repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
dfm794/poca-SoccerTwos-2_6_3-l
dfm794
null
51
234
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
848
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2_6_3-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hectorjelly/ppo-SnowballTarge2
hectorjelly
null
20
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
858
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: hectorjelly/ppo-SnowballTarge2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tanluuuuuuu/xlm-roberta-base-finetuned-panx-de
tanluuuuuuu
xlm-roberta
11
2
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jrnold/poca-SoccerTwos
jrnold
null
21
228
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
840
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jrnold/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
UBC-NLP/ArOCR-handwritting-v2
UBC-NLP
vision-encoder-decoder
26
17
transformers
0
image-to-text
true
false
false
null
['ar']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
15,265
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OnlineKhatt-roberta_ar_OnlineKhatt-swinv2_1024_OnlineKhatt This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4793 - Cer: 0.1093 - Wer: 0.3908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:------:|:---------------:|:------:| | 4.3383 | 1.0 | 106 | 1.5838 | 3.8030 | 1.0127 | | 3.7281 | 2.0 | 212 | 0.9049 | 3.6247 | 1.0 | | 3.6305 | 3.0 | 318 | 1.0094 | 3.5995 | 1.0807 | | 3.6081 | 4.0 | 424 | 0.9963 | 3.5752 | 1.6203 | | 3.595 | 5.0 | 530 | 0.9365 | 3.5681 | 1.2421 | | 3.5771 | 6.0 | 636 | 0.8668 | 3.6008 | 1.0744 | | 3.5662 | 7.0 | 742 | 0.9667 | 3.5516 | 1.1218 | | 3.543 | 8.0 | 848 | 1.0367 | 3.5318 | 1.4114 | | 3.533 | 9.0 | 954 | 1.0342 | 3.5206 | 1.2310 | | 3.5178 | 10.0 | 1060 | 1.0139 | 3.5008 | 1.3671 | | 3.417 | 11.0 | 1166 | 0.9012 | 3.0606 | 1.1282 | | 3.0068 | 12.0 | 1272 | 0.8443 | 2.9790 | 1.0807 | | 2.9719 | 13.0 | 1378 | 0.8540 | 2.9684 | 1.1297 | | 2.9495 | 14.0 | 1484 | 0.8002 | 2.9208 | 1.0585 | | 2.9248 | 15.0 | 1590 | 0.8210 | 2.9132 | 1.0491 | | 2.8881 | 16.0 | 1696 | 0.7894 | 2.8419 | 1.0997 | | 2.8468 | 17.0 | 1802 | 0.7865 | 2.7966 | 1.0443 | | 2.8046 | 18.0 | 1908 | 0.7905 | 2.7439 | 1.1899 | | 2.7629 | 19.0 | 2014 | 0.7820 | 2.7139 | 1.1108 | | 2.7255 | 20.0 | 2120 | 0.7543 | 2.6422 | 1.0807 | | 2.6983 | 21.0 | 2226 | 0.7586 | 2.6228 | 1.1203 | | 2.6686 | 22.0 | 2332 | 0.7398 | 2.5820 | 1.0886 | | 2.6459 | 23.0 | 2438 | 0.7370 | 2.5630 | 1.1108 | | 2.631 | 24.0 | 2544 | 0.7290 | 2.5498 | 1.1092 | | 2.6147 | 25.0 | 2650 | 0.7350 | 2.5423 | 1.0997 | | 2.6749 | 26.0 | 2756 | 2.5582 | 0.7481 | 1.1472 | | 2.6129 | 27.0 | 2862 | 2.5293 | 0.7629 | 1.1044 | | 2.5635 | 28.0 | 2968 | 2.4655 | 0.7469 | 1.1282 | | 2.5046 | 29.0 | 3074 | 2.4866 | 0.7731 | 1.1297 | | 2.4784 | 30.0 | 3180 | 2.3188 | 0.6769 | 1.0791 | | 2.4141 | 31.0 | 3286 | 2.2582 | 0.6553 | 1.0285 | | 2.3752 | 32.0 | 3392 | 2.3374 | 0.6724 | 1.0475 | | 2.3431 | 33.0 | 3498 | 2.2132 | 0.6385 | 1.0633 | | 2.2754 | 34.0 | 3604 | 2.1717 | 0.6596 | 1.0601 | | 2.2351 | 35.0 | 3710 | 2.0753 | 0.6211 | 1.0712 | | 2.1843 | 36.0 | 3816 | 2.0063 | 0.5995 | 1.0380 | | 2.1618 | 37.0 | 3922 | 2.0081 | 0.5767 | 1.0111 | | 2.0953 | 38.0 | 4028 | 1.9858 | 0.5582 | 0.9953 | | 2.0262 | 39.0 | 4134 | 1.9178 | 0.5480 | 1.0396 | | 2.0036 | 40.0 | 4240 | 1.7771 | 0.5354 | 1.0032 | | 1.9276 | 41.0 | 4346 | 1.6884 | 0.5147 | 0.9763 | | 1.8669 | 42.0 | 4452 | 1.6266 | 0.4822 | 0.9272 | | 1.7455 | 43.0 | 4558 | 1.6248 | 0.4825 | 0.9367 | | 1.7031 | 44.0 | 4664 | 1.5797 | 0.4483 | 0.9193 | | 1.6212 | 45.0 | 4770 | 1.4812 | 0.4446 | 0.8972 | | 1.6112 | 46.0 | 4876 | 1.5334 | 0.4626 | 0.9098 | | 1.5717 | 47.0 | 4982 | 1.3838 | 0.4426 | 0.9066 | | 1.5055 | 48.0 | 5088 | 1.3911 | 0.4088 | 0.8608 | | 1.4894 | 49.0 | 5194 | 1.5356 | 0.4221 | 0.8623 | | 1.42 | 50.0 | 5300 | 1.3702 | 0.3925 | 0.8513 | | 1.3449 | 51.0 | 5406 | 1.3309 | 0.3701 | 0.8434 | | 1.2991 | 52.0 | 5512 | 1.2176 | 0.3763 | 0.8544 | | 1.293 | 53.0 | 5618 | 1.3637 | 0.3581 | 0.8228 | | 1.2446 | 54.0 | 5724 | 1.2283 | 0.3558 | 0.8054 | | 1.1887 | 55.0 | 5830 | 1.1690 | 0.3459 | 0.8038 | | 1.1893 | 56.0 | 5936 | 1.2391 | 0.3328 | 0.7959 | | 1.1188 | 57.0 | 6042 | 1.0593 | 0.3222 | 0.7880 | | 1.0648 | 58.0 | 6148 | 1.0447 | 0.3251 | 0.7816 | | 1.0341 | 59.0 | 6254 | 0.9521 | 0.3026 | 0.7737 | | 0.9995 | 60.0 | 6360 | 0.9362 | 0.2787 | 0.7358 | | 0.9522 | 61.0 | 6466 | 0.9554 | 0.2713 | 0.7184 | | 0.9121 | 62.0 | 6572 | 0.8750 | 0.2699 | 0.7168 | | 0.8801 | 63.0 | 6678 | 0.8787 | 0.2670 | 0.7120 | | 0.8557 | 64.0 | 6784 | 0.8498 | 0.2440 | 0.6756 | | 0.8252 | 65.0 | 6890 | 0.8091 | 0.2605 | 0.6930 | | 0.7913 | 66.0 | 6996 | 0.8008 | 0.2542 | 0.6946 | | 0.7681 | 67.0 | 7102 | 0.8333 | 0.2431 | 0.6867 | | 0.7617 | 68.0 | 7208 | 0.7744 | 0.2465 | 0.7041 | | 0.7121 | 69.0 | 7314 | 0.7188 | 0.2331 | 0.6566 | | 0.7123 | 70.0 | 7420 | 0.7451 | 0.2300 | 0.6582 | | 0.6756 | 71.0 | 7526 | 0.6943 | 0.2246 | 0.6456 | | 0.6525 | 72.0 | 7632 | 0.8034 | 0.2155 | 0.6392 | | 0.6475 | 73.0 | 7738 | 0.6815 | 0.2135 | 0.6060 | | 0.6071 | 74.0 | 7844 | 0.6793 | 0.2078 | 0.6234 | | 0.591 | 75.0 | 7950 | 0.6706 | 0.2189 | 0.6218 | | 0.5768 | 76.0 | 8056 | 0.7773 | 0.1941 | 0.5791 | | 0.5588 | 77.0 | 8162 | 0.6473 | 0.2092 | 0.6440 | | 0.5513 | 78.0 | 8268 | 0.6667 | 0.1876 | 0.5886 | | 0.5234 | 79.0 | 8374 | 0.6126 | 0.1825 | 0.5665 | | 0.4976 | 80.0 | 8480 | 0.6168 | 0.1847 | 0.5807 | | 0.4795 | 81.0 | 8586 | 0.5837 | 0.1816 | 0.5759 | | 0.4722 | 82.0 | 8692 | 0.6051 | 0.1865 | 0.5696 | | 0.4463 | 83.0 | 8798 | 0.5976 | 0.1782 | 0.5633 | | 0.44 | 84.0 | 8904 | 0.5775 | 0.1751 | 0.5617 | | 0.4192 | 85.0 | 9010 | 0.5902 | 0.1734 | 0.5411 | | 0.4093 | 86.0 | 9116 | 0.5591 | 0.1705 | 0.5411 | | 0.3961 | 87.0 | 9222 | 0.5794 | 0.1765 | 0.5538 | | 0.3793 | 88.0 | 9328 | 0.5513 | 0.1682 | 0.5491 | | 0.3715 | 89.0 | 9434 | 0.5567 | 0.1640 | 0.5237 | | 0.3556 | 90.0 | 9540 | 0.5480 | 0.1549 | 0.5047 | | 0.3454 | 91.0 | 9646 | 0.5910 | 0.1637 | 0.5332 | | 0.3395 | 92.0 | 9752 | 0.5943 | 0.1600 | 0.5095 | | 0.3236 | 93.0 | 9858 | 0.5951 | 0.1520 | 0.5016 | | 0.3165 | 94.0 | 9964 | 0.5521 | 0.1549 | 0.5095 | | 0.2995 | 95.0 | 10070 | 0.5381 | 0.1631 | 0.5222 | | 0.2917 | 96.0 | 10176 | 0.5067 | 0.1432 | 0.4842 | | 0.2847 | 97.0 | 10282 | 0.5459 | 0.1526 | 0.4937 | | 0.2719 | 98.0 | 10388 | 0.5260 | 0.1452 | 0.4953 | | 0.2648 | 99.0 | 10494 | 0.5386 | 0.1383 | 0.4684 | | 0.2529 | 100.0 | 10600 | 0.5313 | 0.1514 | 0.5 | | 0.2522 | 101.0 | 10706 | 0.5077 | 0.1497 | 0.4858 | | 0.2424 | 102.0 | 10812 | 0.5622 | 0.1398 | 0.4684 | | 0.2334 | 103.0 | 10918 | 0.5350 | 0.1429 | 0.4873 | | 0.2266 | 104.0 | 11024 | 0.5214 | 0.1378 | 0.4810 | | 0.2182 | 105.0 | 11130 | 0.5040 | 0.1386 | 0.4747 | | 0.2143 | 106.0 | 11236 | 0.5644 | 0.1406 | 0.4810 | | 0.2094 | 107.0 | 11342 | 0.5079 | 0.1466 | 0.5 | | 0.1945 | 108.0 | 11448 | 0.5311 | 0.1358 | 0.4731 | | 0.1989 | 109.0 | 11554 | 0.5300 | 0.1389 | 0.4905 | | 0.1942 | 110.0 | 11660 | 0.5337 | 0.1369 | 0.4826 | | 0.1856 | 111.0 | 11766 | 0.4905 | 0.1364 | 0.4763 | | 0.1842 | 112.0 | 11872 | 0.5104 | 0.1381 | 0.4794 | | 0.1789 | 113.0 | 11978 | 0.4859 | 0.1366 | 0.4652 | | 0.1702 | 114.0 | 12084 | 0.4777 | 0.1307 | 0.4715 | | 0.1701 | 115.0 | 12190 | 0.4896 | 0.1295 | 0.4478 | | 0.1638 | 116.0 | 12296 | 0.5458 | 0.1403 | 0.4715 | | 0.1595 | 117.0 | 12402 | 0.5131 | 0.1361 | 0.4747 | | 0.1544 | 118.0 | 12508 | 0.5148 | 0.1341 | 0.4589 | | 0.1496 | 119.0 | 12614 | 0.4995 | 0.1312 | 0.4525 | | 0.1513 | 120.0 | 12720 | 0.5037 | 0.1403 | 0.4684 | | 0.145 | 121.0 | 12826 | 0.4896 | 0.1301 | 0.4573 | | 0.1386 | 122.0 | 12932 | 0.5327 | 0.1327 | 0.4636 | | 0.1374 | 123.0 | 13038 | 0.5229 | 0.1307 | 0.4399 | | 0.139 | 124.0 | 