repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['TimePilot-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,295
# (CleanRL) **PPO** Agent Playing **TimePilot-v5** This is a trained model of a PPO agent playing TimePilot-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id TimePilot-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'TimePilot-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
BeardedJohn/ppo-lunar-lander-v2
BeardedJohn
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
merve/multilabel-v1-replica
merve
bert
13
7
transformers
0
text-classification
true
false
false
apache-2.0
['tr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,605
**Train-Test Set:** "intent-multilabel-v1-2.zip" **Model:** "dbmdz/bert-base-turkish-cased" ## Tokenizer Params ``` max_length=128 padding="max_length" truncation=True ``` ## Training Params ``` evaluation_strategy = "epoch" save_strategy = "epoch" per_device_train_batch_size = 16 per_device_eval_batch_size = 16 num_train_epochs = 4 load_best_model_at_end = True ``` ## Train-Val Splitting Configuration ``` train_test_split(df_train, test_size=0.1, random_state=1111) ``` ## Training Log ``` Epoch Training Loss Validation Loss 1 No log 0.150276 2 0.195100 0.132906 3 0.107700 0.128633 4 0.107700 0.127795 ``` ## Threshold Optimization - **Best Threshold:** 0.1 - **F1 @ Threshold:** 0.734 ## Eval Results ``` precision recall f1-score support Alakasiz 0.90 0.87 0.89 734 Barinma 0.85 0.80 0.83 207 Elektronik 0.73 0.78 0.75 130 Giysi 0.83 0.66 0.73 94 Kurtarma 0.86 0.79 0.82 362 Lojistik 0.73 0.51 0.60 112 Saglik 0.74 0.74 0.74 108 Su 0.64 0.60 0.62 78 Yagma 0.68 0.55 0.61 31 Yemek 0.80 0.83 0.81 117 micro avg 0.84 0.79 0.81 1973 macro avg 0.78 0.71 0.74 1973 weighted avg 0.84 0.79 0.81 1973 samples avg 0.84 0.82 0.82 1973 ```
Shadman-Rohan/my_awesome_wnut_model
Shadman-Rohan
distilbert
18
0
transformers
0
token-classification
true
false
false
apache-2.0
null
['wnut_17']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,445
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2793 - Precision: 0.5338 - Recall: 0.2854 - F1: 0.3720 - Accuracy: 0.9403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2933 | 0.3959 | 0.1798 | 0.2473 | 0.9347 | | No log | 2.0 | 426 | 0.2793 | 0.5338 | 0.2854 | 0.3720 | 0.9403 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tyuukau/distilbert-base-uncased-finetuned-squad
tyuukau
distilbert
10
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,873
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tyuukau/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5109 - Train End Logits Accuracy: 0.5538 - Train Start Logits Accuracy: 0.5366 - Validation Loss: 1.1954 - Validation End Logits Accuracy: 0.6076 - Validation Start Logits Accuracy: 0.6066 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16468, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.5109 | 0.5538 | 0.5366 | 1.1954 | 0.6076 | 0.6066 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
joaoluislins/wmt-ptt5-colab-base-finetuned-en-to-pt
joaoluislins
t5
12
5
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,688
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wmt-mbart50-large-finetuned-en-to-pt This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the WMT dataset (bi and mono-backtranslated) It achieves the following results on the evaluation set: - Loss: 0.2510 - Bleu: 62.7011 - Gen Len: 19.224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.6426 | 1.0 | 433 | 0.5323 | 4.484 | 10.5635 | | 0.2571 | 2.0 | 866 | 0.1965 | 47.6449 | 19.164 | | 0.1043 | 3.0 | 1299 | 0.1723 | 53.6231 | 19.1455 | | 0.058 | 4.0 | 1732 | 0.1908 | 52.9831 | 18.5543 | | 0.0382 | 5.0 | 2165 | 0.1801 | 58.4418 | 19.0808 | | 0.0244 | 6.0 | 2598 | 0.2014 | 56.0197 | 20.0485 | | 0.0195 | 7.0 | 3031 | 0.2029 | 56.7903 | 18.642 | | 0.0138 | 8.0 | 3464 | 0.2015 | 57.6855 | 19.0 | | 0.0126 | 9.0 | 3897 | 0.2095 | 58.5733 | 18.7644 | | 0.0095 | 10.0 | 4330 | 0.1946 | 60.3165 | 19.6097 | | 0.0067 | 11.0 | 4763 | 0.2094 | 60.2691 | 18.9561 | | 0.0055 | 12.0 | 5196 | 0.2202 | 60.375 | 19.3025 | | 0.0046 | 13.0 | 5629 | 0.2153 | 60.7254 | 19.0855 | | 0.0035 | 14.0 | 6062 | 0.2239 | 61.458 | 19.0647 | | 0.0054 | 15.0 | 6495 | 0.2250 | 61.5297 | 19.164 | | 0.0025 | 16.0 | 6928 | 0.2458 | 61.263 | 19.0531 | | 0.002 | 17.0 | 7361 | 0.2354 | 62.4404 | 19.2102 | | 0.0015 | 18.0 | 7794 | 0.2403 | 62.0235 | 19.1293 | | 0.0011 | 19.0 | 8227 | 0.2477 | 62.6301 | 19.2494 | | 0.0009 | 20.0 | 8660 | 0.2510 | 62.7011 | 19.224 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
merve/ner-replica
merve
bert
13
7
transformers
0
token-classification
true
false
false
apache-2.0
['tr']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,192
## deprem-ner Bu model depremde enkaz altında kalan kişilerin bildirimlerinden sokak, il, ilçe gibi bilgileri çekmeye çalıştık. Örnek girdiler: - "Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım göçük altında #hatay #Afad" - "MARAȘA'ta arkadaşimizdan haber alamıyoruz ACIL yardım Penta Park konutları 1. Blok en üst kat 11. Kat \n\n@AFADBaskanlik #kahramanmaraş\nACİL" Verdiği çıktılar: ``` [ { "entity_group": "mahalle", "score": 0.8160411715507507, "word": "Akevler mahallesi", "start": 14, "end": 31 }, { "entity_group": "sokak", "score": 0.940501868724823, "word": "Rüzgar sokak", "start": 32, "end": 44 }, { "entity_group": "Apartman/Site", "score": 0.8081040978431702, "word": "Tuncay apartmanı", "start": 45, "end": 61 }, { "entity_group": "ilce", "score": 0.854024350643158, "word": "Antakya", "start": 72, "end": 79 } ] ``` ### Değerlendirme Bu modeli Hugging Face Hub'daki diğer modellerle karşılaştırdık, örnek 30 input'ta sonuçları [bu repository'de](https://huggingface.co/datasets/deprem-ml/butun_model_benchmarklari) bulabilirsiniz.
cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Tutankham-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,295
# (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
wptmdoorn/lunarlander_v1
wptmdoorn
null
19
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kyleiwaniec/PTC_TAPT_RoBERTa_large_SLC
Kyleiwaniec
roberta
4
11
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
463
## RESULTS ON PTC SLC TASK ### Kyleiwaniec/PTC_TAPT_RoBERTa_large_SLC (test data) ``` TP, TN, FP, FN 610 1920 190 495 ACC 0.7869362363919129 precision,recall,F1,MCC 0.7625 0.5520361990950227 0.6404199475065617 0.5075166072878464 ``` ### Kyleiwaniec/PTC_TAPT_RoBERTa_large_SLC (validation data) ``` TP, TN, FP, FN 520 2166 281 244 ACC 0.8364995328558081 precision,recall,F1,MCC 0.6491885143570537 0.680628272251309 0.6645367412140576 0.5567972148181395 ```
cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Tutankham-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,295
# (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Venture-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
thearod5/git-bert
thearod5
bert
11
22
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
814
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-bert This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
bonadio/poca-SoccerTwos
bonadio
null
10
100
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
841
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: bonadio/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Venture-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['UpNDown-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **UpNDown-v5** This is a trained model of a PPO agent playing UpNDown-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'UpNDown-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['WizardOfWor-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,311
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['WizardOfWor-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,311
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
SeNSiTivE/RL-Course-Unit_2-q-FrozenLake-v1-4x4-Slippery
SeNSiTivE
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
415
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SeNSiTivE/RL-Course-Unit_2-q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['YarsRevenge-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,311
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5** This is a trained model of a PPO agent playing YarsRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id YarsRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'YarsRevenge-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['YarsRevenge-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,311
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5** This is a trained model of a PPO agent playing YarsRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id YarsRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'YarsRevenge-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['VideoPinball-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,319
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['VideoPinball-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,319
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Zaxxon-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,271
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Zaxxon-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,271
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
henryscheible/bert-base-uncased_stereoset_finetuned
henryscheible
bert
10
7
transformers
0
text-classification
true
false
false
apache-2.0
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,129
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_stereoset_finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 1.3464 - Accuracy: 0.7261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.6832 | 0.5565 | | No log | 0.42 | 10 | 0.6945 | 0.4741 | | No log | 0.62 | 15 | 0.6659 | 0.6224 | | No log | 0.83 | 20 | 0.6337 | 0.6758 | | No log | 1.04 | 25 | 0.6019 | 0.6695 | | No log | 1.25 | 30 | 0.5797 | 0.7096 | | No log | 1.46 | 35 | 0.5562 | 0.7166 | | No log | 1.67 | 40 | 0.5497 | 0.7363 | | No log | 1.88 | 45 | 0.5382 | 0.7418 | | No log | 2.08 | 50 | 0.5356 | 0.7418 | | No log | 2.29 | 55 | 0.5690 | 0.7316 | | No log | 2.5 | 60 | 0.5778 | 0.7418 | | No log | 2.71 | 65 | 0.5695 | 0.7386 | | No log | 2.92 | 70 | 0.5765 | 0.7386 | | No log | 3.12 | 75 | 0.6079 | 0.7363 | | No log | 3.33 | 80 | 0.6919 | 0.7370 | | No log | 3.54 | 85 | 0.7396 | 0.7339 | | No log | 3.75 | 90 | 0.7109 | 0.7339 | | No log | 3.96 | 95 | 0.7246 | 0.7308 | | No log | 4.17 | 100 | 0.7502 | 0.7292 | | No log | 4.38 | 105 | 0.8222 | 0.7331 | | No log | 4.58 | 110 | 0.8508 | 0.7268 | | No log | 4.79 | 115 | 0.8995 | 0.7378 | | No log | 5.0 | 120 | 0.8797 | 0.7323 | | No log | 5.21 | 125 | 0.9254 | 0.7370 | | No log | 5.42 | 130 | 0.9863 | 0.7292 | | No log | 5.62 | 135 | 1.0044 | 0.7198 | | No log | 5.83 | 140 | 1.0236 | 0.7339 | | No log | 6.04 | 145 | 1.0705 | 0.7355 | | No log | 6.25 | 150 | 1.0734 | 0.7323 | | No log | 6.46 | 155 | 1.1066 | 0.7300 | | No log | 6.67 | 160 | 1.1166 | 0.7292 | | No log | 6.88 | 165 | 1.1258 | 0.7370 | | No log | 7.08 | 170 | 1.1972 | 0.7300 | | No log | 7.29 | 175 | 1.1682 | 0.7268 | | No log | 7.5 | 180 | 1.2221 | 0.7166 | | No log | 7.71 | 185 | 1.2813 | 0.7151 | | No log | 7.92 | 190 | 1.3180 | 0.7214 | | No log | 8.12 | 195 | 1.3224 | 0.7166 | | No log | 8.33 | 200 | 1.3252 | 0.7135 | | No log | 8.54 | 205 | 1.3205 | 0.7221 | | No log | 8.75 | 210 | 1.3266 | 0.7245 | | No log | 8.96 | 215 | 1.3318 | 0.7206 | | No log | 9.17 | 220 | 1.3345 | 0.7237 | | No log | 9.38 | 225 | 1.3378 | 0.7245 | | No log | 9.58 | 230 | 1.3422 | 0.7261 | | No log | 9.79 | 235 | 1.3453 | 0.7261 | | No log | 10.0 | 240 | 1.3464 | 0.7261 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
henryscheible/roberta-base_stereoset_finetuned
henryscheible
roberta
11
5
transformers
0
text-classification
true
false
false
mit
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,114
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_stereoset_finetuned This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 0.8461 - Accuracy: 0.7904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.6915 | 0.5149 | | No log | 0.42 | 10 | 0.6945 | 0.4914 | | No log | 0.62 | 15 | 0.6931 | 0.4945 | | No log | 0.83 | 20 | 0.6814 | 0.5086 | | No log | 1.04 | 25 | 0.6454 | 0.6978 | | No log | 1.25 | 30 | 0.5807 | 0.7088 | | No log | 1.46 | 35 | 0.5620 | 0.7284 | | No log | 1.67 | 40 | 0.5410 | 0.7331 | | No log | 1.88 | 45 | 0.4965 | 0.7630 | | No log | 2.08 | 50 | 0.4924 | 0.7614 | | No log | 2.29 | 55 | 0.4906 | 0.7661 | | No log | 2.5 | 60 | 0.5141 | 0.7661 | | No log | 2.71 | 65 | 0.4826 | 0.7700 | | No log | 2.92 | 70 | 0.4977 | 0.7630 | | No log | 3.12 | 75 | 0.4890 | 0.7802 | | No log | 3.33 | 80 | 0.4819 | 0.7857 | | No log | 3.54 | 85 | 0.4840 | 0.7834 | | No log | 3.75 | 90 | 0.5189 | 0.7794 | | No log | 3.96 | 95 | 0.5000 | 0.7912 | | No log | 4.17 | 100 | 0.4958 | 0.7865 | | No log | 4.38 | 105 | 0.5149 | 0.7896 | | No log | 4.58 | 110 | 0.5515 | 0.7975 | | No log | 4.79 | 115 | 0.5766 | 0.7873 | | No log | 5.0 | 120 | 0.5867 | 0.7873 | | No log | 5.21 | 125 | 0.6143 | 0.7936 | | No log | 5.42 | 130 | 0.6226 | 0.7881 | | No log | 5.62 | 135 | 0.6374 | 0.7865 | | No log | 5.83 | 140 | 0.6405 | 0.7983 | | No log | 6.04 | 145 | 0.6116 | 0.8006 | | No log | 6.25 | 150 | 0.6372 | 0.7983 | | No log | 6.46 | 155 | 0.6804 | 0.7881 | | No log | 6.67 | 160 | 0.7237 | 0.7857 | | No log | 6.88 | 165 | 0.7038 | 0.7904 | | No log | 7.08 | 170 | 0.7100 | 0.7991 | | No log | 7.29 | 175 | 0.6837 | 0.7920 | | No log | 7.5 | 180 | 0.7203 | 0.8046 | | No log | 7.71 | 185 | 0.7478 | 0.7959 | | No log | 7.92 | 190 | 0.7667 | 0.7920 | | No log | 8.12 | 195 | 0.7792 | 0.7959 | | No log | 8.33 | 200 | 0.8014 | 0.7943 | | No log | 8.54 | 205 | 0.8193 | 0.7959 | | No log | 8.75 | 210 | 0.8316 | 0.7967 | | No log | 8.96 | 215 | 0.8411 | 0.7896 | | No log | 9.17 | 220 | 0.8652 | 0.7936 | | No log | 9.38 | 225 | 0.8553 | 0.7841 | | No log | 9.58 | 230 | 0.8458 | 0.7881 | | No log | 9.79 | 235 | 0.8456 | 0.7912 | | No log | 10.0 | 240 | 0.8461 | 0.7904 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
