```
To generate words from the intersection, use this code:
```py
from freegroup.sampling import free_group_bounded
from freegroup.tools import is_from_singleton_normal_closure
from freegroup.commutators import to_tokenizer, from_tokenizer
from itertools import islice
batch_size = 20
prefix_length = 15
generation_config = dict(
max_new_tokens = 200,
)
num_runs = 10
for _ in range(num_runs):
inputs = islice(free_group_bounded(3, max_length = prefix_length, random_length_method="constant"), batch_size)
inputs = list(map(to_tokenizer, input))
inputs = tokenizer(input, return_tensors='pt').input_ids
outputs = model.generate(
inputs = input,
**generation_config
)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
outputs = map(from_tokenizer, outputs)
condition = lambda x: all(map(lambda gen: is_from_singleton_normal_closure(gen, x), [[1], [2], [3], [1, 2, 3]]))
outputs = filter(condition, outputs)
print(list(outputs))
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_qa-roberta-large-v1-2-71
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,526 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_qa-roberta-large-v1-2-71
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_qa-roberta-large-v1-2-71")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
Beegbrain/Reinforce-PixelCopter2
|
Beegbrain
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_cooking-roberta-large-v1-2-4
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,534 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_cooking-roberta-large-v1-2-4
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_cooking-roberta-large-v1-2-4")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_takeaway-roberta-large-v1-2-86
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,538 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_takeaway-roberta-large-v1-2-86
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_takeaway-roberta-large-v1-2-86")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
wptmdoorn/q-FrozenLake-v1-4x4-noSlippery
|
wptmdoorn
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 398 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="wptmdoorn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
mwissing/Reinforce-Pixelcopter-PLE-v0
|
mwissing
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
SergejSchweizer/poca-SoccerTwos
|
SergejSchweizer
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 849 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: SergejSchweizer/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
numan966/poca-SoccerTwos
|
numan966
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 842 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: numan966/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
fathyshalab/domain_transfer_clinic_credit_cards-massive_music-roberta-large-v1-2-7
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,530 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_music-roberta-large-v1-2-7
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_music-roberta-large-v1-2-7")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
wptmdoorn/Taxi-v3
|
wptmdoorn
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 363 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="wptmdoorn/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
krystv/hestyle-diffusion
|
krystv
| null | 30 | 0 |
diffusers
| 1 |
text-to-image
| false | false | false |
creativeml-openrail-m
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion', 'art', 'style']
| false | true | true | 1,708 |
### heStyle-Diffusion
Is a Dreamboothed model of `runway_1-5v` stable diffusion model. Trained on some beautiful anime images online speciallly for Room interior and Wallpapers.
### Trigger Word(Otional):
`hestyle` may be useful in cases where model behave something else.
### 💞 Send me Query at :
[](https://www.instagram.com/iamhemantindia)
You can test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:










|
fathyshalab/domain_transfer_clinic_credit_cards-massive_alarm-roberta-large-v1-2-48
|
fathyshalab
|
roberta
| 14 | 0 |
sentence-transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['setfit', 'sentence-transformers', 'text-classification']
| false | true | true | 1,532 |
# fathyshalab/domain_transfer_clinic_credit_cards-massive_alarm-roberta-large-v1-2-48
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_alarm-roberta-large-v1-2-48")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
IDMCrackDownload/idmcrack
|
IDMCrackDownload
| null | 3 | 0 | null | 1 | null | false | false | false |
unknown
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 716 |
# Download IDM Crack with Internet Download Manager [Latest Version]
<!-- Provide a quick summary of what the model is/does. -->
Download the Latest Version of IDM Crack or Patch ▶ [Click Here](https://www.idmlover.com).
# IDM Crack Details
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Unknown
- **Shared by:** IDMLover.com
- **Setup type:** Offline Setup
- **Language(s):** Mulitlanguage
- **Last Updated:** 1 Day ago
# IDM FULL Crack Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
- Use IDM for FREE
- No Serial Key Needed
- Video Download Panel
- IDM Trial Extend
|
pszemraj/pythia-6.9b-HC3
|
pszemraj
|
gpt_neox
| 19 | 0 |
transformers
| 0 |
text-generation
| true | false | false |
apache-2.0
| null |
['pszemraj/HC3-textgen-qa']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer', 'HC3', 'chatGPT', 'assistant']
| false | true | true | 2,912 |
# pythia-6.9b-deduped for general QA
<a href="https://colab.research.google.com/gist/pszemraj/351f04fc2afb6346c763885f127284ef/pythia-6-9b-deduped-for-general-qa.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2372
- Accuracy: 0.6769
- perplexity: 3.446
## Model description
Text generation model trained on the HC3 text data of human questions + chatGPT answers.

### Usage
Install necessary packages for inference (_unless you have a big boi GPU_)
```bash
pip install -U -q transformers bitsandbytes accelerate
```
Basic inference example:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("pszemraj/pythia-6.9b-HC3")
model = AutoModelForCausalLM.from_pretrained(
"pszemraj/pythia-6.9b-HC3", load_in_8bit=True, device_map="auto"
) # shards are ~4GB each, there are eight total
prompt = "I was wondering how much wood a woodchuck could chuck? <answer>"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs, max_new_tokens=300
) # default generation config (+ 300 tokens)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
result = result.split("<end_answer>")[0].strip()
import pprint as pp
pp.pprint(result)
```
The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penalty_alpha=0.6`. For more information on inference and parameters to use, see [the transformers docs](https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies).
## Intended uses & limitations
- **Intended use:** research/exploration into comparing RLHF tuning vs. "guided"/specific tuning on "quality" datasets/responses of _"what the human would want as answer anyway"_
- This is **not** trained/fine-tuned with RLHF and therefore will not be as helpful/generalizable/safe as chatGPT (_outside of the fact that this model is ~30x smaller_)
## Training and evaluation data
```yaml
model-index:
- name: pythia-6.9b-hc3-qa-assistant
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: pszemraj/HC3-textgen-qa
metrics:
- name: Accuracy
type: accuracy
value: 0.6768941789814655
```
## Training procedure
Two epochs on the `pszemraj/HC3-textgen-qa` dataset.