13144 | 0.4882 | 0.1324 | 0.4620 | | 0.1359 | 125.0 | 13250 | 0.4887 | 0.1284 | 0.4494 | | 0.1304 | 126.0 | 13356 | 0.4678 | 0.1261 | 0.4541 | | 0.1244 | 127.0 | 13462 | 0.4879 | 0.1264 | 0.4351 | | 0.1282 | 128.0 | 13568 | 0.4782 | 0.1261 | 0.4320 | | 0.1183 | 129.0 | 13674 | 0.5093 | 0.1227 | 0.4383 | | 0.1213 | 130.0 | 13780 | 0.4804 | 0.1258 | 0.4525 | | 0.1159 | 131.0 | 13886 | 0.4890 | 0.1264 | 0.4462 | | 0.1139 | 132.0 | 13992 | 0.4912 | 0.1267 | 0.4335 | | 0.1099 | 133.0 | 14098 | 0.5153 | 0.1241 | 0.4415 | | 0.1134 | 134.0 | 14204 | 0.5001 | 0.1233 | 0.4193 | | 0.1074 | 135.0 | 14310 | 0.4912 | 0.1198 | 0.4225 | | 0.1006 | 136.0 | 14416 | 0.4858 | 0.1241 | 0.4335 | | 0.101 | 137.0 | 14522 | 0.4895 | 0.1227 | 0.4320 | | 0.0988 | 138.0 | 14628 | 0.4855 | 0.1292 | 0.4430 | | 0.0995 | 139.0 | 14734 | 0.4747 | 0.1233 | 0.4272 | | 0.0963 | 140.0 | 14840 | 0.4784 | 0.1272 | 0.4446 | | 0.0966 | 141.0 | 14946 | 0.4826 | 0.1184 | 0.4146 | | 0.0949 | 142.0 | 15052 | 0.4969 | 0.1235 | 0.4288 | | 0.0913 | 143.0 | 15158 | 0.4732 | 0.1233 | 0.4288 | | 0.0883 | 144.0 | 15264 | 0.5287 | 0.1252 | 0.4383 | | 0.0898 | 145.0 | 15370 | 0.4946 | 0.1221 | 0.4304 | | 0.0902 | 146.0 | 15476 | 0.4894 | 0.1233 | 0.4415 | | 0.0884 | 147.0 | 15582 | 0.4750 | 0.1221 | 0.4256 | | 0.0861 | 148.0 | 15688 | 0.4640 | 0.1201 | 0.4098 | | 0.0799 | 149.0 | 15794 | 0.4692 | 0.1210 | 0.4225 | | 0.0841 | 150.0 | 15900 | 0.4575 | 0.1250 | 0.4415 | | 0.0828 | 151.0 | 16006 | 0.5040 | 0.1196 | 0.4114 | | 0.0827 | 152.0 | 16112 | 0.4703 | 0.1235 | 0.4241 | | 0.0785 | 153.0 | 16218 | 0.4681 | 0.1201 | 0.4225 | | 0.078 | 154.0 | 16324 | 0.4794 | 0.1224 | 0.4241 | | 0.0745 | 155.0 | 16430 | 0.4646 | 0.1207 | 0.4193 | | 0.0759 | 156.0 | 16536 | 0.4819 | 0.1176 | 0.4082 | | 0.076 | 157.0 | 16642 | 0.5017 | 0.1161 | 0.4035 | | 0.0731 | 158.0 | 16748 | 0.4776 | 0.1170 | 0.4082 | | 0.0726 | 159.0 | 16854 | 0.4798 | 0.1207 | 0.4288 | | 0.0721 | 160.0 | 16960 | 0.5159 | 0.1178 | 0.4098 | | 0.0694 | 161.0 | 17066 | 0.4686 | 0.1215 | 0.4177 | | 0.0668 | 162.0 | 17172 | 0.4924 | 0.1196 | 0.4035 | | 0.0677 | 163.0 | 17278 | 0.4899 | 0.1198 | 0.4114 | | 0.0658 | 164.0 | 17384 | 0.4691 | 0.1215 | 0.4193 | | 0.0629 | 165.0 | 17490 | 0.4956 | 0.1159 | 0.4003 | | 0.0641 | 166.0 | 17596 | 0.4686 | 0.1119 | 0.4035 | | 0.063 | 167.0 | 17702 | 0.4918 | 0.1150 | 0.3940 | | 0.0622 | 168.0 | 17808 | 0.4633 | 0.1187 | 0.4035 | | 0.0616 | 169.0 | 17914 | 0.4855 | 0.1198 | 0.4177 | | 0.0644 | 170.0 | 18020 | 0.4763 | 0.1153 | 0.4035 | | 0.0626 | 171.0 | 18126 | 0.4721 | 0.1187 | 0.4177 | | 0.0598 | 172.0 | 18232 | 0.4763 | 0.1196 | 0.4130 | | 0.0556 | 173.0 | 18338 | 0.4834 | 0.1204 | 0.4225 | | 0.0589 | 174.0 | 18444 | 0.4789 | 0.1173 | 0.4130 | | 0.058 | 175.0 | 18550 | 0.4874 | 0.1176 | 0.4066 | | 0.057 | 176.0 | 18656 | 0.4682 | 0.1119 | 0.4003 | | 0.0532 | 177.0 | 18762 | 0.4779 | 0.1136 | 0.4003 | | 0.0554 | 178.0 | 18868 | 0.4796 | 0.1119 | 0.3940 | | 0.0555 | 179.0 | 18974 | 0.4640 | 0.1187 | 0.4130 | | 0.0558 | 180.0 | 19080 | 0.4756 | 0.1107 | 0.3924 | | 0.0544 | 181.0 | 19186 | 0.4768 | 0.1113 | 0.3972 | | 0.0563 | 182.0 | 19292 | 0.4632 | 0.1110 | 0.4019 | | 0.0524 | 183.0 | 19398 | 0.4744 | 0.1130 | 0.4066 | | 0.0509 | 184.0 | 19504 | 0.4670 | 0.1139 | 0.4035 | | 0.0513 | 185.0 | 19610 | 0.4775 | 0.1124 | 0.3908 | | 0.0512 | 186.0 | 19716 | 0.4669 | 0.1133 | 0.4019 | | 0.05 | 187.0 | 19822 | 0.4625 | 0.1150 | 0.4003 | | 0.0475 | 188.0 | 19928 | 0.4843 | 0.1139 | 0.3908 | | 0.0505 | 189.0 | 20034 | 0.4674 | 0.1144 | 0.3972 | | 0.0483 | 190.0 | 20140 | 0.4793 | 0.1093 | 0.3908 | | 0.0497 | 191.0 | 20246 | 0.4608 | 0.1110 | 0.3956 | | 0.0519 | 192.0 | 20352 | 0.4755 | 0.1107 | 0.3908 | | 0.0476 | 193.0 | 20458 | 0.4721 | 0.1104 | 0.3987 | | 0.0484 | 194.0 | 20564 | 0.4666 | 0.1116 | 0.3972 | | 0.0476 | 195.0 | 20670 | 0.4717 | 0.1144 | 0.4035 | | 0.0485 | 196.0 | 20776 | 0.4663 | 0.1161 | 0.4051 | | 0.0444 | 197.0 | 20882 | 0.4660 | 0.1156 | 0.4035 | | 0.0474 | 198.0 | 20988 | 0.4745 | 0.1107 | 0.3940 | | 0.046 | 199.0 | 21094 | 0.4690 | 0.1113 | 0.4003 | | 0.0473 | 200.0 | 21200 | 0.4693 | 0.1124 | 0.3987 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1 - Datasets 2.7.1 - Tokenizers 0.11.6
pozman/distilbert-base-uncased-finetuned-squad
pozman
distilbert
10
2
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2224 | 1.0 | 5533 | 1.1604 | | 0.9577 | 2.0 | 11066 | 1.1244 | | 0.7436 | 3.0 | 16599 | 1.1519 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jayeshvpatil/ppo-LunarLander-v2
jayeshvpatil
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
camenduru/Wav2Lip
camenduru
null
50
0
null
1
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
11,770
# **Wav2Lip**: *Accurately Lip-syncing Videos In The Wild* For commercial requests, please contact us at [email protected] or [email protected]. We have an HD model ready that can be used commercially. This code is part of the paper: _A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild_ published at ACM Multimedia 2020. [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs2)](https://paperswithcode.com/sota/lip-sync-on-lrs2?p=a-lip-sync-expert-is-all-you-need-for-speech) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs3)](https://paperswithcode.com/sota/lip-sync-on-lrs3?p=a-lip-sync-expert-is-all-you-need-for-speech) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrw)](https://paperswithcode.com/sota/lip-sync-on-lrw?p=a-lip-sync-expert-is-all-you-need-for-speech) |📑 Original Paper|📰 Project Page|🌀 Demo|⚡ Live Testing|📔 Colab Notebook |:-:|:-:|:-:|:-:|:-:| [Paper](http://arxiv.org/abs/2008.10010) | [Project Page](http://cvit.iiit.ac.in/research/projects/cvit-projects/a-lip-sync-expert-is-all-you-need-for-speech-to-lip-generation-in-the-wild/) | [Demo Video](https://youtu.be/0fXaDCZNOJc) | [Interactive Demo](https://bhaasha.iiit.ac.in/lipsync) | [Colab Notebook](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing) /[Updated Collab Notebook](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH) <img src="https://drive.google.com/uc?export=view&id=1Wn0hPmpo4GRbCIJR8Tf20Akzdi1qjjG9"/> ---------- **Highlights** ---------- - Weights of the visual quality disc has been updated in readme! - Lip-sync videos to any target speech with high accuracy :100:. Try our [interactive demo](https://bhaasha.iiit.ac.in/lipsync). - :sparkles: Works for any identity, voice, and language. Also works for CGI faces and synthetic voices. - Complete training code, inference code, and pretrained models are available :boom: - Or, quick-start with the Google Colab Notebook: [Link](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing). Checkpoints and samples are available in a Google Drive [folder](https://drive.google.com/drive/folders/1I-0dNLfFOSFwrfqjNa-SXuwaURHE5K4k?usp=sharing) as well. There is also a [tutorial video](https://www.youtube.com/watch?v=Ic0TBhfuOrA) on this, courtesy of [What Make Art](https://www.youtube.com/channel/UCmGXH-jy0o2CuhqtpxbaQgA). Also, thanks to [Eyal Gruss](https://eyalgruss.com), there is a more accessible [Google Colab notebook](https://j.mp/wav2lip) with more useful features. A tutorial collab notebook is present at this [link](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH). - :fire: :fire: Several new, reliable evaluation benchmarks and metrics [[`evaluation/` folder of this repo]](https://github.com/Rudrabha/Wav2Lip/tree/master/evaluation) released. Instructions to calculate the metrics reported in the paper are also present. -------- **Disclaimer** -------- All results from this open-source code or our [demo website](https://bhaasha.iiit.ac.in/lipsync) should only be used for research/academic/personal purposes only. As the models are trained on the <a