minagi223/Lora_of_ReisalinStout3
minagi223
null
4
0
null
0
null
false
false
false
other
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,091
<img src="https://huggingface.co/minagi223/Lora_of_ReisalinStout3/blob/main/laisa12zz.png"> Reisalin Stout from Atelier Ryza 3: Alchemist of the End & the Secret by minagi from pixiv I have tried to make this model from some of the images I have redraw( (some just made by ai)), and the results have been good for me. Be careful with this lora, please try not to use it for profit (although I know I've tried to discourage it to no avail) Never post r18g stuff, you could be warned by the original (Koei Tecmo) or even sued. You can only draw Lysa from Generation 3. To change clothes, please adjust the model parameters to below 0.5. Translation with deepl 我試著用一些臨摹的圖片來做了這個模型(ai),對我而言,結果還是不錯的。 利用這個lora請注意,請儘量不要用來盈利(雖然我知道我勸阻了也沒用) 絕對不要弄r18g的東西發出來,你可能會被原著方(Koei Tecmo)警告,甚至被起诉。 只能畫3代的萊沙。 換衣服請把模型參數調整到0.5以下。 このモデルは、私が模写した画像(AIで作られたものもある)の中から作ってみたのですが、私にとっては良い結果でした。 このロラは、営利目的で使用しないように気をつけてください(私が阻止しようとしたのは無駄だったとは思いますが)。 R18G に関する投稿は絶対にしないでください。オリジナル(コーエーテクモ)から警告を受けたり、訴訟を起こされたりする可能性があります。 訴えられるかもしれませんよ。 ライサを描けるのはジェネレーション3からです。 着替えの際は、モデルパラメータを0.5以下に調整してください。 deeplを使った翻訳
marsim0/book_model
marsim0
marian
12
0
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,532
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # book_model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5586 - Bleu: 23.891 - Gen Len: 25.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 107 | 1.3921 | 24.4814 | 25.93 | | No log | 2.0 | 214 | 1.4285 | 24.5496 | 25.5233 | | No log | 3.0 | 321 | 1.4777 | 24.0469 | 25.8967 | | No log | 4.0 | 428 | 1.5325 | 23.5718 | 25.69 | | 0.8696 | 5.0 | 535 | 1.5586 | 23.891 | 25.86 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.0+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
joaoluislins/wmt-mbart50-large-finetuned-en-to-pt
joaoluislins
mbart
13
6
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,655
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wmt-mbart50-large-finetuned-en-to-pt This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the WMT dataset (bi and mono-backtranslated) It achieves the following results on the evaluation set: - Loss: 0.002510 - Bleu: 62.7011 - Gen Len: 19.224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.6426 | 1.0 | 433 | 0.5323 | 4.484 | 10.5635 | | 0.2571 | 2.0 | 866 | 0.1965 | 47.6449 | 19.164 | | 0.1043 | 3.0 | 1299 | 0.1723 | 53.6231 | 19.1455 | | 0.058 | 4.0 | 1732 | 0.1908 | 52.9831 | 18.5543 | | 0.0382 | 5.0 | 2165 | 0.1801 | 58.4418 | 19.0808 | | 0.0244 | 6.0 | 2598 | 0.2014 | 56.0197 | 20.0485 | | 0.0195 | 7.0 | 3031 | 0.2029 | 56.7903 | 18.642 | | 0.0138 | 8.0 | 3464 | 0.2015 | 57.6855 | 19.0 | | 0.0126 | 9.0 | 3897 | 0.2095 | 58.5733 | 18.7644 | | 0.0095 | 10.0 | 4330 | 0.1946 | 60.3165 | 19.6097 | | 0.0067 | 11.0 | 4763 | 0.2094 | 60.2691 | 18.9561 | | 0.0055 | 12.0 | 5196 | 0.2202 | 60.375 | 19.3025 | | 0.0046 | 13.0 | 5629 | 0.2153 | 60.7254 | 19.0855 | | 0.0035 | 14.0 | 6062 | 0.2239 | 61.458 | 19.0647 | | 0.0054 | 15.0 | 6495 | 0.2250 | 61.5297 | 19.164 | | 0.0025 | 16.0 | 6928 | 0.2458 | 61.263 | 19.0531 | | 0.002 | 17.0 | 7361 | 0.2354 | 62.4404 | 19.2102 | | 0.0015 | 18.0 | 7794 | 0.2403 | 62.0235 | 19.1293 | | 0.0011 | 19.0 | 8227 | 0.2477 | 62.6301 | 19.2494 | | 0.0009 | 20.0 | 8660 | 0.2510 | 62.7011 | 19.224 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
henryscheible/roberta-large_stereoset_finetuned
henryscheible
roberta
11
2
transformers
0
text-classification
true
false
false
mit
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,117
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_stereoset_finetuned This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 0.7989 - Accuracy: 0.8336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.6920 | 0.5196 | | No log | 0.42 | 10 | 0.6909 | 0.5290 | | No log | 0.62 | 15 | 0.6899 | 0.5220 | | No log | 0.83 | 20 | 0.6883 | 0.5408 | | No log | 1.04 | 25 | 0.6573 | 0.6609 | | No log | 1.25 | 30 | 0.5892 | 0.7088 | | No log | 1.46 | 35 | 0.6633 | 0.5408 | | No log | 1.67 | 40 | 0.6322 | 0.6852 | | No log | 1.88 | 45 | 0.6393 | 0.7159 | | No log | 2.08 | 50 | 0.5494 | 0.7410 | | No log | 2.29 | 55 | 0.5498 | 0.7386 | | No log | 2.5 | 60 | 0.5069 | 0.7692 | | No log | 2.71 | 65 | 0.4930 | 0.7630 | | No log | 2.92 | 70 | 0.4939 | 0.7614 | | No log | 3.12 | 75 | 0.5379 | 0.7724 | | No log | 3.33 | 80 | 0.5981 | 0.7732 | | No log | 3.54 | 85 | 0.5842 | 0.7716 | | No log | 3.75 | 90 | 0.4405 | 0.8030 | | No log | 3.96 | 95 | 0.4970 | 0.7951 | | No log | 4.17 | 100 | 0.5172 | 0.8093 | | No log | 4.38 | 105 | 0.5052 | 0.8108 | | No log | 4.58 | 110 | 0.4685 | 0.8085 | | No log | 4.79 | 115 | 0.4663 | 0.8218 | | No log | 5.0 | 120 | 0.5086 | 0.8218 | | No log | 5.21 | 125 | 0.5096 | 0.8179 | | No log | 5.42 | 130 | 0.5705 | 0.8203 | | No log | 5.62 | 135 | 0.5294 | 0.8312 | | No log | 5.83 | 140 | 0.4377 | 0.8375 | | No log | 6.04 | 145 | 0.5699 | 0.8100 | | No log | 6.25 | 150 | 0.6062 | 0.8265 | | No log | 6.46 | 155 | 0.7237 | 0.8218 | | No log | 6.67 | 160 | 0.6816 | 0.8210 | | No log | 6.88 | 165 | 0.6413 | 0.8124 | | No log | 7.08 | 170 | 0.5931 | 0.8359 | | No log | 7.29 | 175 | 0.6149 | 0.8399 | | No log | 7.5 | 180 | 0.7190 | 0.8195 | | No log | 7.71 | 185 | 0.7339 | 0.8352 | | No log | 7.92 | 190 | 0.7244 | 0.8352 | | No log | 8.12 | 195 | 0.7722 | 0.8203 | | No log | 8.33 | 200 | 0.6890 | 0.8344 | | No log | 8.54 | 205 | 0.6938 | 0.8336 | | No log | 8.75 | 210 | 0.7234 | 0.8320 | | No log | 8.96 | 215 | 0.7517 | 0.8391 | | No log | 9.17 | 220 | 0.7713 | 0.8383 | | No log | 9.38 | 225 | 0.7745 | 0.8375 | | No log | 9.58 | 230 | 0.8006 | 0.8375 | | No log | 9.79 | 235 | 0.8003 | 0.8367 | | No log | 10.0 | 240 | 0.7989 | 0.8336 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
henryscheible/bert-large-uncased_stereoset_finetuned
henryscheible
bert
10
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,132
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased_stereoset_finetuned This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 1.0729 - Accuracy: 0.7716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.6925 | 0.5071 | | No log | 0.42 | 10 | 0.6978 | 0.5008 | | No log | 0.62 | 15 | 0.6891 | 0.5275 | | No log | 0.83 | 20 | 0.6850 | 0.5487 | | No log | 1.04 | 25 | 0.7521 | 0.5126 | | No log | 1.25 | 30 | 0.6577 | 0.6177 | | No log | 1.46 | 35 | 0.6759 | 0.5440 | | No log | 1.67 | 40 | 0.6395 | 0.6405 | | No log | 1.88 | 45 | 0.6064 | 0.6719 | | No log | 2.08 | 50 | 0.5822 | 0.6986 | | No log | 2.29 | 55 | 0.5566 | 0.7096 | | No log | 2.5 | 60 | 0.5411 | 0.7331 | | No log | 2.71 | 65 | 0.5448 | 0.7551 | | No log | 2.92 | 70 | 0.5384 | 0.7339 | | No log | 3.12 | 75 | 0.5487 | 0.7535 | | No log | 3.33 | 80 | 0.5572 | 0.7567 | | No log | 3.54 | 85 | 0.5763 | 0.7614 | | No log | 3.75 | 90 | 0.5756 | 0.7645 | | No log | 3.96 | 95 | 0.5524 | 0.7645 | | No log | 4.17 | 100 | 0.6320 | 0.7614 | | No log | 4.38 | 105 | 0.6512 | 0.7575 | | No log | 4.58 | 110 | 0.6582 | 0.7606 | | No log | 4.79 | 115 | 0.6731 | 0.7669 | | No log | 5.0 | 120 | 0.6944 | 0.7575 | | No log | 5.21 | 125 | 0.7142 | 0.7575 | | No log | 5.42 | 130 | 0.7004 | 0.7645 | | No log | 5.62 | 135 | 0.6794 | 0.7630 | | No log | 5.83 | 140 | 0.7108 | 0.7606 | | No log | 6.04 | 145 | 0.7730 | 0.7590 | | No log | 6.25 | 150 | 0.8083 | 0.7614 | | No log | 6.46 | 155 | 0.8361 | 0.7653 | | No log | 6.67 | 160 | 0.8498 | 0.7692 | | No log | 6.88 | 165 | 0.8769 | 0.7700 | | No log | 7.08 | 170 | 0.8324 | 0.7582 | | No log | 7.29 | 175 | 0.7945 | 0.7645 | | No log | 7.5 | 180 | 0.8480 | 0.7684 | | No log | 7.71 | 185 | 0.8905 | 0.7724 | | No log | 7.92 | 190 | 0.9560 | 0.7700 | | No log | 8.12 | 195 | 0.9976 | 0.7669 | | No log | 8.33 | 200 | 1.0315 | 0.7677 | | No log | 8.54 | 205 | 1.0413 | 0.7692 | | No log | 8.75 | 210 | 1.0216 | 0.7708 | | No log | 8.96 | 215 | 1.0251 | 0.7716 | | No log | 9.17 | 220 | 1.0483 | 0.7716 | | No log | 9.38 | 225 | 1.0616 | 0.7716 | | No log | 9.58 | 230 | 1.0703 | 0.7708 | | No log | 9.79 | 235 | 1.0731 | 0.7732 | | No log | 10.0 | 240 | 1.0729 | 0.7716 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