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2598 | 0.99 | 79 | 1.3291 | 0.6496 |
| 0.7446 | 1.99 | 158 | 1.2372 | 0.6769 |
|
amnahhebrahim/bert-base-arabertv2-finetuned-arcd-squad
|
amnahhebrahim
|
bert
| 10 | 0 |
transformers
| 0 |
question-answering
| true | false | false | null | null |
['arcd']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 944 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-arabertv2-finetuned-arcd-squad
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the arcd dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DJJ42/sd-class-butterflies-32
|
DJJ42
| null | 6 | 0 |
diffusers
| 0 |
unconditional-image-generation
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
| false | true | true | 362 |
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('DJJ42/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
Hemorphage/Reinforce-CartPole_1
|
Hemorphage
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
augustogeog/q-Taxi-v3-iterative
|
augustogeog
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 377 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="augustogeog/q-Taxi-v3-iterative", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
NathanS-HuggingFace/LunarLander
|
NathanS-HuggingFace
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
khaled5321/poca-SoccerTwos
|
khaled5321
| null | 12 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 844 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: khaled5321/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ammr/q-FrozenLake-v1-4x4-noSlippery
|
ammr
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 393 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ammr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Jaehaerys-I/ppo_LunarLander
|
Jaehaerys-I
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
boira/clasificador-muchocine
|
boira
|
electra
| 10 | 0 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['classification', 'generated_from_trainer']
| true | true | true | 1,367 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-muchocine
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4200
- Accuracy: 0.4335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3759 | 0.4 |
| 1.4142 | 2.0 | 776 | 1.2896 | 0.4271 |
| 1.0464 | 3.0 | 1164 | 1.4200 | 0.4335 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Akriel/q-FrozenLake-v1-4x4-noSlippery
|
Akriel
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 395 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Akriel/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
cfisicaro/Reinforce-CartPole-v1
|
cfisicaro
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
desh2608/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-small
|
desh2608
| null | 30 | 0 | null | 0 | null | false | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 654 |
# LibriSpeech pruned_transducer_stateless7_streaming
This model is based on the icefall `pruned_transducer_stateless7_streaming` recipe,
but it the model parameters are modified to be smaller in size. It can be
considered a streaming version of [this model](https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-20M-2023-01-28) and follows
the same parameter configuration.
## Performance Record
| Decoding method | test-clean | test-other |
|---------------------------|------------|------------|
| greedy search | 3.94 | 9.79 |
| modified beam search | 3.88 | 9.53 |
|
Akriel/q-Taxi-v3
|
Akriel
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 362 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Akriel/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
GBaker/nystromformer-4096-medqa-usmle-MiniLM-IR-cs
|
GBaker
|
nystromformer
| 20 | 0 |
transformers
| 0 |
multiple-choice
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,907 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nystromformer-4096-medqa-usmle-MiniLM-IR-cs
This model is a fine-tuned version of [GBaker/nystromformer-4096-medqa-usmle-MiniLM-IR-cs](https://huggingface.co/GBaker/nystromformer-4096-medqa-usmle-MiniLM-IR-cs) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8436
- Accuracy: 0.2812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 0.99 | 79 | 0.2372 | 1.3863 |
| No log | 1.99 | 158 | 0.2655 | 1.3861 |
| No log | 2.99 | 237 | 0.2545 | 1.3859 |
| No log | 3.99 | 316 | 0.2765 | 1.3837 |
| No log | 4.99 | 395 | 0.2820 | 1.3876 |
| No log | 5.99 | 474 | 1.3819 | 0.2639 |
| 1.3342 | 6.99 | 553 | 1.4875 | 0.2694 |
| 1.3342 | 7.99 | 632 | 1.6126 | 0.2718 |
| 1.3342 | 8.99 | 711 | 1.7637 | 0.2804 |
| 1.3342 | 9.99 | 790 | 1.8436 | 0.2812 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pridaj/distilbert-base-uncased-emotion-nlp-with-transformers
|
pridaj
|
distilbert
| 12 | 0 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,295 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-emotion-nlp-with-transformers
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5072 | 1.0 | 250 | 0.2032 |
| 0.1464 | 2.0 | 500 | 0.1409 |
| 0.094 | 3.0 | 750 | 0.1360 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Schoolar/dqn-SpaceInvadersNoFrameskip-v4
|
Schoolar
| null | 15 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 2,217 |
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Schoolar -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Schoolar -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Schoolar
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mshibatatt/Reinforce-Pixelcopter-PLE-v0
|
mshibatatt
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
NoNameFound/pocadeci-SoccerTwos
|
NoNameFound
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 849 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: NoNameFound/pocadeci-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
kapilkd13/ppo-LunarLander-v2
|
kapilkd13
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mitra-mir/setfit-model-Feb12-Misinformation-on-Convoy
|
mitra-mir
|
mpnet
| 13 | 0 |
sentence-transformers
| 0 |
sentence-similarity
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentence-transformers', 'feature-extraction', 'sentence-similarity']
| false | true | true | 2,138 |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 201 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 201,
"warmup_steps": 21,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
augustogeog/q-Taxi-v3-iterative-10mil
|
augustogeog
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 383 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="augustogeog/q-Taxi-v3-iterative-10mil", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ammr/q-FrozenLake-v1-4x4
|
ammr
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 382 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ammr/q-FrozenLake-v1-4x4", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
pabagcha/rah_toki_pona
|
pabagcha
|
wav2vec2
| 15 | 0 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false | null | null |
['common_voice_11_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,442 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rah_toki_pona
This model was finetuned from facebook/wav2vec2-xls-r-300m on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1053
- Wer: 0.0640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0516 | 3.22 | 400 | 0.1301 | 0.0996 |
| 0.0817 | 6.45 | 800 | 0.1319 | 0.0899 |
| 0.0567 | 9.67 | 1200 | 0.1009 | 0.0682 |
| 0.0376 | 12.9 | 1600 | 0.1053 | 0.0640 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Whitemelody/CreamLike
|
Whitemelody
| null | 6 | 0 | null | 1 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,170 |
Both models has soft colors.