href="http://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html">LRS2 dataset</a>, any form of commercial use is strictly prohibhited. For commercial requests please contact us directly! Prerequisites ------------- - `Python 3.6` - ffmpeg: `sudo apt-get install ffmpeg` - Install necessary packages using `pip install -r requirements.txt`. Alternatively, instructions for using a docker image is provided [here](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668). Have a look at [this comment](https://github.com/Rudrabha/Wav2Lip/issues/131#issuecomment-725478562) and comment on [the gist](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668) if you encounter any issues. - Face detection [pre-trained model](https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth) should be downloaded to `face_detection/detection/sfd/s3fd.pth`. Alternative [link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/prajwal_k_research_iiit_ac_in/EZsy6qWuivtDnANIG73iHjIBjMSoojcIV0NULXV-yiuiIg?e=qTasa8) if the above does not work. Getting the weights ---------- | Model | Description | Link to the model | | :-------------: | :---------------: | :---------------: | | Wav2Lip | Highly accurate lip-sync | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/Eb3LEzbfuKlJiR600lQWRxgBIY27JZg80f7V9jtMfbNDaQ?e=TBFBVW) | | Wav2Lip + GAN | Slightly inferior lip-sync, but better visual quality | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA?e=n9ljGW) | | Expert Discriminator | Weights of the expert discriminator | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQRvmiZg-HRAjvI6zqN9eTEBP74KefynCwPWVmF57l-AYA?e=ZRPHKP) | | Visual Quality Discriminator | Weights of the visual disc trained in a GAN setup | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQVqH88dTm1HjlK11eNba5gBbn15WMS0B0EZbDBttqrqkg?e=ic0ljo) | Lip-syncing videos using the pre-trained models (Inference) ------- You can lip-sync any video to any audio: ```bash python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source> ``` The result is saved (by default) in `results/result_voice.mp4`. You can specify it as an argument, similar to several other available options. The audio source can be any file supported by `FFMPEG` containing audio data: `*.wav`, `*.mp3` or even a video file, from which the code will automatically extract the audio. ##### Tips for better results: - Experiment with the `--pads` argument to adjust the detected face bounding box. Often leads to improved results. You might need to increase the bottom padding to include the chin region. E.g. `--pads 0 20 0 0`. - If you see the mouth position dislocated or some weird artifacts such as two mouths, then it can be because of over-smoothing the face detections. Use the `--nosmooth` argument and give another try. - Experiment with the `--resize_factor` argument, to get a lower resolution video. Why? The models are trained on faces which were at a lower resolution. You might get better, visually pleasing results for 720p videos than for 1080p videos (in many cases, the latter works well too). - The Wav2Lip model without GAN usually needs more experimenting with the above two to get the most ideal results, and sometimes, can give you a better result as well. Preparing LRS2 for training ---------- Our models are trained on LRS2. See [here](#training-on-datasets-other-than-lrs2) for a few suggestions regarding training on other datasets. ##### LRS2 dataset folder structure ``` data_root (mvlrs_v1) ├── main, pretrain (we use only main folder in this work) | ├── list of folders | │ ├── five-digit numbered video IDs ending with (.mp4) ``` Place the LRS2 filelists (train, val, test) `.txt` files in the `filelists/` folder. ##### Preprocess the dataset for fast training ```bash python preprocess.py --data_root data_root/main --preprocessed_root lrs2_preprocessed/ ``` Additional options like `batch_size` and number of GPUs to use in parallel to use can also be set. ##### Preprocessed LRS2 folder structure ``` preprocessed_root (lrs2_preprocessed) ├── list of folders | ├── Folders with five-digit numbered video IDs | │ ├── *.jpg | │ ├── audio.wav ``` Train! ---------- There are two major steps: (i) Train the expert lip-sync discriminator, (ii) Train the Wav2Lip model(s). ##### Training the expert discriminator You can download [the pre-trained weights](#getting-the-weights) if you want to skip this step. To train it: ```bash python color_syncnet_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints> ``` ##### Training the Wav2Lip models You can either train the model without the additional visual quality disriminator (< 1 day of training) or use the discriminator (~2 days). For the former, run: ```bash python wav2lip_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints> --syncnet_checkpoint_path <path_to_expert_disc_checkpoint> ``` To train with the visual quality discriminator, you should run `hq_wav2lip_train.py` instead. The arguments for both the files are similar. In both the cases, you can resume training as well. Look at `python wav2lip_train.py --help` for more details. You can also set additional less commonly-used hyper-parameters at the bottom of the `hparams.py` file. Training on datasets other than LRS2 ------------------------------------ Training on other datasets might require modifications to the code. Please read the following before you raise an issue: - You might not get good results by training/fine-tuning on a few minutes of a single speaker. This is a separate research problem, to which we do not have a solution yet. Thus, we would most likely not be able to resolve your issue. - You must train the expert discriminator for your own dataset before training Wav2Lip. - If it is your own dataset downloaded from the web, in most cases, needs to be sync-corrected. - Be mindful of the FPS of the videos of your dataset. Changes to FPS would need significant code changes. - The expert discriminator's eval loss should go down to ~0.25 and the Wav2Lip eval sync loss should go down to ~0.2 to get good results. When raising an issue on this topic, please let us know that you are aware of all these points. We have an HD model trained on a dataset allowing commercial usage. The size of the generated face will be 192 x 288 in our new model. Evaluation ---------- Please check the `evaluation/` folder for the instructions. License and Citation ---------- Theis repository can only be used for personal/research/non-commercial purposes. However, for commercial requests, please contact us directly at [email protected] or [email protected]. We have an HD model trained on a dataset allowing commercial usage. The size of the generated face will be 192 x 288 in our new model. Please cite the following paper if you use this repository: ``` @inproceedings{10.1145/3394171.3413532, author = {Prajwal, K R and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.}, title = {A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild}, year = {2020}, isbn = {9781450379885}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3394171.3413532}, doi = {10.1145/3394171.3413532}, booktitle = {Proceedings of the 28th ACM International Conference on Multimedia}, pages = {484–492}, numpages = {9}, keywords = {lip sync, talking face generation, video generation}, location = {Seattle, WA, USA}, series = {MM '20} } ``` Acknowledgements ---------- Parts of the code structure is inspired by this [TTS repository](https://github.com/r9y9/deepvoice3_pytorch). We thank the author for this wonderful code. The code for Face Detection has been taken from the [face_alignment](https://github.com/1adrianb/face-alignment) repository. We thank the authors for releasing their code and models. We thank [zabique](https://github.com/zabique) for the tutorial collab notebook.
