repo_id
stringlengths
4
122
author
stringlengths
2
38
โŒ€
model_type
stringlengths
2
33
โŒ€
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
โŒ€
likes
int64
0
4.87k
pipeline
stringlengths
5
30
โŒ€
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
โŒ€
languages
stringlengths
2
1.63k
โŒ€
datasets
stringlengths
2
2.58k
โŒ€
co2
stringlengths
6
258
โŒ€
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
edraper88/distilbert-base-uncased-finetuned-imdb
edraper88
distilbert
16
5
transformers
0
fill-mask
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Zekunli/flan-t5-large-extraction-cnndm_8000-all
Zekunli
t5
10
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,552
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-cnndm_8000-all This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6960 - Rouge1: 35.1425 - Rouge2: 15.3877 - Rougel: 30.0992 - Rougelsum: 30.1879 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1837 | 0.2 | 200 | 1.8342 | 33.7673 | 14.4744 | 28.8398 | 28.8415 | 19.0 | | 1.9557 | 0.4 | 400 | 1.7798 | 34.3577 | 14.8613 | 29.769 | 29.766 | 18.986 | | 1.9219 | 0.6 | 600 | 1.7428 | 34.8589 | 15.4488 | 30.1084 | 30.1336 | 18.99 | | 1.871 | 0.8 | 800 | 1.7408 | 35.001 | 15.597 | 30.3374 | 30.37 | 18.99 | | 1.8729 | 1.0 | 1000 | 1.7502 | 34.9305 | 15.5718 | 30.1495 | 30.1513 | 19.0 | | 1.7803 | 1.2 | 1200 | 1.7261 | 35.7504 | 15.4172 | 30.6898 | 30.7362 | 19.0 | | 1.7674 | 1.4 | 1400 | 1.7214 | 35.9564 | 15.6508 | 30.3541 | 30.4292 | 19.0 | | 1.7704 | 1.6 | 1600 | 1.7253 | 35.2706 | 15.7274 | 30.118 | 30.1324 | 19.0 | | 1.7656 | 1.8 | 1800 | 1.6960 | 35.1425 | 15.3877 | 30.0992 | 30.1879 | 19.0 | | 1.7545 | 2.0 | 2000 | 1.7186 | 34.6436 | 15.2712 | 29.9781 | 29.9698 | 19.0 | | 1.6739 | 2.2 | 2200 | 1.7245 | 35.4083 | 15.8808 | 30.6222 | 30.6752 | 19.0 | | 1.6836 | 2.4 | 2400 | 1.7212 | 35.1829 | 15.5181 | 30.2438 | 30.262 | 19.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
mingdinghan/ppo-Huggy
mingdinghan
null
32
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
822
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mingdinghan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
HusseinHE/saad
HusseinHE
null
99
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
1,366
### Saad Dreambooth model trained by HusseinHE with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sksaad (use that on your prompt) ![sksaad 0](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%281%29.jpg)![sksaad 1](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%282%29.jpg)![sksaad 2](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%283%29.jpg)![sksaad 3](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%284%29.jpg)![sksaad 4](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%285%29.jpg)![sksaad 5](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%286%29.jpg)![sksaad 6](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%287%29.jpg)![sksaad 7](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%288%29.jpg)![sksaad 8](https://huggingface.co/HusseinHE/saad/resolve/main/concept_images/sksaad_%289%29.jpg)
css919/poca-SoccerTwos
css919
null
20
3
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
840
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: css919/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
amoselberg/ppo-SnowballTarget1
amoselberg
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
858
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: amoselberg/ppo-SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
taqwa92/whisper-small-ArabicT12
taqwa92
whisper
16
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['taqwa92/tm_data']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,288
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Arabic- Taqwa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the tm_data dataset. It achieves the following results on the evaluation set: - Loss: 0.5530 - Wer: 45.6372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1812 | 5.0 | 500 | 0.5530 | 45.6372 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
amoselberg/pyramidsRND
amoselberg
null
12
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
832
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: amoselberg/pyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
TitanDiffuse108/EpiCentre
TitanDiffuse108
null
3
0
null
0
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
5,303
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description hello everyone this is my first model ,its free so feel free to use it . EpiCentre was made by merging two models ,this model produces contrasting colours with amazing details with beautiful faces you can use this model anywhere you want <!-- Provide a longer summary of what this model is. --> - **Developed by:*BETTER THAN NOTHING(CAPTIANTITAN)* - **Shared by [optional]:** [More Information Needed] - **Model type:*text to image* [More Information Needed] - **Language(s) (NLP):*English* [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:*deleberate, realastic vision* [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses this model is to be used to only generate images which are safe to the community <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations this model can be used without any filter ,please create the image humanly <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
EdenYav/Reinforce-1
EdenYav
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dotunadegbite/Reinforce-CartPole-v1
dotunadegbite
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
quaizarv/Reinforce-PixelCopter
quaizarv
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mili7522/ppo-SnowballTarget
mili7522
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
855
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: mili7522/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Alsebay/Chilloutmix-Ni-fix
Alsebay
null
4
0
null
0
null
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
252
It a fix version of Chilloutmix-Ni because missing some Clip). - WARNING!!!!!!!!!! Fix version may make worse than the not fix one. Here is the main link: - https://civitai.com/models/6424/chilloutmix - https://huggingface.co/TASUKU2023/Chilloutmix
Azher/Anything-v4.5-vae-fp16-ckpt
Azher
null
3
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
343