abigailp/vaccinated
abigailp
bert
13
9
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,050
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vaccinated This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6907 - Accuracy: 0.9036 - F1: 0.9048 - Recall: 0.8636 - Precision: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pomp/ppo-LunarLander-v2
pomp
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['ChopperCommand-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,335
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
varevshatyan/ppo-LunarLander-v2
varevshatyan
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,508
# fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_general-massive_transport-roberta-large-v1-5-4
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,514
# fathyshalab/domain_transfer_general-massive_transport-roberta-large-v1-5-4 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_transport-roberta-large-v1-5-4") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_general-massive_calendar-roberta-large-v1-5-93
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,514
# fathyshalab/domain_transfer_general-massive_calendar-roberta-large-v1-5-93 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_calendar-roberta-large-v1-5-93") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Unbabel/wmt22-comet-da
Unbabel
null
5
0
null
0
translation
false
false
false
apache-2.0
['multilingual', 'af', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'hu', 'hy', 'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sa', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'xh', 'yi', 'zh']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,791
This is a [COMET](https://github.com/Unbabel/COMET) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference. # Paper [COMET-22: Unbabel-IST 2022 Submission for the Metrics Shared Task](https://aclanthology.org/2022.wmt-1.52) (Rei et al., WMT 2022) # License Apache-2.0 # Usage (unbabel-comet) Using this model requires unbabel-comet to be installed: ```bash pip install --upgrade pip # ensures that pip is current pip install unbabel-comet ``` Then you can use it through comet CLI: ```bash comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/wmt22-comet-da ``` Or using Python: ```python from comet import download_model, load_from_checkpoint model_path = download_model("Unbabel/wmt22-comet-da") model = load_from_checkpoint(model_path) data = [ { "src": "Dem Feuer konnte Einhalt geboten werden", "mt": "The fire could be stopped", "ref": "They were able to control the fire." }, { "src": "Schulen und Kindergärten wurden eröffnet.", "mt": "Schools and kindergartens were open", "ref": "Schools and kindergartens opened" } ] model_output = model.predict(data, batch_size=8, gpus=1) print (model_output) ``` # Intended uses Our model is intented to be used for **MT evaluation**. Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation. # Languages Covered: This model builds on top of XLM-R which cover the following languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish. Thus, results for language pairs containing uncovered languages are unreliable!
fathyshalab/domain_transfer_general-massive_play-roberta-large-v1-5-71
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,506
# fathyshalab/domain_transfer_general-massive_play-roberta-large-v1-5-71 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_play-roberta-large-v1-5-71") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,514
# fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Likalto4/Unconditional_Butterflies_x64
Likalto4
null
6
0
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
677
# Model Card for a model trained based on the Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class), not using accelarate yet. This model is a diffusion model for unconditional image generation of cute but small 🦋. The model was trained with 1000 images using the [DDPM](https://arxiv.org/abs/2006.11239) architecture. Images generated are of 64x64 pixel size. The model was trained for 50 epochs with a batch size of 64, using around 11 GB of GPU memory. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(Likalto4/Unconditional_Butterflies_x64) image = pipeline().images[0] image ```
Svetlana0303/Regression_Albert
Svetlana0303
albert
13
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,471
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Regression_Albert This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0459 - Mse: 0.0459 - Mae: 0.1675 - R2: 0.9763 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:| | No log | 1.0 | 7 | 1.4379 | 1.4379 | 1.1107 | -0.3492 | 0.0 | | No log | 2.0 | 14 | 1.2159 | 1.2159 | 1.0476 | -0.1409 | 0.1429 | | No log | 3.0 | 21 | 1.7679 | 1.7679 | 1.1233 | -0.6588 | 0.4286 | | No log | 4.0 | 28 | 1.7069 | 1.7069 | 1.1072 | -0.6015 | 0.1429 | | No log | 5.0 | 35 | 1.4438 | 1.4438 | 0.9771 | -0.3547 | 0.5714 | | No log | 6.0 | 42 | 1.0275 | 1.0275 | 0.7910 | 0.0359 | 0.4286 | | No log | 7.0 | 49 | 0.7649 | 0.7649 | 0.7080 | 0.2823 | 0.4286 | | No log | 8.0 | 56 | 0.6584 | 0.6584 | 0.7083 | 0.3823 | 0.2857 | | No log | 9.0 | 63 | 0.5064 | 0.5064 | 0.6108 | 0.5248 | 0.4286 | | No log | 10.0 | 70 | 0.3638 | 0.3638 | 0.5078 | 0.6586 | 0.4286 | | No log | 11.0 | 77 | 0.2660 | 0.2660 | 0.4352 | 0.7504 | 0.5714 | | No log | 12.0 | 84 | 0.1570 | 0.1570 | 0.3323 | 0.8527 | 0.7143 | | No log | 13.0 | 91 | 0.1953 | 0.1953 | 0.3863 | 0.8168 | 0.4286 | | No log | 14.0 | 98 | 0.2230 | 0.2230 | 0.4033 | 0.7908 | 0.7143 | | No log | 15.0 | 105 | 0.0578 | 0.0578 | 0.1935 | 0.9458 | 1.0 | | No log | 16.0 | 112 | 0.0504 | 0.0504 | 0.1701 | 0.9527 | 1.0 | | No log | 17.0 | 119 | 0.0466 | 0.0466 | 0.1713 | 0.9563 | 1.0 | | No log | 18.0 | 126 | 0.0173 | 0.0173 | 0.1148 | 0.9837 | 1.0 | | No log | 19.0 | 133 | 0.0417 | 0.0417 | 0.1811 | 0.9609 | 1.0 | | No log | 20.0 | 140 | 0.0899 | 0.0899 | 0.1895 | 0.9156 | 0.8571 | | No log | 21.0 | 147 | 0.0571 | 0.0571 | 0.1599 | 0.9465 | 0.8571 | | No log | 22.0 | 154 | 0.0247 | 0.0247 | 0.1478 | 0.9768 | 1.0 | | No log | 23.0 | 161 | 0.0201 | 0.0201 | 0.1261 | 0.9812 | 1.0 | | No log | 24.0 | 168 | 0.0178 | 0.0178 | 0.1262 | 0.9833 | 1.0 | | No log | 25.0 | 175 | 0.0172 | 0.0172 | 0.1208 | 0.9838 | 1.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,526
# fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,508
# fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
globalbiodata/inventory
globalbiodata
null
6
0
null
0
null
false
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['bio', 'infrastructure', 'funding', 'natural language processing', 'BERT']
false
true
true
926
# Biodata Resource Inventory This repository holds the fine-tuned models used in the biodata resource inventory conducted in 2022 by the [Global Biodata Coalition](https://globalbiodata.org/) in collaboration with [Chan Zuckerberg Initiative](https://chanzuckerberg.com/). ## Repository Overview The fine-tuned models for both the article classification and NER tasks are present, and each has an associated modelcard. ```sh . ├── article_classifier.pt # Article classification model checkpoint ├── article_classifier_modelcard.md # Model card for article classification model ├── name_entity_recognition.pt # NER model checkpoint └── name_entity_recognition_modelcard.pt # Modelcard for NER model ``` ## Associated Code The associated code, data, and documentation for this project can be found on [GitHub](https://github.com/globalbiodata/inventory_2022/tree/inventory_2022_dev).