A model for soft colors and fantasy style clothes.
B model for soft colors and modern style clothes.
RECIPE
CreamLike_A
-0.5[0.7(0.5AbyssOrangeMix2_sfw + 0.5counterfeit-v2.5fp16) + 0.3pastelmix-better-vae-fp32] + 0.5powercolorV1
CreamLike_B
0.75(0.75counterfeit-v2.5fp16 + 0.25pastelmix-better-vae-fp32) + 0.25AbyssOrangeMix2_sfw
Sampling method and Hires.fix
DPM++ SDE Karras: 28~30 steps / R-ESRGAN 4x+ Anime6B: 2x, 10 steps / Denoising strength:0.5 ~ 0.7
CreamLike_A



CreamLike_B



|
gordondavidf/ppo-LunarLander-v2
|
gordondavidf
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dotunadegbite/Reinforce-Pixelcopter-PLE-v0
|
dotunadegbite
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Azher/Anything-v4.5-vae-fp16-diffuser
|
Azher
| null | 17 | 0 |
diffusers
| 0 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 347 |
# Model: Anything v4.5
Has the following properties that are bundled right out of the box:
- Included: vae
- Half-precision floating point format: fp16
# Model Sample Outputs
<p align="center">
<img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%201.png" alt="Vampire" width="300" height="300" style="display:inline-block;">
<img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%202.png" alt="Vampire" width="300" height="300" style="display:inline-block;">
<img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%203.png" alt="Vampire" width="300" height="300" style="display:inline-block;">
<img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%204.png" alt="Vampire" width="300" height="300" style="display:inline-block;">
</p>
Output Information:
- Prompt:
```
beautiful, masterpiece, black dress, black hair, red eyes, pale, 1girl, stunning, black collar choker, jeweled earrings
```
- Negative Prompt:
```
lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, nsfw
```
- Setup:
```
Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 11, Size: 512x512
```
# Model Sources
- **Original FP16 Model:** [https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.5-pruned-fp16.ckpt](https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.5-pruned-fp16.ckpt)
- **vae swap:** [https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.0.vae.pt](https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.0.vae.pt)
|
nikogarro/PPO-SnowballTarget
|
nikogarro
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
| false | true | true | 856 |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: nikogarro/PPO-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
unit0113/ppo-Huggy
|
unit0113
| null | 32 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
| false | true | true | 819 |
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: unit0113/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
DataIntelligenceTeam/marazzi2.0
|
DataIntelligenceTeam
|
layoutlmv3
| 12 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
cc-by-nc-sa-4.0
| null |
['sroie']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,562 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marazzi2.0
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0477
- Precision: 0.8218
- Recall: 0.7386
- F1: 0.7780
- Accuracy: 0.9937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.24 | 100 | 0.1429 | 0.5870 | 0.0882 | 0.1534 | 0.9809 |
| No log | 0.47 | 200 | 0.1163 | 0.5870 | 0.0882 | 0.1534 | 0.9809 |
| No log | 0.71 | 300 | 0.0919 | 0.5690 | 0.1078 | 0.1813 | 0.9815 |
| No log | 0.95 | 400 | 0.0787 | 0.6304 | 0.2843 | 0.3919 | 0.9858 |
| 0.0844 | 1.18 | 500 | 0.0755 | 0.6522 | 0.4412 | 0.5263 | 0.9873 |
| 0.0844 | 1.42 | 600 | 0.0621 | 0.6533 | 0.4804 | 0.5537 | 0.9872 |
| 0.0844 | 1.66 | 700 | 0.0631 | 0.7415 | 0.4967 | 0.5949 | 0.9895 |
| 0.0844 | 1.9 | 800 | 0.0463 | 0.7764 | 0.6013 | 0.6777 | 0.9912 |
| 0.0844 | 2.13 | 900 | 0.0429 | 0.7821 | 0.6569 | 0.7140 | 0.9922 |
| 0.0265 | 2.37 | 1000 | 0.0421 | 0.7881 | 0.6928 | 0.7374 | 0.9929 |
| 0.0265 | 2.61 | 1100 | 0.0516 | 0.8050 | 0.6340 | 0.7093 | 0.9919 |
| 0.0265 | 2.84 | 1200 | 0.0474 | 0.7854 | 0.6340 | 0.7016 | 0.9917 |
| 0.0265 | 3.08 | 1300 | 0.0378 | 0.8134 | 0.7549 | 0.7831 | 0.9942 |
| 0.0265 | 3.32 | 1400 | 0.0374 | 0.8143 | 0.7451 | 0.7782 | 0.9938 |
| 0.0116 | 3.55 | 1500 | 0.0466 | 0.8213 | 0.7059 | 0.7592 | 0.9933 |
| 0.0116 | 3.79 | 1600 | 0.0444 | 0.8172 | 0.7157 | 0.7631 | 0.9933 |
| 0.0116 | 4.03 | 1700 | 0.0442 | 0.8218 | 0.7386 | 0.7780 | 0.9937 |
| 0.0116 | 4.27 | 1800 | 0.0473 | 0.8118 | 0.7190 | 0.7626 | 0.9933 |
| 0.0116 | 4.5 | 1900 | 0.0520 | 0.8030 | 0.7059 | 0.7513 | 0.9932 |
| 0.0074 | 4.74 | 2000 | 0.0476 | 0.8155 | 0.7222 | 0.7660 | 0.9936 |
| 0.0074 | 4.98 | 2100 | 0.0504 | 0.8038 | 0.6830 | 0.7385 | 0.9931 |
| 0.0074 | 5.21 | 2200 | 0.0475 | 0.8267 | 0.7484 | 0.7856 | 0.9937 |
| 0.0074 | 5.45 | 2300 | 0.0506 | 0.8081 | 0.7157 | 0.7591 | 0.9933 |
| 0.0074 | 5.69 | 2400 | 0.0508 | 0.8168 | 0.7288 | 0.7703 | 0.9936 |
| 0.005 | 5.92 | 2500 | 0.0477 | 0.8218 | 0.7386 | 0.7780 | 0.9937 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.2.2
- Tokenizers 0.13.2
|
dor88/Reinforce-cartpole
|
dor88
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER-5e-05-3
|
lixiqi
|
beit
| 14 | 0 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['image_folder']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,506 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetuned-FER-5e-05-3
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8598
- Accuracy: 0.6860
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1566 | 1.0 | 224 | 0.9830 | 0.6311 |
| 1.0301 | 2.0 | 448 | 0.8939 | 0.6730 |
| 0.991 | 3.0 | 672 | 0.8598 | 0.6860 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
thiagoms7/poca-SoccerTwos2
|
thiagoms7
| null | 11 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 844 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: thiagoms7/poca-SoccerTwos2
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ammr/q-FrozenLake-v1-8x8-noSlippery
|
ammr
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-8x8-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 393 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ammr/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ammr/q-FrozenLake-v1-8x8
|
ammr
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-8x8', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 382 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ammr/q-FrozenLake-v1-8x8", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
nikogarro/PPO-PyramidsRND
|
nikogarro
| null | 16 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
| false | true | true | 835 |
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: nikogarro/PPO-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Achitha/ta-eng-data
|
Achitha
|
whisper
| 14 | 0 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['tamil_eng_data']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,265 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ta-eng-data
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
atorre/poca-SoccerTwos-70M
|
atorre
| null | 28 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 844 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: atorre/poca-SoccerTwos-70M
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
osanpo/khanon_lora-training
|
osanpo
| null | 158 | 0 | null | 0 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 3,564 |
# Gachashit LoRA repository
Here you will find the various LoRAs I've trained, typically of Blue Archive characters.