# Model: Anything v4.5 Has the following properties that are bundled right out of the box: - Included: vae - Half-precision floating point format: fp16 # Model Sample Outputs <p align="center"> <img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%201.png" alt="Vampire" width="300" height="300" style="display:inline-block;"> <img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%202.png" alt="Vampire" width="300" height="300" style="display:inline-block;"> <img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%203.png" alt="Vampire" width="300" height="300" style="display:inline-block;"> <img src="https://huggingface.co/Azher/Anything-v4.5-vae-fp16-diffuser/resolve/main/Image%204.png" alt="Vampire" width="300" height="300" style="display:inline-block;"> </p> Output Information: - Prompt: ``` beautiful, masterpiece, black dress, black hair, red eyes, pale, 1girl, stunning, black collar choker, jeweled earrings ``` - Negative Prompt: ``` lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, nsfw ``` - Setup: ``` Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 11, Size: 512x512 ``` # Model Sources - **Original FP16 Model:** [https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.5-pruned-fp16.ckpt](https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.5-pruned-fp16.ckpt) - **vae swap:** [https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.0.vae.pt](https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.0.vae.pt)
pfunk/Pong-v4-DQPN_p500-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,955
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 500000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p500', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pittawat/poca-SoccerTwos
pittawat
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
842
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: pittawat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
tomaccer/flan-t5-base-juraqanda
tomaccer
t5
13
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,792
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-juraqanda This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0784 - Rouge1: 9.5491 - Rouge2: 1.4927 - Rougel: 8.828 - Rougelsum: 9.2708 - Gen Len: 18.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 4.0303 | 1.0 | 712 | 3.3466 | 9.4455 | 1.2684 | 8.8558 | 9.1832 | 18.7577 | | 3.6049 | 2.0 | 1424 | 3.1931 | 10.0714 | 1.4116 | 9.4163 | 9.8024 | 18.6461 | | 3.3464 | 3.0 | 2136 | 3.1246 | 9.6542 | 1.4317 | 8.9441 | 9.36 | 18.5485 | | 3.2831 | 4.0 | 2848 | 3.0910 | 9.6676 | 1.4584 | 8.9533 | 9.3876 | 18.6706 | | 3.2176 | 5.0 | 3560 | 3.0784 | 9.5491 | 1.4927 | 8.828 | 9.2708 | 18.5260 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
lora-library/margret-stalizburg-lora-test2
lora-library
null
71
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
502
# LoRA DreamBooth - margret-stalizburg-v1-lora These are LoRA adaption weights for [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0). The weights were trained on the instance prompt "margret stalizburg" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: margret stalizburg ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
mili7522/ppo-Pyramids
mili7522
null
16
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
831
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mili7522/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
mqy/mt5-small-finetuned-12feb-1
mqy
mt5
17
0
transformers
0
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,904
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-12feb-1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4285 - Rouge1: 18.23 - Rouge2: 5.42 - Rougel: 18.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 3.0346 | 1.0 | 311 | 2.4880 | 17.19 | 5.28 | 17.06 | | 2.8943 | 2.0 | 622 | 2.4751 | 17.77 | 5.18 | 17.59 | | 2.8397 | 3.0 | 933 | 2.4719 | 17.65 | 5.38 | 17.55 | | 2.806 | 4.0 | 1244 | 2.4614 | 18.26 | 5.23 | 18.03 | | 2.7842 | 5.0 | 1555 | 2.4464 | 18.08 | 5.51 | 17.96 | | 2.7855 | 6.0 | 1866 | 2.4437 | 17.9 | 5.37 | 17.8 | | 2.7796 | 7.0 | 2177 | 2.4270 | 18.07 | 5.38 | 17.95 | | 2.7951 | 8.0 | 2488 | 2.4267 | 17.96 | 5.36 | 17.85 | | 2.7864 | 9.0 | 2799 | 2.4285 | 18.23 | 5.42 | 18.09 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
antonellaavad/mistermango24-margret-stalizburg-zp92-dreambooth-v1-0
antonellaavad
null
71
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
502
# LoRA DreamBooth - margret-stalizburg-v1-lora These are LoRA adaption weights for [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0). The weights were trained on the instance prompt "margret stalizburg" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: margret stalizburg ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
antonellaavad/https-huggingface-co-mistermango24-margret-stalizburg-zp92-dreambooth-v1-0
antonellaavad
null
71
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
502
# LoRA DreamBooth - margret-stalizburg-v1-lora These are LoRA adaption weights for [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0). The weights were trained on the instance prompt "margret stalizburg" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: margret stalizburg ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
antonellaavad/mistermango-has-a-test
antonellaavad
null
161
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
510
# LoRA DreamBooth - margret-stalizburg-lora-test-3 These are LoRA adaption weights for [Linaqruf/anything-v3.0](https://huggingface.co/Linaqruf/anything-v3.0). The weights were trained on the instance prompt "margret stalizburg" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: margret stalizburg ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
mili7522/ppo-PyramidsRND
mili7522
null
16
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
834
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mili7522/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
xiazeng/poca-SoccerTwos
xiazeng
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
841
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: xiazeng/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
zxc12138/pegasus-samsum
zxc12138
pegasus
13
0
transformers
0
text2text-generation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,240
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6928 | 0.54 | 500 | 1.4812 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
harshadbhatia/LunarLander-v2-ppo
harshadbhatia
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
darkvibes/lizzyflex
darkvibes
null
19
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
420
### lizzyflex Dreambooth model trained by darkvibes with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
vumichien/AnimeGANv2_Hayao
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv2']
false
true
true
678
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Haya Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv3_PortraitSketch