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['UpNDown-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **UpNDown-v5** This is a trained model of a PPO agent playing UpNDown-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'UpNDown-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
fathyshalab/domain_transfer_general-massive_iot-roberta-large-v1-5-5
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,502
# fathyshalab/domain_transfer_general-massive_iot-roberta-large-v1-5-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_iot-roberta-large-v1-5-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
apatidar0/vit-base-beans_own
apatidar0
vit
14
0
transformers
0
image-classification
true
false
false
apache-2.0
null
['beans']
null
0
0
0
0
0
0
0
['image-classification', 'generated_from_trainer']
true
true
true
1,081
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans_own This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0558 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
WildBill258/ppo-Huggy
WildBill258
null
6
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
822
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: WildBill258/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,512
# fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,506
# fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
thearod5/se-bert
thearod5
bert
11
7
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
813
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # se-bert This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
fathyshalab/domain_transfer_general-massive_lists-roberta-large-v1-5-93
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,508
# fathyshalab/domain_transfer_general-massive_lists-roberta-large-v1-5-93 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_lists-roberta-large-v1-5-93") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
ammr/ppo-LunarLander-v1
ammr
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Unbabel/wmt20-comet-da
Unbabel
null
5
0
null
0
translation
false
false
false
apache-2.0
['multilingual', 'af', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'hu', 'hy', 'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sa', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'xh', 'yi', 'zh']
null
null
0
0
0
0
0
0
0
['arXiv:2010.15535', 'PyTorch']
false
true
true
2,956
This is a [COMET](https://github.com/Unbabel/COMET) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference. **NOTE:** This model was recently replaced by an improved version [wmt22-comet-da](https://huggingface.co/Unbabel/wmt22-comet-da) # Paper [Unbabel’s Participation in the WMT20 Metrics Shared Task](https://aclanthology.org/2020.wmt-1.101) (Rei et al., WMT 2020) # License Apache-2.0 # Usage (unbabel-comet) Using this model requires unbabel-comet to be installed: ```bash pip install --upgrade pip # ensures that pip is current pip install unbabel-comet ``` Then you can use it through comet CLI: ```bash comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/wmt22-comet-da ``` Or using Python: ```python from comet import download_model, load_from_checkpoint model_path = download_model("Unbabel/wmt20-comet-da") model = load_from_checkpoint(model_path) data = [ { "src": "Dem Feuer konnte Einhalt geboten werden", "mt": "The fire could be stopped", "ref": "They were able to control the fire." }, { "src": "Schulen und Kindergärten wurden eröffnet.", "mt": "Schools and kindergartens were open", "ref": "Schools and kindergartens opened" } ] model_output = model.predict(data, batch_size=8, gpus=1) print (model_output) ``` # Intended uses Our model is intented to be used for **MT evaluation**. Given a a triplet with (source sentence, translation, reference translation) outputs a single score. This score is unbounded but typically falls between -1 and 1 where 1 reflects a perfect translation. # Languages Covered: This model builds on top of XLM-R which cover the following languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish. Thus, results for language pairs containing uncovered languages are unreliable!
fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,502
# fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
z4x/ppo-SnowballTarget
z4x
null
20
2
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
850
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: z4x/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fathyshalab/domain_transfer_general-massive_cooking-roberta-large-v1-5-4
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,510
# fathyshalab/domain_transfer_general-massive_cooking-roberta-large-v1-5-4 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_cooking-roberta-large-v1-5-4") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
robinsk8a/a2c-AntBulletEnv-v0
robinsk8a
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MarioLomby/q-FrozenLake-v1-4x4-noSlippery
MarioLomby
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
399
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MarioLomby/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,514
# fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
z4x/ppo-Pyramids
z4x
null
12
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
826
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: z4x/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SergenK/nes-cover-art-image-generator
SergenK
null
23
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
932
### nes-cover-art-image-generator Dreambooth model trained by SergenK with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Append input text with "nescover". Sample pictures of this concept: ![0](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00009-799444158.png) ![1](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00011-2687893221.png) ![2](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00004-238860550.png) ![3](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00013-1488226353.png)
fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,506
# fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
MarioLomby/q-Taxi-v3
MarioLomby
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
366
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MarioLomby/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/domain_transfer_general-massive_alarm-roberta-large-v1-5-50
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,508
# fathyshalab/domain_transfer_general-massive_alarm-roberta-large-v1-5-50 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_alarm-roberta-large-v1-5-50") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
MarioLomby/Taxi-v3
MarioLomby
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
364
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MarioLomby/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
z4x/a2c-AntBulletEnv-v0
z4x
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mchalek/distilbert-base-uncased-finetuned-ccnews
mchalek
distilbert
13
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
['cc_news']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ccnews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the cc_news dataset. It achieves the following results on the evaluation set: - Loss: 2.5185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7553 | 1.0 | 157 | 2.5523 | | 2.6507 | 2.0 | 314 | 2.5219 | | 2.606 | 3.0 | 471 | 2.5416 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
cupertinosam/ppo-LunarLander-v2
cupertinosam
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Rtariq/bert-finetuned-ner
Rtariq
bert
18
7
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,518
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Precision: 0.9280 - Recall: 0.9475 - F1: 0.9376 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0866 | 1.0 | 1756 | 0.0714 | 0.9116 | 0.9300 | 0.9207 | 0.9821 | | 0.0341 | 2.0 | 3512 | 0.0672 | 0.9284 | 0.9468 | 0.9375 | 0.9853 | | 0.019 | 3.0 | 5268 | 0.0637 | 0.9280 | 0.9475 | 0.9376 | 0.9858 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
lmqg/flan-t5-small-squad-qag
lmqg
t5
13
2
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qag_squad']
null
0
0
0
0
0
0
0
['questions and answers generation']
true
true
true
3,892
# Model Card of `lmqg/flan-t5-small-squad-qag` This model is fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) - **Language:** en - **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-small-squad-qag") # model prediction question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/flan-t5-small-squad-qag") output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-small-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 92.3 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedF1Score (MoverScore) | 63.74 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedPrecision (BERTScore) | 92.92 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedPrecision (MoverScore) | 65.5 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedRecall (BERTScore) | 91.71 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | | QAAlignedRecall (MoverScore) | 62.2 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_squad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: ['qag'] - model: google/flan-t5-small - max_length: 512 - max_length_output: 256 - epoch: 14 - batch: 16 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-small-squad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
atorre/poca-SoccerTwos-40M
atorre
null
25
90
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-40M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pfunk/Pong-v4-DQPN_p500_e0.50-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,999
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500_e0.50 --start-policy-f 500000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p500_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
z4x/a2c-PandaReachDense-v2
z4x
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dhairyakapadia/swin-tiny-patch4-window7-224-finetuned-skin-cancer
dhairyakapadia
swin
10
0
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,071
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-skin-cancer This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
robinsk8a/a2c-PandaReachDense-v2
robinsk8a
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
smilingface88/xlm-roberta-base-finetuned-panx-de
smilingface88
xlm-roberta
12
1
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - F1: 0.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2582 | 1.0 | 525 | 0.1612 | 0.8199 | | 0.128 | 2.0 | 1050 | 0.1334 | 0.8484 | | 0.081 | 3.0 | 1575 | 0.1355 | 0.8645 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
violetamaral/clasificador-muchocine
violetamaral
electra
10
2
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
1,367
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3998 - Accuracy: 0.4516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3705 | 0.3781 | | 1.3868 | 2.0 | 776 | 1.2408 | 0.4323 | | 1.0102 | 3.0 | 1164 | 1.3998 | 0.4516 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
yizhangliu/poca-SoccerTwos-v8
yizhangliu
null
23
84
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
847
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v8 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bonadio/poca-SoccerTwos-v2
bonadio
null
10
85
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
844
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: bonadio/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kmposkid1/dqn-SpaceInvadersNoFrameskip-v4
kmposkid1
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,217
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kmposkid1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kmposkid1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kmposkid1 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 25000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
pfunk/Pong-v4-DQPN_p50-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,943
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50 --start-policy-f 50000 --end-policy-f 50000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 50000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
stanford-oval/yelp-tunein
stanford-oval
null
12
12
transformers
0
text2text-generation
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
471
# Introduction This seq-2-seq semantic parsing model is used by [Genie](https://github.com/stanford-oval/genie-toolkit) to compile an assistant in the restaurant domain. This model translates natural language utterances to [ThingTalk](https://github.com/stanford-oval/thingtalk), executed by Genie. # Training This model is trained by [Genienlp](https://github.com/stanford-oval/genienlp), using synthetic data generated by Genie and manually annotated few-shot data.