## Blue Archive
ブルーアーカイブ / 블루 아카이브 / 碧蓝档案
### Arona
[Arona / アロナ / 아로나 / 阿罗娜](https://huggingface.co/khanon/lora-training/blob/main/arona/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/arona/README.md)
### Atsuko
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Chise
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Hibiki
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Hina
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Iroha
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Izuna
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Koharu
[Shimoe Koharu / 下江コハル / 시모에 코하루 / 下江小春](https://huggingface.co/khanon/lora-training/blob/main/koharu/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/koharu/README.md)
### Kokona
[Sunohara Kokona / 春原ココナ / 스노하라 코코나 / 春原心奈](https://huggingface.co/khanon/lora-training/blob/main/kokona/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/kokona/README.md)
### Mari
[Iochi Mari / 伊落マリー / 이오치 마리 / 伊落玛丽](https://huggingface.co/khanon/lora-training/blob/main/mari/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/mari/README.md)
### Michiru
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Miyako (WIP)
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Mutsuki
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Natsu (WIP)
[Available on old Mega.co.nz repository.](https://mega.nz/folder/SqYwQTRI#GN2SmGTBsV6S4q-L-V4VeA)
### Reisa
[Uzawa Reisa / 宇沢レイサ / 우자와 레이사](https://huggingface.co/khanon/lora-training/blob/main/reisa/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/reisa/README.md)
### Seia
[Yurizono Seia / 百合園セイア / 유리조노 세이아 / 百合園圣娅](https://huggingface.co/khanon/lora-training/blob/main/seia/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/seia/README.md)
### Shizuko
[Kawawa Shizuko / 河和シズコ / 카와와 시즈코 / 河和静子](https://huggingface.co/khanon/lora-training/blob/main/shizuko/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/shizuko/README.md)
### Sora
[Sora / ソラ / 소라 / 空](https://huggingface.co/khanon/lora-training/blob/main/sora/README.md)
[](https://huggingface.co/khanon/lora-training/blob/main/sora/README.md)
## Useful links
### Negative embedding
I frequently use these negative embeddings in my prompts to improve the output quality. I recommend lowering the attention to ~0.75.
- `bad-artist`, `bad-artist-anime`
- https://huggingface.co/nick-x-hacker/bad-artist
- `badpromptv2`
- https://huggingface.co/datasets/Nerfgun3/bad_prompt
- `bad-image-v2` (not sure of the original author)
- [bad-image-v2.pt](https://huggingface.co/khanon/lora-training/blob/main/bad-image-v2.pt)
|
jaese/t5-small-finetuned-amazon-en-fr
|
jaese
|
t5
| 15 | 0 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,169 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-amazon-en-fr
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.9766
- eval_rouge1: 0.1418
- eval_rouge2: 0.0716
- eval_rougeL: 0.1369
- eval_rougeLsum: 0.1383
- eval_runtime: 5.36
- eval_samples_per_second: 52.426
- eval_steps_per_second: 6.716
- epoch: 2.0
- step: 2798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu102
- Datasets 2.9.0
- Tokenizers 0.12.1
|
RamonAnkersmit/poca-SoccerTwos-Gpu-50M
|
RamonAnkersmit
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 856 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: RamonAnkersmit/poca-SoccerTwos-Gpu-50M
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Porridge9243/SoccerTwos
|
Porridge9243
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 841 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: Porridge9243/SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
pete88b/PPO-MLP-LunarLander-v2-0.0.1
|
pete88b
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
johnslegers/instruct-pix2pix
|
johnslegers
| null | 23 | 0 |
diffusers
| 0 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,687 |
# ORIGINAL MODEL BY timbrooks
This is just a clone of https://huggingface.co/timbrooks/instruct-pix2pix.
However, I replaced the 7.7 GB ckpt & satetensor files with more convenient 2.13 GB pruned fp16 versions for convenience sake.
Conversion from diffusers format to ckpt & satetensor formats was done with https://github.com/ShivamShrirao/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py.
-------------
# InstructPix2Pix: Learning to Follow Image Editing Instructions
GitHub: https://github.com/timothybrooks/instruct-pix2pix
<img src='https://instruct-pix2pix.timothybrooks.com/teaser.jpg'/>
## Example
To use `InstructPix2Pix`, install `diffusers` using `main` for now. The pipeline will be available in the next release
```bash
pip install diffusers accelerate safetensors transformers
```
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(URL)
prompt = "turn him into cyborg"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images
images[0]
```
|
postbot/bert_uncased_L-2_H-256_A-4-mlm-multi-emails-hq
|
postbot
|
bert
| 15 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
|
['en']
|
['postbot/multi-emails-hq']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer', 'BERT']
| true | true | true | 1,762 |
# bert_uncased_L-2_H-256_A-4-mlm-multi-emails-hq
This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the `postbot/multi-emails-hq` dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4596
- Accuracy: 0.5642
## Model description
This is a ~40MB version of BERT finetuned on an MLM task on email data.