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv3']
false
true
true
687
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv3_PortraitSketch Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv2_Paprika
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv2']
false
true
true
680
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Paprika Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
Ransaka/ppo-SnowballTarget
Ransaka
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
854
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Ransaka/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
ahng79/ppo-Huggy
ahng79
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
817
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ahng79/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
vumichien/AnimeGANv2_Shinkai
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv2']
false
true
true
682
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Shinkai Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv3_JP_face
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv3']
false
true
true
681
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv3_JP_face Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
acesanddiamonds/ppo-Huggy
acesanddiamonds
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
826
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: acesanddiamonds/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Deysi/mt5-small-sumarizacion-textos-bilingual
Deysi
mt5
9
0
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,654
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deysi/mt5-small-sumarizacion-textos-bilingual This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.1454 - Validation Loss: 3.3754 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2282 | 4.6664 | 0 | | 6.0978 | 3.8777 | 1 | | 5.2791 | 3.6299 | 2 | | 4.8386 | 3.5296 | 3 | | 4.5569 | 3.4565 | 4 | | 4.3616 | 3.4055 | 5 | | 4.2154 | 3.3870 | 6 | | 4.1454 | 3.3754 | 7 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
yl131/ppo-Huggy
yl131
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
816
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: yl131/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
gbarcik/ppo-LundarLander-v2
gbarcik
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
girinlp-i2i/generic_ner_model
girinlp-i2i
bert
16
0
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,518
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # generic_ner_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0999 - Precision: 0.8727 - Recall: 0.8953 - F1: 0.8838 - Accuracy: 0.9740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1083 | 1.0 | 1958 | 0.1007 | 0.8684 | 0.8836 | 0.8759 | 0.9723 | | 0.0679 | 2.0 | 3916 | 0.0977 | 0.8672 | 0.8960 | 0.8813 | 0.9738 | | 0.0475 | 3.0 | 5874 | 0.0999 | 0.8727 | 0.8953 | 0.8838 | 0.9740 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-1-5
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,532
# fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-1-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-1-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Martha-987/whisper-small-ArabicMartha
Martha-987
whisper
16
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['Martha-987/MyOwnData']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,288
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar- Martha This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the MyOwnData dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Wer: 47.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.276 | 2.54 | 1000 | 0.4467 | 47.4812 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,538
# fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
gbarcik/q-FrozenLake-v1-4x4-noSlippery
gbarcik
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
396
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gbarcik/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Seyfelislem/arabic_whisper_small_version_2
Seyfelislem
whisper
14
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,413
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabic_whisper_small_version_2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3355 - Wer: 44.5616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0835 | 0.42 | 1000 | 0.3859 | 49.2094 | | 0.1607 | 0.83 | 2000 | 0.3481 | 46.8938 | | 0.08 | 1.25 | 3000 | 0.3355 | 44.5616 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,532
# fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
nhiro3303/Reinforce-CartPole-v1
nhiro3303
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Duskfallcrew/10-minute-grumpy-hour
Duskfallcrew
null
21
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image']
false
true
true
1,036
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Duskfallcrew/10-minute-grumpy-hour) ### 10 Minute Grumpy Hour Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! This model is horrifying. I'm not responsible if it gives you rabies . XD prilosecotc1 (use that on your prompt) burgie (use that on your prompt)
yjoon/xlm-roberta-base-finetuned-panx-de-fr
yjoon
xlm-roberta
9
0
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.6706 - F1: 0.6245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 11 | 1.1624 | 0.1327 | | No log | 2.0 | 22 | 0.7871 | 0.4940 | | No log | 3.0 | 33 | 0.6706 | 0.6245 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.8.0 - Tokenizers 0.13.2
lilouuch/Goodreads_Books_Reviews_Roberta_52
lilouuch
roberta
6
0
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,343
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Goodreads_Books_Reviews_Roberta_52 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8592 - F1: 0.5986 - Accuracy: 0.6349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:| | 0.8824 | 1.0 | 25313 | 0.8754 | 0.5792 | 0.6254 | | 0.8127 | 2.0 | 50626 | 0.8592 | 0.5986 | 0.6349 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
pnparam/PNP_dys_asr_960h
pnparam
wav2vec2
16
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,357
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PNP_dys_asr_960h This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7169 - Wer: 1.4123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.4668 | 1.63 | 500 | 2.6987 | 1.0226 | | 2.0533 | 3.26 | 1000 | 1.0528 | 2.4236 | | 0.4828 | 4.89 | 1500 | 0.7560 | 1.3358 | | 0.1604 | 6.51 | 2000 | 0.7169 | 1.4123 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
helpingstar/q-FrozenLake-v1-4x4-noSlippery
helpingstar
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
400