jaesun/a2c-AntBulletEnv-v0
jaesun
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jyotiyadav/Bol-1.0
Jyotiyadav
layoutlmv3
12
112
transformers
0
token-classification
true
false
false
cc-by-nc-sa-4.0
null
['sroie']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,559
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bol-1.0 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 1.0859 - Precision: 0.4109 - Recall: 0.6021 - F1: 0.4885 - Accuracy: 0.7992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.08 | 100 | 0.8091 | 0.235 | 0.2968 | 0.2623 | 0.7453 | | No log | 4.17 | 200 | 0.6677 | 0.4073 | 0.6147 | 0.4899 | 0.7949 | | No log | 6.25 | 300 | 0.6157 | 0.4632 | 0.6758 | 0.5497 | 0.8356 | | No log | 8.33 | 400 | 0.7282 | 0.4379 | 0.6526 | 0.5241 | 0.8100 | | 0.3872 | 10.42 | 500 | 0.8256 | 0.4089 | 0.6611 | 0.5052 | 0.7927 | | 0.3872 | 12.5 | 600 | 0.7363 | 0.4711 | 0.6863 | 0.5587 | 0.8358 | | 0.3872 | 14.58 | 700 | 0.7931 | 0.4579 | 0.6863 | 0.5493 | 0.8283 | | 0.3872 | 16.67 | 800 | 0.8513 | 0.4553 | 0.6863 | 0.5474 | 0.8197 | | 0.3872 | 18.75 | 900 | 0.8703 | 0.4553 | 0.6863 | 0.5474 | 0.8197 | | 0.0068 | 20.83 | 1000 | 0.8905 | 0.4472 | 0.6779 | 0.5389 | 0.8186 | | 0.0068 | 22.92 | 1100 | 0.8955 | 0.4665 | 0.7032 | 0.5609 | 0.8261 | | 0.0068 | 25.0 | 1200 | 0.9589 | 0.4392 | 0.6695 | 0.5304 | 0.8089 | | 0.0068 | 27.08 | 1300 | 0.8998 | 0.4711 | 0.6863 | 0.5587 | 0.8305 | | 0.0068 | 29.17 | 1400 | 1.0008 | 0.4313 | 0.6611 | 0.5220 | 0.8035 | | 0.0032 | 31.25 | 1500 | 0.9506 | 0.4448 | 0.6779 | 0.5371 | 0.8175 | | 0.0032 | 33.33 | 1600 | 0.9497 | 0.4266 | 0.6611 | 0.5186 | 0.8240 | | 0.0032 | 35.42 | 1700 | 0.9868 | 0.4158 | 0.6442 | 0.5054 | 0.8111 | | 0.0032 | 37.5 | 1800 | 0.9631 | 0.4358 | 0.6863 | 0.5331 | 0.8240 | | 0.0032 | 39.58 | 1900 | 1.0170 | 0.4251 | 0.6695 | 0.5200 | 0.8013 | | 0.0022 | 41.67 | 2000 | 0.7666 | 0.5387 | 0.7032 | 0.6100 | 0.8757 | | 0.0022 | 43.75 | 2100 | 1.1500 | 0.3907 | 0.6021 | 0.4739 | 0.7852 | | 0.0022 | 45.83 | 2200 | 1.1211 | 0.3929 | 0.6021 | 0.4755 | 0.7873 | | 0.0022 | 47.92 | 2300 | 1.1108 | 0.3972 | 0.6021 | 0.4787 | 0.7927 | | 0.0022 | 50.0 | 2400 | 1.0858 | 0.4062 | 0.6021 | 0.4852 | 0.8013 | | 0.0018 | 52.08 | 2500 | 1.0859 | 0.4109 | 0.6021 | 0.4885 | 0.7992 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.2.2 - Tokenizers 0.13.2
Isaacp/Reinforce-pixelcopter
Isaacp
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jaesun/a2c-PandaReachDense-v2
jaesun
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
espnet
null
18
0
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['librimix']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
6,935
## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Dec 29 13:36:46 CST 2022` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|82.9|15.1|2.0|2.4|19.4|97.1| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|85.1|13.0|1.9|2.1|17.1|96.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|92.2|4.9|2.9|2.7|10.6|97.1| decode_sot_asr_model_valid.acc.ave/test|3000|605408|93.2|4.1|2.6|2.3|9.1|96.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tunining/train_sot_asr_conformer_wavlm.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38431 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 6000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_local path_or_url: /home/work_nfs6/pcguo/asr/librimix/hub/wavlm_large.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 128 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sweaterr/pegasus-samsum
sweaterr
pegasus
13
0
transformers
0
text2text-generation
true
false
false
null
null
['samsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,257
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6928 | 0.54 | 500 | 1.4812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
YifanPan/bert-finetuned-squad
YifanPan
bert
12
9
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Duskfallcrew/finalfantasiespt1
Duskfallcrew
null
22
9
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
929
### Final Fantasy XIV Part One Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk fntsy1 (use that on your prompt)
yaozeguo/bert-finetuned-squad
yaozeguo
bert
12
11
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
jojoUla
bert
16
0
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,788
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8321 | 1.0 | 2 | 4.3250 | | 3.383 | 2.0 | 4 | 2.4023 | | 1.9548 | 3.0 | 6 | 1.2925 | | 1.4856 | 4.0 | 8 | 1.5152 | | 0.9588 | 5.0 | 10 | 1.7731 | | 1.2668 | 6.0 | 12 | 1.3830 | | 0.8441 | 7.0 | 14 | 1.9760 | | 1.0173 | 8.0 | 16 | 1.2364 | | 0.6814 | 9.0 | 18 | 1.1771 | | 0.9044 | 10.0 | 20 | 1.4721 | | 0.6889 | 11.0 | 22 | 0.8518 | | 0.5845 | 12.0 | 24 | 0.6993 | | 0.4068 | 13.0 | 26 | 1.1771 | | 0.5957 | 14.0 | 28 | 0.5895 | | 0.4277 | 15.0 | 30 | 0.5326 | | 0.3736 | 16.0 | 32 | 1.0893 | | 0.413 | 17.0 | 34 | 1.3267 | | 0.5718 | 18.0 | 36 | 1.0331 | | 0.3892 | 19.0 | 38 | 1.0793 | | 0.3913 | 20.0 | 40 | 0.8742 | | 0.4794 | 21.0 | 42 | 1.1264 | | 0.4626 | 22.0 | 44 | 1.1857 | | 0.2683 | 23.0 | 46 | 1.5181 | | 0.3436 | 24.0 | 48 | 1.4419 | | 0.3793 | 25.0 | 50 | 1.4198 | | 0.356 | 26.0 | 52 | 1.1776 | | 0.2189 | 27.0 | 54 | 0.7166 | | 0.286 | 28.0 | 56 | 0.7601 | | 0.3681 | 29.0 | 58 | 1.2592 | | 0.5858 | 30.0 | 60 | 0.6520 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Dainong2/bert-finetuned-squad
Dainong2
bert
12
10
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['UpNDown-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **UpNDown-v5** This is a trained model of a PPO agent playing UpNDown-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'UpNDown-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Brain22/dqn-SpaceInvadersNoFrameskip-v4
Brain22
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,212
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Brain22 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Brain22 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Brain22 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
juanmi1234/Reinforce-CartPole
juanmi1234
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
PecanPi/q-FrozenLake-v1-4x4-noSlippery
PecanPi
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
396
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PecanPi/q-taxi-v3
PecanPi
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
363
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gyeoldere/DeBERTa-finetuned-SNLI2
gyeoldere
deberta
11
2
transformers
0
null
true
false
false
mit
null
['snli']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,651
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeBERTa-finetuned-SNLI2 This model is a fine-tuned version of [gyeoldere/test_trainer](https://huggingface.co/gyeoldere/test_trainer) on the snli dataset. Test_trainer model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the snli dataset. This model achieves the following results on the evaluation set: - NLI accuracy : 0.86 - MLM accuracy : 0.68 ## Model description This model fine-tuned to perform 2 tasks simultaneously; NLI task and MLM task. Output vector of DeBERTa processed through two different fc layer to predict. I used layer structure introduced in BERT paper, which is implemented on huggingface transformers; DebertaForTokenClassification and DebertaForMaskedLM. [https://huggingface.co/docs/transformers/index] BinaryCrossEntrophyLoss are used for each class, and two losses are added to obtain final loss final_loss = MLM_loss + NLI_loss ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p50_e0.50-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,989
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.50 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p50_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
PecanPi/q-taxi-v3-v2
PecanPi
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
366
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Duskfallcrew/duskfall-s-final-fantasy-pt2
Duskfallcrew
null
22
13
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
1,081
### Duskfall's Final Fantasy Pt2 Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk fantadsk2 (use that on your prompt)
ksing193/t5-small-finetuned-wikisql
ksing193
t5
12
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['wikisql']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,795
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikisql This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikisql dataset. It achieves the following results on the evaluation set: - Loss: 0.1245 - Rouge2 Precision: 0.8183 - Rouge2 Recall: 0.7262 - Rouge2 Fmeasure: 0.7624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.1954 | 1.0 | 4049 | 0.1575 | 0.7934 | 0.7033 | 0.7386 | | 0.1643 | 2.0 | 8098 | 0.1374 | 0.8083 | 0.7169 | 0.7529 | | 0.1517 | 3.0 | 12147 | 0.1296 | 0.8135 | 0.7221 | 0.7581 | | 0.1459 | 4.0 | 16196 | 0.1256 | 0.817 | 0.7254 | 0.7614 | | 0.1414 | 5.0 | 20245 | 0.1245 | 0.8183 | 0.7262 | 0.7624 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
juanmi1234/Reinforce-Pixelcopter-PLE-v0
juanmi1234
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
7eu7d7/ML-Danbooru
7eu7d7
null
6
0
null
1
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
210
| model | |--------------------------------| | TResnet-D-FLq_ema_2-40000.ckpt | | TResnet-D-FLq_ema_4-10000.ckpt | | TResnet-D-FLq_ema_6-10000.ckpt | | TResnet-D-FLq_ema_6-30000.ckpt |
thanat/mt5-small-finetuned-amazon-en-es
thanat
mt5
9
10
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,717
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0061 - Validation Loss: 3.3257 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.6013 | 4.2024 | 0 | | 5.8556 | 3.7335 | 1 | | 5.0930 | 3.5494 | 2 | | 4.6610 | 3.4502 | 3 | | 4.3874 | 3.4030 | 4 | | 4.2103 | 3.3568 | 5 | | 4.0930 | 3.3311 | 6 | | 4.0061 | 3.3257 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
csebuetnlp/banglat5_small
csebuetnlp
t5
8
3
transformers
0
text2text-generation
true
false
false
null
['bn']
null
null
0
0
0
0
0
0
0
[]
false
true
true
6,147
