repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
eshwarprasadS/FrozenLake_PPO
eshwarprasadS
null
11
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
348
# **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gaivoronsky/Dogge
Gaivoronsky
null
32
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
818
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Gaivoronsky/Dogge 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LouisHernandez/PandaReach_A2C
LouisHernandez
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachJointsDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
370
# **a2c** Agent playing **PandaReachJointsDense-v2** This is a trained model of a **a2c** agent playing **PandaReachJointsDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sebbock/xtremedistil-l12-h384-uncased-trained-squad
Sebbock
bert
15
10
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
958
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tayfen/poca-SoccerTwos
tayfen
null
20
440
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
840
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: tayfen/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hamdan07/UltraSound-Lung
hamdan07
vit
5
3
transformers
0
image-classification
true
false
false
null
null
['hamdan07/autotrain-data-lungultrasound']
{'emissions': 1.3971381846584354}
0
0
0
0
0
0
0
['autotrain', 'vision', 'image-classification']
false
true
true
394
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3310291874 - CO2 Emissions (in grams): 1.3971 ## Validation Metrics - Loss: 0.001 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000
rlucasz93/FrozenLake-v1
rlucasz93
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
381
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rlucasz93/FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
coreml/coreml-Counterfeit
coreml
null
9
0
null
3
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
4,764
# Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> - `original` version is only compatible with CPU & GPU option.<br> # Note: Some models do not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Note #2: "V2.5-VAE" versions have the included counterfiet v2.5 vae embedded. # Counterfeit: Source(s): [Hugging Face](https://huggingface.co/gsdf) - [CivitAI](https://civitai.com/models/4468/counterfeit-v25) Counterfeit is anime style Stable Diffusion model. DreamBooth + Merge Block Weights + Merge LoRA # Counterfeit-V2.5 e.g. ![sample1](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample01.png) ``` ((masterpiece,best quality)),1girl, solo, animal ears, rabbit, barefoot, knees up, dress, sitting, rabbit ears, short sleeves, looking at viewer, grass, short hair, smile, white hair, puffy sleeves, outdoors, puffy short sleeves, bangs, on ground, full body, animal, white dress, sunlight, brown eyes, dappled sunlight, day, depth of field Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 448x768, Denoising strength: 0.6, Hires upscale: 1.8, Hires upscaler: Latent ``` ![sample2](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample02.png) ``` ((masterpiece,best quality)),1girl, from below, solo, school uniform, serafuku, sky, cloud, black hair, skirt, sailor collar, looking at viewer, short hair, building, bangs, neckerchief, long sleeves, cloudy sky, power lines, shirt, cityscape, pleated skirt, scenery, blunt bangs, city, night, black sailor collar, closed mouth, black skirt, medium hair, school bag , holding bag Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 832x512, Denoising strength: 0.6, Hires upscale: 1.8, Hires upscaler: Latent ``` ![sample3](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample03.png) ``` ((masterpiece,best quality)),2girls, black kimono, black legwear, black ribbon, black hair, cherry blossoms, day, flower, hair bun, hair ribbon, japanese clothes, kimono, long hair, looking at viewer, looking back, multiple girls, obi, outdoors, red eyes, red hair, ribbon, sandals, single hair bun, stairs, standing, statue, torii, tree, white kimono, yellow eyes Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 640x960, Denoising strength: 0.58, Hires upscale: 1.8, Hires upscaler: Latent ``` ![sample4](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample04.png) ``` ((masterpiece,best quality)),1girl, bangs, blue eyes, blurry background, branch, brown hair, dappled sunlight, flower, from side, hair flower, hair ornament, japanese clothes, kimono, leaf, (maple leaf:1.9), obi, outdoors, sash, solo, sunlight, upper body Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 864x512, Denoising strength: 0.58, Hires upscale: 1.8, Hires upscaler: Latent ``` ![sample5](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample05.png) ``` ((masterpiece,best quality))1girl, solo, black skirt, blue eyes, electric guitar, guitar, headphones, holding, holding plectrum, instrument, long hair, , music, one side up, pink hair, playing guiter, pleated skirt, black shirt, indoors Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 864x512, Denoising strength: 0.58, Hires upscale: 1.8, Hires upscaler: Latent ``` ![sample6](https://huggingface.co/gsdf/Counterfeit-V2.5/resolve/main/V2.5_sample/sample06.png) ``` ((masterpiece,best quality)), 1girl, food, fruit, solo, skirt, shop, indoors, jacket, shopping, basket, jewelry, shirt, shelf, short hair, black hair, plaid skirt, black jacket, dutch angle, yellow eyes, looking at viewer Negative prompt: EasyNegative, extra fingers,fewer fingers, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Size: 864x512, Denoising strength: 0.58, Hires upscale: 1.8, Hires upscaler: Latent ```
rlucasz93/taxi-v3
rlucasz93
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
363
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rlucasz93/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_192
gokuls
distilbert
19
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,066
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.7029 - Accuracy: 0.6540 - F1: 0.1254 - Combined Score: 0.3897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.8495 | 1.0 | 29671 | 0.7150 | 0.6333 | 0.0086 | 0.3210 | | 0.7654 | 2.0 | 59342 | 0.7273 | 0.6339 | 0.0121 | 0.3230 | | 0.7305 | 3.0 | 89013 | 0.7241 | 0.6400 | 0.0479 | 0.3440 | | 0.7108 | 4.0 | 118684 | 0.7147 | 0.6381 | 0.0380 | 0.3381 | | 0.698 | 5.0 | 148355 | 0.7192 | 0.6414 | 0.0564 | 0.3489 | | 0.6891 | 6.0 | 178026 | 0.7239 | 0.6357 | 0.0232 | 0.3295 | | 0.6823 | 7.0 | 207697 | 0.7141 | 0.6442 | 0.0723 | 0.3583 | | 0.6771 | 8.0 | 237368 | 0.7112 | 0.6491 | 0.1004 | 0.3748 | | 0.6729 | 9.0 | 267039 | 0.7156 | 0.6494 | 0.1022 | 0.3758 | | 0.6694 | 10.0 | 296710 | 0.7185 | 0.6502 | 0.1053 | 0.3777 | | 0.6664 | 11.0 | 326381 | 0.7129 | 0.6508 | 0.1085 | 0.3796 | | 0.6639 | 12.0 | 356052 | 0.7112 | 0.6508 | 0.1080 | 0.3794 | | 0.6617 | 13.0 | 385723 | 0.7105 | 0.6542 | 0.1260 | 0.3901 | | 0.6597 | 14.0 | 415394 | 0.7029 | 0.6540 | 0.1254 | 0.3897 | | 0.658 | 15.0 | 445065 | 0.7094 | 0.6486 | 0.0964 | 0.3725 | | 0.6564 | 16.0 | 474736 | 0.7072 | 0.6510 | 0.1084 | 0.3797 | | 0.655 | 17.0 | 504407 | 0.7049 | 0.6557 | 0.1333 | 0.3945 | | 0.6537 | 18.0 | 534078 | 0.7051 | 0.6542 | 0.1269 | 0.3905 | | 0.6526 | 19.0 | 563749 | 0.7096 | 0.6601 | 0.1573 | 0.4087 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
HuggingFaceM4/opt-1.3b-fp16-8b-samples
HuggingFaceM4
opt
11
2
transformers
0
text-generation
true
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,345
This model is an outcome of an experiment of training from scratch https://huggingface.co/facebook/opt-1.3b for just 8B tokens in fp16, fp32 and bf16 which would allow comparing the resulting models when they are used to train a multimodal model. But, of course, it can be used for any other purpose, just be aware that these models are very undertrained. Most language models are trained for about 300B tokens, this one was just 8B. The 3 repositories are: - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp16-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp32-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-bf16-8b-samples ## The training get transformers: ``` git clone https://github.com/huggingface/transformers cd transformers ``` Prepare an initialized opt-1.3 model: ``` cat << EOT > prep-fp16.py from transformers import AutoConfig, AutoModel, AutoTokenizer import torch mname = "facebook/opt-1.3b" config = AutoConfig.from_pretrained(mname) model = AutoModel.from_config(config, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(mname) path = "opt-1.3b-fp16" model.save_pretrained(path) tokenizer.save_pretrained(path) EOT ``` Run: ``` python prep-fp16.py ``` Train from scratch on a single 8x 80GB A100 node on `realnewslike` subset of https://huggingface.co/datasets/c4: ``` git clone https://github.com/huggingface/transformers cd transformers PYTHONPATH="src" python -m torch.distributed.run \ --nproc_per_node=8 \ --nnode=1 \ --node_rank=0 \ --master_addr=127.0.0.1 \ --master_port=9901 \ examples/pytorch/language-modeling/run_clm.py \ --fp16 \ --tf32 1 \ --seed 42 \ --dataset_name c4 \ --dataset_config_name realnewslike \ --model_name_or_path opt-1.3b-fp16 \ --per_device_train_batch_size 6 \ --per_device_eval_batch_size 6 \ --gradient_accumulation_steps 2 \ --do_train \ --logging_steps 5 \ --save_steps 1000 \ --eval_steps 1000 \ --weight_decay 0.1 \ --num_train_epochs 1 \ --adam_beta1 0.9 \ --adam_beta2 0.95 \ --learning_rate 0.0002 \ --lr_scheduler_type linear \ --warmup_steps 1000 \ --report_to tensorboard \ --output_dir saved \ --logging_dir tb \ --log_level warning \ --preprocessing_num_workers 32 ``` The training took about 40h.