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="helpingstar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mRoszak/PandaReach
mRoszak
null
11
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachJointsDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
370
# **A2C** Agent playing **PandaReachJointsDense-v2** This is a trained model of a **A2C** agent playing **PandaReachJointsDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
helpingstar/q-Taxi-v3-v1
helpingstar
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
370
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="helpingstar/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alexcasq/OUTPUT
alexcasq
null
33
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
363
# LoRA DreamBooth - alexcasq/OUTPUT These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks alexcasq using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
KnutJaegersberg/topic-classification-IPTC-subject-labels
KnutJaegersberg
xlm-roberta
13
0
sentence-transformers
4
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'transformers', 'SetFit', 'News']
false
true
true
1,779
# IPTC topic classifier (multilingual) A SetFit model fit on 166 downlsampled multilingual IPTC Subject labels (concatenated for the lowest hierarchy level into artificial sentences of keywords) to predict the mid level news categories. The purpose of this classifier is to support exploring corpora as weak labeler, since the representations of these descriptions are only approximations of real documents from those topics. The dataset I used to train the model is based on this file: https://huggingface.co/datasets/KnutJaegersberg/News_topics_IPTC_codes_long Accuracy on highest level labels in eval: 0.9779412 Accuracy/F1/mcc on mid level labels in eval: 0.6992481/0.6666667/0.6992617 More interestingly, I used the kaggle dataset with headlines from huffington post and manually selected 15 overlapping high level categories to evaluate the performance. https://www.kaggle.com/datasets/rmisra/news-category-dataset While mcc 0.1968043 on this dataset does not sound as good as before, the mistakes usually could also be seen as a re-interpretation. I.e. news on arrests where categorized as entertainment in the huffington post dataset, the classifier put it into the crime category. My current impression is this system is useful for the aimed for purpose. The numeric categories can be joined with the labels by using this table: https://huggingface.co/datasets/KnutJaegersberg/IPTC-topic-classifier-labels Looks like try out api box to the right by huggingface does not yet handle setfit models, can't do anything about that. Use like any other SetFit model from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("KnutJaegersberg/IPTC-classifier-ml") # Run inference preds = model(["Rachel Dolezal Faces Felony Charges For Welfare Fraud", "Elon Musk just got lucky", "The hype on AI is different from the hype on other tech topics"])
helpingstar/q-Taxi-v3-v2
helpingstar
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
370
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="helpingstar/q-Taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mwissing/Reinforce-cartpole-v1
mwissing
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Gatozu35/tortoise-tts
Gatozu35
null
8
0
null
1
text-to-speech
false
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['text-to-speech', 'audio']
false
true
true
6,206
# Model Card for TorToiSe <!-- Provide a quick summary of what the model is/does. [Optional] --> Tortoise is a text-to-speech program built with the following priorities: 1. Strong multi-voice capabilities. 2. Highly realistic prosody and intonation. # Table of Contents - [Model Card for TorToiSe](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Environmental Impact](#environmental-impact) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> Tortoise is a text-to-speech program built with the following priorities: 1. Strong multi-voice capabilities. 2. Highly realistic prosody and intonation. - **Developed by:** James Betker - **Model type:** Language model - **Language(s) (NLP):** en - **License:** apache-2.0 - **Resources for more information:** - [GitHub Repo](https://github.com/152334H/tortoise-tts-fast) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> More information on training data needed ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing More information needed ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> More information needed # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> More information needed ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> More information needed ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** Betker, J. (2022). TorToiSe text-to-speech (Version 2.0) [Computer software]. https://github.com/neonbjb/tortoise-tts **APA:** @software{Betker_TorToiSe_text-to-speech_2022, author = {Betker, James}, month = {4}, title = {{TorToiSe text-to-speech}}, url = {https://github.com/neonbjb/tortoise-tts}, version = {2.0}, year = {2022} } # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> More information needed # More Information [optional] More information needed # Model Card Authors [optional] <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> Gatozu35 # Model Card Contact Use the discussion tab # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> More information needed </details>
chavicoski/poca-SoccerTwos
chavicoski
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: chavicoski/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Rowehn/poca-SoccerTwos-final
Rowehn
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
846
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Rowehn/poca-SoccerTwos-final 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
AnnihilationOperator/ofa-huge-caption
AnnihilationOperator
ofa
6
0
transformers
0
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,728