# BanglaT5 This repository contains the pretrained checkpoint of the model **BanglaT5 (small)**. This is a sequence to sequence transformer model pretrained with the ["Span Corruption"]() objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLG tasks in bengali. For finetuning on different downstream tasks such as `Machine Translation`, `Abstractive Text Summarization`, `Question Answering` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/BanglaNLG). **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository use this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below: ## Using this model in `transformers` (tested on 4.11.0.dev0) ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_small") tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_small", use_fast=False) input_sentence = "" input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids generated_tokens = model.generate(input_ids) decoded_tokens = tokenizer.batch_decode(generated_tokens)[0] print(decoded_tokens) ``` ## Benchmarks * Supervised fine-tuning | Model | Params | MT (SacreBLEU) | TS (ROUGE-2) | QA (EM/F1) | MD (SacreBLEU-1) | NHG (ROUGE-2) | XLS (ROUGE-2) | BNLG score | |--------------------|------------|-----------------------|------------------------|-------------------|--------------------|----------------|----------------|---------------| |[mT5 (base)](https://huggingface.co/google/mt5-base) | 582M | 36.6/22.5 | 10.3 | 59.0/65.3 | 17.5 | 9.6 | 2.7/0.7 | 24.9 | |[XLM-ProphetNet](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) | 616M | 23.3/16.4 | 7.8 | 53.0/57.3 | 20.0 | 9.5 | 6.2/2.7 | 21.8 | |[mBART-50](https://huggingface.co/facebook/mbart-large-50) | 611M | 23.6/16.7 | 10.4 | 53.4/58.9 | 18.5 | 11.2 | 5.4/3.7 | 22.4 | |[IndicBART](https://huggingface.co/ai4bharat/IndicBART) | 244M | 22.7/13.1 | 8.1 | 53.3/58.8 | 14.8 | 7.9 | 6.3/2.5 | 20.8 | |[BanglaT5](https://huggingface.co/csebuetnlp/banglat5) | 247M | 38.8/25.2 | 13.7 | 68.5/74.8 | 19.0 | 13.8 | 6.4/4.0 | 29.4 | The benchmarking datasets are as follows: * **MT:** **[Machine Translation](https://github.com/csebuetnlp/banglanmt#datasets)** * **TS:** **[Abstractive Text Summarization](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **QA:** **[Question Answering](https://huggingface.co/datasets/csebuetnlp/squad_bn)** * **MD:** **[Multi Turn Dialogue Generation](https://drive.google.com/file/d/1qPmNN6qA4evbh4cD_BDDTCFOwMu4H2JS/view?usp=sharing)** * **NHG:** **[News Headline Generation](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **XLS:** **[Cross-lingual Summarization](https://huggingface.co/datasets/csebuetnlp/CrossSum)** ## Citation If you use this model, please cite the following paper: ``` @article{bhattacharjee2022banglanlg, author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar}, title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla}, journal = {CoRR}, volume = {abs/2205.11081}, year = {2022}, url = {https://arxiv.org/abs/2205.11081}, eprinttype = {arXiv}, eprint = {2205.11081} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['DoubleDunk-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,303
# (CleanRL) **PPO** Agent Playing **DoubleDunk-v5** This is a trained model of a PPO agent playing DoubleDunk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id DoubleDunk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'DoubleDunk-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
pfunk/Pong-v4-DQPN_p10-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,943
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10 --start-policy-f 10000 --end-policy-f 10000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 10000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
SandyML/ddpm-celebahq-finetuned-butterflies-2epochs
SandyML
null
6
0
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
345
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('SandyML/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
Toying/distilbert-base-uncased-finetuned-emotion
Toying
distilbert
12
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.811 | 1.0 | 250 | 0.3073 | 0.905 | 0.9023 | | 0.2402 | 2.0 | 500 | 0.2107 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dfm794/poca-SoccerTwos-2-l
dfm794
null
35
215
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ransaka/dqn-SpaceInvadersNoFrameskip-v4
Ransaka
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,214
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ransaka ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Duskfallcrew/finalfantasypt3
Duskfallcrew
null
22
4
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
1,311
### Duskfall's Final of Fantasea Pt 3 Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk ftnadusk3 (use that on your prompt)
iamannika/bert-finetuned-squad
iamannika
bert
12
11
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Jackmin108/ppo-SnowballTarget
Jackmin108
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
857
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Jackmin108/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rim0/dreamboxmix-M
rim0
null
13
0
null
8
text-to-image
false
false
false
creativeml-openrail-m
['en', 'ja']
null
null
0
0
0
0
0
0
0
['Stable Diffusion', 'text-to-image']
false
true
true
1,595
# dreamboxmix-M dreamboxmix-M是在dreamboxmix-P上融合了[机甲v3.0AY](https://huggingface.co/zuzhe/Mecha-model),[DreamShaper](https://civitai.com/models/4384/dreamshaper),[Fantasy Background](https://civitai.com/models/5536/fantasy-background)的模型,适合用来跑机甲。 Dreamboxmix-Mは、dreamboxmix-Pをベースに[机甲v3.0AY](https://huggingface.co/zuzhe/Mecha-model),[DreamShaper](https://civitai.com/models/4384/dreamshaper),[Fantasy Background](https://civitai.com/models/5536/fantasy-background)は、ロボットを描くのは向いていると思います。 Dreamboxmix-M is merge by [机甲v3.0AY](https://huggingface.co/zuzhe/Mecha-model),[DreamShaper](https://civitai.com/models/4384/dreamshaper),[Fantasy Background](https://civitai.com/models/5536/fantasy-background) on dreamboxmix-P, and is suitable for drawing mecha. <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(1).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(2).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(3).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(4).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(5).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(6).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(7).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(8).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(9).png> <img src=https://huggingface.co/rim0/dreamboxmix-M/resolve/main/images/1%20(10).png>
jannikskytt/poca-SoccerTwos
jannikskytt
null
20
206
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kkh4162/xlm-roberta-base-finetuned-panx-de
kkh4162
xlm-roberta
15
0
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LHTAVI/wpapstyle2023
LHTAVI
null
28
30
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
1,365
### wpapstyle2023 Dreambooth model trained by LHTAVI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(4).webp) ![1](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(2).webp) ![2](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(8).webp) ![3](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(1).png) ![4](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(1).webp) ![5](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(3).webp) ![6](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(5).webp) ![7](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(6).webp) ![8](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(7).webp)
cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Enduro-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,271
# (CleanRL) **PPO** Agent Playing **Enduro-v5** This is a trained model of a PPO agent playing Enduro-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Enduro-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Enduro-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
nickwong64/bert-base-uncased-finance-sentiment
nickwong64
bert
8
10
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['cyrilzhang/financial_phrasebank_split']
null
0
0
0
0
0
0
0
['text-classification', 'sentiment-analysis', 'finance-sentiment-detection', 'finance-sentiment']
false
true
true
1,624
## nickwong64/bert-base-uncased-finance-sentiment Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective. [bert-base-uncased](https://huggingface.co/bert-base-uncased) finetuned on the [cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split) dataset using HuggingFace Trainer with below training parameters. ``` learning rate 2e-5, batch size 8, num_train_epochs=6, ``` ## Model Performance | Epoch | Training Loss | Validation Loss | Accuracy | F1 | | --- | --- | --- | --- | --- | | 6 | 0.034100 | 0.954745 | 0.853608 | 0.854358 | ## How to Use the Model ```python from transformers import pipeline nlp = pipeline(task='text-classification', model='nickwong64/bert-base-uncased-finance-sentiment') p1 = "HK stocks open lower after Fed rate comments" p2 = "US stocks end lower on earnings worries" p3 = "Muted Fed, AI hopes send Wall Street higher" print(nlp(p1)) print(nlp(p2)) print(nlp(p3)) """ output: [{'label': 'negative', 'score': 0.9991507530212402}] [{'label': 'negative', 'score': 0.9997240900993347}] [{'label': 'neutral', 'score': 0.9834381937980652}] """ ``` ## Dataset [cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split) ## Labels ``` {0: 'negative', 1: 'neutral', 2: 'positive'} ``` ## Evaluation ``` {'test_loss': 0.9547446370124817, 'test_accuracy': 0.8536082474226804, 'test_f1': 0.8543579048224414, 'test_runtime': 4.9865, 'test_samples_per_second': 97.263, 'test_steps_per_second': 12.233} ```
threite/poca-SoccerTwos
threite
null
20
211
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
841
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: threite/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Niraya666/ppo-SnowballTarget
Niraya666
null
20
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
856
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Niraya666/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sunwooooong/klue-bert-finetuned-klue-ner
sunwooooong
bert
12
10
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
null
['klue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,307
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue-bert-finetuned-klue-ner This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.3930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5313 | 1.0 | 876 | 0.5225 | 0.2331 | | 0.3884 | 2.0 | 1752 | 0.4197 | 0.3350 | | 0.3136 | 3.0 | 2628 | 0.3741 | 0.3930 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Manseo/Colorful-v4.5
Manseo
null
24
25
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['stable diffusion', 'text-to-image', 'diffusers']
false
true
true
3,648
