id
int64
-30,985
55.9k
text
stringlengths
5
437k
5,662
\dfrac{1}{y^{1/2}}((-3) y) = -3y^{1/2}
1,474
4n^2 + (-1) = (2n + (-1)) (2n + 1)
-564
\left(e^{\pi\cdot i}\right)^{15} = e^{15\cdot i\cdot \pi}
8,715
g \cdot g \cdot e = e = g \cdot g \cdot e
-4,142
\frac{1}{l^3} \cdot l \cdot l \cdot l \cdot \dfrac{1}{40} \cdot 8 = \frac{1}{40 \cdot l^3} \cdot 8 \cdot l^3
-29,007
4 = \left(4\cdot (-1) + 12\right)/2
-20,859
\frac{1}{25\times p + 5\times (-1)}\times (-30\times p + 6) = \frac{1}{5\times p + (-1)}\times \left(5\times p + (-1)\right)\times (-\frac{6}{5})
-12,347
2^{1 / 2}\cdot 6 = 72^{\dfrac{1}{2}}
27,695
\dfrac{1}{x \cdot d} = \dfrac{1}{x \cdot d}
-12,541
31 = 90 + 59\cdot (-1)
17,337
b = h \cdot b = b \cdot h
29,511
\left\lfloor{\frac15(7 + (-1))}\right\rfloor + 1 = 2
6,976
\frac{1}{Y\cdot \dfrac{1}{X}} = X/Y
22,012
2^{1 + k} + 2\cdot \left(-1\right) = 2\cdot ((-1) + 2^k)
36,419
-x + x \coloneqq -x + x
35,082
\dfrac{1}{-y^2 + 1} = \tfrac12 \cdot (\dfrac{1}{1 - y} + \frac{1}{1 + y})
10,331
(-\sqrt{x} + \sqrt{a_m})\cdot (\sqrt{a_m} + \sqrt{x}) = -x + a_m
-2,626
-\sqrt{6} + \sqrt{24} = \sqrt{4\cdot 6} - \sqrt{6}
32,919
1/L + 1/M + 1/x = \frac{1}{L*M*x}*(L*M + x*M + x*L)
16,860
\int\limits_{-\infty}^\infty ...\,\mathrm{d}z = 2 \cdot \int_0^\infty ...\,\mathrm{d}z
30,546
-4 \cdot x + 12 = 4 \cdot x \cdot x - (x^2 + x + 3 \cdot (-1)) \cdot 4
-1,260
-20/18 = \frac{1}{18 \cdot 1/2}((-20) \cdot 1/2) = -10/9
36,245
-(8 \cdot 9^5 + 9^6) + 9 \cdot 10^5 = -103833
-28,798
150 = \pi*2/(\pi*2*\frac{1}{150})
38,983
x + x = x \cdot 2
-15,966
-10 \cdot \frac{3}{10} + 7 \cdot 7/10 = 19/10
-4,233
k^2 \cdot 7/6 = 7 \cdot k^2/6
19,541
-9 = 4 + 2 * 2 + (-1)^2*9 - 4*2 + 18*\left(-1\right)
13,277
|(-c_k\cdot t + h_k\cdot M)/\left(M\cdot c_k\right)| = |\frac{h_k}{c_k} - \frac{1}{M}\cdot t|
-2,429
12 \cdot 6^{1/2} = (3 + 4 + 5) \cdot 6^{1/2}
-9,286
-x*7*7 + 3*7 = -x*49 + 21
-26,552
2\times y^2 - 40\times y + 200 = 2\times \left(y \times y - 20\times y + 100\right) = 2\times \left(y + 10\times (-1)\right)^2
14,971
8 \cdot x = 4 \cdot x + 2 \cdot x \cdot 2
-27,734
\frac{\mathrm{d}}{\mathrm{d}x} \csc{x} = -\csc{x} \cot{x}
-11,955
13/15 = \tfrac{1}{12*\pi}*s*12*\pi = s
-20,653