# OFA-huge-caption This is the **huge** version of OFA pretrained model finetuned on COCO captioning task, forked & converted from the [original fairseq version](https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_huge_best.pt) and compressed into float16. The conversion script is custom, but the procedure described [Issue #171](https://github.com/OFA-Sys/OFA/issues/171) should also apply (quantization is not performed, but that's trivial). You will need a [OFA modified version of transformers](https://github.com/OFA-Sys/OFA/tree/feature/add_transformers) to use this model. No idea why it is still not in master. Tips: You can just copy-paste the `transformers` folder into your project and rename it, then monkey-patch the `transformers` module to point to your local copy to avoid having to install it. ## Original README below ## Introduction This is the **huge** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to <https://github.com/OFA-Sys/OFA/tree/feature/add_transformers>. Install the transformers and download the models as shown below. ```bash git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-huge ``` After, refer the path to OFA-huge to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 480 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
MPSTME/swin-tiny-patch4-window7-224-finetuned-skin-cancer
MPSTME
swin
10
0
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,071
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-skin-cancer This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
PeterBanning71/t5-small-finetuned-eLife
PeterBanning71
t5
14
0
transformers
0
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,576
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eLife This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8960 - Rouge1: 14.7239 - Rouge2: 2.8698 - Rougel: 11.0202 - Rougelsum: 13.3642 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3558 | 1.0 | 544 | 2.9587 | 13.7915 | 2.6556 | 10.3265 | 12.5097 | 19.0 | | 3.1299 | 2.0 | 1088 | 2.9079 | 14.7136 | 2.7492 | 10.836 | 13.3664 | 19.0 | | 3.0917 | 3.0 | 1632 | 2.8960 | 14.7239 | 2.8698 | 11.0202 | 13.3642 | 19.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Lucetepolis/OctaFuzz
Lucetepolis
null
12
0
diffusers
3
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers']
false
true
true
4,192
# HXDC Counterfeit-V2.5 - <a href="https://huggingface.co/gsdf/Counterfeit-V2.5">Download</a><br/> Treebark - <a href="https://huggingface.co/HIZ/aichan_pick">Download</a><br/> HyperBomb, FaceBomb - <a href="https://huggingface.co/mocker/KaBoom">Download</a><br/> qwerty - <a href="https://huggingface.co/1q2W3e/qwerty">Download</a><br/> ultracolor.v4 - <a href="https://huggingface.co/xdive/ultracolor.v4">Download</a><br/> donko-mix-hard - <a href="https://civitai.com/models/7037/donko-mix-nsfw-hard">Download</a><br/> OrangePastelV2 - ~~Download~~ Currently not available.<br/> smix 1.12121 - <a href="https://civitai.com/models/8019/smix-1-series">Download</a><br/> viewer-mix - <a href="https://civitai.com/models/7813/viewer-mix">Download</a><br/> 0012-half - <a href="https://huggingface.co/1q2W3e/Attached-model_collection">Download</a><br/> Null v2.2 - <a href="https://civitai.com/models/8173/null-v22">Download</a><br/> school anime - <a href="https://civitai.com/models/7189/school-anime">Download</a><br/> tlqkfniji7 - <a href="https://huggingface.co/uiouiouio/The_lovely_quality_kahlua_flavour">Download</a><br/> 7th_anime_v3_B - <a href="https://huggingface.co/syaimu/7th_Layer">Download</a><br/> Crowbox-Vol.1 - <a href="https://huggingface.co/kf1022/Crowbox-Vol.1">Download</a><br/> EasyNegative and pastelmix-lora seem to work well with the models. EasyNegative - <a href="https://huggingface.co/datasets/gsdf/EasyNegative">Download</a><br/> pastelmix-lora - <a href="https://huggingface.co/andite/pastel-mix">Download</a> # Formula ``` Counterfeit-V2.5 + Treebark = ct base_alpha = 0.009901 Weight values = 0.259221, 0.094699, 0.186355, 0.344377, 0.54691, 0.535689, 0.526122, 0.420305, 0.312004, 0.40172, 0.452608, 0.481439, 0.029126, 0.492655, 0.478894, 0.443794, 0.284518, 0.24424, 0.284451, 0.382469, 0.282082, 0.18387, 0.126064, 0.113941, 0.103878 ct + HyperBomb = cth base_alpha = 0.09009 Weight values = 0.208912, 0.290962, 0.44034, 0.426141, 0.294959, 0.258193, 0.279347, 0.219226, 0.100589, 0.076065, 0.061552, 0.053125, 0.225564, 0.013679, 0.029582, 0.067917, 0.209599, 0.238881, 0.209736, 0.097528, 0.143293, 0.18856, 0.227611, 0.336235, 0.40562 cth + qwerty = cthq base_alpha = 0.008929 Weight values = 0.298931, 0.286255, 0.185812, 0.136147, 0.100038, 0.09741, 0.069466, 0.065465, 0.099956, 0.218813, 0.27544, 0.304705, 0.184049, 0.021782, 0.051109, 0.115061, 0.291535, 0.319518, 0.291441, 0.197459, 0.295056, 0.359111, 0.375537, 0.264379, 0.170006 cthq + ultracolor.v4 = cthqu base_alpha = 0.081967 Weight values = 0.044348, 0.051224, 0.092643, 0.0896, 0.047055, 0.03864, 0.032217, 0.034381, 0.032329, 0.017, 0.009525, 0.005618, 0.380228, 0.060561, 0.083015, 0.128444, 0.233262, 0.247876, 0.234218, 0.103302, 0.082694, 0.111921, 0.235504, 0.634374, 0.746614 cthqu + FaceBomb = cthquf base_alpha = 0.45045 Weight values = 0.304652, 0.108189, 0.113682, 0.116402, 0.118828, 0.11284, 0.095841, 0.065612, 0.035945, 0.033428, 0.032195, 0.03155, 0.03663, 0.006005, 0.008193, 0.012592, 0.022593, 0.023941, 0.02257, 0.019395, 0.027618, 0.032024, 0.029911, 0.015144, 0.010908 cthquf + donko-mix-hard = cthqufd base_alpha = 0.310559 Weight values = 0.041071, 0.033818, 0.035788, 0.036933, 0.038236, 0.037834, 0.040386, 0.045727, 0.049152, 0.025509, 0.0135, 0.007091, 0.035336, 0.009262, 0.016837, 0.031714, 0.063923, 0.068124, 0.063941, 0.051919, 0.076044, 0.091518, 0.094579, 0.081523, 0.077707 cthqufd + OrangePastelV2 = OctaFuzz base_alpha = 0.03012 Weight values = 0.045454, 0.044635, 0.071192, 0.078145, 0.074833, 0.072486, 0.069609, 0.08331, 0.082494, 0.043373, 0.022197, 0.010507, 0.03413, 0.009176, 0.016555, 0.030733, 0.06007, 0.063741, 0.059989, 0.049022, 0.069114, 0.078421, 0.07162, 0.029375, 0.016293 smix 1.12121 + viewer-mix = sv base_alpha = 0.230769 Weight values = 0.395271, 0.35297, 0.359395, 0.382984, 0.448508, 0.468333, 0.478042, 0.475167, 0.419157, 0.446681, 0.469808, 0.48688, 0.230769, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 sv + 0012-half = sv0 base_alpha = 0.434783 Weight values = 0.096641, 0.097719, 0.100011, 0.105301, 0.118931, 0.122252, 0.120899, 0.11391, 0.15397, 0.407393, 0.526559, 0.587752, 0.071429, 0.326817, 0.315594, 0.291682, 0.229445, 0.220024, 0.229364, 0.30164, 0.31157, 0.309196, 0.281226, 0.145209, 0.089865 sv0 + Null v2.2 = sv0n base_alpha = 0.115385 Weight values = 0.132862, 0.1371, 0.108727, 0.104247, 0.117468, 0.122796, 0.131157, 0.14836, 0.213205, 0.184383, 0.170088, 0.16255, 0.176471, 0.013049, 0.029363, 0.062385, 0.138653, 0.149139, 0.138776, 0.119286, 0.183455, 0.228237, 0.255516, 0.296091, 0.311362 sv0n + school anime = sv0ns base_alpha = 0.103448 Weight values = 0.087455, 0.088646, 0.114848, 0.110151, 0.070954, 0.064852, 0.054146, 0.06643, 0.083591, 0.111871, 0.125259, 0.132157, 0.055556, 0.014513, 0.032747, 0.067662, 0.139412, 0.148332, 0.139177, 0.054834, 0.040531, 0.031203, 0.02771, 0.029855, 0.03066 sv0ns + tlqkfniji7 = sv0nst base_alpha = 0.25641 Weight values = 0.366264, 0.082457, 