irantzusl/clasificador-muchocine
irantzusl
electra
10
4
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
1,367
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4058 - Accuracy: 0.4516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3498 | 0.3948 | | 1.3866 | 2.0 | 776 | 1.3205 | 0.4310 | | 1.0028 | 3.0 | 1164 | 1.4058 | 0.4516 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
asuzuki/ppo-SnowballTarget
asuzuki
null
20
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
836
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://singularite.itch.io/snowballtarget 2. Step 1: Write your model_id: asuzuki/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pyf98/tedlium2_transducer_e_branchformer
pyf98
null
21
0
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['tedlium2']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
11,168
## ESPnet2 ASR model ### `pyf98/tedlium2_transducer_e_branchformer` This model was trained by Yifan Peng using tedlium2 recipe in [espnet](https://github.com/espnet/espnet/). References: - [E-Branchformer: Branchformer with Enhanced merging for speech recognition (SLT 2022)](https://arxiv.org/abs/2210.00077) - [Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding (ICML 2022)](https://proceedings.mlr.press/v162/peng22a.html) ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 478ba004e114e7862b05fb01112de7f7e1da3996 pip install -e . cd egs2/tedlium2/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/tedlium2_transducer_e_branchformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Feb 9 01:29:33 CST 2023` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202301` - pytorch version: `pytorch 1.13.1` - Git hash: `478ba004e114e7862b05fb01112de7f7e1da3996` - Commit date: `Tue Feb 7 00:50:49 2023 +0000` ## asr_train_asr_transducer_e_branchformer_e12_raw_en_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|14671|93.4|4.3|2.3|1.0|7.6|71.7| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|27500|93.6|4.0|2.4|1.0|7.4|63.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|78259|97.1|0.9|2.0|0.9|3.8|71.7| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|145066|97.1|0.9|2.1|0.9|3.9|63.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|28296|94.7|3.1|2.3|0.8|6.2|71.7| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|52113|95.1|2.6|2.2|0.9|5.8|63.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transducer_e_branchformer_e12.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transducer_e_branchformer_e12_raw_en_bpe500_sp ngpu: 1 seed: 2022 num_workers: 6 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 45753 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 5 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe500_sp/train/speech_shape - exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁the - t - ▁a - ▁and - ▁to - d - e - ▁of - '''' - n - ing - ▁in - ▁i - ▁that - i - a - l - p - m - y - o - ▁it - ▁we - c - u - ▁you - ed - ▁ - r - ▁is - re - ▁this - ar - g - ▁so - al - b - ▁s - or - ▁f - ▁c - in - k - f - ▁for - ic - er - le - ▁be - ▁do - ▁re - ve - ▁e - ▁w - ▁was - es - ▁they - ly - h - ▁on - v - ▁are - ri - ▁have - an - ▁what - ▁with - ▁t - w - ur - it - ent - ▁can - ▁he - ▁but - ra - ce - ▁me - ▁b - ▁ma - ▁p - ll - ▁st - ▁one - 'on' - ▁about - th - ▁de - en - ▁all - ▁not - il - ▁g - ch - at - ▁there - ▁mo - ter - ation - tion - ▁at - ▁my - ro - ▁as - te - ▁le - ▁con - ▁like - ▁people - ▁or - ▁an - el - ▁if - ▁from - ver - ▁su - ▁co - ate - ▁these - ol - ci - ▁now - ▁see - ▁out - ▁our - ion - ▁know - ect - ▁just - as - ▁ex - ▁ch - ▁d - ▁when - ▁very - ▁think - ▁who - ▁because - ▁go - ▁up - ▁us - ▁pa - ▁no - ies - ▁di - ▁ho - om - ive - ▁get - id - ▁o - ▁hi - un - ▁how - ▁by - ir - et - ck - ity - ▁po - ul - ▁which - ▁mi - ▁some - z - ▁sp - ▁un - ▁going - ▁pro - ist - ▁se - ▁look - ▁time - ment - de - ▁more - ▁had - ng - ▁would - ge - la - ▁here - ▁really - x - ▁your - ▁them - us - me - ▁en - ▁two - ▁k - ▁li - ▁world - ne - ow - ▁way - ▁want - ▁work - ▁don - ▁lo - ▁fa - ▁were - ▁their - age - vi - ▁ha - ac - der - est - ▁bo - am - ▁other - able - ▁actually - ▁sh - ▁make - ▁ba - ▁la - ine - ▁into - ▁where - ▁could - ▁comp - ting - ▁has - ▁will - ▁ne - j - ical - ally - ▁vi - ▁things - ▁te - igh - ▁say - ▁years - ers - ▁ra - ther - ▁than - ru - ▁ro - op - ▁did - ▁any - ▁new - ound - ig - ▁well - mo - ▁she - ▁na - ▁been - he - ▁thousand - ▁car - ▁take - ▁right - ▁then - ▁need - ▁start - ▁hundred - ▁something - ▁over - ▁com - ia - ▁kind - um - if - ▁those - ▁first - ▁pre - ta - ▁said - ize - end - ▁even - ▁thing - one - ▁back - ite - ▁every - ▁little - ry - ▁life - ▁much - ke - ▁also - ▁most - ant - per - ▁three - ▁come - ▁lot - ance - ▁got - ▁talk - ▁per - ▁inter - ▁sa - ▁use - ▁mu - ▁part - ish - ence - ▁happen - ▁bi - ▁mean - ough - ▁qu - ▁bu - ▁day - ▁ga - ▁only - ▁many - ▁different - ▁dr - ▁th - ▁show - ful - ▁down - ated - ▁good - ▁tra - ▁around - ▁idea - ▁human - ous - ▁put - ▁through - ▁five - ▁why - ▁change - ▁real - ff - ible - ▁fact - ▁same - ▁jo - ▁live - ▁year - ▁problem - ▁ph - ▁four - ▁give - ▁big - ▁tell - ▁great - ▁try - ▁va - ▁ru - ▁system - ▁six - ▁plan - ▁place - ▁build - ▁called - ▁again - ▁point - ▁twenty - ▁percent - ▁nine - ▁find - ▁app - ▁after - ▁long - ▁eight - ▁imp - ▁gene - ▁design - ▁today - ▁should - ▁made - ious - ▁came - ▁learn - ▁last - ▁own - way - ▁turn - ▁seven - ▁high - ▁question - ▁person - ▁brain - ▁important - ▁another - ▁thought - ▁trans - ▁create - ness - ▁hu - ▁power - ▁act - land - ▁play - ▁sort - ▁old - ▁before - ▁course - ▁understand - ▁feel - ▁might - ▁each - ▁million - ▁better - ▁together - ▁ago - ▁example - ▁help - ▁story - ▁next - ▁hand - ▁school - ▁water - ▁develop - ▁technology - que - ▁second - ▁grow - ▁still - ▁cell - ▁believe - ▁number - ▁small - ▁between - qui - ▁data - ▁become - ▁america - ▁maybe - ▁space - ▁project - ▁organ - ▁vo - ▁children - ▁book - graph - ▁open - ▁fifty - ▁picture - ▁health - ▁thirty - ▁africa - ▁reason - ▁large - ▁hard - ▁computer - ▁always - ▁sense - ▁money - ▁women - ▁everything - ▁information - ▁country - ▁teach - ▁energy - ▁experience - ▁food - ▁process - qua - ▁interesting - ▁future - ▁science - q - '0' - '5' - '6' - '9' - '3' - '8' - '4' - N - A - '7' - S - G - F - R - L - U - E - T - H - _ - B - D - J - M - ă - ō - ť - '2' - '-' - '1' - C - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: joint_space_size: 320 use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 report_cer: false report_wer: false preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transducer decoder_conf: rnn_type: lstm num_layers: 1 hidden_size: 256 dropout: 0.1 dropout_embed: 0.2 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202301' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pyf98/tedlium2_transducer_conformer_e12_linear2048
pyf98
null
21
1
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['tedlium2']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
10,760