HuggingFaceM4/opt-1.3b-fp32-8b-samples
HuggingFaceM4
opt
10
2
transformers
0
text-generation
true
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,332
This model is an outcome of an experiment of training from scratch https://huggingface.co/facebook/opt-1.3b for just 8B tokens in fp16, fp32 and bf16 which would allow comparing the resulting models when they are used to train a multimodal model. But, of course, it can be used for any other purpose, just be aware that these models are very undertrained. Most language models are trained for about 300B tokens, this one was just 8B. The 3 repositories are: - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp16-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp32-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-bf16-8b-samples ## The training get transformers: ``` git clone https://github.com/huggingface/transformers cd transformers ``` Prepare an initialized opt-1.3 model: ``` cat << EOT > prep-fp32.py from transformers import AutoConfig, AutoModel, AutoTokenizer import torch mname = "facebook/opt-1.3b" config = AutoConfig.from_pretrained(mname) model = AutoModel.from_config(config, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(mname) path = "opt-1.3b-fp32" model.save_pretrained(path) tokenizer.save_pretrained(path) EOT ``` Run: ``` python prep-fp32.py ``` Train from scratch on a single 8x 80GB A100 node on `realnewslike` subset of https://huggingface.co/datasets/c4: ``` git clone https://github.com/huggingface/transformers cd transformers PYTHONPATH="src" python -m torch.distributed.run \ --nproc_per_node=8 \ --nnode=1 \ --node_rank=0 \ --master_addr=127.0.0.1 \ --master_port=9901 \ examples/pytorch/language-modeling/run_clm.py \ --tf32 1 \ --seed 42 \ --dataset_name c4 \ --dataset_config_name realnewslike \ --model_name_or_path opt-1.3b-fp32 \ --per_device_train_batch_size 6 \ --per_device_eval_batch_size 6 \ --gradient_accumulation_steps 2 \ --do_train \ --logging_steps 5 \ --save_steps 1000 \ --eval_steps 1000 \ --weight_decay 0.1 \ --num_train_epochs 1 \ --adam_beta1 0.9 \ --adam_beta2 0.95 \ --learning_rate 0.0002 \ --lr_scheduler_type linear \ --warmup_steps 1000 \ --report_to tensorboard \ --output_dir saved \ --logging_dir tb \ --log_level warning \ --preprocessing_num_workers 32 ``` The training took about 40h.
HuggingFaceM4/opt-1.3b-bf16-8b-samples
HuggingFaceM4
opt
11
2
transformers
0
text-generation
true
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,345
This model is an outcome of an experiment of training from scratch https://huggingface.co/facebook/opt-1.3b for just 8B tokens in fp16, fp32 and bf16 which would allow comparing the resulting models when they are used to train a multimodal model. But, of course, it can be used for any other purpose, just be aware that these models are very undertrained. Most language models are trained for about 300B tokens, this one was just 8B. The 3 repositories are: - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp16-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp32-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-bf16-8b-samples ## The training get transformers: ``` git clone https://github.com/huggingface/transformers cd transformers ``` Prepare an initialized opt-1.3 model: ``` cat << EOT > prep-bf16.py from transformers import AutoConfig, AutoModel, AutoTokenizer import torch mname = "facebook/opt-1.3b" config = AutoConfig.from_pretrained(mname) model = AutoModel.from_config(config, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(mname) path = "opt-1.3b-bf16" model.save_pretrained(path) tokenizer.save_pretrained(path) EOT ``` Run: ``` python prep-bf16.py ``` Train from scratch on a single 8x 80GB A100 node on `realnewslike` subset of https://huggingface.co/datasets/c4: ``` git clone https://github.com/huggingface/transformers cd transformers PYTHONPATH="src" python -m torch.distributed.run \ --nproc_per_node=8 \ --nnode=1 \ --node_rank=0 \ --master_addr=127.0.0.1 \ --master_port=9901 \ examples/pytorch/language-modeling/run_clm.py \ --bf16 \ --tf32 1 \ --seed 42 \ --dataset_name c4 \ --dataset_config_name realnewslike \ --model_name_or_path opt-1.3b-bf16 \ --per_device_train_batch_size 6 \ --per_device_eval_batch_size 6 \ --gradient_accumulation_steps 2 \ --do_train \ --logging_steps 5 \ --save_steps 1000 \ --eval_steps 1000 \ --weight_decay 0.1 \ --num_train_epochs 1 \ --adam_beta1 0.9 \ --adam_beta2 0.95 \ --learning_rate 0.0002 \ --lr_scheduler_type linear \ --warmup_steps 1000 \ --report_to tensorboard \ --output_dir saved \ --logging_dir tb \ --log_level warning \ --preprocessing_num_workers 32 ``` The training took about 40h.
Rolo/Reinforce-Pixelcopter
Rolo
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
alex-uv2/ddpm-celebahq-finetuned-butterflies-2epochs
alex-uv2
null
6
0
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
346
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('alex-uv2/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
MultiversexPeeps/the_pink_spider
MultiversexPeeps
null
21
7
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
1
1
0
0
0
0
['text-to-image']
false
true
true
1,371
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/MultiversexPeeps/the_pink_spider) ### The Pink Spider Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk duskspider (use that on your prompt)
lucataco/pokemon-lora
lucataco
null
13
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
377
# LoRA text2image fine-tuning - https://huggingface.co/lucataco/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
tthabibe/t5-small-finetuned-xsum
tthabibe
t5
25
2
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,527
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tthabibe/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8595 - Validation Loss: 2.9809 - Train Rouge1: 25.7762 - Train Rouge2: 6.4553 - Train Rougel: 20.7431 - Train Rougelsum: 20.7595 - Train Gen Len: 18.6696 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.002, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.8595 | 2.9809 | 25.7762 | 6.4553 | 20.7431 | 20.7595 | 18.6696 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.10.0 - Datasets 2.9.0 - Tokenizers 0.11.0
ben-yu/Reinforce-Pixelcopter_v2
ben-yu
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mocker/KaBoom
mocker
null
14
0
null
18
null
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['art']
false
true
true
3,883
# In short, - FaceBomb : Covers from anime to 2.5D style. Suited for general use. - recipe : 0.5((0.5(AbyssOrangeMix2_hard) + 0.5(pastelmix-better-vae-fp32)) + 0.5(CounterfeitV25_25)) + 0.5(dalcefoV3Painting_dalcefoV3Painting) - ColorBomb : FaceBomb + vivid color and lighting. A bit picky about prompts. - recipe : dalcefoV3Painting_dalcefoV3Painting + 0.5(ultracolorV4_ultracolorV4 - CounterfeitV25_25) - HyperBomb : Strong anime style w/ highly saturated color. - recipe : 0.5((0.5(AbyssOrangeMix2_hard) + 0.5(pastelmix-better-vae-fp32)) + 0.5(CounterfeitV25_25)) + 0.5(dalcefoV3Painting_dalcefoV3Painting) + 0.3(0.8(pastelMixStylizedAnime_pastelMixPrunedFP16) + 0.2(CounterfeitV25_25) - f222) # Recommended Setting ## VAE - If the color appears dull or washed out, try applying VAE. I used `kl-f8-anime2` - https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/vae/kl-f8-anime2.ckpt ## Sampling method and Hires.fix 1. `DPM++ SDE Karras: 24~32 steps` / `R-ESRGAN 4x+ Anime6B: 2x, 14 steps` / `Denoising strength:0.45 ~ 0.55` 2. `DDIM: 24~32 steps` / `Latent: 2x 14 steps` / `Denoising Strength:0.45 ~ 0.7` - First option yields better result in general. Recommended. - Second option was 1.5 ~ 2 times faster on my system but the output was questionable. Especially for ColorBomb. ## FaceBomb - Positive : `(masterpiece, sidelighting, finely detailed beautiful eyes: 1.2), masterpiece*portrait, realistic, 3d face, lustrous skin, ` - Negative : `(worst quality, low quality:1.4), watermark, logo,` ## ColorBomb - Positive : `(masterpiece, sidelighting, finely detailed beautiful eyes: 1.2), (ultra-detailed, high-resolution: 1.2), beautiful girl, { color } { color } theme, ` - e.g. black gold theme - Negative : `(worst quality, low quality:1.4), watermark, logo,` ## HyperBomb - Positive : `(masterpiece, sidelighting, finely detailed beautiful eyes: 1.2),` - Negative : `(worst quality, low quality:1.4), watermark, logo,` # Example - More pictures in folder. - Below are the ideal/intended outputs. ![Alt text](sample/00184-20230207043613___Custom_FaceBombMix-fp16-no-ema_aad629159b.png) ### FaceBomb (masterpiece, sidelighting, finely detailed beautiful eyes: 1.2), masterpiece*portrait, realistic, 3d face, glowing eyes, shiny hair, lustrous skin, solo, embarassed Negative prompt: (worst quality, low quality:1.4), watermark, logo, Steps: 32, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 3624413002, Size: 512x768, Model hash: aad629159b, Model: __Custom_FaceBombMix-fp16-no-ema, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires steps: 14, Hires upscaler: R-ESRGAN 4x+ Anime6B --- ![Alt text](sample/00217-20230207050723___Custom_ColorBomb-fp16-no-ema_627f50eea8.png) ### ColorBomb ((masterpiece, best quality, ultra-detailed, high-resolution)), solo, beautiful girl, gleaming eye, perfect eye, age 15, black white gold theme, Negative prompt: (worst quality, low quality:1.4), (depth of field, blurry:1.2), (greyscale, monochrome:1.1), 3D face, cropped, lowres, text, jpeg artifacts, signature, watermark, username, blurry, artist name, trademark, watermark, title, (tan, muscular, sd character:1.1), multiple view, Reference sheet, non-linear background, blurred background, bad anatomy, cropped hands, extra digit, fewer digit, Steps: 24, Sampler: DDIM, CFG scale: 7, Seed: 3050494714, Size: 512x768, Model hash: 627f50eea8, Model: __Custom_ColorBomb-fp16-no-ema, Denoising strength: 0.7, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires steps: 14, Hires upscaler: Latent --- ![Alt text](sample/00212-20230207050130___Custom_HyperBombMix-fp16-no-ema_16c6ca45b1.png) ### HyperBomb (masterpiece, sidelighting, finely detailed beautiful eyes: 1.2), Negative prompt: (worst quality, low quality:1.4), watermark, logo, Steps: 32, Sampler: DDIM, CFG scale: 9, Seed: 2411870881, Size: 768x512, Model hash: 16c6ca45b1, Model: __Custom_HyperBombMix-fp16-no-ema, Denoising strength: 0.7, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires steps: 14, Hires upscaler: Latent
kejian/weird_combo