0.061703, 0.0743, 0.128699, 0.132356, 0.090334, 0.073644, 0.120288, 0.066093, 0.038035, 0.022911, 0.016393, 0.010271, 0.010979, 0.012331, 0.015099, 0.015235, 0.014313, 0.006851, 0.005245, 0.005269, 0.008194, 0.021708, 0.026685 sv0nst + 7th_anime_v3_B = sv0nst7 base_alpha = 0.025 Weight values = 0.270768, 0.082819, 0.089464, 0.099695, 0.122101, 0.11876, 0.079592, 0.057662, 0.096981, 0.056373, 0.033881, 0.021306, 0.016129, 0.004163, 0.005616, 0.008379, 0.013987, 0.01468, 0.013977, 0.00666, 0.004674, 0.003356, 0.002823, 0.002944, 0.002989 sv0nst7 + Crowbox-Vol.1 = OctaBlend base_alpha = 0.007444 Weight values = 0.036592, 0.028764, 0.033246, 0.051828, 0.096045, 0.099435, 0.054162, 0.020355, 0.01281, 0.027376, 0.035261, 0.039613, 0.005348, 0.029654, 0.026405, 0.020164, 0.00725, 0.005724, 0.007621, 0.016328, 0.014867, 0.025298, 0.058555, 0.172774, 0.208144 OctaFuzz + OctaBlend = HXDC base_alpha = 0.5 Weight values = 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 ``` # Converted weights ![G1](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Graphs/1.png) ![G2](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Graphs/2.png) ![G3](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Graphs/3.png) # Samples All of the images use following negatives/settings. EXIF preserved. ``` Negative prompt: (worst quality, low quality:1.4), EasyNegative, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits Steps: 28, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 768x512, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires steps: 14, Hires upscaler: Latent (nearest-exact) ``` # OctaFuzz ![A1](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A1.png) ![A2](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A2.png) ![A3](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A3.png) ![A4](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A4.png) ![A5](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A5.png) ![A6](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A6.png) ![A7](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A7.png) ![A8](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/A8.png) # OctaBlend ![B1](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B1.png) ![B2](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B2.png) ![B3](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B3.png) ![B4](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B4.png) ![B5](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B5.png) ![B6](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B6.png) ![B7](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B7.png) ![B8](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/B8.png) # HXDC ![C1](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C1.png) ![C2](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C2.png) ![C3](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C3.png) ![C4](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C4.png) ![C5](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C5.png) ![C6](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C6.png) ![C7](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C7.png) ![C8](https://huggingface.co/Lucetepolis/OctaFuzz/resolve/main/Samples/C8.png)
Beegbrain/a2c-AntBulletEnv-v0-2
Beegbrain
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
frankenstyle/q-FrozenLake-v1-4x4-noSlippery
frankenstyle
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
401
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="frankenstyle/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lmqg/flan-t5-base-squad-qag
lmqg
t5
13
0
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qag_squad']
null
0
0
0
0
0
0
0
['questions and answers generation']
true
true
true
3,881
# Model Card of `lmqg/flan-t5-base-squad-qag` This model is fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) - **Language:** en - **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-base-squad-qag") # model prediction question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/flan-t5-base-squad-qag") output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 93.04 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedF1Score (MoverScore) | 65.24 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedPrecision (BERTScore) | 93.1 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedPrecision (MoverScore) | 65.91 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedRecall (BERTScore) | 92.99 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedRecall (MoverScore) | 64.7 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_squad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: ['qag'] - model: google/flan-t5-base - max_length: 512 - max_length_output: 256 - epoch: 14 - batch: 8 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-base-squad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
johannes5117/kadoa-page-extraction
johannes5117
t5
12
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,354
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kadoa-page-extraction This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 0.8235 | | No log | 2.0 | 2 | 0.8235 | | No log | 3.0 | 3 | 0.8235 | | No log | 4.0 | 4 | 0.8235 | | No log | 5.0 | 5 | 0.8235 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
frankenstyle/q-taxi-v3
frankenstyle
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
368
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="frankenstyle/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Brainergy/ppiittuuffoo
Brainergy
null
16
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
423
### ppiittuuffoo Dreambooth model trained by Brainergy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
sunilSabnis/vit-mae-large-ai-or-not
sunilSabnis
vit
11
0
transformers
0
image-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,427
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-mae-large-ai-or-not This model is a fine-tuned version of [facebook/vit-mae-large](https://huggingface.co/facebook/vit-mae-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1883 - Accuracy: 0.9683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3623 | 0.19 | 200 | 0.2099 | 0.9243 | | 0.2465 | 0.38 | 400 | 0.4055 | 0.8545 | | 0.2164 | 0.57 | 600 | 0.1808 | 0.9259 | | 0.1943 | 0.76 | 800 | 0.1765 | 0.9329 | | 0.1723 | 0.95 | 1000 | 0.2083 | 0.9313 | | 0.118 | 1.15 | 1200 | 0.2295 | 0.9168 | | 0.0812 | 1.34 | 1400 | 0.1600 | 0.9511 | | 0.082 | 1.53 | 1600 | 0.1331 | 0.9624 | | 0.0863 | 1.72 | 1800 | 0.1352 | 0.9511 | | 0.0858 | 1.91 | 2000 | 0.1643 | 0.9506 | | 0.056 | 2.1 | 2200 | 0.1930 | 0.9586 | | 0.0319 | 2.29 | 2400 | 0.1595 | 0.9624 | | 0.0206 | 2.48 | 2600 | 0.2937 | 0.9447 | | 0.0299 | 2.67 | 2800 | 0.1680 | 0.9603 | | 0.0213 | 2.86 | 3000 | 0.1746 | 0.9586 | | 0.0164 | 3.05 | 3200 | 0.1579 | 0.9624 | | 0.0019 | 3.24 | 3400 | 0.1787 | 0.9646 | | 0.0022 | 3.44 | 3600 | 0.1976 | 0.9640 | | 0.0023 | 3.63 | 3800 | 0.2017 | 0.9651 | | 0.0045 | 3.82 | 4000 | 0.1883 | 0.9683 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
