id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
5,662 | \dfrac{1}{y^{1/2}}((-3) y) = -3y^{1/2} |
1,474 | 4n^2 + (-1) = (2n + (-1)) (2n + 1) |
-564 | \left(e^{\pi\cdot i}\right)^{15} = e^{15\cdot i\cdot \pi} |
8,715 | g \cdot g \cdot e = e = g \cdot g \cdot e |
-4,142 | \frac{1}{l^3} \cdot l \cdot l \cdot l \cdot \dfrac{1}{40} \cdot 8 = \frac{1}{40 \cdot l^3} \cdot 8 \cdot l^3 |
-29,007 | 4 = \left(4\cdot (-1) + 12\right)/2 |
-20,859 | \frac{1}{25\times p + 5\times (-1)}\times (-30\times p + 6) = \frac{1}{5\times p + (-1)}\times \left(5\times p + (-1)\right)\times (-\frac{6}{5}) |
-12,347 | 2^{1 / 2}\cdot 6 = 72^{\dfrac{1}{2}} |
27,695 | \dfrac{1}{x \cdot d} = \dfrac{1}{x \cdot d} |
-12,541 | 31 = 90 + 59\cdot (-1) |
17,337 | b = h \cdot b = b \cdot h |
29,511 | \left\lfloor{\frac15(7 + (-1))}\right\rfloor + 1 = 2 |
6,976 | \frac{1}{Y\cdot \dfrac{1}{X}} = X/Y |
22,012 | 2^{1 + k} + 2\cdot \left(-1\right) = 2\cdot ((-1) + 2^k) |
36,419 | -x + x \coloneqq -x + x |
35,082 | \dfrac{1}{-y^2 + 1} = \tfrac12 \cdot (\dfrac{1}{1 - y} + \frac{1}{1 + y}) |
10,331 | (-\sqrt{x} + \sqrt{a_m})\cdot (\sqrt{a_m} + \sqrt{x}) = -x + a_m |
-2,626 | -\sqrt{6} + \sqrt{24} = \sqrt{4\cdot 6} - \sqrt{6} |
32,919 | 1/L + 1/M + 1/x = \frac{1}{L*M*x}*(L*M + x*M + x*L) |
16,860 | \int\limits_{-\infty}^\infty ...\,\mathrm{d}z = 2 \cdot \int_0^\infty ...\,\mathrm{d}z |
30,546 | -4 \cdot x + 12 = 4 \cdot x \cdot x - (x^2 + x + 3 \cdot (-1)) \cdot 4 |
-1,260 | -20/18 = \frac{1}{18 \cdot 1/2}((-20) \cdot 1/2) = -10/9 |
36,245 | -(8 \cdot 9^5 + 9^6) + 9 \cdot 10^5 = -103833 |
-28,798 | 150 = \pi*2/(\pi*2*\frac{1}{150}) |
38,983 | x + x = x \cdot 2 |
-15,966 | -10 \cdot \frac{3}{10} + 7 \cdot 7/10 = 19/10 |
-4,233 | k^2 \cdot 7/6 = 7 \cdot k^2/6 |
19,541 | -9 = 4 + 2 * 2 + (-1)^2*9 - 4*2 + 18*\left(-1\right) |
13,277 | |(-c_k\cdot t + h_k\cdot M)/\left(M\cdot c_k\right)| = |\frac{h_k}{c_k} - \frac{1}{M}\cdot t| |
-2,429 | 12 \cdot 6^{1/2} = (3 + 4 + 5) \cdot 6^{1/2} |
-9,286 | -x*7*7 + 3*7 = -x*49 + 21 |
-26,552 | 2\times y^2 - 40\times y + 200 = 2\times \left(y \times y - 20\times y + 100\right) = 2\times \left(y + 10\times (-1)\right)^2 |
14,971 | 8 \cdot x = 4 \cdot x + 2 \cdot x \cdot 2 |
-27,734 | \frac{\mathrm{d}}{\mathrm{d}x} \csc{x} = -\csc{x} \cot{x} |
-11,955 | 13/15 = \tfrac{1}{12*\pi}*s*12*\pi = s |