kejian
null
2
0
null
0
null
false
false
false
mit
['en']
['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,207
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/weird_combo This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '38f6dddb98c264d97f85ef4bcdb0ac6c6c88aeeb'}, 'path_or_name': 'tomekkorbak/hungry_saha'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/weird_combo', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 10, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 6294, 'save_strategy': 'no', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1rlo75qw
sgoodfriend/ppo-Acrobot-v1
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Acrobot-v1', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
4,715
# **PPO** Agent playing **Acrobot-v1** This is a trained model of a **PPO** agent playing **Acrobot-v1** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-----------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | Acrobot-v1 | 4 | -72.5 | 7.68115 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/bzab0jtv) | | ppo | Acrobot-v1 | 5 | -71.875 | 9.55167 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/zqord0fg) | | ppo | Acrobot-v1 | 6 | -74.375 | 14.5081 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/y1w2hqhu) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/bzab0jtv ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env Acrobot-v1 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: ent_coef: 0 gae_lambda: 0.94 gamma: 0.99 n_epochs: 4 n_steps: 256 env: Acrobot-v1 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 1000000 seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_128
gokuls
mobilebert
17
1
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,514
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.4602 - Pearson: 0.1596 - Spearmanr: 0.1582 - Combined Score: 0.1589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:|:--------------:| | 0.5444 | 1.0 | 2518 | 1.4965 | 0.1589 | 0.1763 | 0.1676 | | 0.3254 | 2.0 | 5036 | 1.5276 | 0.1502 | 0.1674 | 0.1588 | | 0.2847 | 3.0 | 7554 | 1.5430 | 0.1587 | 0.1680 | 0.1634 | | 0.2376 | 4.0 | 10072 | 1.6906 | 0.1669 | 0.1786 | 0.1728 | | 0.1741 | 5.0 | 12590 | 1.4788 | 0.1662 | 0.1725 | 0.1694 | | 0.1315 | 6.0 | 15108 | 1.5662 | 0.1640 | 0.1700 | 0.1670 | | 0.1055 | 7.0 | 17626 | 1.5100 | 0.1663 | 0.1698 | 0.1680 | | 0.0879 | 8.0 | 20144 | 1.4602 | 0.1596 | 0.1582 | 0.1589 | | 0.0739 | 9.0 | 22662 | 1.6612 | 0.1584 | 0.1621 | 0.1603 | | 0.0632 | 10.0 | 25180 | 1.5825 | 0.1489 | 0.1547 | 0.1518 | | 0.0548 | 11.0 | 27698 | 1.5946 | 0.1421 | 0.1461 | 0.1441 | | 0.0473 | 12.0 | 30216 | 1.6515 | 0.1526 | 0.1548 | 0.1537 | | 0.0415 | 13.0 | 32734 | 1.6544 | 0.1506 | 0.1478 | 0.1492 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
GBaker/clinical-longformer-medqa-usmle-nocontext
GBaker
longformer
13
0
transformers
0
multiple-choice
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,425
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-longformer-medqa-usmle-nocontext This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3962 - Accuracy: 0.2930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 159 | 1.3778 | 0.2962 | | No log | 2.0 | 318 | 1.3731 | 0.2922 | | No log | 3.0 | 477 | 1.3962 | 0.2930 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pryjuli/ppo-LunarLander-v2
pryjuli
null
12
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
zlicastro/zl-ppo-SnowballTarget
zlicastro
null
24
2
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
859
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: zlicastro/zl-ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rlucasz93/atari
rlucasz93
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,220
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rlucasz93 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rlucasz93 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rlucasz93 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dosukebewitch/WhiteMixs
dosukebewitch
null
6
0
null
8
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
1,486
## Examples ![](https://huggingface.co/dosukebewitch/WhiteMixs/resolve/main/01114-2405394752-(masterpiece%2C___.png) ``` (masterpiece, best quality:1.2), 1girl, NP: (worst quality, low quality, medium quality:1.4), (depth of field, blurry:1.2), Steps: 35, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2405394752, Size: 512x832, Model hash: 3dd41b2474, Denoising strength: 0.3, Clip skip: 2, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B ``` ![](https://huggingface.co/dosukebewitch/WhiteMixs/resolve/main/01116-3862355089-(masterpiece____.png) ``` (masterpiece:1.2), 1girl, undertaker, NP: (worst quality, low quality, medium quality:1.4), (depth of field, blurry:1.2), bad anatomy, bad hands, text, missing fingers, extra digit, fewer digits, Steps: 30, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 3862355089, Size: 512x832, Model hash: 3dd41b2474, Denoising strength: 0.3, Clip skip: 2, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B ``` ![](https://huggingface.co/dosukebewitch/WhiteMixs/resolve/main/01117-3862355089-(masterpiece____.png) ``` (masterpiece:1.2), 1girl, off-shoulder sweater, NP: (worst quality, low quality, medium quality:1.4), (depth of field, blurry:1.2), bad anatomy, bad hands, text, missing fingers, extra digit, fewer digits, Steps: 30, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 3862355089, Size: 512x832, Model hash: 3dd41b2474, Denoising strength: 0.3, Clip skip: 2, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B ```
ryanaspen/q-FrozenLake-v1-4x4-noSlippery
ryanaspen
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
398
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ryanaspen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ryanaspen/q-Taxi-v3
ryanaspen
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
365
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ryanaspen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
zlicastro/zl-ppo-PyramidsRND
zlicastro
null
16
2
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
838
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: zlicastro/zl-ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sgoodfriend/ppo-CartPole-v1
sgoodfriend
null
63
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
4,886
# **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | CartPole-v1 | 4 | 500 | 0 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/09gea50g) | | ppo | CartPole-v1 | 5 | 500 | 0 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/p1m90ddv) | | ppo | CartPole-v1 | 6 | 500 | 0 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/vg3gskmq) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/vg3gskmq ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env CartPole-v1 --seed 6 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.2 clip_range_decay: linear ent_coef: 0 gae_lambda: 0.8 gamma: 0.98 learning_rate: 0.001 learning_rate_decay: linear n_epochs: 20 n_steps: 32 env: CartPole-v1 env_hyperparams: n_envs: 8 eval_params: n_episodes: 10 save_best: true step_freq: 25000 n_timesteps: 100000 seed: 6 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
hectorjelly/Mespil_Rangers
hectorjelly
null
24
423
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hectorjelly/Mespil_Rangers 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sgoodfriend/ppo-QbertNoFrameskip-v4
sgoodfriend
null
63
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['QbertNoFrameskip-v4', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,061
# **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:--------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | QbertNoFrameskip-v4 | 4 | 15671.9 | 2059.52 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/tnh81mhn) | | ppo | QbertNoFrameskip-v4 | 5 | 8981.25 | 3948.57 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/rj8cs0lf) | | ppo | QbertNoFrameskip-v4 | 6 | 15210.9 | 834.04 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/5309kt00) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/5309kt00 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env QbertNoFrameskip-v4 --seed 6 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: QbertNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu seed: 6 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-SpaceInvadersNoFrameskip-v4
sgoodfriend
null
63
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,133