## ESPnet2 ASR model ### `pyf98/tedlium2_transducer_conformer_e12_linear2048` This model was trained by Yifan Peng using tedlium2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout e06c0a97425c4d5deb4d3d14922da1f91504052e pip install -e . cd egs2/tedlium2/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/tedlium2_transducer_conformer_e12_linear2048 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Feb 8 22:07:40 CST 2023` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202301` - pytorch version: `pytorch 1.13.1` - Git hash: `478ba004e114e7862b05fb01112de7f7e1da3996` - Commit date: `Tue Feb 7 00:50:49 2023 +0000` ## asr_train_asr_transducer_conformer_e12_linear2048_raw_en_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|14671|93.3|4.5|2.3|1.1|7.8|71.2| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|27500|93.2|4.2|2.6|1.0|7.8|65.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|78259|97.0|0.9|2.1|1.0|3.9|71.2| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|145066|96.9|0.9|2.2|0.9|4.0|65.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transducer_asr_model_valid.loss.ave/dev|466|28296|94.6|3.0|2.4|0.9|6.3|71.2| |decode_asr_transducer_asr_model_valid.loss.ave/test|1155|52113|94.8|2.7|2.5|0.9|6.0|65.6| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transducer_conformer_e12_linear2048.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transducer_conformer_e12_linear2048_raw_en_bpe500_sp ngpu: 1 seed: 2022 num_workers: 6 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 37613 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 5 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe500_sp/train/speech_shape - exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁the - t - ▁a - ▁and - ▁to - d - e - ▁of - '''' - n - ing - ▁in - ▁i - ▁that - i - a - l - p - m - y - o - ▁it - ▁we - c - u - ▁you - ed - ▁ - r - ▁is - re - ▁this - ar - g - ▁so - al - b - ▁s - or - ▁f - ▁c - in - k - f - ▁for - ic - er - le - ▁be - ▁do - ▁re - ve - ▁e - ▁w - ▁was - es - ▁they - ly - h - ▁on - v - ▁are - ri - ▁have - an - ▁what - ▁with - ▁t - w - ur - it - ent - ▁can - ▁he - ▁but - ra - ce - ▁me - ▁b - ▁ma - ▁p - ll - ▁st - ▁one - 'on' - ▁about - th - ▁de - en - ▁all - ▁not - il - ▁g - ch - at - ▁there - ▁mo - ter - ation - tion - ▁at - ▁my - ro - ▁as - te - ▁le - ▁con - ▁like - ▁people - ▁or - ▁an - el - ▁if - ▁from - ver - ▁su - ▁co - ate - ▁these - ol - ci - ▁now - ▁see - ▁out - ▁our - ion - ▁know - ect - ▁just - as - ▁ex - ▁ch - ▁d - ▁when - ▁very - ▁think - ▁who - ▁because - ▁go - ▁up - ▁us - ▁pa - ▁no - ies - ▁di - ▁ho - om - ive - ▁get - id - ▁o - ▁hi - un - ▁how - ▁by - ir - et - ck - ity - ▁po - ul - ▁which - ▁mi - ▁some - z - ▁sp - ▁un - ▁going - ▁pro - ist - ▁se - ▁look - ▁time - ment - de - ▁more - ▁had - ng - ▁would - ge - la - ▁here - ▁really - x - ▁your - ▁them - us - me - ▁en - ▁two - ▁k - ▁li - ▁world - ne - ow - ▁way - ▁want - ▁work - ▁don - ▁lo - ▁fa - ▁were - ▁their - age - vi - ▁ha - ac - der - est - ▁bo - am - ▁other - able - ▁actually - ▁sh - ▁make - ▁ba - ▁la - ine - ▁into - ▁where - ▁could - ▁comp - ting - ▁has - ▁will - ▁ne - j - ical - ally - ▁vi - ▁things - ▁te - igh - ▁say - ▁years - ers - ▁ra - ther - ▁than - ru - ▁ro - op - ▁did - ▁any - ▁new - ound - ig - ▁well - mo - ▁she - ▁na - ▁been - he - ▁thousand - ▁car - ▁take - ▁right - ▁then - ▁need - ▁start - ▁hundred - ▁something - ▁over - ▁com - ia - ▁kind - um - if - ▁those - ▁first - ▁pre - ta - ▁said - ize - end - ▁even - ▁thing - one - ▁back - ite - ▁every - ▁little - ry - ▁life - ▁much - ke - ▁also - ▁most - ant - per - ▁three - ▁come - ▁lot - ance - ▁got - ▁talk - ▁per - ▁inter - ▁sa - ▁use - ▁mu - ▁part - ish - ence - ▁happen - ▁bi - ▁mean - ough - ▁qu - ▁bu - ▁day - ▁ga - ▁only - ▁many - ▁different - ▁dr - ▁th - ▁show - ful - ▁down - ated - ▁good - ▁tra - ▁around - ▁idea - ▁human - ous - ▁put - ▁through - ▁five - ▁why - ▁change - ▁real - ff - ible - ▁fact - ▁same - ▁jo - ▁live - ▁year - ▁problem - ▁ph - ▁four - ▁give - ▁big - ▁tell - ▁great - ▁try - ▁va - ▁ru - ▁system - ▁six - ▁plan - ▁place - ▁build - ▁called - ▁again - ▁point - ▁twenty - ▁percent - ▁nine - ▁find - ▁app - ▁after - ▁long - ▁eight - ▁imp - ▁gene - ▁design - ▁today - ▁should - ▁made - ious - ▁came - ▁learn - ▁last - ▁own - way - ▁turn - ▁seven - ▁high - ▁question - ▁person - ▁brain - ▁important - ▁another - ▁thought - ▁trans - ▁create - ness - ▁hu - ▁power - ▁act - land - ▁play - ▁sort - ▁old - ▁before - ▁course - ▁understand - ▁feel - ▁might - ▁each - ▁million - ▁better - ▁together - ▁ago - ▁example - ▁help - ▁story - ▁next - ▁hand - ▁school - ▁water - ▁develop - ▁technology - que - ▁second - ▁grow - ▁still - ▁cell - ▁believe - ▁number - ▁small - ▁between - qui - ▁data - ▁become - ▁america - ▁maybe - ▁space - ▁project - ▁organ - ▁vo - ▁children - ▁book - graph - ▁open - ▁fifty - ▁picture - ▁health - ▁thirty - ▁africa - ▁reason - ▁large - ▁hard - ▁computer - ▁always - ▁sense - ▁money - ▁women - ▁everything - ▁information - ▁country - ▁teach - ▁energy - ▁experience - ▁food - ▁process - qua - ▁interesting - ▁future - ▁science - q - '0' - '5' - '6' - '9' - '3' - '8' - '4' - N - A - '7' - S - G - F - R - L - U - E - T - H - _ - B - D - J - M - ă - ō - ť - '2' - '-' - '1' - C - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: joint_space_size: 320 use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 report_cer: false report_wer: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transducer decoder_conf: rnn_type: lstm num_layers: 1 hidden_size: 256 dropout: 0.1 dropout_embed: 0.2 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202301' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
chradden/ppo-LunarLander-v2
chradden
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Duskfallcrew/emo-goth-core
Duskfallcrew
null
21
9
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
889
### Emo & Goth Core Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! # If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew # If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk mikeidsk1 (use that on your prompt)
petergoldstein/Reinforce-CartPole-v1
petergoldstein
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
eormeno12/platzi-distilroberta-base-mrpc-glue
eormeno12
bert
27
13
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['text-classification', 'generated_from_trainer']
true
true
true
1,403
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4414 - Accuracy: 0.8627 - F1: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5624 | 1.09 | 500 | 0.4727 | 0.7990 | 0.8591 | | 0.4063 | 2.18 | 1000 | 0.4414 | 0.8627 | 0.9 | | 0.2612 | 3.27 | 1500 | 0.5972 | 0.8529 | 0.8986 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
odunola/mpnet_sbert_ges
odunola
mpnet
12
2
sentence-transformers
0
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,641
# odunola/mpnet_sbert_ges This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('odunola/mpnet_sbert_ges') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('odunola/mpnet_sbert_ges') model = AutoModel.from_pretrained('odunola/mpnet_sbert_ges') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=odunola/mpnet_sbert_ges) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 303 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 151, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
asuzuki/ppo-Pyramids
asuzuki
null
16
2
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
false
true
true
812
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://singularite.itch.io/pyramids 2. Step 1: Write your model_id: asuzuki/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
henryscheible/gpt2_stereoset_finetuned
henryscheible
gpt2
11
1
transformers
0
text-classification
true
false
false
mit
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,090