-20,653 | -7/8 \frac{1}{-5\varepsilon + 2(-1)}\left(-5\varepsilon + 2(-1)\right) = \frac{14 + 35 \varepsilon}{-40 \varepsilon + 16 \left(-1\right)} |
-22,805 | \frac{60}{4 \cdot 12} \cdot 1 = \frac{1}{48} \cdot 60 |
10,420 | 5^{2n} + (-1) = \left(5^n + 1\right) \left(5^n + (-1)\right) |
-20,339 | -\frac{36}{-8} = 9/2 \cdot (-\frac{4}{-4}) |
8,821 | a*\sin{\pi/2} + \cos{\pi/2} = a |
-11,009 | 112/8 = 14 |
27,041 | (b + a) \times (b + a) - b \times a \times 2 = a \times a + b^2 |
12,189 | \left(-5\right)^2 + (-3) * (-3) + 1^2 = 35 = 5*((-5)*(-3) - 5 - 3) |
7,423 | 11 = (z + \sigma + y) \cdot 6\Longrightarrow z + \sigma + y = \dfrac{11}{6} |
29,030 | \csc{\theta} = \frac{1}{\sin{\theta}} = \dfrac{1}{(1 - \cos^2{\theta})^{\tfrac{1}{2}}} |
15,310 | -A_1*B_1 + (A_0 + A_1)*\left(B_0 + B_1\right) - B_0*A_0 = A_1*B_0 + B_1*A_0 |
-20,018 | \frac{s\cdot 5 + 30}{45\cdot (-1) + 5\cdot s} = \frac55\cdot \frac{s + 6}{s + 9\cdot \left(-1\right)} |
22,130 | \binom{1}{1}\times \binom{19}{2}/\left(\binom{20}{3}\right) = \frac{1}{20}\times 3 |
4,601 | -2 \cdot x \cdot e^{-x^2} = (-2 + 4 \cdot x^2) \cdot e^{-x^2} |
33,017 | \frac{1}{2^{1 / 2}} = \dfrac{2^{\frac{1}{2}}}{2} |
-5,036 | 18.0\cdot 10^{5 + 2} = 18\cdot 10^7 |
25,998 | 5 + \left(z + (-1)\right)^4 + z^2\cdot 3 - z\cdot 6 = (z + (-1))^4 + 3\cdot (z + (-1))^2 + 2 |
41,682 | 2^{23} + (-1) = 47 \cdot 178481 |
-20,293 | \frac{9 - 6 \cdot \delta}{\delta + 5 \cdot (-1)} \cdot 5/5 = \frac{45 - 30 \cdot \delta}{\delta \cdot 5 + 25 \cdot (-1)} |
20,760 | \sin(2\cdot \theta) = \cos(\dfrac{\pi}{2} - 2\cdot \theta) |
52,112 | 770 = {5 \choose 4} \cdot {7 \choose 1} + {7 \choose 2} \cdot {5 \choose 3} + {7 \choose 3} \cdot {5 \choose 2} + {7 \choose 4} \cdot {5 \choose 1} |
37,155 | (2k)^2 = (2n+25)^2-549\Rightarrow (2n+25)^2-(2k)^2 = 549 = 3^3\cdot 61 |
1,662 | -2\cdot \frac{x}{d^3} = 2\cdot x/d\cdot \frac{1}{d}\cdot x |
14,616 | 0 = t rightarrow 0 = t |
34,516 | y^2 \cdot 2 - y \cdot 6 = (-y \cdot 3 + y^2) \cdot 2 |
18,704 | -(1 + i)*2 = \left(-2\right) (-1) - (2 + i)*2 |
17,020 | -\frac{1}{e^y + 1} + 1 = \frac{e^y}{1 + e^y} |
9,556 | \mathbb{E}[|X| + |Y|] = \mathbb{E}[|X|] + \mathbb{E}[|Y|] |
26,739 | 273/999 = \frac{91}{333} |
-19,518 | \dfrac{1}{5} \cdot 7 \cdot \frac19 \cdot 4 = \frac{\frac{7}{5}}{1/4 \cdot 9} \cdot 1 |
-23,113 | -\frac{1}{27} \cdot 4 = \frac13 \cdot (\frac{1}{9} \cdot (-4)) |