# **PPO** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:----------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | SpaceInvadersNoFrameskip-v4 | 4 | 1117.19 | 391.34 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/4t397ws6) | | ppo | SpaceInvadersNoFrameskip-v4 | 5 | 917.5 | 415 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/782d9sj0) | | ppo | SpaceInvadersNoFrameskip-v4 | 6 | 1012.5 | 441.51 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/x5ea6llt) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/4t397ws6 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: SpaceInvadersNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-BreakoutNoFrameskip-v4
sgoodfriend
null
63
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['BreakoutNoFrameskip-v4', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,088
# **PPO** Agent playing **BreakoutNoFrameskip-v4** This is a trained model of a **PPO** agent playing **BreakoutNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-----------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | BreakoutNoFrameskip-v4 | 4 | 379.625 | 64.1511 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/yfu2ozl6) | | ppo | BreakoutNoFrameskip-v4 | 5 | 378.312 | 89.5145 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/rmweqidh) | | ppo | BreakoutNoFrameskip-v4 | 6 | 391.188 | 31.2734 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/a2z0gt43) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/a2z0gt43 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env BreakoutNoFrameskip-v4 --seed 6 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: BreakoutNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu seed: 6 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-HopperBulletEnv-v0
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['HopperBulletEnv-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,043
# **PPO** Agent playing **HopperBulletEnv-v0** This is a trained model of a **PPO** agent playing **HopperBulletEnv-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | HopperBulletEnv-v0 | 4 | 2669.16 | 94.015 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ifzrbo4m) | | ppo | HopperBulletEnv-v0 | 5 | 2410.88 | 26.3848 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/1omw4ne1) | | ppo | HopperBulletEnv-v0 | 6 | 2266.49 | 8.16531 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/zzgv6lmy) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/ifzrbo4m ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env HopperBulletEnv-v0 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.4 clip_range_decay: linear ent_coef: 0 gae_lambda: 0.9 gamma: 0.99 learning_rate: 3.0e-05 max_grad_norm: 0.5 n_epochs: 20 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: HopperBulletEnv-v0 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 2000000 policy_hyperparams: activation_fn: relu pi_hidden_sizes: - 256 - 256 v_hidden_sizes: - 256 - 256 seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-Walker2DBulletEnv-v0
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Walker2DBulletEnv-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,061
# **PPO** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:---------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | Walker2DBulletEnv-v0 | 4 | 2158.99 | 19.2602 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/wlnz70hu) | | ppo | Walker2DBulletEnv-v0 | 5 | 942.96 | 214.811 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/yp7nqxt1) | | ppo | Walker2DBulletEnv-v0 | 6 | 1972.53 | 5.25752 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/nq3mlpmz) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/wlnz70hu ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env Walker2DBulletEnv-v0 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.4 clip_range_decay: linear ent_coef: 0 gae_lambda: 0.9 gamma: 0.99 learning_rate: 3.0e-05 max_grad_norm: 0.5 n_epochs: 20 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: Walker2DBulletEnv-v0 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 2000000 policy_hyperparams: activation_fn: relu pi_hidden_sizes: - 256 - 256 v_hidden_sizes: - 256 - 256 seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-AntBulletEnv-v0
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
4,989
# **PPO** Agent playing **AntBulletEnv-v0** This is a trained model of a **PPO** agent playing **AntBulletEnv-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:----------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | AntBulletEnv-v0 | 4 | 2669.98 | 65.5195 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/vemwk5yn) | | ppo | AntBulletEnv-v0 | 5 | 884.068 | 1.61404 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/iu48fxl2) | | ppo | AntBulletEnv-v0 | 6 | 2487.6 | 47.859 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/af73b738) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/vemwk5yn ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env AntBulletEnv-v0 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.4 ent_coef: 0 gae_lambda: 0.9 gamma: 0.99 learning_rate: 3.0e-05 max_grad_norm: 0.5 n_epochs: 20 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: AntBulletEnv-v0 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 2000000 policy_hyperparams: activation_fn: relu pi_hidden_sizes: - 256 - 256 v_hidden_sizes: - 256 - 256 seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-HalfCheetahBulletEnv-v0
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['HalfCheetahBulletEnv-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,061
# **PPO** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **PPO** agent playing **HalfCheetahBulletEnv-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | HalfCheetahBulletEnv-v0 | 4 | 3258.99 | 24.787 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/59kxlygx) | | ppo | HalfCheetahBulletEnv-v0 | 5 | 2331.99 | 12.5512 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/bnwhwv6i) | | ppo | HalfCheetahBulletEnv-v0 | 6 | 3012.23 | 40.0919 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/0ikul7ms) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/59kxlygx ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env HalfCheetahBulletEnv-v0 --seed 4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.4 ent_coef: 0 gae_lambda: 0.9 gamma: 0.99 learning_rate: 3.0e-05 max_grad_norm: 0.5 n_epochs: 20 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: HalfCheetahBulletEnv-v0 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 2000000 policy_hyperparams: activation_fn: relu pi_hidden_sizes: - 256 - 256 v_hidden_sizes: - 256 - 256 seed: 4 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-PongNoFrameskip-v4
sgoodfriend
null
63
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PongNoFrameskip-v4', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,052
# **PPO** Agent playing **PongNoFrameskip-v4** This is a trained model of a **PPO** agent playing **PongNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | PongNoFrameskip-v4 | 4 | 20.875 | 0.330719 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/t7vsbb85) | | ppo | PongNoFrameskip-v4 | 5 | 20.9375 | 0.242061 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/u5p2urji) | | ppo | PongNoFrameskip-v4 | 6 | 18.9375 | 3.63092 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/gp689pd4) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/u5p2urji ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env PongNoFrameskip-v4 --seed 5 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: PongNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu seed: 5 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-MountainCarContinuous-v0
sgoodfriend
null
68
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['MountainCarContinuous-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
4,983
# **PPO** Agent playing **MountainCarContinuous-v0** This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/448odm37. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | MountainCarContinuous-v0 | 1 | 90.822 | 27.475 | 12 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/p26x7fha) | | ppo | MountainCarContinuous-v0 | 2 | 98.7517 | 0.140611 | 12 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/chyhmond) | | ppo | MountainCarContinuous-v0 | 3 | 82.5505 | 37.0988 | 12 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/jrg9oy85) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/chyhmond ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env MountainCarContinuous-v0 --seed 2 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/448odm37 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 ent_coef: 0.01 ent_coef_decay: linear gae_lambda: 0.9 learning_rate: 7.77e-05 max_grad_norm: 5 n_epochs: 10 n_steps: 512 vf_coef: 0.19 env: MountainCarContinuous-v0 env_hyperparams: n_envs: 4 normalize: true eval_params: step_freq: 5000 n_timesteps: 100000 seed: 2 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_fbc943f - host_150-230-44-105 ```
sgoodfriend/ppo-MountainCar-v0
sgoodfriend
null
64
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['MountainCar-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
4,750