TieIncred/ddpm-celebahq-finetuned-butterflies-2epochs
TieIncred
null
6
0
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
347
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('TieIncred/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
pmgautam/ppo-LunarLander-v2
pmgautam
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
spacemanidol/flan-t5-small-xsum
spacemanidol
t5
14
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['xsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,148
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.0998 - Rouge1: 33.2675 - Rouge2: 11.0862 - Rougel: 26.1709 - Rougelsum: 26.1668 - Gen Len: 28.0123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
dmitry-np/a2c-AntBulletEnv-v0
dmitry-np
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nikogarro/DQN-SpaceInvadersNoFrameskip-v4
nikogarro
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,219
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikogarro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikogarro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nikogarro ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 160000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.05), ('exploration_fraction', 0.2), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0005), ('learning_starts', 50000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 2000), ('train_freq', 4), ('normalize', False)]) ```
mshibatatt/Reinforce-CartPole-v1
mshibatatt
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
JessicaHsu/q-FrozenLake-v1-4x4-noSlippery
JessicaHsu
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
399
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JessicaHsu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JessicaHsu/qTaxi-v3
JessicaHsu
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
365
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JessicaHsu/qTaxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
augustocsc/gpt-m0
augustocsc
gpt2
7
0
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,103
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-m0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7384 | 0.61 | 500 | 1.6251 | | 0.0325 | 1.22 | 1000 | 0.0146 | | 0.0104 | 1.83 | 1500 | 0.0094 | | 0.008 | 2.44 | 2000 | 0.0074 | | 0.0061 | 3.05 | 2500 | 0.0058 | | 0.0057 | 3.66 | 3000 | 0.0050 | | 0.0059 | 4.27 | 3500 | 0.0050 | | 0.0047 | 4.88 | 4000 | 0.0050 | | 0.0043 | 5.49 | 4500 | 0.0045 | | 0.0043 | 6.11 | 5000 | 0.0045 | | 0.0036 | 6.72 | 5500 | 0.0043 | | 0.0038 | 7.33 | 6000 | 0.0041 | | 0.0034 | 7.94 | 6500 | 0.0044 | | 0.0036 | 8.55 | 7000 | 0.0040 | | 0.0032 | 9.16 | 7500 | 0.0039 | | 0.0033 | 9.77 | 8000 | 0.0037 | | 0.0032 | 10.38 | 8500 | 0.0036 | | 0.0029 | 10.99 | 9000 | 0.0035 | | 0.003 | 11.6 | 9500 | 0.0035 | | 0.0027 | 12.21 | 10000 | 0.0036 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
akghxhs55/poca-SoccerTwos-2
akghxhs55
null
30
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akghxhs55/poca-SoccerTwos-2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
franfram/distillbert-base-spanish-uncased-finetuned-spanish-corpus
franfram
distilbert
15
0
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,369
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-spanish-corpus This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3776 | 1.0 | 56 | 3.7218 | | 3.3814 | 2.0 | 112 | 3.7694 | | 3.3348 | 3.0 | 168 | 3.7389 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-2-5
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,538
# fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-2-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-2-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
kasrahabib/20_propogated
kasrahabib
bert
10
0
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,915
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kasrahabib/20_propogated This model is a fine-tuned version of [kasrahabib/XXX08_02_23__-bucket-finetunned](https://huggingface.co/kasrahabib/XXX08_02_23__-bucket-finetunned) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0504 - Validation Loss: 0.1528 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7660, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2492 | 0.1740 | 0 | | 0.1527 | 0.1501 | 1 | | 0.1092 | 0.1582 | 2 | | 0.0879 | 0.1568 | 3 | | 0.0774 | 0.1577 | 4 | | 0.0689 | 0.1513 | 5 | | 0.0597 | 0.1598 | 6 | | 0.0600 | 0.1536 | 7 | | 0.0526 | 0.1519 | 8 | | 0.0504 | 0.1528 | 9 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
AntiSquid/DQN-SpaceInvadersNoFrameskip-v4
AntiSquid
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,221
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AntiSquid -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AntiSquid -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AntiSquid ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,538
# fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
JessicaHsu/q-Taxi-v3-1
JessicaHsu
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
368
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JessicaHsu/q-Taxi-v3-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/domain_transfer_clinic_credit_cards-massive_play-roberta-large-v1-2-65
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,530
# fathyshalab/domain_transfer_clinic_credit_cards-massive_play-roberta-large-v1-2-65 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_play-roberta-large-v1-2-65") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Cortes48/beachdreamwongkarwai
Cortes48
null
19
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
430
### BeachDreamWongKarWai Dreambooth model trained by Cortes48 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
fathyshalab/domain_transfer_clinic_credit_cards-massive_datetime-roberta-large-v1-2-95
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,538
# fathyshalab/domain_transfer_clinic_credit_cards-massive_datetime-roberta-large-v1-2-95 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_datetime-roberta-large-v1-2-95") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
jinhu2659/Taxi-v3
jinhu2659
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
379