-7/8 \frac{1}{-5\varepsilon + 2(-1)}\left(-5\varepsilon + 2(-1)\right) = \frac{14 + 35 \varepsilon}{-40 \varepsilon + 16 \left(-1\right)}
-22,805
\frac{60}{4 \cdot 12} \cdot 1 = \frac{1}{48} \cdot 60
10,420
5^{2n} + (-1) = \left(5^n + 1\right) \left(5^n + (-1)\right)
-20,339
-\frac{36}{-8} = 9/2 \cdot (-\frac{4}{-4})
8,821
a*\sin{\pi/2} + \cos{\pi/2} = a
-11,009
112/8 = 14
27,041
(b + a) \times (b + a) - b \times a \times 2 = a \times a + b^2
12,189
\left(-5\right)^2 + (-3) * (-3) + 1^2 = 35 = 5*((-5)*(-3) - 5 - 3)
7,423
11 = (z + \sigma + y) \cdot 6\Longrightarrow z + \sigma + y = \dfrac{11}{6}
29,030
\csc{\theta} = \frac{1}{\sin{\theta}} = \dfrac{1}{(1 - \cos^2{\theta})^{\tfrac{1}{2}}}
15,310
-A_1*B_1 + (A_0 + A_1)*\left(B_0 + B_1\right) - B_0*A_0 = A_1*B_0 + B_1*A_0
-20,018
\frac{s\cdot 5 + 30}{45\cdot (-1) + 5\cdot s} = \frac55\cdot \frac{s + 6}{s + 9\cdot \left(-1\right)}
22,130
\binom{1}{1}\times \binom{19}{2}/\left(\binom{20}{3}\right) = \frac{1}{20}\times 3
4,601
-2 \cdot x \cdot e^{-x^2} = (-2 + 4 \cdot x^2) \cdot e^{-x^2}
33,017
\frac{1}{2^{1 / 2}} = \dfrac{2^{\frac{1}{2}}}{2}
-5,036
18.0\cdot 10^{5 + 2} = 18\cdot 10^7
25,998
5 + \left(z + (-1)\right)^4 + z^2\cdot 3 - z\cdot 6 = (z + (-1))^4 + 3\cdot (z + (-1))^2 + 2
41,682
2^{23} + (-1) = 47 \cdot 178481
-20,293
\frac{9 - 6 \cdot \delta}{\delta + 5 \cdot (-1)} \cdot 5/5 = \frac{45 - 30 \cdot \delta}{\delta \cdot 5 + 25 \cdot (-1)}
20,760
\sin(2\cdot \theta) = \cos(\dfrac{\pi}{2} - 2\cdot \theta)
52,112
770 = {5 \choose 4} \cdot {7 \choose 1} + {7 \choose 2} \cdot {5 \choose 3} + {7 \choose 3} \cdot {5 \choose 2} + {7 \choose 4} \cdot {5 \choose 1}
37,155
(2k)^2 = (2n+25)^2-549\Rightarrow (2n+25)^2-(2k)^2 = 549 = 3^3\cdot 61
1,662
-2\cdot \frac{x}{d^3} = 2\cdot x/d\cdot \frac{1}{d}\cdot x
14,616
0 = t rightarrow 0 = t
34,516
y^2 \cdot 2 - y \cdot 6 = (-y \cdot 3 + y^2) \cdot 2
18,704
-(1 + i)*2 = \left(-2\right) (-1) - (2 + i)*2
17,020
-\frac{1}{e^y + 1} + 1 = \frac{e^y}{1 + e^y}
9,556
\mathbb{E}[|X| + |Y|] = \mathbb{E}[|X|] + \mathbb{E}[|Y|]
26,739
273/999 = \frac{91}{333}
-19,518
\dfrac{1}{5} \cdot 7 \cdot \frac19 \cdot 4 = \frac{\frac{7}{5}}{1/4 \cdot 9} \cdot 1
-23,113