# **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/6p2sjqtn. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:---------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | MountainCar-v0 | 4 | -113.75 | 1.47902 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/8yurshm7) | | ppo | MountainCar-v0 | 5 | -111.688 | 10.4146 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/0s0kikzh) | | ppo | MountainCar-v0 | 6 | -112.938 | 1.51941 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/jvwz1vhg) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/jvwz1vhg ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [5598ebc](https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env MountainCar-v0 --seed 6 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/6p2sjqtn were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: ent_coef: 0 gae_lambda: 0.98 gamma: 0.99 n_epochs: 4 n_steps: 16 env: MountainCar-v0 env_hyperparams: n_envs: 16 normalize: true n_timesteps: 1000000 seed: 6 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_5598ebc - host_192-9-145-26 ```
sgoodfriend/ppo-CarRacing-v0
sgoodfriend
null
66
0
rl-algo-impls
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CarRacing-v0', 'ppo', 'deep-reinforcement-learning', 'reinforcement-learning']
true
true
true
5,071
# **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/448odm37. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | CarRacing-v0 | 1 | 865.725 | 58.1454 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/8vyb0q44) | | ppo | CarRacing-v0 | 2 | 693.464 | 236.712 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/a3ld38qf) | | ppo | CarRacing-v0 | 3 | 815.26 | 141.502 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/zah43or2) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/8vyb0q44 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [fbc943f](https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env CarRacing-v0 --seed 1 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/448odm37 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.2 ent_coef: 0 gae_lambda: 0.95 gamma: 0.99 learning_rate: 0.0001 learning_rate_decay: linear max_grad_norm: 0.5 n_epochs: 10 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: CarRacing-v0 env_hyperparams: frame_stack: 4 n_envs: 8 n_timesteps: 4000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 hidden_sizes: - 256 init_layers_orthogonal: false log_std_init: -2 share_features_extractor: false use_sde: true seed: 1 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_fbc943f - host_150-230-44-105 ```
jpopham91/poca-SoccerTwos
jpopham91
null
20
419
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
843
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jpopham91/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
zlicastro/zl-a2c-AntBulletEnv-v0
zlicastro
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HuyenNguyen/TTS11991
HuyenNguyen
whisper
16
22
transformers
0
automatic-speech-recognition
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,252
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TTS11991 This model is a fine-tuned version of [HuyenNguyen/TTS456789](https://huggingface.co/HuyenNguyen/TTS456789) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0819 - eval_wer: 4.5933 - eval_runtime: 2572.2826 - eval_samples_per_second: 0.778 - eval_steps_per_second: 0.049 - epoch: 3.25 - step: 1500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 26 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 104 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
JessicaHsu/ppo-Huggy
JessicaHsu
null
32
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
821
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: JessicaHsu/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
robertcowher/ppo-LunarLander-v2-TEST
robertcowher
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
juanmi1234/Reinforce-CartPole8
juanmi1234
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Victarry/poca-SoccerTwos-v2
Victarry
null
19
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Victarry/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sayakpaul/vit-base-patch16-224-in21k-finetuned-lora-food101
sayakpaul
vit
19
5
transformers
0
image-classification
true
false
false
apache-2.0
null
['food101']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,611
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5069 | 0.896 | | 2.1627 | 2.0 | 18 | 0.1891 | 0.946 | | 0.3451 | 3.0 | 27 | 0.1448 | 0.96 | | 0.2116 | 4.0 | 36 | 0.1509 | 0.958 | | 0.1711 | 5.0 | 45 | 0.1498 | 0.958 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
misaki1301/Maka-Fujiki-Dreambooth
misaki1301
null
4
0
null
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['art']
false
true
true
2,656
# Maka Fujiki Dreambooth + AnythingV4 This is a model trained with Dreambooth with TheLastBen and Anything V4 from andite (https://huggingface.co/andite/anything-v4.0) The model was trained based on the artist [Oryou](https://www.pixiv.net/en/users/24392) popular character Maka Fujiki from the manga Boku no Kanojo Sensei. The current model has been tuned with a learning rate of 2.0e-6 on 63 images collected from Danbooru and Pixiv from artist. It supports Danbooru tags. ## Usage/Examples These are some results you can get with the model. e.g. seed: 903184092 prompts: maka, outdoors, field, hat_flower, necklace, white_dress, sunflower, lying, on_grass, cleavage ugly, tiling, poorly drawn hands, poorly drawn arms, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, bad anatomy, watermark, signature, low contrast, bad art, beginner, amateur, distorted face, underage, distorted tights, hands on floor ![](https://cdn.discordapp.com/attachments/1033800281756016750/1071723966441476156/00125-903184092-maka20outdoors20field20hat_flower20necklace20white_dress20sunflower20lying20on_grass20cleavage.png "Maka in sunflower field") ![](https://cdn.discordapp.com/attachments/1033800281756016750/1071742332359159808/00210-3944612058-maka20lens_flare20amusement_park20sitting20indoors20ferris_wheel20window20railing20snow20winter_clothes20black_coat20black_panty.png) ![](https://cdn.discordapp.com/attachments/1033800281756016750/1072247730807767110/00240-3356028662-maka20solo20blush20steam20particles20looking_at_viewer20outdoors20onsen2020naked_towel20cleavage20partially20submerged20arm_suppor.png) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full [license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license). ## Thanks to - TheLastBen for his fastDreamboothTraining - Andite for his mix of models - Zerocomes for testing the model generating examples
thanat/bert-finetuned-ner
thanat
bert
8
15
transformers
0
token-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,473
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [CoNLL-2003](https://huggingface.co/datasets/conll2003) dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0280 - Validation Loss: 0.0513 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1691 | 0.0630 | 0 | | 0.0484 | 0.0529 | 1 | | 0.0280 | 0.0513 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
LowGI/STT_Model_9
LowGI
wav2vec2
16
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,123
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2506 - Wer: 0.1718 ## Model description More information needed ## Intended uses & limitations More information needed ## Dataset info - Name: LJSpeech - Source: https://www.kaggle.com/datasets/mathurinache/the-lj-speech-dataset - Total audios (in Google Drive): 1420 - Total transcripts (in Google Drive): 13100 - No. of rows selected: 500 - Train-test ratio: 70:30 - No. of training set: 350 - No. of testing set: 150 ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 4.55 | 200 | 2.9217 | 0.9846 | | No log | 9.09 | 400 | 1.2293 | 0.7093 | | 2.3111 | 13.64 | 600 | 0.3885 | 0.3602 | | 2.3111 | 18.18 | 800 | 0.3123 | 0.3097 | | 0.2471 | 22.73 | 1000 | 0.3094 | 0.2737 | | 0.2471 | 27.27 | 1200 | 0.3007 | 0.2537 | | 0.2471 | 31.82 | 1400 | 0.2650 | 0.2008 | | 0.0853 | 36.36 | 1600 | 0.2599 | 0.1884 | | 0.0853 | 40.91 | 1800 | 0.2462 | 0.1734 | | 0.0344 | 45.45 | 2000 | 0.2663 | 0.1730 | | 0.0344 | 50.0 | 2200 | 0.2506 | 0.1718 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
zlicastro/zl-a2c-PandaReachDense-v2
zlicastro
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tune-A-Video-library/redshift-man-skiing
Tune-A-Video-library
null
17
0
diffusers
2
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['tune-a-video', 'text-to-video', 'diffusers']
false
true
true
1,575
# Tune-A-Video - Redshift ## Model Description - Base model: [nitrosocke/redshift-diffusion](https://huggingface.co/nitrosocke/redshift-diffusion) - Training prompt: a man is skiing. ![sample-train](samples/train.gif) ## Samples ![sample-500](samples/sample-500.gif) Test prompt: (redshift style) [spider man/black widow/batman/hulk] is skiing. ## Usage Clone the [github repo](https://github.com/showlab/Tune-A-Video) ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "nitrosocke/redshift-diffusion" unet_model_path = "Tune-A-Video-library/redshift-man-skiing" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "(redshift style) spider man is skiing" video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
AdonaiHS/q-FrozenLake-v1-4x4-noSlippery
AdonaiHS
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
397
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AdonaiHS/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
njrosati/dqn-SpaceInvadersNoFrameskip-v4
njrosati
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,216
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga njrosati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga njrosati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga njrosati ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AdonaiHS/Taxi-v3-Unit2-part2
AdonaiHS
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
374