# **Colorful-v4.5-Plus** **Colorful-v4.5-Plus** is a model merge between [Anything-v4.5](https://huggingface.co/andite/anything-v4.0), [AbyssOrangeMix3](https://huggingface.co/WarriorMama777/OrangeMixs) and [ProtogenInfinity](https://huggingface.co/darkstorm2150/Protogen_Infinity_Official_Release) Colorful-v4.5 is named how it is because of the fact that it is similar to Anything-v4.5 and that it improves the bland color pallet it comes with (atleast for me), producing much livelier images. It also improves some other things like environments, fingers, facial emotions and somewhat clothing (it also fixes the purple spots 🤫) The "Plus" in "Colorful-v4.5" has been added because the model merge has been updated to Abyss Orange Mix 3. As the name suggests, this version is better than the last one *Technically i could name it Anything-v5.0 but that would be rather cheesy* *The older version of the model is still in the repo if you're interested* *It is highly recommended to run this model locally on your computer because running it from the web-ui api will produce lower quality images than intended* # Examples: # Colorful-v4.5-Plus: ![02118-382952353-masterpiece, best quality, girl, black hair, blue eyes, black t-shirt, black pants, smiling, standing up, solo, facing viewer, n.png](https://s3.amazonaws.com/moonup/production/uploads/1676717793880-637dd5466b7ee62df4622eeb.png) # Colorful-v4.5: ![02048-774768794-masterpiece, best quality, girl, black hair, blue eyes, black t-shirt, black pants, smiling, standing up, solo, facing viewer, n.png](https://s3.amazonaws.com/moonup/production/uploads/1676108642730-637dd5466b7ee62df4622eeb.png) # Anything-v4.5: ![02049-774768794-masterpiece, best quality, girl, black hair, blue eyes, black t-shirt, black pants, smiling, standing up, solo, facing viewer, n.png](https://s3.amazonaws.com/moonup/production/uploads/1676108845574-637dd5466b7ee62df4622eeb.png) ``` Prompt: masterpiece, best quality, girl, black hair, blue eyes, black t-shirt, black pants, smiling, standing up, solo, facing viewer, near blossomed tree Other Details: Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 8, Seed: 774768794, Size: 512x512, Model hash: b5de490700, Model: Colorful-v4.5, Denoising strength: 0.6, Hires upscale: 2, Hires steps: 30, Hires upscaler: SwinIR_4x Negative Prompt: The negative prompt is very long and specific so it will be listed in the model's repo. ( The negative prompt comes from another model called Hentai Difussion so it will contain NSFW. A curated version of the negative prompt will also be in the repo for those who want SFW) ``` *Note: I didnt use any vae for the examples, but i did try the anything-v4.0 vae and it barely made a difference*
FredZhang7/anime-anything-promptgen-v2
FredZhang7
gpt2
12
70
transformers
3
text-generation
true
false
false
creativeml-openrail-m
['en']
['FredZhang7/anime-prompts-180K']
null
0
0
0
0
0
0
0
['stable-diffusion', 'anime', 'anything-v4', 'art', 'arxiv:2210.14140']
false
true
true
2,682
## Fast Anime PromptGen This model was trained on a dataset of **80,000** safe anime prompts for 3 epochs. I fetched the prompts from the [Safebooru API endpoint](https://safebooru.donmai.us/posts/random.json), but only accepted unique prompts with **up_score ≥ 8** and without any [blacklisted tags](./blacklist.txt). I didn't release the V1 model because it only generated gibberish prompts. After trying all means to correct that behavior, I eventually figured that the cause of the gibberish prompts is not from the pipeline params, model structure or training duration, but rather from the random usernames in the training data. Here's the complete [prompt preprocessing algorithm](./preprocess.py). ## Text-to-image Examples Prefix *1girl* | [Generated *1girl* prompts](./anime_girl_settings.txt) | Model *Anything V4* ![](./anime_girls.png) Prefix *1boy*  | [Generated *1boy* prompts](./anime_boy_settings.txt) | Model *Anything V4* ![](./anime_boys.png) ## Contrastive Search ``` pip install --upgrade transformers ``` ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = GPT2LMHeadModel.from_pretrained('FredZhang7/anime-anything-promptgen-v2') prompt = r'1girl, genshin' # generate text using fine-tuned model nlp = pipeline('text-generation', model=model, tokenizer=tokenizer) # generate 10 samples using contrastive search outs = nlp(prompt, max_length=76, num_return_sequences=10, do_sample=True, repetition_penalty=1.2, temperature=0.7, top_k=4, early_stopping=True) print('\nInput:\n' + 100 * '-') print('\033[96m' + prompt + '\033[0m') print('\nOutput:\n' + 100 * '-') for i in range(len(outs)): # remove trailing commas and double spaces outs[i] = str(outs[i]['generated_text']).replace(' ', '').rstrip(',') print('\033[92m' + '\n\n'.join(outs) + '\033[0m\n') ``` Output Example: ![](./contrastive_search.png) Please see [Fast GPT PromptGen](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion-v2) for more info on the pipeline parameters. ## Awesome Tips - If you feel like a generated anime character doesn't show emotions, try emoticons like `;o`, `:o`, `;p`, `:d`, `:p`, and `;d` in the prompt. I also use `happy smirk`, `happy smile`, `laughing closed eyes`, etc. to make the characters more lively and expressive. - Adding `absurdres`, instead of `highres` and `masterpiece`, to a prompt can drastically increase the sharpness and resolution of a generated image. ## Danbooru [Link to the Danbooru version](https://huggingface.co/FredZhang7/danbooru-tag-generator)
jancijen/PPO-LunarLander-v2
jancijen
null
12
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
atorre/poca-SoccerTwos-10M
atorre
null
21
207
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp
espnet
null
19
0
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['librimix']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
6,804
## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Feb 6 12:15:26 CST 2023` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_conformer_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|78.3|19.1|2.6|3.0|24.7|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|79.6|17.7|2.6|3.0|23.3|98.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|90.1|6.3|3.6|3.5|13.4|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|605408|90.7|5.7|3.6|3.3|12.6|98.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_sot_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38867 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 8000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ChrisPreston/diff-svc_minato_aqua_user_ver
ChrisPreston
null
4
0
null
2
null
false
false
false
other
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,606
diff-svc一键包 原项目地址:https://github.com/openvpi/diff-svc vst插件:https://github.com/zhaohui8969/VST_NetProcess-/tree/master 代码修改:@ChrisPreston 模型训练:@ChrisPreston 音源:Aqua Ch. 湊あくあ https://www.youtube.com/@MinatoAqua カバー株式会社 模型使用协议(重要): 1. 请勿用于商业目的 2. 请勿用于会影响主播本人的行为(比如冒充本人发表争议言论) 3. 请勿用于血腥、暴力、性相关、政治相关内容 4. 不允许二次分发模型 5. 非个人使用场合请注明模型作者@ChrisPreston以及diff-svc原项目 6. 允许用于个人娱乐场景下的游戏语音、直播活动,不得用于低创内容,用于直播前请与本人联系 联系方式:电邮:[email protected], b站:https://space.bilibili.com/18801308 免责声明:由于使用本模型造成的法律纠纷本人概不负责 diff-svc easy package Original repository: https://github.com/openvpi/diff-svc vst plugin: https://github.com/zhaohui8969/VST_NetProcess-/tree/master Code modification: @ChrisPreston Model Training: @ChrisPreston Sound source: Aqua Ch. https://www.youtube.com/@MinatoAqua Cover.crop Model usage agreement (important): 1. Do not use for commercial purposes 2. Do not use it for actions that will affect MinatoAqua (such as pretending to be herself to make controversial remarks) 3. Please do not use it for bloody, violent, sexual or political content 4. No redistribute allowed 5. Please indicate the author of the model @ChrisPreston and the original project of diff-svc for non-personal use 6. It is allowed to be used for game voice and live broadcast activities in personal entertainment scenarios. Please contact me before using it for live broadcast Contact information: Email: [email protected], Bilibili: https://space.bilibili.com/18801308 Disclaimer: I am not responsible for any legal disputes caused by the use of this model
amrisaurus/pretrained-bert-uncased-90
amrisaurus
bert
8
18
transformers
0
null
false
true
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
4,762
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert-uncased-90 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.5801 - Validation Loss: 13.6573 - Epoch: 89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.8978 | 9.5686 | 0 | | 7.0524 | 9.6480 | 1 | | 6.8578 | 10.5054 | 2 | | 6.1054 | 10.4137 | 3 | | 6.1268 | 10.4515 | 4 | | 5.8614 | 10.4313 | 5 | | 5.9680 | 10.7224 | 6 | | 5.7868 | 11.2948 | 7 | | 5.5465 | 10.7112 | 8 | | 5.7115 | 10.8543 | 9 | | 5.7908 | 11.6466 | 10 | | 5.5664 | 11.5085 | 11 | | 5.5865 | 11.4894 | 12 | | 5.6421 | 11.2182 | 13 | | 5.6626 | 11.4446 | 14 | | 5.4587 | 11.2814 | 15 | | 5.5299 | 11.6601 | 16 | | 5.5408 | 12.0485 | 17 | | 5.5092 | 11.9469 | 18 | | 5.6606 | 12.4353 | 19 | | 5.7420 | 12.7461 | 20 | | 5.6078 | 12.1650 | 21 | | 5.6612 | 12.2811 | 22 | | 5.7503 | 12.4086 | 23 | | 5.5609 | 12.6149 | 24 | | 5.4806 | 12.4447 | 25 | | 5.6898 | 12.8078 | 26 | | 5.6168 | 12.4649 | 27 | | 5.6292 | 12.5851 | 28 | | 5.8481 | 12.5146 | 29 | | 5.6491 | 12.6358 | 30 | | 5.5755 | 12.6996 | 31 | | 5.8218 | 12.7957 | 32 | | 5.5641 | 13.1650 | 33 | | 5.6044 | 12.5065 | 34 | | 5.6762 | 12.3722 | 35 | | 5.5931 | 12.7162 | 36 | | 5.5727 | 12.6179 | 37 | | 5.5761 | 12.9479 | 38 | | 5.6360 | 13.0610 | 39 | | 5.4503 | 13.0441 | 40 | | 5.5689 | 13.1673 | 41 | | 5.6327 | 13.2184 | 42 | | 5.5567 | 12.8114 | 43 | | 5.6322 | 13.1793 | 44 | | 5.4677 | 13.1324 | 45 | | 5.5865 | 13.2891 | 46 | | 5.5352 | 13.5036 | 47 | | 5.4867 | 13.5010 | 48 | | 5.6926 | 13.1743 | 49 | | 5.7545 | 13.1689 | 50 | | 5.5422 | 13.3362 | 51 | | 5.6094 | 13.3983 | 52 | | 5.5993 | 13.3638 | 53 | | 5.6803 | 13.3884 | 54 | | 5.6102 | 12.7277 | 55 | | 5.7204 | 13.1669 | 56 | | 5.5271 | 13.5684 | 57 | | 5.5265 | 13.5086 | 58 | | 5.5679 | 13.8641 | 59 | | 5.6738 | 13.1735 | 60 | | 5.5423 | 13.3285 | 61 | | 5.5020 | 13.6262 | 62 | | 5.5065 | 13.4765 | 63 | | 5.5919 | 13.5598 | 64 | | 5.5684 | 13.1651 | 65 | | 5.6378 | 13.4781 | 66 | | 5.6661 | 13.0726 | 67 | | 5.7996 | 13.6267 | 68 | | 5.7453 | 13.4608 | 69 | | 5.5720 | 13.3663 | 70 | | 5.4926 | 13.6905 | 71 | | 5.7386 | 13.5941 | 72 | | 5.6016 | 13.3110 | 73 | | 5.5905 | 14.0529 | 74 | | 5.7030 | 13.7322 | 75 | | 5.6801 | 13.4712 | 76 | | 5.6202 | 13.7954 | 77 | | 5.6230 | 13.8177 | 78 | | 5.6288 | 13.4887 | 79 | | 5.6207 | 13.5817 | 80 | | 5.5904 | 13.7643 | 81 | | 5.6685 | 14.1648 | 82 | | 5.5031 | 14.1816 | 83 | | 5.6752 | 13.9170 | 84 | | 5.6140 | 13.6953 | 85 | | 5.6929 | 13.4916 | 86 | | 5.4762 | 13.8740 | 87 | | 5.6537 | 13.9725 | 88 | | 5.5801 | 13.6573 | 89 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