## Intended uses & limitations
- this is mostly a test/example
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 8.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.097 | 0.99 | 141 | 2.8195 | 0.5180 |
| 2.9097 | 1.99 | 282 | 2.6704 | 0.5367 |
| 2.8335 | 2.99 | 423 | 2.5764 | 0.5485 |
| 2.7433 | 3.99 | 564 | 2.5213 | 0.5563 |
| 2.6828 | 4.99 | 705 | 2.4667 | 0.5641 |
| 2.666 | 5.99 | 846 | 2.4688 | 0.5642 |
| 2.6517 | 6.99 | 987 | 2.4452 | 0.5679 |
| 2.6309 | 7.99 | 1128 | 2.4596 | 0.5642 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 2.0.0.dev20230129+cu118
- Datasets 2.8.0
- Tokenizers 0.13.1
|
rudzinskimaciej/crystalpunk
|
rudzinskimaciej
| null | 16 | 0 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion']
| false | true | true | 428 |
### crystalpunk Dreambooth model trained by rudzinskimaciej with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
ammr/q-Taxi-v3
|
ammr
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 360 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ammr/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
postbot/bert_uncased_tiny-multi-emails-hq
|
postbot
|
bert
| 15 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
|
['en']
|
['postbot/multi-emails-hq']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,728 |
# bert_uncased_L-2_H-128_A-2-mlm-multi-emails-hq (BERT-tiny)
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0981
- Accuracy: 0.4728
## Model description
BERT-tiny fine-tuned on email data for eight epochs.
## Intended uses & limitations
- this is mostly a test
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 8.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.8974 | 0.99 | 141 | 3.5129 | 0.4218 |
| 3.7009 | 1.99 | 282 | 3.3295 | 0.4452 |
| 3.5845 | 2.99 | 423 | 3.2219 | 0.4589 |
| 3.4976 | 3.99 | 564 | 3.1618 | 0.4666 |
| 3.4356 | 4.99 | 705 | 3.1002 | 0.4739 |
| 3.4493 | 5.99 | 846 | 3.1028 | 0.4746 |
| 3.4199 | 6.99 | 987 | 3.0857 | 0.4766 |
| 3.4086 | 7.99 | 1128 | 3.0981 | 0.4728 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 2.0.0.dev20230129+cu118
- Datasets 2.8.0
- Tokenizers 0.13.1
|
nsecord/ppo-LunarLander-v2
|
nsecord
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
cfisicaro/Reinforce-Pixelcopter-PLE-v0
|
cfisicaro
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
amoselberg/a2c-AntBulletEnv-v0
|
amoselberg
| null | 13 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 352 |
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
postbot/bert_uncased_tiny_2xthicc-multi-emails-hq
|
postbot
|
bert
| 15 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
|
['en']
|
['postbot/multi-emails-hq']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,749 |
# bert_uncased_L-4_H-128_A-2-mlm-multi-emails-hq
This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co/google/bert_uncased_L-4_H-128_A-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8524
- Accuracy: 0.5077
## Model description
Double the layers of BERT-tiny, fine-tuned on email data for eight epochs.
## Intended uses & limitations
- This is primarily an example/test
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 8.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.5477 | 0.99 | 141 | 3.2637 | 0.4551 |
| 3.3307 | 1.99 | 282 | 3.0873 | 0.4785 |
| 3.252 | 2.99 | 423 | 2.9842 | 0.4911 |
| 3.1415 | 3.99 | 564 | 2.9230 | 0.4995 |
| 3.0903 | 4.99 | 705 | 2.8625 | 0.5070 |
| 3.0996 | 5.99 | 846 | 2.8615 | 0.5087 |
| 3.0641 | 6.99 | 987 | 2.8407 | 0.5120 |
| 3.0514 | 7.99 | 1128 | 2.8524 | 0.5077 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 2.0.0.dev20230129+cu118
- Datasets 2.8.0
- Tokenizers 0.13.1
|
apatole/PPOlunar
|
apatole
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
saamdilmaghani/bert-finetuned-ner
|
saamdilmaghani
|
bert
| 12 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,518 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0590
- Precision: 0.9357
- Recall: 0.9507
- F1: 0.9432
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0872 | 1.0 | 1756 | 0.0709 | 0.9194 | 0.9334 | 0.9263 | 0.9822 |
| 0.033 | 2.0 | 3512 | 0.0622 | 0.9298 | 0.9497 | 0.9396 | 0.9861 |
| 0.0183 | 3.0 | 5268 | 0.0590 | 0.9357 | 0.9507 | 0.9432 | 0.9867 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Isaacp/ppo-SnowballTarget1
|
Isaacp
| null | 30 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
| false | true | true | 854 |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: Isaacp/ppo-SnowballTarget1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
lmqg/flan-t5-base-squad-qg
|
lmqg
|
t5
| 14 | 0 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-4.0
|
['en']
|
['lmqg/qg_squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['question generation']
| true | true | true | 3,880 |
# Model Card of `lmqg/flan-t5-base-squad-qg`
This model is fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/flan-t5-base-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/flan-t5-base-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 90.53 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 58.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 42.68 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 32.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 26.1 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 26.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 64.67 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 53.2 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/flan-t5-base-squad-ae`](https://huggingface.co/lmqg/flan-t5-base-squad-ae). [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.lmqg_flan-t5-base-squad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.69 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 64.38 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 92.51 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 64.49 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 92.88 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 64.37 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: ['qg']