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AdonaiHS/Taxi-v3-Unit2-part2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Pearson/dqn-SpaceInvadersNoFrameskip-v4
Pearson
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,214
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Pearson -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Pearson -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Pearson ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AdonaiHS/2-Taxi-v3-Unit2-part2
AdonaiHS
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
376
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AdonaiHS/2-Taxi-v3-Unit2-part2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
maskip/pretrained-m-bert-1
maskip
bert
8
15
transformers
0
null
false
true
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
5,165
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-m-bert-1 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.3662 - Validation Loss: 14.3784 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2573 | 10.9396 | 0 | | 7.8912 | 10.9597 | 1 | | 6.8354 | 11.2198 | 2 | | 6.3659 | 11.5487 | 3 | | 6.0787 | 11.1321 | 4 | | 5.8528 | 11.1589 | 5 | | 5.7689 | 11.3702 | 6 | | 5.3858 | 11.8196 | 7 | | 5.1194 | 12.0623 | 8 | | 5.2013 | 11.8812 | 9 | | 5.0820 | 11.7143 | 10 | | 4.9735 | 12.6034 | 11 | | 5.0704 | 11.9522 | 12 | | 5.0098 | 12.1079 | 13 | | 5.0869 | 12.2301 | 14 | | 4.8156 | 12.2691 | 15 | | 4.8344 | 12.6859 | 16 | | 4.8416 | 12.5824 | 17 | | 4.5567 | 13.1279 | 18 | | 4.6677 | 12.5301 | 19 | | 4.7248 | 12.5819 | 20 | | 4.5435 | 12.5466 | 21 | | 4.6501 | 12.4965 | 22 | | 4.7348 | 12.7858 | 23 | | 4.4649 | 12.5727 | 24 | | 4.3665 | 12.2411 | 25 | | 4.6434 | 12.6519 | 26 | | 4.4239 | 13.6048 | 27 | | 4.3893 | 13.3377 | 28 | | 4.6514 | 12.3628 | 29 | | 4.4743 | 12.6613 | 30 | | 4.2777 | 12.3419 | 31 | | 4.5667 | 13.5223 | 32 | | 4.0886 | 13.2224 | 33 | | 4.3032 | 13.2787 | 34 | | 4.3670 | 13.1041 | 35 | | 4.1487 | 12.6903 | 36 | | 4.3331 | 13.4880 | 37 | | 4.2907 | 13.2240 | 38 | | 4.3252 | 12.6439 | 39 | | 4.1121 | 13.5487 | 40 | | 4.3273 | 14.4200 | 41 | | 4.2030 | 14.4691 | 42 | | 4.1795 | 13.1436 | 43 | | 4.0424 | 14.0504 | 44 | | 4.0158 | 12.5468 | 45 | | 4.0108 | 13.6426 | 46 | | 3.9515 | 13.4965 | 47 | | 3.9743 | 13.2319 | 48 | | 4.1075 | 13.2999 | 49 | | 4.0501 | 12.7201 | 50 | | 3.8606 | 13.1704 | 51 | | 3.8056 | 13.7504 | 52 | | 3.7682 | 13.5004 | 53 | | 4.0676 | 13.6444 | 54 | | 4.0957 | 13.4160 | 55 | | 4.9373 | 14.2742 | 56 | | 4.5111 | 13.9469 | 57 | | 4.1604 | 13.4773 | 58 | | 3.9956 | 12.9802 | 59 | | 4.1232 | 14.1715 | 60 | | 3.9857 | 12.2465 | 61 | | 4.1082 | 13.8947 | 62 | | 3.8659 | 13.6370 | 63 | | 3.8396 | 13.5898 | 64 | | 3.8220 | 13.2523 | 65 | | 3.6864 | 13.9323 | 66 | | 3.7541 | 13.6081 | 67 | | 3.8218 | 12.9945 | 68 | | 3.7251 | 13.7039 | 69 | | 3.5017 | 12.9811 | 70 | | 3.5342 | 12.5702 | 71 | | 3.9520 | 12.4899 | 72 | | 3.7465 | 13.2309 | 73 | | 3.6003 | 14.0988 | 74 | | 3.7954 | 13.0785 | 75 | | 3.5654 | 13.7277 | 76 | | 3.5591 | 13.7914 | 77 | | 3.5355 | 13.6749 | 78 | | 3.5903 | 13.6141 | 79 | | 3.5371 | 13.4166 | 80 | | 3.4502 | 12.6523 | 81 | | 3.3372 | 13.8609 | 82 | | 3.3071 | 14.3441 | 83 | | 3.6932 | 13.9718 | 84 | | 3.5619 | 13.3749 | 85 | | 3.5016 | 13.1467 | 86 | | 3.4279 | 14.0124 | 87 | | 3.3140 | 13.6681 | 88 | | 3.3575 | 12.9451 | 89 | | 3.2268 | 12.4299 | 90 | | 3.2001 | 14.5106 | 91 | | 3.1390 | 13.9366 | 92 | | 3.1230 | 13.6865 | 93 | | 3.2337 | 13.5835 | 94 | | 3.1397 | 13.8130 | 95 | | 3.2095 | 13.8431 | 96 | | 2.9553 | 14.5159 | 97 | | 3.3319 | 12.9168 | 98 | | 3.3662 | 14.3784 | 99 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
juanmi1234/Reinforce-PixelCopter
juanmi1234
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aioe/AB4.5_AC0.2
aioe
null
4
0
null
14
text-to-image
false
false
false
other
['en', 'ja']
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image', 'art']
true
true
true
2,068
<!-- This model card has been generated automatically according to the information. You should probably proofread and complete it, then remove this comment. --> <br> # 【概要(Outline)】 コンセプトは<strong>「手や指の描写が上手い3Dイラスト」</strong>です。 <br> AIイラストは手や指の描写が下手なことが多く、せっかく良い構図のイラストが生成されても、手や指のせいで没にしなければならない時が多くありました。 <br> その問題を解消するため、私は現存するモデルを大量に試し、手や指の描写が上手いモデルをマージすることで、完成度の高いモデルを構築することに成功しました。 <br> <br> The concept is <strong>"3D illustration models that are good at drawing hands and fingers."</strong> <br> I think AI illustration is poor at drawing hands and fingers, so I have wasted lots of time because of poor hands and fingers. <br> I have tried to lots of models to solve the problem. As a result, I made high level models by merged models of good hands and fingers. <br> <br> # 【モデル紹介とマージ素材(Models introduction and merged materials)】 <strong>*■AB4.5-v1.0*</strong> <br> ・anything-v4.5 <br> ・Basil_mix <br> →リアルな質感の人物描写が特徴的です。 <br> (The feature is realistic texture character.) <br> <br> <strong>*■AC0.2-v1.0*</strong> <br> ・anything-v4.5 <br> ・Counterfeit-V2.5 <br> →服装と背景の繊細な描き込みが特徴的です。 <br> (The feature is delicate drawing clothes and background.) <br> <br> # 【推奨設定(Recommended settings)】 ・Steps:30 <br> ・CFG Scale:13 <br> ・Clip Skip:2 <br> ・Negative:(worst quality, low quality:1.2), <br> <br> # 【作例(Examples)】 Positive:one girl, <br> <br> Negative:(worst quality, low quality:1.2), <br> <br> <strong>*■AB4.5-v1.0*</strong> <img src="https://imgur.com/u0mjPNX.png" width="1152" height="768"> <br> <strong>*■AC0.2-v1.0*</strong> <img src="https://imgur.com/nwzGYK3.png" width="1152" height="768"> <br> <br> Positive:(one girl at the center:1.2), (masterpiece, best quality), (solo:1.3), the girl wearing (casual clothes), the background is city, building, shops, windows, (best quality), <br> <br> Negative:(worst quality, low quality:1.2), <br> <br> <strong>*■AB4.5-v1.0*</strong> <img src="https://imgur.com/AHCcfzS.png" width="1152" height="768"> <br> <strong>*■AC0.2-v1.0*</strong> <img src="https://imgur.com/WFVqD2q.png" width="1152" height="768">
hectorjelly/Mespil_Rangers2
hectorjelly
null
25
409
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hectorjelly/Mespil_Rangers2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
underactuated/opt-350m_rl1_v5
underactuated
opt
12
6
transformers
0
text-generation
true
false
false
other
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
911
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m_rl1_v5 This model is a fine-tuned version of [underactuated/opt-350m_mle_v3](https://huggingface.co/underactuated/opt-350m_mle_v3) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.13.2
HealthTeam/mt5-small-finetuned-MultiHead-230207
HealthTeam
mt5
13
46
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,337
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-MultiHead-230207 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2185 - Bleu: 14.3905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 3.0155 | 1.0 | 67222 | 2.3749 | 11.2986 | | 2.7777 | 2.0 | 134444 | 2.2518 | 13.5854 | | 2.7531 | 3.0 | 201666 | 2.2185 | 14.3905 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
polandball/GPT-Polen
polandball
gpt2
12
5
transformers
0
conversational
true
false
false
null
['en']
null
null
0
0
0
0
0
0
0
['conversational']
false
true
true
331
![Polandball](https://styles.redditmedia.com/t5_2sih3/styles/communityIcon_lhvob6bm4t5a1.png) ### Hellos, I ams of Polenball! So you of probablys randomly findings this, and clicked on it. ## **Random things you can do while you're here.** **Trade with me.** **Make fun of me because i cant into space** ~~ **Invade me.** ~~
pfunk/Pong-v4-DQPN_p10_e0.10-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,989
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10_e0.10 --start-policy-f 10000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p10_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
burnerbaby/tensorrt-sds
burnerbaby
null
7
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['TensorRT', 'Text2Image', 'Stable Diffusion', 'Image2Image', 'SDA']
false
true
true
742
# burnerbaby/sds converted into TensorRT <img src="https://i.imgur.com/fQS926g.png"></a> Model converted from diffusers into TensorRT for accelerated inference up to 4x faster. originally from: https://github.com/chavinlo/sda-node This model was automatically converted by SDA-node Compilation configuration: ```json { "_class_name": "StableDiffusionAccelerated_Base", "_sda_version": "0.1.2", "_trt_version": "8.5.3", "_cuda_version": "none", "_cudnn_version": "none", "_onnx2trt_version": "8.5.3", "unet": { "precision": "fp16", "path": "engine/unet.plan" }, "clip": { "path": "engine/clip.plan" }, "de_vae": { "path": "engine/de_vae.plan" } } ```
amoselberg/dqn-SpaceInvadersNoFrameskip-v4
amoselberg
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,223
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga amoselberg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga amoselberg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga amoselberg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ernie-ai/document-language-class-ar-en-zh
ernie-ai
vit
10
2
transformers
0
image-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['image-classification', 'pytorch', 'huggingpics']
false
true
true
660
# document-language-class-ar-en-zh Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### abstract art lines ![abstract art lines](images/abstract_art_lines.jpg) #### arabic document ![arabic document](images/arabic_document.jpg) #### chinese document ![chinese document](images/chinese_document.jpg) #### english document ![english document](images/english_document.jpg)
gayatrividhate/sentiment_analysis_SetFit