HealthTeam/mt5-small-finetuned-MultiHead-230209-test3
HealthTeam
mt5
13
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,328
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-MultiHead-230209-test3 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 13.9701 - Bleu: 0.0131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 63 | 17.2117 | 0.0072 | | No log | 2.0 | 126 | 14.5737 | 0.0130 | | No log | 3.0 | 189 | 13.9701 | 0.0131 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ThatGuyVanquish/mt5-small-finetuned-rabbi-kook-nave
ThatGuyVanquish
mt5
11
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,296
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-rabbi-kook-nave This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 892 | nan | | 0.0 | 2.0 | 1784 | nan | | 0.0 | 3.0 | 2676 | nan | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.11.0
DeppOnHuggingFace/sd-arsstickers-128
DeppOnHuggingFace
null
6
2
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
427
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋, no I mean horrible stickers because I change the dataset. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('DeppOnHuggingFace/sd-arsstickers-128') image = pipeline().images[0] image ```
sryu1/poca-SoccerTwos
sryu1
null
23
201
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
839
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sryu1/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Mustafa21/my_awesome_food_model
Mustafa21
vit
7
0
transformers
0
image-classification
true
false
false
apache-2.0
null
['food101']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,449
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.2335 - Accuracy: 0.985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0523 | 1.0 | 50 | 1.9226 | 0.935 | | 1.3718 | 2.0 | 100 | 1.3422 | 0.995 | | 1.2298 | 3.0 | 150 | 1.2335 | 0.985 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Salesforce/blip2-flan-t5-xxl
Salesforce
blip-2
15
64
transformers
3
image-to-text
true
false
false
mit
['en']
null
null
1
1
0
0
0
0
0
['vision', 'image-to-text', 'image-captioning', 'visual-question-answering']
false
true
true
2,030
# BLIP-2, Flan T5-xxl, pre-trained only BLIP-2 model, leveraging [Flan T5-xxl](https://huggingface.co/google/flan-t5-xxl) (a large language model). It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2). Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model. The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings, which bridge the gap between the embedding space of the image encoder and the large language model. The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg" alt="drawing" width="600"/> This allows the model to be used for tasks like: - image captioning - visual question answering (VQA) - chat-like conversations by feeding the image and the previous conversation as prompt to the model ## Intended uses & limitations You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example), or refer to the snippets below depending on your usecase: #### Running the model on CPU <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, Blip2ForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> #### Running the model on GPU ##### In full precision <details> <summary> Click to expand </summary> ```python # pip install accelerate import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xxl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ##### In half precision (`float16`) <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", torch_dtype=torch.float16, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ##### In 8-bit precision (`int8`) <details> <summary> Click to expand </summary> ```python # pip install accelerate bitsandbytes import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", load_in_8bit=True, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details>
XPeng2022/fotorx
XPeng2022
null
19
21
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
265
### fotorx Dreambooth model trained by XPeng2022 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
wangguan/ppo-LunarLander-v2
wangguan
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jason1i/poca-SoccerTwos-towards-AGI
jason1i
null
51
196
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
853
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jason1i/poca-SoccerTwos-towards-AGI 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tudnlp23g69/hw6
tudnlp23g69
bert
15
39
transformers
0
question-answering
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
952
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
Iggg0r/ppo-LunarLander-v2
Iggg0r
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yizhangliu/poca-SoccerTwos-v5
yizhangliu
null
22
199
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
847
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v5 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sftvrt/wav2vec2-large-xls-r-300m-swedisch-colab
sftvrt
wav2vec2
13
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,370
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-swedisch-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6439 - Wer: 0.9678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8953 | 1.83 | 400 | 1.6439 | 0.9678 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
Shushant/my_awesome_qa_model
Shushant
bert
14
1
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,259
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 5.8153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 5.8866 | | No log | 2.0 | 6 | 5.8367 | | No log | 3.0 | 9 | 5.8153 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
cfalholt/A2C-AntBulletEnv-v0
cfalholt
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sinjy1203/ko-sbert-navernews
sinjy1203
bert
13
5
sentence-transformers
0
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,649
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 593 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nikogarro/PPO-LunarLander-v2
nikogarro
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
Akanksha27/distilbert-base-uncased-finetuned-cola
Akanksha27
distilbert
18
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,275
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4969 - Matthews Correlation: 0.4354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5287 | 1.0 | 535 | 0.4969 | 0.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Rubywong123/PPO-LunarLander-v2
Rubywong123
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
threite/xlm-roberta-base-finetuned-partypredictor
threite
xlm-roberta
9
0
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,715
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-partypredictor This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6783 - Accuracy: 0.2495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.7766 | 0.76 | 5000 | 0.1331 | 1.8909 | | 1.7572 | 1.52 | 10000 | 0.1331 | 1.7809 | | 1.7543 | 2.28 | 15000 | 0.1031 | 1.8126 | | 1.7273 | 3.05 | 20000 | 0.1331 | 1.8048 | | 1.7435 | 3.81 | 25000 | 0.2675 | 1.7892 | | 1.7606 | 4.99 | 30000 | 0.3121 | 1.7848 | | 1.7546 | 5.82 | 35000 | 0.3121 | 1.7737 | | 1.7417 | 6.65 | 40000 | 0.3121 | 1.7699 | | 1.7007 | 7.48 | 45000 | 0.1529 | 1.7088 | | 1.7542 | 7.87 | 50000 | 0.1331 | 1.8058 | | 1.75 | 8.66 | 55000 | 0.1331 | 1.8347 | | 1.7505 | 10.05 | 60000 | 1.8079 | 0.1231 | | 1.7545 | 10.88 | 65000 | 1.7756 | 0.3121 | | 1.7322 | 11.72 | 70000 | 1.7371 | 0.2707 | | 1.7082 | 12.56 | 75000 | 1.6886 | 0.2419 | | 1.7035 | 13.4 | 80000 | 1.6844 | 0.2638 | | 1.6889 | 14.23 | 85000 | 1.6728 | 0.2525 | | 1.6779 | 15.07 | 90000 | 1.6737 | 0.2490 | | 1.6821 | 15.91 | 95000 | 1.6783 | 0.2495 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
ireneisdoomed/clinical_trial_stop_reasons_custom
ireneisdoomed
bert
13
8
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,199
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_trial_stop_reasons_custom This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy Thresh: 0.9570 - F1 Micro: 0.5300 - F1 Macro: 0.1254 - Confusion Matrix: [[5940 15] [ 270 150]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Thresh | F1 Micro | F1 Macro | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:--------:|:--------------------------:| | No log | 1.0 | 106 | 0.2812 | 0.8328 | 0.0 | 0.0 | [[5955 0] [ 420 0]] | | No log | 2.0 | 212 | 0.2189 | 0.9382 | 0.0 | 0.0 | [[5955 0] [ 420 0]] | | No log | 3.0 | 318 | 0.1840 | 0.9489 | 0.0 | 0.0 | [[5955 0] [ 420 0]] | | No log | 4.0 | 424 | 0.1638 | 0.9485 | 0.4940 | 0.0989 | [[5943 12] [ 288 132]] | | 0.239 | 5.0 | 530 | 0.1526 | 0.9533 | 0.5060 | 0.1018 | [[5943 12] [ 277 143]] | | 0.239 | 6.0 | 636 | 0.1467 | 0.9564 | 0.5077 | 0.1020 | [[5938 17] [ 275 145]] | | 0.239 | 7.0 | 742 | 0.1448 | 0.9570 | 0.5300 | 0.1254 | [[5940 15] [ 270 150]] | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
DL82/denlip82
DL82
null
47
1
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
3,178
### denlip82 Dreambooth model trained by DL82 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: denlip82 (use that on your prompt) ![denlip82 0](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%281%29.jpg)![denlip82 1](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%282%29.jpg)![denlip82 2](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%283%29.jpg)![denlip82 3](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%284%29.jpg)![denlip82 4](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%285%29.jpg)![denlip82 5](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%286%29.jpg)![denlip82 6](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%287%29.jpg)![denlip82 7](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%288%29.jpg)![denlip82 8](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%289%29.jpg)![denlip82 9](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2810%29.jpg)![denlip82 10](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2811%29.jpg)![denlip82 11](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2812%29.jpg)![denlip82 12](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2813%29.jpg)![denlip82 13](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2814%29.jpg)![denlip82 14](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2815%29.jpg)![denlip82 15](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2816%29.jpg)![denlip82 16](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2817%29.jpg)![denlip82 17](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2818%29.jpg)![denlip82 18](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2819%29.jpg)![denlip82 19](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2820%29.jpg)![denlip82 20](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2821%29.jpg)![denlip82 21](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2822%29.jpg)![denlip82 22](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2823%29.jpg)![denlip82 23](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2824%29.jpg)![denlip82 24](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2825%29.jpg)![denlip82 25](https://huggingface.co/DL82/denlip82/resolve/main/concept_images/denlip82_%2826%29.jpg)
concedo/OPT-2.7B-Nerybus-Mix