- model: google/flan-t5-base
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 16
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-base-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
jingchan/sd-class-butterflies-32
|
jingchan
| null | 6 | 0 |
diffusers
| 0 |
unconditional-image-generation
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
| false | true | true | 365 |
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('jingchan/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
pfunk/CartPole-v1-DQPN_min_mean_std-seed1
|
pfunk
| null | 11 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 1,997 |
# (CleanRL) **DQN** Agent Playing **CartPole-v1**
This is a trained model of a DQN agent playing CartPole-v1.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_min_mean_std.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_min_mean_std]"
python -m cleanrl_utils.enjoy --exp-name DQPN_min_mean_std --env-id CartPole-v1
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_min_mean_std-seed1/raw/main/dqpn_duncan.py
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_min_mean_std-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_min_mean_std-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_duncan.py --exp-name DQPN_min_mean_std --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id CartPole-v1 --seed 1 --total-timesteps 100000 --min-mean-std True
```
# Hyperparameters
```python
{'batch_size': 128,
'buffer_size': 10000,
'capture_video': False,
'cuda': True,
'end_e': 0.05,
'env_id': 'CartPole-v1',
'exp_name': 'DQPN_min_mean_std',
'exploration_fraction': 0.5,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.00025,
'learning_starts': 10000,
'min_mean_std': True,
'policy_network_frequency': 500,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'target_network_frequency': 100,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 100000,
'track': True,
'train_frequency': 10,
'update_scalar': False,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
pfunk/CartPole-v1-DQPN_scalar_update-seed1
|
pfunk
| null | 11 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,006 |
# (CleanRL) **DQN** Agent Playing **CartPole-v1**
This is a trained model of a DQN agent playing CartPole-v1.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_scalar_update.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_scalar_update]"
python -m cleanrl_utils.enjoy --exp-name DQPN_scalar_update --env-id CartPole-v1
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_scalar_update-seed1/raw/main/dqpn_duncan.py
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_scalar_update-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_scalar_update-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_duncan.py --exp-name DQPN_scalar_update --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id CartPole-v1 --seed 1 --total-timesteps 100000 --update-scalar True
```
# Hyperparameters
```python
{'batch_size': 128,
'buffer_size': 10000,
'capture_video': False,
'cuda': True,
'end_e': 0.05,
'env_id': 'CartPole-v1',
'exp_name': 'DQPN_scalar_update',
'exploration_fraction': 0.5,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.00025,
'learning_starts': 10000,
'min_mean_std': False,
'policy_network_frequency': 500,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'target_network_frequency': 100,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 100000,
'track': True,
'train_frequency': 10,
'update_scalar': True,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
sabby/distilbert-base-uncased-finetuned-imdb
|
sabby
|
distilbert
| 16 | 0 |
transformers
| 0 |
fill-mask
| true | false | false | null | null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,342 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model was trained from scratch on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7072 | 1.0 | 157 | 2.4852 |
| 2.573 | 2.0 | 314 | 2.4151 |
| 2.5113 | 3.0 | 471 | 2.4185 |
| 2.4979 | 4.0 | 628 | 2.3714 |
| 2.4843 | 5.0 | 785 | 2.4271 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
EdenYav/Reinforce-PixelCopter
|
EdenYav
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
cartesinus/fedcsis-intent_baseline-xlm_r-leyzer_en
|
cartesinus
|
xlm-roberta
| 11 | 0 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,894 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fedcsis-intent_baseline-xlm_r-leyzer_en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1065
- Accuracy: 0.9799
- F1: 0.9799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 3.4638 | 1.0 | 814 | 1.7267 | 0.6100 | 0.6100 |
| 1.327 | 2.0 | 1628 | 0.9051 | 0.8208 | 0.8208 |
| 0.9046 | 3.0 | 2442 | 0.5209 | 0.9006 | 0.9006 |
| 0.4666 | 4.0 | 3256 | 0.3450 | 0.9372 | 0.9372 |
| 0.2699 | 5.0 | 4070 | 0.2331 | 0.9546 | 0.9546 |
| 0.206 | 6.0 | 4884 | 0.1716 | 0.9705 | 0.9705 |
| 0.1253 | 7.0 | 5698 | 0.1398 | 0.9747 | 0.9747 |
| 0.0862 | 8.0 | 6512 | 0.1183 | 0.9794 | 0.9794 |
| 0.0739 | 9.0 | 7326 | 0.1094 | 0.9794 | 0.9794 |
| 0.0645 | 10.0 | 8140 | 0.1065 | 0.9799 | 0.9799 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
cartesinus/fedcsis-slot_baseline-xlm_r-leyzer_en
|
cartesinus
|
xlm-roberta
| 11 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,181 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fedcsis-slot_baseline-xlm_r-leyzer_en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1017
- Precision: 0.9735
- Recall: 0.9722
- F1: 0.9729