gayatrividhate
albert
13
313
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,416
# sentiment_analysis_SetFit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("sentiment_analysis_SetFit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
achang/donut-plotqa-trained
achang
vision-encoder-decoder
29
1
transformers
0
null
true
false
false
mit
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
985
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-plotqa-trained This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
CoreyMorris/poca-SoccerTwos-football-is-life
CoreyMorris
null
20
405
ml-agents
1
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
862
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: CoreyMorris/poca-SoccerTwos-football-is-life 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mio/tokiwa_midori
mio
null
29
148
espnet
1
text-to-speech
false
false
false
cc-by-4.0
['jp']
null
null
0
0
0
0
0
0
0
['espnet', 'audio', 'text-to-speech']
false
true
true
10,528
## ESPnet2 TTS model ### `mio/tokiwa_midori` ![midori](https://huggingface.co/mio/tokiwa_midori/resolve/main/t0119cdd628bde860f1.jpg) This model was trained by mio using amadeus recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 0232f540a98ece921477b961db8ae019211da9af pip install -e . cd egs2/amadeus/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model mio/tokiwa_midori ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/finetune_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_midori_vits_finetune_from_jsut_32_sentence ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: false create_graph_in_tensorboard: false use_wandb: true wandb_project: midori wandb_id: null wandb_entity: null wandb_name: vits_finetune_midori_from_jsut wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape valid_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/22k/raw/train/text - text - text - - dump/22k/raw/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/22k/raw/dev/text - text - text - - dump/22k/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - '1' - '2' - '0' - '3' - '4' - '-1' - '5' - a - o - '-2' - i - '-3' - u - e - k - n - t - '6' - r - '-4' - s - N - m - pau - '7' - sh - d - g - w - '8' - U - '-5' - I - cl - h - y - b - '9' - j - ts - ch - '-6' - z - p - '-7' - f - ky - ry - '-8' - gy - '-9' - hy - ny - '-10' - by - my - '-11' - '-12' - '-13' - py - '-14' - '-15' - v - '10' - '-16' - '-17' - '11' - '-21' - '-20' - '12' - '-19' - '13' - '-18' - '14' - dy - '15' - ty - '-22' - '16' - '18' - '19' - '17' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: jaconv g2p: pyopenjtalk_accent_with_pause feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 85 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
shaoyu17/my_awesome_model
shaoyu17
distilbert
56
49
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,527
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8597 - F1: 0.5171 - Precision: 0.5205 - Recall: 0.52 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.6451 | 1.0 | 752 | 0.7708 | 0.4699 | 0.5047 | 0.5035 | 0.5035 | | 0.5828 | 2.0 | 1504 | 0.7702 | 0.5101 | 0.5106 | 0.5106 | 0.5106 | | 0.5139 | 3.0 | 2256 | 0.8597 | 0.5171 | 0.5205 | 0.52 | 0.52 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p10_e0.25-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,990
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10_e0.25.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10_e0.25]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10_e0.25 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.25-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.25-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.25-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10_e0.25 --start-policy-f 10000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.25, 'exp_name': 'DQPN_p10_e0.25', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Someman/gpt2-nepali
Someman
gpt2
14
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,247
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-nepali This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9488 | 0.68 | 5000 | 1.5058 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384
timm
null
4
40
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k', 'laion-2b']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
24,605
# Model card for convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384 A ConvNeXt image classification model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION and fine-tuned on ImageNet-1k in `timm` by Ross Wightman. Please see related OpenCLIP model cards for more details on pretrain: * https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg * https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg * https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 200.1 - GMACs: 101.1 - Activations (M): 126.7 - Image size: 384 x 384 - **Papers:** - LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402 - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020 - **Original:** https://github.com/mlfoundations/open_clip - **Pretrain Dataset:** LAION-2B - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for convnext_base: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384)|87.870|98.452|384 |200.13 |101.11 |126.74 |197.92 |256 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | ### By Throughput (samples / sec) All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384)|87.870 |98.452 |384 |200.13 |101.11 |126.74 |197.92 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | ## Citation ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ```
Sygil/Sygil-Muse
Sygil
null
6
0
null
6
text-to-image
false
false
false
openrail
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'sygil-devs', 'Muse', 'Sygil-Muse']
false
true
true
2,569
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is based in [Muse](https://muse-model.github.io/) and trained using [`lucidrains/muse-maskgit-pytorch`](https://github.com/lucidrains/muse-maskgit-pytorch). # Model Details This model is a new model trained from scratch based on [Muse](https://muse-model.github.io/), trained on the [Imaginary Network Expanded Dataset](https://github.com/Sygil-Dev/INE-dataset), with the big advantage of allowing the use of multiple namespaces (labeled tags) to control various parts of the final generation. The use of namespaces (eg. “species:seal” or “studio:dc”) stops the model from misinterpreting a seal as the singer Seal, or DC Comics as Washington DC. Note: As of right now, only the first VAE has been trained, we still need to train the Base and Super Resolution VAE for the model to be usable. If you find our work useful, please consider supporting us on [OpenCollective](https://opencollective.com/sygil_dev)! This model is still in its infancy and it's meant to be constantly updated and trained with more and more data as time goes by, so feel free to give us feedback on our [Discord Server](https://discord.gg/UjXFsf6mTu) or on the discussions section on huggingface. We plan to improve it with more, better tags in the future, so any help is always welcome. [![Join the Discord Server](https://badgen.net/discord/members/fTtcufxyHQ?icon=discord)](https://discord.gg/UjXFsf6mTu) ## Available Checkpoints: - #### Stable: - No stable version available right now. - #### Beta: - [vae.612000.pt](https://huggingface.co/Sygil/Sygil-Muse/blob/main/vae.612000.pt): Trained from scratch for 612K steps Note: Checkpoints under the Beta section are updated daily or at least 3-4 times a week. This is usually the equivalent of 1-2 training session, this is done until they are stable enough to be moved into a proper release, usually every 1 or 2 weeks. While the beta checkpoints can be used as they are only the latest version is kept on the repo and the older checkpoints are removed when a new one is uploaded to keep the repo clean. ## Training **Training Data**: The model was trained on the following dataset: - [Imaginary Network Expanded Dataset](https://github.com/Sygil-Dev/INE-dataset) dataset. **Hardware and others** - **Hardware:** 1 x Nvidia RTX 3050 8GB GPU - **Hours Trained:** NaN. - **Gradient Accumulations**: 1 - **Batch:** 1 - **Learning Rate:** 3e-4 - **Resolution**: 512 pixels - **Total Training Steps:** 612,000
sayakpaul/segformer-b0-scene-parse-150-lora
sayakpaul
segformer
24
0
transformers
0
null
true
false
false
other
null
['scene_parse_150']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
975
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lora This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Dipl0/pepe-diffuser
Dipl0
null
24
404
diffusers
3
text-to-image
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['pepe']
false
true
true
435
# How to use ***To prompt you can use the following code*** ```python from diffusers import StableDiffusionPipeline model_path = "Dipl0/pepe-diffuser" pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to("cuda") prompt = "pepe surfing on the moon" image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save(prompt.replace(" ","_") + ".png") ```
Sandy317/distilbert-base-uncased-finetuned-squad
Sandy317
distilbert
12
7
transformers
0
question-answering
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,262
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2926 | 1.0 | 2767 | 1.1970 | | 1.0128 | 2.0 | 5534 | 1.1330 | | 0.8562 | 3.0 | 8301 | 1.1427 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.9.0+cu111 - Tokenizers 0.13.2