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jinhu2659/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mibalaguer/ppo-Huggy
mibalaguer
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
821
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mibalaguer/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Beegbrain/a2c-PandaReachDense-v2
Beegbrain
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YoriV/ppo-SnowballTarget
YoriV
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
852
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: YoriV/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
xiaofxiong/ppo-Huggy
xiaofxiong
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
821
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: xiaofxiong/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
fathyshalab/domain_transfer_clinic_credit_cards-massive_recommendation-roberta-large-v1-2-15
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,550
# fathyshalab/domain_transfer_clinic_credit_cards-massive_recommendation-roberta-large-v1-2-15 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_recommendation-roberta-large-v1-2-15") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Achitha/small_data_test
Achitha
whisper
14
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,047
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small_data_test This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
waifuwishes/WW_LoRAs
waifuwishes
null
7
0
null
0
text-to-image
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image', 'lora', 'anime']
false
true
true
3,508
# Table of Contents - [Overview](#overview) - [Installation](#installation) - [Usage](#usage) - [LoRAs](#loras) - [SocialMedia](#socialmedia) # Overview Inspired by amazing work done by [Trauter](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs) I decided to make a contribution to society by extending his work and developing new LoRAs. I'm going to train and test models on anime checkpoints like [WarriorMama777](https://huggingface.co/WarriorMama777/OrangeMixs), [Andite](https://huggingface.co/andite/anything-v4.0), [Gsdf](https://huggingface.co/gsdf/Counterfeit-V2.5), for that reason alone, I don't know how they will perform on your specific model. You can find comparision grid in **[model_name]/Previews** folder. Previews have metadata containing the prompt and settings used to create them, you can access this via "PNG Info" tab in [Automatic1111/WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) Every model is trained with [danbooru](https://danbooru.donmai.us/tags?commit=Search&search%5Bhide_empty%5D=yes&search%5Border%5D=count) tag, using [wd14-tagger](https://github.com/toriato/stable-diffusion-webui-wd14-tagger) with minor tweaks. Additionally, every character folder contains a json file with information about [training](https://github.com/bmaltais/kohya_ss) settings used for a specific model. As far as I can tell, there is no reason for training a model for more than 2 epochs (4000+ steps). # Installation Paste desired model (if you want thumbnail you can also paste preview image) into **\stable-diffusion-webui\models\Lora** Since LoRAs are now available directly in WebUI, you can use them as presented in the following [guide](https://rentry.org/2chAI_LoRA_Dreambooth_guide_english#usage). # Usage I make models with **ww** prefix: ``` ww_[source_name]_[character_name] ww_ov_widowmaker ``` The suffix in the model's name indicates the number of steps taken to train them. More steps means more training, so they are more likely to produce images that are close to the original source, but I find the differences to be very subtle in most cases. I wanted to somehow create flexible models. You can experiment with fewer tags by setting the LoRA weight to 1, or you may want to customize specific parts like hair type or length, clothes, breasts size, accessoriesย  with lesser weight: 0.6 - 0.7 # LoRAs - [Overwatch](#overwatch) - [Widowmaker](#widowmaker) - [Ashe](#ashe) # Overwatch - # Widowmaker [<img src="https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Widowmaker/Previews/ww_ov_widowmaker_v1_1700.png" width="512" height="768">](https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Widowmaker/Previews/ww_ov_widowmaker_v1_1700.png) <details> <summary>Prompt</summary> <pre> ww_ov_widowmaker, (masterpiece:1.2), (best quality), (extremely detailed), highres, illustration, depth of field, dark intense shadows, sharp focus, soft light, (good composition), standing, 1girl, solo, small breasts, pink bodysuit, arm tattoo, center opening, headgear, colored skin, earrings, gloves, pauldrons, lips, long hair, makeup, nose, ponytail, purple hair, purple lips, purple skin, short sleeves, yellow eyes, looking at viewer, <lora:ww_ov_widowmaker_v1_1700:0.7>, outdoors, night, detailed background Negative prompt: EasyNegative, extra fingers,fewer fingers, username, artist name, signature, disembodied limb, extra legs, extra arms, extra fingers, bad anatomy, username, signature Steps: 50, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 357744401, Size: 512x768, Model hash: 038ba203d8, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 1.3, Hires upscaler: Latent, aesthetic_score: 6.7 </pre> </details> - # Ashe [<img src="https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Ashe/Previews/ww_ov_ashe_v1_1600.png" width="512" height="768">](https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Ashe/Previews/ww_ov_ashe_v1_1600.png) <details> <summary>Prompt</summary> <pre> ww_ov_ashe, (masterpiece:1.2), (best quality), (extremely detailed), highres, illustration, depth of field, dark intense shadows, sharp focus, soft light, (good composition), standing, 1girl, solo, asymmetrical hair, bob cut, white hair, medium hair, cowboy hat, earrings, shoulder armor, eyeshadow, (red eyes:1.2), cowboy hat, jewelry, lipstick, makeup, mole above mouth, necktie, nose, red lips, red necktie, white shirt, vest, looking at viewer, <lora:ww_ov_ashe_v1_1600:0.7>, outdoors, sunset, detailed background Negative prompt: EasyNegative, extra fingers,fewer fingers, username, artist name, signature, disembodied limb, extra legs, extra arms, extra fingers, bad anatomy, username, signature Steps: 50, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 4022578532, Size: 512x768, Model hash: 0873291ac5, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 1.3, Hires upscaler: Latent, aesthetic_score: 6.8 </pre> </details> # SocialMedia [Twitter](https://twitter.com/Waifu_Wishes) [Reddit](https://www.reddit.com/user/waifu_wishes) [Instagram](https://www.instagram.com/waifuwishes/)