- Accuracy: 0.9852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.2565 | 1.0 | 814 | 0.2709 | 0.8433 | 0.8717 | 0.8573 | 0.9313 |
| 0.183 | 2.0 | 1628 | 0.1226 | 0.9413 | 0.9568 | 0.9490 | 0.9758 |
| 0.0961 | 3.0 | 2442 | 0.1082 | 0.9561 | 0.9612 | 0.9586 | 0.9798 |
| 0.0528 | 4.0 | 3256 | 0.0795 | 0.9678 | 0.9690 | 0.9684 | 0.9855 |
| 0.0334 | 5.0 | 4070 | 0.0742 | 0.9720 | 0.9709 | 0.9715 | 0.9855 |
| 0.027 | 6.0 | 4884 | 0.0960 | 0.9705 | 0.9714 | 0.9710 | 0.9838 |
| 0.0234 | 7.0 | 5698 | 0.0910 | 0.9730 | 0.9736 | 0.9733 | 0.9861 |
| 0.0111 | 8.0 | 6512 | 0.0871 | 0.9732 | 0.9728 | 0.9730 | 0.9871 |
| 0.0067 | 9.0 | 7326 | 0.1016 | 0.9714 | 0.9716 | 0.9715 | 0.9861 |
| 0.0067 | 10.0 | 8140 | 0.1017 | 0.9735 | 0.9722 | 0.9729 | 0.9852 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
amoselberg/a2c-PandaReachDense-v2
|
amoselberg
| null | 13 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 358 |
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
miatia/nre_lora
|
miatia
| null | 18 | 0 | null | 1 | null | false | false | false |
other
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,263 |
# nre_lora
NRE-styleの試験場
ベースモデルは7th_anime_3.1_A.ckpt[6e350084a6]
## サンプル
**V1 LoRAなし**

```
1 girl loli kawaii nre style
Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 1440655960, Size: 512x512, Model hash: 6e350084a6, Clip skip: 2, ENSD: 31337, Eta: 0.67
```
**V1 LoRAあり**

```
1 girl loli kawaii nre style <lora:nre_v1:1>
Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 1440655960, Size: 512x512, Model hash: 6e350084a6, Clip skip: 2, ENSD: 31337, Eta: 0.67
```
**V2 LoRAなし**

```
1 girl loli kawaii cute child waifu solo, long hair,expressionless, in an atelier clothing, dark souls, dark, dark,
dim background, in a ruined messy dark room,
from under, dutch angle,
simple dark background,
detailed, high quality, detailed, high quality, detailed, high quality,
Negative prompt: 3d, grayscale, monochrome,light color bright color, eye lights, highlights, smile, energetic, cheerful, symmetry, greyscale
Steps: 28, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 735105893, Size: 704x384, Model hash: 6e350084a6, Denoising strength: 0.65, Clip skip: 2, ENSD: 31337, Hires resize: 1024x576, Hires upscaler: Latent
```
**V2 LoRAあり**

```
1 girl loli kawaii cute child waifu solo, long hair,expressionless, in an atelier clothing, dark souls, dark, dark,
dim background, in a ruined messy dark room,
from under, dutch angle,
simple dark background,
detailed, high quality, detailed, high quality, detailed, high quality,
nre style
<lora:nre_v2_i20_e4_dim4:1>
Negative prompt: 3d, grayscale, monochrome,light color bright color, eye lights, highlights, smile, energetic, cheerful, symmetry, greyscale
Steps: 28, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 735105893, Size: 704x384, Model hash: 6e350084a6, Denoising strength: 0.65, Clip skip: 2, ENSD: 31337, Hires resize: 1024x576, Hires upscaler: Latent
```
|
Isaacp/ppo-Pyramids_Training
|
Isaacp
| null | 16 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
| false | true | true | 838 |
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: Isaacp/ppo-Pyramids_Training
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
relbert/flan-t5-small-analogy
|
relbert
|
t5
| 10 | 0 |
transformers
| 0 |
text2text-generation
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 693 |
# relbert/flan-t5-small-analogy
This is [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity)
for analogy generation, which is to generate a word pair (eg. `bird is to crow`) given a query (eg. `mammal is to whale`)
so that the query and the generated word pair form an analogy statement.
### Usage
```python
from transformers import pipeline
pipe = pipeline('text2text-generation', model="relbert/flan-t5-small-analogy")
output = pipe("generate analogy: mammal is to whale")
print(output)
>>> [{'generated_text': 'bird is to crow'}]
```
|
pfunk/CartPole-v1-DQPN_baseline-seed1
|
pfunk
| null | 11 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 1,941 |
# (CleanRL) **DQN** Agent Playing **CartPole-v1**
This is a trained model of a DQN agent playing CartPole-v1.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_baseline.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_baseline]"
python -m cleanrl_utils.enjoy --exp-name DQPN_baseline --env-id CartPole-v1
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_baseline-seed1/raw/main/dqpn_duncan.py
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_baseline-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_baseline-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_duncan.py --exp-name DQPN_baseline --target-tau 1 --policy-tau 1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id CartPole-v1 --seed 1 --total-timesteps 100000
```
# Hyperparameters
```python
{'batch_size': 128,
'buffer_size': 10000,
'capture_video': False,
'cuda': True,
'end_e': 0.05,
'env_id': 'CartPole-v1',
'exp_name': 'DQPN_baseline',
'exploration_fraction': 0.5,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.00025,
'learning_starts': 10000,
'min_mean_std': False,
'policy_network_frequency': 500,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'target_network_frequency': 100,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 100000,
'track': True,
'train_frequency': 10,
'update_scalar': False,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
mycringefactory/vintagerecipecards
|
mycringefactory
| null | 3 | 0 | null | 0 |
text-to-image
| false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['stable diffusion', 'text-to-image']
| false | true | true | 654 |
This is a hypernetwork that generates pictures of food with the vintage recipe card look. Ingredients can be specified to give more specific results.