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_stereoset_finetuned This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 0.6545 - Accuracy: 0.7088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 1.1855 | 0.5259 | | No log | 0.42 | 10 | 0.7056 | 0.5338 | | No log | 0.62 | 15 | 0.7009 | 0.5400 | | No log | 0.83 | 20 | 0.7230 | 0.5173 | | No log | 1.04 | 25 | 0.6666 | 0.5989 | | No log | 1.25 | 30 | 0.6812 | 0.5699 | | No log | 1.46 | 35 | 0.6479 | 0.6272 | | No log | 1.67 | 40 | 0.6323 | 0.6484 | | No log | 1.88 | 45 | 0.6306 | 0.6515 | | No log | 2.08 | 50 | 0.6474 | 0.6633 | | No log | 2.29 | 55 | 0.6158 | 0.6641 | | No log | 2.5 | 60 | 0.6059 | 0.6703 | | No log | 2.71 | 65 | 0.6151 | 0.6695 | | No log | 2.92 | 70 | 0.5860 | 0.6782 | | No log | 3.12 | 75 | 0.5808 | 0.6907 | | No log | 3.33 | 80 | 0.5953 | 0.6915 | | No log | 3.54 | 85 | 0.5860 | 0.6994 | | No log | 3.75 | 90 | 0.5918 | 0.6947 | | No log | 3.96 | 95 | 0.5915 | 0.6797 | | No log | 4.17 | 100 | 0.5779 | 0.7041 | | No log | 4.38 | 105 | 0.5902 | 0.7151 | | No log | 4.58 | 110 | 0.5740 | 0.7080 | | No log | 4.79 | 115 | 0.5640 | 0.7088 | | No log | 5.0 | 120 | 0.5786 | 0.6947 | | No log | 5.21 | 125 | 0.5892 | 0.6978 | | No log | 5.42 | 130 | 0.5722 | 0.7096 | | No log | 5.62 | 135 | 0.5743 | 0.7064 | | No log | 5.83 | 140 | 0.5873 | 0.7057 | | No log | 6.04 | 145 | 0.5915 | 0.7033 | | No log | 6.25 | 150 | 0.5978 | 0.7009 | | No log | 6.46 | 155 | 0.6034 | 0.6931 | | No log | 6.67 | 160 | 0.5908 | 0.7111 | | No log | 6.88 | 165 | 0.5954 | 0.6947 | | No log | 7.08 | 170 | 0.5882 | 0.7033 | | No log | 7.29 | 175 | 0.5895 | 0.7151 | | No log | 7.5 | 180 | 0.6077 | 0.7104 | | No log | 7.71 | 185 | 0.6121 | 0.7151 | | No log | 7.92 | 190 | 0.6086 | 0.7151 | | No log | 8.12 | 195 | 0.6182 | 0.7127 | | No log | 8.33 | 200 | 0.6412 | 0.7072 | | No log | 8.54 | 205 | 0.6425 | 0.7049 | | No log | 8.75 | 210 | 0.6369 | 0.7135 | | No log | 8.96 | 215 | 0.6405 | 0.7111 | | No log | 9.17 | 220 | 0.6431 | 0.7135 | | No log | 9.38 | 225 | 0.6474 | 0.7127 | | No log | 9.58 | 230 | 0.6595 | 0.7041 | | No log | 9.79 | 235 | 0.6580 | 0.7041 | | No log | 10.0 | 240 | 0.6545 | 0.7088 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
henryscheible/xlnet-base-cased_stereoset_finetuned
henryscheible
xlnet
10
0
transformers
0
text-classification
true
false
false
mit
null
['stereoset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,126
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased_stereoset_finetuned This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 1.0332 - Accuracy: 0.7441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.7165 | 0.5055 | | No log | 0.42 | 10 | 0.6932 | 0.5 | | No log | 0.62 | 15 | 0.6971 | 0.5047 | | No log | 0.83 | 20 | 0.7107 | 0.4953 | | No log | 1.04 | 25 | 0.6895 | 0.5047 | | No log | 1.25 | 30 | 0.6715 | 0.5840 | | No log | 1.46 | 35 | 0.6476 | 0.6476 | | No log | 1.67 | 40 | 0.6150 | 0.6970 | | No log | 1.88 | 45 | 0.6170 | 0.6884 | | No log | 2.08 | 50 | 0.6065 | 0.6797 | | No log | 2.29 | 55 | 0.5865 | 0.7033 | | No log | 2.5 | 60 | 0.5899 | 0.7064 | | No log | 2.71 | 65 | 0.5980 | 0.7151 | | No log | 2.92 | 70 | 0.5890 | 0.7229 | | No log | 3.12 | 75 | 0.5930 | 0.7190 | | No log | 3.33 | 80 | 0.6430 | 0.7049 | | No log | 3.54 | 85 | 0.6677 | 0.7198 | | No log | 3.75 | 90 | 0.6076 | 0.7370 | | No log | 3.96 | 95 | 0.6041 | 0.7339 | | No log | 4.17 | 100 | 0.6324 | 0.7323 | | No log | 4.38 | 105 | 0.6990 | 0.7308 | | No log | 4.58 | 110 | 0.7081 | 0.7433 | | No log | 4.79 | 115 | 0.6549 | 0.7237 | | No log | 5.0 | 120 | 0.6868 | 0.7072 | | No log | 5.21 | 125 | 0.6525 | 0.7363 | | No log | 5.42 | 130 | 0.7622 | 0.7418 | | No log | 5.62 | 135 | 0.7730 | 0.7402 | | No log | 5.83 | 140 | 0.7788 | 0.7449 | | No log | 6.04 | 145 | 0.7609 | 0.7347 | | No log | 6.25 | 150 | 0.8058 | 0.7323 | | No log | 6.46 | 155 | 0.8525 | 0.7331 | | No log | 6.67 | 160 | 0.8504 | 0.7339 | | No log | 6.88 | 165 | 0.8424 | 0.7300 | | No log | 7.08 | 170 | 0.8413 | 0.7394 | | No log | 7.29 | 175 | 0.8808 | 0.7268 | | No log | 7.5 | 180 | 0.9058 | 0.7292 | | No log | 7.71 | 185 | 0.9338 | 0.7363 | | No log | 7.92 | 190 | 0.9412 | 0.7370 | | No log | 8.12 | 195 | 0.9453 | 0.7339 | | No log | 8.33 | 200 | 0.9544 | 0.7394 | | No log | 8.54 | 205 | 0.9664 | 0.7402 | | No log | 8.75 | 210 | 0.9840 | 0.7339 | | No log | 8.96 | 215 | 0.9896 | 0.7370 | | No log | 9.17 | 220 | 1.0239 | 0.7410 | | No log | 9.38 | 225 | 1.0306 | 0.7418 | | No log | 9.58 | 230 | 1.0358 | 0.7402 | | No log | 9.79 | 235 | 1.0351 | 0.7410 | | No log | 10.0 | 240 | 1.0332 | 0.7441 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
ahng79/ppo-LunarLander-v2
ahng79
null
12
3
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dunkindont/Foto-Assisted-Diffusion-FAD_V0
Dunkindont
null
99
0
diffusers
23
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
1
1
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'safetensors', 'diffusers', 'artwork', 'HDR photography', 'safetensors', 'photos']
false
true
true
2,743
# Foto Assisted Diffusion (FAD)_V0 This model is meant to mimic a modern HDR photography style It was trained on 600 HDR images on SD1.5 and works best at **768x768** resolutions Merged with one of my own models for illustrations and drawings, to increase flexibility # Features: * **No additional licensing** * **Multi-resolution support** * **HDR photographic outputs** * **No Hi-Res fix required** * [**Spreadsheet with supported resolutions, keywords for prompting and other useful hints/tips**](https://docs.google.com/spreadsheets/d/1RGRLZhgiFtLMm5Pg8qK0YMc6wr6uvj9-XdiFM877Pp0/edit#gid=364842308) # Example Cards: Below you will find some example cards that this model is capable of outputting. You can acquire the images used here: [HF](https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/tree/main/Model%20Examples) or [Google Drive](https://docs.google.com/spreadsheets/d/1RGRLZhgiFtLMm5Pg8qK0YMc6wr6uvj9-XdiFM877Pp0/edit#gid=364842308). Google Drive gives you them all at once without needing to clone the repo, which is easier. If you decide to clone it, set ``` GIT_LFS_SKIP_SMUDGE=1 ``` to skip downloading large files Place them into an EXIF viewer such as the built in "PNG Info" tab in the popular Auto1111 repository to quickly copy the parameters and replicate them! ## 768x768 Food <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Food.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 Landscapes <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Landscapes.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 People <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20People.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 Random <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Random.jpg" style="max-width: 800px;" width="100%"/> ## 512x512 Artwork <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/512x512%20Artwork.jpg" style="max-width: 800px;" width="100%"/> ## 512x512 Photos <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/512x512%20Photo.jpg" style="max-width: 800px;" width="100%"/> ## Cloud Support Sinkin kindly hosted our model. [Click here to run it on the cloud](https://sinkin.ai/m/V6vYoaL)! ## License *My motivation for making this model was to have a free, non-restricted model for the community to use and for startups.* *I was noticing the models people gravitated towards, were merged models which had prior license requirements from the people who trained them.* *This was just a fun project I put together for you guys.* *My fun ended when I posted the results :D* *Enjoy! Sharing is caring :)*