6,359 | \frac{48}{50} \cdot \dfrac{3}{51} = 144/2550 |
-1,650 | \frac94\cdot \pi = 4/3\cdot \pi + \frac{11}{12}\cdot \pi |
-20,344 | \dfrac{1}{5}\cdot 5\cdot \frac{1}{4\cdot z}\cdot ((-1) + 5\cdot z) = \left(5\cdot (-1) + 25\cdot z\right)/(20\cdot z) |
14,872 | 19 = 3^3 - 2 2 2 |
19,156 | 1/\left((-1)\cdot b\right) = \frac{1}{(-1)\cdot b} = \frac{\frac{1}{-1}}{b} = -1/b = -\frac1b |
729 | 27 + |Y\cdot E| = 27 + |E\cdot Y| |
37 | 4\cdot a\cdot d + \left(a - d\right)^2 = (d + a)^2 |
17,481 | (b + f)^2 = b^2 + f^2 + 2*b*f |
24,603 | \frac{1}{-(-1) \cdot x^2 + 1} = \frac{1}{1 + x^2} |
12,492 | \dfrac1y\cdot 2 = \dfrac{2}{y^2}\cdot y |
19,043 | \int (y + 2\cdot (-1))\cdot e^y\,\mathrm{d}y = (y + 2\cdot (-1))\cdot e^y - \int e^y\,\mathrm{d}y = \left(y + 2\cdot (-1)\right)\cdot e^y - e^y = y\cdot e^y - 3\cdot e^y |
2,719 | 5 = 0 \implies 1 = 0 |
26,608 | 10 \cdot z \cdot z + z \cdot 20 + 10 = 10 \cdot (z + 1)^2 |
29,700 | -y^2 + x^2 = (-y + x)*(x + y) |
13,028 | q^2 - yq*2 + 1 = 0 \Rightarrow q = y ± \sqrt{y^2 + (-1)} |
9,457 | (x \cdot 2 + 5) (2 + x \cdot 5) = 10 x^2 + 29 x + 10 |
30,866 | 1/3 = \dfrac{1}{6}\cdot 2 |
-13,952 | 3 + 8 \cdot 6 - 5 = 3 + 48 - 5 = 51 - 5 = 51 + 5 \cdot (-1) = 46 |
785 | \dfrac23\cdot \tfrac{1}{5}/4 = \frac{1}{30} |
-1,868 | \pi \cdot \frac{19}{12} - \dfrac{1}{12} \cdot 19 \cdot \pi = 0 |
-18,639 | -\frac{7}{22} = -\frac{7}{22} |
-4,046 | \frac{1}{2} \cdot 9 = \frac{1}{2} \cdot 9 |
-21,039 | \frac17 \cdot 7 \cdot (x + 5 \cdot (-1))/8 = (7 \cdot x + 35 \cdot (-1))/56 |
13,610 | 2^{\frac{5}{12}} = 1.334839 \ldots \approx 4/3 |
-4,262 | \frac{11*1/12}{a^2} = \frac{11}{12*a * a} |
5,431 | t^5 + t^3 + t^2 + 1 = (t^2 + 1) \cdot (1 + t^2 - t) \cdot (t + 1) |
151 | 0 \lt (\sqrt{h_1} - \sqrt{h_2})^2 = h_1 - 2*\sqrt{h_1*h_2} + h_2 = h_1 + 2*(-1) + h_2 |
20,527 | 72/625 = \frac{5*\binom{6}{2}*4!}{5^6}*1 |
-19,388 | 4/5 \cdot \frac{1}{1} \cdot 8 = \dfrac{1}{5} \cdot 4/\left(1/8\right) |
-19,010 | \tfrac78 = \frac{A_r}{9*\pi}*9*\pi = A_r |
11,798 | L = L \cdot 2 \implies L = 0 |
-2,384 | \left(-6\right)^3 = \left(-6\right) \times (-6) \times \left(-6\right) = 36 \times (-6) = -216 |
2,088 | 1 + y^3 = (1 + y^2 - y) \cdot (1 + y) |
-22,189 | \left(p + 8\right)\cdot \left(p + 7\cdot (-1)\right) = p^2 + p + 56\cdot \left(-1\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.