lucataco/pokemon-lora-small
lucataco
null
12
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
364
# LoRA text2image fine-tuning - https://huggingface.co/lucataco/pokemon-lora-supersmall These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
antoooooine/poca-SoccerTwos-v2
antoooooine
null
24
399
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
848
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: antoooooine/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
xpmir/monobert
xpmir
null
6
2
xpmir
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,110
# monoBERT trained on MS-Marco Passage Re-ranking with BERT (Rodrigo Nogueira, Kyunghyun Cho). 2019. https://arxiv.org/abs/1901.04085 ## Using the model) The model can be loaded with [experimaestro IR](https://experimaestro-ir.readthedocs.io/en/latest/) ```py from xpmir.models import AutoModel # Model that can be re-used in experiments model = AutoModel.load_from_hf_hub("xpmir/monobert") # Use this if you want to actually use the model model = AutoModel.load_from_hf_hub("xpmir/monobert", as_instance=True) model.initialize(None) model.rsv("walgreens store sales average", "The average Walgreens salary ranges from approximately $15,000 per year for Customer Service Associate / Cashier to $179,900 per year for District Manager...") ``` ## Results | Dataset | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20 | |----| ---|------|------|------|------|------|------| | msmarco_dev | 0.3574 | 0.0371 | 0.3624 | 0.3529 | 0.4640 | 0.4147 | 0.4370 | | trec2019 | 0.4908 | 0.7233 | 0.9368 | 0.9368 | 0.6871 | 0.7046 | 0.6813 | | trec2020 | 0.4803 | 0.6120 | 0.9380 | 0.9367 | 0.6865 | 0.6963 | 0.6626 |
pfunk/Pong-v4-DQPN_p10_pt0.1-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,990
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10_pt0.1 --start-policy-f 10000 --end-policy-f 10000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 10000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p10_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Woonn/distilbert-base-uncased-finetuned-clinc
Woonn
distilbert
12
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['clinc_oos']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,481
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2890 | 0.7432 | | 2.6284 | 2.0 | 636 | 1.8756 | 0.8377 | | 1.5483 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.015 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7953 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_128
gokuls
mobilebert
17
1
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,601
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Accuracy: 0.1408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3404 | 1.0 | 435 | 0.5913 | 0.1408 | | 0.3027 | 2.0 | 870 | 0.5985 | 0.1127 | | 0.2935 | 3.0 | 1305 | 0.6351 | 0.1127 | | 0.2884 | 4.0 | 1740 | 0.6013 | 0.0986 | | 0.2838 | 5.0 | 2175 | 0.6154 | 0.0986 | | 0.2788 | 6.0 | 2610 | 0.6608 | 0.0845 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
ipqhjjybj/alex
ipqhjjybj
null
19
1
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
415
### alex Dreambooth model trained by ipqhjjybj with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
pfunk/Pong-v4-DQPN_p30_pt0.1_tt0.1-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,038
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_pt0.1_tt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_pt0.1_tt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_pt0.1_tt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1_tt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1_tt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_pt0.1_tt0.1 --start-policy-f 30000 --end-policy-f 30000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 30000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p30_pt0.1_tt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 0.1, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
lukee/a2c-AntBulletEnv-v0
lukee
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eshwarprasadS/ppo-Huggy
eshwarprasadS
null
32
8
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
824
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: eshwarprasadS/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Hazzzardous/RWKV-8Bit
Hazzzardous
null
4
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
703
## Example usage ``` from rwkvstic.load import RWKV # Load the model (supports full path, relative path, and remote paths) model = RWKV( "https://huggingface.co/Hazzzardous/RWKV-8Bit/resolve/main/RWKV-4-Pile-7B-Instruct.pqth" ) model.loadContext(newctx=f"Q: who is Jim Butcher?\n\nA:") output = model.forward(number=100)["output"] print(output) # Q: who is Jim Butcher? # A: Jim Butcher is a very popular American author of fantasy novels. He’s known for the Dresden Files series of novels.<|endoftext|> ``` ## More details here https://pypi.org/project/rwkvstic/ ## Run example notebook https://colab.research.google.com/github/harrisonvanderbyl/rwkvstic/blob/master/notebooks/chatbot.ipynb
UtopiansRareTruth/a2c-AntBulletEnv-v0
UtopiansRareTruth
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rim0/dreambox-mix
rim0
null
31
0
null
15
text-to-image
false
false
false
creativeml-openrail-m
['en', 'ja']
null
null
0
0
0
0
0
0
0
['Stable Diffusion', 'text-to-image']
false
true
true
4,238
# dreamboxmix dreamboxmix是使用了[AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)、[pastel-mix](https://huggingface.co/andite/pastel-mix)、[Gf_style2](https://huggingface.co/xiaolxl/Gf_style2)、[ACertainThing](https://huggingface.co/JosephusCheung/ACertainThing)、[Counterfeit-V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)、厚涂-lastmodel、lastmodel-msw、混合而成的模型。 dreamboxmix は、 [AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)、[pastel-mix](https://huggingface.co/andite/pastel-mix)、[Gf_style2](https://huggingface.co/xiaolxl/Gf_style2)、[ACertainThing](https://huggingface.co/JosephusCheung/ACertainThing)、[Counterfeit-V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)、厚涂-lastmodel、lastmodel-mswをマージしたモデルです。 dreamboxmix is merge by using [AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)、[pastel-mix](https://huggingface.co/andite/pastel-mix)、[Gf_style2](https://huggingface.co/xiaolxl/Gf_style2)、[ACertainThing](https://huggingface.co/JosephusCheung/ACertainThing)、[Counterfeit-V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)、厚涂-lastmodel、lastmodel-msw. ---- # 关于选择模型- モデルの選択について - About Select Models - [About dreamboxmix-A](#about-dreamboxmix-a) - [About dreamboxmix-O](#about-dreamboxmix-o) - [About dreamboxmix-P](#about-dreamboxmix-p) - [xy grid](#xy-grid) - [Updates/2023.2.9](#xy-grid) # About dreamboxmix-A <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/7%20(2).png> dreamboxmix-A的出图效果比较偏向AbyssOrangeMix2,对于质感的表现要比另外两个模型更写实一些。 dreamboxmix-A の画像出力効果は AbyssOrangeMix2 に偏っており、テクスチャのパフォーマンスは他の 2 つのモデルよりもリアルです。 The image output effect of dreamboxmix-A is more biased towards AbyssOrangeMix2, and the performance of texture is more realistic than the other two models. <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/2%20(1).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/3%20(1).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/4%20(1).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/5%20(1).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/6%20(1).png> # About dreamboxmix-O <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/7%20(3).png> dreamboxmix-O在光影的表现上略优于两个模型(大概),但是出坏图的概率也比另外两个模型高。 dreamboxmix-O は、 2 つのモデルよりも光と影の表現がわずかに優れています(多分)が、悪い絵描を出る確率も他の2つのモデルより高い。 dreamboxmix-O is slightly better than the two models (probably) in terms of lighting performance, but the probability of bad pictures is also higher than the other two models. <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/2%20(2).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/3%20(2).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/4%20(2).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/5%20(2).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/6%20(2).png> ## About dreamboxmix-P <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/7%20(1).png> dreamboxmix-P的出图效果比较偏向pastel-mix,更适合用来跑色彩丰富的插画。 dreamboxmix-P の出力効果はパステル ミックスに近く、色彩豊かなイラストに適しています。 The effect of dreamboxmix-P is more like pastel-mix, which is more suitable for drawing colorful illustrations. <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/2%20(3).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/3%20(3).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/4%20(3).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/5%20(3).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/6%20(3).png> # xy grid <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/1%20(1).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/1%20(2).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/1%20(3).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/1%20(4).png> <img src=https://huggingface.co/rim0/dreambox-mix/resolve/main/images/1%20(5).png> # Updates 上传了体积更小的fp16版本 Uploaded a smaller version of fp16
Mayhem50/sgpt-bloom-560m-nli-v3
Mayhem50
bloom
12
25
sentence-transformers
0
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,749
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3076 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BloomModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ahjim0m0/ppo-LunarLander-v2
ahjim0m0
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```