-\frac{1}{27} \cdot 4 = \frac13 \cdot (\frac{1}{9} \cdot (-4))
6,359
\frac{48}{50} \cdot \dfrac{3}{51} = 144/2550
-1,650
\frac94\cdot \pi = 4/3\cdot \pi + \frac{11}{12}\cdot \pi
-20,344
\dfrac{1}{5}\cdot 5\cdot \frac{1}{4\cdot z}\cdot ((-1) + 5\cdot z) = \left(5\cdot (-1) + 25\cdot z\right)/(20\cdot z)
14,872
19 = 3^3 - 2 2 2
19,156
1/\left((-1)\cdot b\right) = \frac{1}{(-1)\cdot b} = \frac{\frac{1}{-1}}{b} = -1/b = -\frac1b
729
27 + |Y\cdot E| = 27 + |E\cdot Y|
37
4\cdot a\cdot d + \left(a - d\right)^2 = (d + a)^2
17,481
(b + f)^2 = b^2 + f^2 + 2*b*f
24,603
\frac{1}{-(-1) \cdot x^2 + 1} = \frac{1}{1 + x^2}
12,492
\dfrac1y\cdot 2 = \dfrac{2}{y^2}\cdot y
19,043
\int (y + 2\cdot (-1))\cdot e^y\,\mathrm{d}y = (y + 2\cdot (-1))\cdot e^y - \int e^y\,\mathrm{d}y = \left(y + 2\cdot (-1)\right)\cdot e^y - e^y = y\cdot e^y - 3\cdot e^y
2,719
5 = 0 \implies 1 = 0
26,608
10 \cdot z \cdot z + z \cdot 20 + 10 = 10 \cdot (z + 1)^2
29,700
-y^2 + x^2 = (-y + x)*(x + y)
13,028
q^2 - yq*2 + 1 = 0 \Rightarrow q = y ± \sqrt{y^2 + (-1)}
9,457
(x \cdot 2 + 5) (2 + x \cdot 5) = 10 x^2 + 29 x + 10
30,866
1/3 = \dfrac{1}{6}\cdot 2
-13,952
3 + 8 \cdot 6 - 5 = 3 + 48 - 5 = 51 - 5 = 51 + 5 \cdot (-1) = 46
785
\dfrac23\cdot \tfrac{1}{5}/4 = \frac{1}{30}
-1,868
\pi \cdot \frac{19}{12} - \dfrac{1}{12} \cdot 19 \cdot \pi = 0
-18,639
-\frac{7}{22} = -\frac{7}{22}
-4,046
\frac{1}{2} \cdot 9 = \frac{1}{2} \cdot 9
-21,039
\frac17 \cdot 7 \cdot (x + 5 \cdot (-1))/8 = (7 \cdot x + 35 \cdot (-1))/56
13,610
2^{\frac{5}{12}} = 1.334839 \ldots \approx 4/3
-4,262
\frac{11*1/12}{a^2} = \frac{11}{12*a * a}
5,431
t^5 + t^3 + t^2 + 1 = (t^2 + 1) \cdot (1 + t^2 - t) \cdot (t + 1)
151
0 \lt (\sqrt{h_1} - \sqrt{h_2})^2 = h_1 - 2*\sqrt{h_1*h_2} + h_2 = h_1 + 2*(-1) + h_2
20,527
72/625 = \frac{5*\binom{6}{2}*4!}{5^6}*1
-19,388
4/5 \cdot \frac{1}{1} \cdot 8 = \dfrac{1}{5} \cdot 4/\left(1/8\right)
-19,010
\tfrac78 = \frac{A_r}{9*\pi}*9*\pi = A_r
11,798
L = L \cdot 2 \implies L = 0
-2,384
\left(-6\right)^3 = \left(-6\right) \times (-6) \times \left(-6\right) = 36 \times (-6) = -216
2,088
1 + y^3 = (1 + y^2 - y) \cdot (1 + y)
-22,189
\left(p + 8\right)\cdot \left(p + 7\cdot (-1)\right) = p^2 + p + 56\cdot \left(-1\right)