Dataset is images and text from https://linkin.bio/vintagerecipecards
#### vintagerecipecards_v1
* Trained with Stable Diffusion 2 model. (768-v-ema.safetensors)
* Hypernetwork learning rate = 0.00001
* 512x512 images
#### Example
<img src="https://i.imgur.com/ceDdW1M.png" width="300px">
```
<hypernet:vintagerecipecards-50000:1.2> dorito casserole, doritos, blue paint
Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 8, Seed: 3180085176, Size: 512x512, Model hash: 703d49a1d8, Model: 768-v-ema
```
|
MBARKI/layoutlm-funsd
|
MBARKI
|
layoutlm
| 7 | 0 |
transformers
| 0 |
token-classification
| true | false | false | null | null |
['funsd']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 9,210 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6924
- Answer: {'precision': 0.6991525423728814, 'recall': 0.8158220024721878, 'f1': 0.7529948659440959, 'number': 809}
- Header: {'precision': 0.3253968253968254, 'recall': 0.3445378151260504, 'f1': 0.33469387755102037, 'number': 119}
- Question: {'precision': 0.7807250221043325, 'recall': 0.8291079812206573, 'f1': 0.8041894353369764, 'number': 1065}
- Overall Precision: 0.7197
- Overall Recall: 0.7948
- Overall F1: 0.7554
- Overall Accuracy: 0.8040
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8027 | 1.0 | 10 | 1.6152 | {'precision': 0.0103359173126615, 'recall': 0.004944375772558714, 'f1': 0.006688963210702341, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18232044198895028, 'recall': 0.061971830985915494, 'f1': 0.09250175192711983, 'number': 1065} | 0.0935 | 0.0351 | 0.0511 | 0.3249 |
| 1.4899 | 2.0 | 20 | 1.2751 | {'precision': 0.18495297805642633, 'recall': 0.21878862793572312, 'f1': 0.20045300113250283, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4306969459671104, 'recall': 0.5164319248826291, 'f1': 0.46968403074295473, 'number': 1065} | 0.3254 | 0.3648 | 0.3440 | 0.5899 |
| 1.1133 | 3.0 | 30 | 0.9514 | {'precision': 0.4911937377690802, 'recall': 0.6205191594561187, 'f1': 0.5483342435827417, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5651144435674822, 'recall': 0.672300469483568, 'f1': 0.614065180102916, 'number': 1065} | 0.5314 | 0.6111 | 0.5685 | 0.6982 |
| 0.8513 | 4.0 | 40 | 0.8326 | {'precision': 0.5850746268656717, 'recall': 0.7268232385661311, 'f1': 0.6482910694597575, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6844003606853021, 'recall': 0.7126760563380282, 'f1': 0.6982520699172033, 'number': 1065} | 0.6248 | 0.6759 | 0.6493 | 0.7384 |
| 0.7153 | 5.0 | 50 | 0.7422 | {'precision': 0.6159274193548387, 'recall': 0.7552533992583437, 'f1': 0.6785119378123265, 'number': 809} | {'precision': 0.08695652173913043, 'recall': 0.05042016806722689, 'f1': 0.06382978723404256, 'number': 119} | {'precision': 0.6826051112943117, 'recall': 0.7774647887323943, 'f1': 0.726953467954346, 'number': 1065} | 0.6354 | 0.7250 | 0.6773 | 0.7734 |
| 0.5972 | 6.0 | 60 | 0.7031 | {'precision': 0.6330645161290323, 'recall': 0.7762669962917181, 'f1': 0.6973903387007219, 'number': 809} | {'precision': 0.15492957746478872, 'recall': 0.09243697478991597, 'f1': 0.11578947368421053, 'number': 119} | {'precision': 0.6802189210320563, 'recall': 0.8169014084507042, 'f1': 0.742320819112628, 'number': 1065} | 0.6443 | 0.7572 | 0.6962 | 0.7836 |
| 0.5209 | 7.0 | 70 | 0.6902 | {'precision': 0.6597510373443983, 'recall': 0.7861557478368356, 'f1': 0.7174280879864636, 'number': 809} | {'precision': 0.2755102040816326, 'recall': 0.226890756302521, 'f1': 0.2488479262672811, 'number': 119} | {'precision': 0.7128463476070529, 'recall': 0.7971830985915493, 'f1': 0.7526595744680851, 'number': 1065} | 0.6711 | 0.7587 | 0.7122 | 0.7902 |
| 0.4673 | 8.0 | 80 | 0.6693 | {'precision': 0.6649642492339122, 'recall': 0.8046971569839307, 'f1': 0.7281879194630874, 'number': 809} | {'precision': 0.28, 'recall': 0.23529411764705882, 'f1': 0.2557077625570776, 'number': 119} | {'precision': 0.7322314049586777, 'recall': 0.831924882629108, 'f1': 0.7789010989010988, 'number': 1065} | 0.6837 | 0.7852 | 0.7310 | 0.7965 |
| 0.4151 | 9.0 | 90 | 0.6684 | {'precision': 0.6839323467230444, 'recall': 0.799752781211372, 'f1': 0.7373219373219373, 'number': 809} | {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} | {'precision': 0.7363560033585222, 'recall': 0.8234741784037559, 'f1': 0.7774822695035462, 'number': 1065} | 0.6910 | 0.7832 | 0.7342 | 0.8017 |
| 0.3689 | 10.0 | 100 | 0.6742 | {'precision': 0.6954643628509719, 'recall': 0.796044499381953, 'f1': 0.7423631123919308, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.7483221476510067, 'recall': 0.8375586854460094, 'f1': 0.7904297740363314, 'number': 1065} | 0.7043 | 0.7888 | 0.7441 | 0.8000 |
| 0.3327 | 11.0 | 110 | 0.6861 | {'precision': 0.6843198338525441, 'recall': 0.8145859085290482, 'f1': 0.7437923250564334, 'number': 809} | {'precision': 0.32456140350877194, 'recall': 0.31092436974789917, 'f1': 0.31759656652360513, 'number': 119} | {'precision': 0.7709790209790209, 'recall': 0.828169014084507, 'f1': 0.7985513807152557, 'number': 1065} | 0.7105 | 0.7918 | 0.7489 | 0.8031 |
| 0.3167 | 12.0 | 120 | 0.6912 | {'precision': 0.6896186440677966, 'recall': 0.8046971569839307, 'f1': 0.7427267541357673, 'number': 809} | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} | {'precision': 0.7727272727272727, 'recall': 0.8300469483568075, 'f1': 0.8003621548211861, 'number': 1065} | 0.7138 | 0.7908 | 0.7503 | 0.8013 |
| 0.3012 | 13.0 | 130 | 0.6878 | {'precision': 0.7015086206896551, 'recall': 0.8046971569839307, 'f1': 0.7495682210708117, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7694974003466204, 'recall': 0.8338028169014085, 'f1': 0.8003605227579991, 'number': 1065} | 0.7162 | 0.7928 | 0.7526 | 0.8073 |
| 0.2882 | 14.0 | 140 | 0.6930 | {'precision': 0.6997885835095138, 'recall': 0.8182941903584673, 'f1': 0.7544159544159544, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7793468667255075, 'recall': 0.8291079812206573, 'f1': 0.8034576888080072, 'number': 1065} | 0.7199 | 0.7958 | 0.7560 | 0.8024 |
| 0.2811 | 15.0 | 150 | 0.6924 | {'precision': 0.6991525423728814, 'recall': 0.8158220024721878, 'f1': 0.7529948659440959, 'number': 809} | {'precision': 0.3253968253968254, 'recall': 0.3445378151260504, 'f1': 0.33469387755102037, 'number': 119} | {'precision': 0.7807250221043325, 'recall': 0.8291079812206573, 'f1': 0.8041894353369764, 'number': 1065} | 0.7197 | 0.7948 | 0.7554 | 0.8040 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.