concedo
opt
11
16
transformers
1
text-generation
true
false
false
other
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,144
# OPT-2.7B-Nerybus-Mix This is an experimental model containing a ***parameter-wise 50/50 blend (weighted average)*** of the weights of *NerysV2-2.7B* and *ErebusV1-2.7B* Preliminary testing produces pretty coherent outputs, it appears to retain the NSFWness of Erebus but with a Nerys-esque twist in terms of prose. # License The two models used for this blend, *NerysV2-2.7B* and *ErebusV1-2.7B* are made by **Mr. Seeker**. - https://huggingface.co/KoboldAI/OPT-2.7B-Erebus - https://huggingface.co/KoboldAI/OPT-2.7B-Nerys-v2 The base OPT-2.7B model is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. # Evaluation Results As the original datasets used for the source models are not publically available, I use my own datasets for this evaluation, which may not provide accurate comparison. Eval parameters: 32000 characters extracted from the middle of the corpus, tested in blocks of 1024 tokens each, same dataset used for each test batch. ``` Literotica Dataset Eval (Randomly selected stories) {'eval_loss': 2.571258306503296, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.5491442680358887, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.6158597469329834, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.614469051361084, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.4960227012634277, 'name': '(Unreleased 2.7B ModronAI Model)'} ASSTR Dataset Eval (Randomly selected stories) {'eval_loss': 2.664412498474121, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.6451029777526855, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.7259647846221924, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.6675195693969727, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.962111473083496, 'name': '(Unreleased 2.7B ModronAI Model)'} Sexstories Dataset Eval (Random highly rated stories) {'eval_loss': 2.2352423667907715, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.194378137588501, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.307469129562378, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.293961763381958, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.0103421211242676, 'name': '(Unreleased 2.7B ModronAI Model)'} Harry Potter Dataset Eval (Canon books) {'eval_loss': 2.473742961883545, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.480600357055664, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.506237506866455, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.5074169635772705, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.273703098297119, 'name': '(Unreleased 2.7B ModronAI Model)'} Star Wars Dataset Eval (Rogue One Novel) {'eval_loss': 2.5031676292419434, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.5239150524139404, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.526801586151123, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.473283529281616, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.955465793609619, 'name': '(Unreleased 2.7B ModronAI Model)'} ``` It is recommend to use this model with the KoboldAI software. All feedback and comments can be directed to Concedo on the KoboldAI discord.
plpkpjph/bert_german_test_2-finetuned-ner
plpkpjph
bert
10
10
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_german_test_2-finetuned-ner This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ZTamas/hubert-qa-milqa-impossible
ZTamas
bert
13
9
transformers
0
question-answering
true
false
false
null
['hu']
null
null
0
0
0
0
0
0
0
['question-answering', 'bert']
false
true
true
637
This model is a fine-tuned version of [mcsabai/huBert-fine-tuned-hungarian-squadv2](https://huggingface.co/mcsabai/huBert-fine-tuned-hungarian-squadv2) on the milqa dataset. How to use: ```py from transformers import pipeline qa_pipeline = pipeline( "question-answering", model = "ZTamas/hubert-qa-milqa-impossible", tokenizer = "ZTamas/hubert-qa-milqa-impossible", device = 0, #GPU selection, -1 on CPU handle_impossible_answer = True, max_answer_len = 50 ) predictions = qa_pipeline({ 'context': context, 'question': question }) print(predictions) ```
asuzuki/Reinforce-CartPole-v1
asuzuki
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Duskfallcrew/duskfall-s-digital-fantasy
Duskfallcrew
null
21
19
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
1,011
### Duskfall's Digital Fantasy Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! All samples and info are here: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk digidsk1 (use that on your prompt)
Galiess/a2c-AntBulletEnv-v0
Galiess
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible
ZTamas
xlm-roberta
9
2
transformers
0
question-answering
true
false
false
null
['hu']
null
null
0
0
0
0
0
0
0
[]
false
true
true
708
This model is a fine-tuned version of deepset/xlm-roberta-large-squad2 on the milqa dataset. Packages to install for large roberta model: ```py sentencepiece==0.1.97 protobuf==3.20.0 ``` How to use: ```py from transformers import pipeline qa_pipeline = pipeline( "question-answering", model = "ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible", tokenizer = "ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible", device = 0, #GPU selection, -1 on CPU handle_impossible_answer = True, max_answer_len = 50 #This can be modified ) predictions = qa_pipeline({ 'context': context, 'question': question }) print(predictions) ```
DaniilSirota/ppo-Pyramids
DaniilSirota
null
16
0
ml-agents
1
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
835
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: DaniilSirota/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RocioUrquijo/clasificador-languagedetection
RocioUrquijo
xlm-roberta
10
4
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
958
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-languagedetection This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ZTamas/hubert-qa-milqa-impossible-long-answer
ZTamas
bert
9
7
transformers
0
question-answering
true
false
false
null
['hu']
null
null
0
0
0
0
0
0
0
[]
false
true
true
771
This model is a fine-tuned version of mcsabai/huBert-fine-tuned-hungarian-squadv2 on the milqa dataset. How to use: ```py from transformers import pipeline qa_pipeline = pipeline( "question-answering", model = "ZTamas/hubert-qa-milqa-impossible-long-answer", tokenizer = "ZTamas/hubert-qa-milqa-impossible-long-answer", device = 0, #GPU selection, -1 on CPU handle_impossible_answer = True, max_answer_len = 1000 #This can be modified, but to let the model's #answer be as long as it wants so I #decided to add a big number ) predictions = qa_pipeline({ 'context': context, 'question': question }) print(predictions) ```
NTCAL/SavedAfterTrainingTest39
NTCAL
bert
10
5
transformers
1
text-classification
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,051
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SavedAfterTrainingTest39 This model is a fine-tuned version of [ltgoslo/norbert2](https://huggingface.co/ltgoslo/norbert2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
nlpso/m1_ind_layers_ref_cmbert_io_level_1
nlpso
camembert
13
4
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,385
# m1_ind_layers_ref_cmbert_io_level_1 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_io_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_1")
nlpso/m1_ind_layers_ref_cmbert_io_level_2
nlpso
camembert
13
0
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,385
# m1_ind_layers_ref_cmbert_io_level_2 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_io_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_2")
nlpso/m1_ind_layers_ref_cmbert_iob2_level_1
nlpso
camembert
13
2
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,397
# m1_ind_layers_ref_cmbert_iob2_level_1 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_iob2_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_1")
pfunk/Pong-v4-DQPN_p100_e0.10-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,999
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p100_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p100_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p100_e0.10 --start-policy-f 100000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p100_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 100000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
nlpso/m1_ind_layers_ref_cmbert_iob2_level_2
nlpso
camembert
13
3
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,397
# m1_ind_layers_ref_cmbert_iob2_level_2 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_iob2_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_2")
nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1
nlpso
camembert
13
1
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,410
# m1_ind_layers_ref_ptrn_cmbert_io_level_1 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1")
nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2
nlpso
camembert
13
0
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,410
# m1_ind_layers_ref_ptrn_cmbert_io_level_2 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2")
nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1
nlpso
camembert
13
0
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,422
# m1_ind_layers_ref_ptrn_cmbert_iob2_level_1 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1")
nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2
nlpso
camembert
13
2
transformers
0
token-classification
true
false
false
null
['fr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,422
# m1_ind_layers_ref_ptrn_cmbert_iob2_level_2 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2")