id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
7,725 | 2\cdot (h + (-1)) + (h + \left(-1\right)) \cdot (h + \left(-1\right)) = h \cdot h - 2\cdot h + 1 + 2\cdot h + 2\cdot (-1) = h^2 + (-1) |
-16,588 | 10 \sqrt{18} = \sqrt{9 \cdot 2} \cdot 10 |
-4,807 | 10^{4 + 1}*28.5 = 10^5*28.5 |
11,469 | 2*z + \frac{\mathrm{d}}{\mathrm{d}z} y^2 = 0 = 2*z + \frac{\mathrm{d}}{\mathrm{d}y} (y * y*\frac{\mathrm{d}y}{\mathrm{d}z}) |
3,529 | \dfrac{1}{2}(3 \pm \sqrt{-3 + 4i}) = \dfrac12(3 \pm \sqrt{9 - 4*\left(3 - i\right)}) |
161 | |f + \left(-1\right)| + |b + (-1)| = f + (-1) - b + (-1) = f - b |
41,322 | 0^{\tfrac{1}{-1}} = 0^{\frac{1}{-1}} = 0 |
-5,742 | \frac{5 \cdot s}{((-1) + s) \cdot (s + 8 \cdot (-1))} = \frac{5 \cdot s}{s^2 - 9 \cdot s + 8} |
23,847 | a^{h_2^{h_1}} = a^{h_2^{h_1}} |
-20,387 | \dfrac37 \cdot \frac{5 + 10 \cdot q}{5 + 10 \cdot q} = \frac{30 \cdot q + 15}{35 + q \cdot 70} |
22,305 | x\times 6 = 0 \Rightarrow x = 0 |
-24,826 | \left(-1\right) + 575 = 574 |
-5,398 | 4.13\cdot 10 = 4.13\cdot 10\cdot 10^1 = 4.13\cdot 10 \cdot 10 |
10,151 | -\sin^2(\theta)*2 + 1 = \cos(2*\theta) |
22,348 | 4176 = 6642 + 2466*(-1) |
8,488 | \cos^2(\theta) = \frac{1}{2} + \frac{\cos\left(\theta*2\right)}{2} |
30,189 | 3/4 - \frac{15}{4*\left(5 + \frac{4}{3}\right)} = \frac{1}{19}*3 |
29,280 | \frac{2\cdot \pi}{5}\cdot 1.25 = \dfrac{\pi}{5}\cdot 2\cdot \frac{5}{4} = \pi/2 |
7,688 | \dfrac{1}{z} = 1/z*\overline{z}/\overline{z} = \dfrac{\overline{z}}{|z|^2} |
-4,460 | \frac{-z\cdot 2 + 1}{20 (-1) + z^2 - z} = -\tfrac{1}{z + 4} - \frac{1}{5(-1) + z} |
32,564 | h = -\frac{\partial}{\partial s} \left(2*h*x\right)\Longrightarrow -h*2 - x*h*2 = h |
554 | (x - y) (y - z) + y^2 = yx - zx + yz |
19,783 | \sin\left(f + \pi\right) = \sin{f} \cdot \sin{\pi} + \cos{f} \cdot \sin{\pi} = -\sin{f} |
8,219 | yH = yH |
6,308 | 0 = 14 + x^2\cdot 3 - 13\cdot x \Rightarrow \left(x\cdot 3 + 7\cdot (-1)\right)\cdot \left(2\cdot \left(-1\right) + x\right) = 0 |
912 | 3*(i*2 + 1) = ((-6)*(2*i + 1))/(-2) |
17,135 | 12 = 25 + 13\cdot (-1) |
16,811 | p\cdot r'\cdot x = r'\cdot p\cdot x |
-2,516 | 6 \cdot \sqrt{5} = (4 + 5 + 3 \cdot (-1)) \cdot \sqrt{5} |
3,889 | \frac{1}{q \cdot 2 + 1} \cdot (2^q + 1) \cdot ((-1) + 2^q) = \dfrac{1}{1 + q \cdot 2} \cdot ((-1) + 4^q) |
549 | 2 = \left(\sqrt{2}\right)^2 = (2^{\dfrac{1}{3}})^3 = \dotsm |
-1,780 | \pi \cdot \dfrac{1}{4} \cdot 7 + \pi \cdot 11/6 = \pi \cdot 43/12 |
-12,223 | \dfrac25 = \frac{s}{6\times \pi}\times 6\times \pi = s |
23,122 | gx = -x*(-g) |
33,329 | \cos{π/4} = \sin{π/4} |
33,048 | 1000 + (-1) + 193 \cdot \left(-1\right) + 298 \cdot (-1) = 508 |
33,249 | 30 = \tfrac{5!}{2! \cdot 2!} |
30,751 | (0 - 1) \cdot a = -a + a \cdot 0 |
-6,670 | \frac{5}{2*x + 10*(-1)} = \dfrac{1}{2*(x + 5*(-1))}*5 |
30,562 | \tfrac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} |
485 | (-1) + z^3 = \left(z^2 + z + 1\right) \left(z + (-1)\right) |
9,925 | x^{-(z + 1)} = \dfrac{1}{x^{1 + z}} |
41,114 | (\sqrt{33}*3 + 17)^{\frac{1}{3}} = \left(3*\sqrt{33} + 17\right)^{1/3} |
-1,044 | \dfrac{1}{4} = \frac{1}{4} |
20,634 | 0 = z^2 + y^2 - 3 \cdot y\Longrightarrow (-3/2 + y)^2 + z^2 = (3/2)^2 |
-7,275 | \frac{1}{42} \cdot 5 = \frac{1}{9} \cdot 5 \cdot \frac48 \cdot 3/7 |
18,759 | 18! \cdot \frac{20}{2} \cdot 19 = \frac{20!}{2} |
4,818 | c - g_2 + g_1 - e = -(g_2 + e) + g_1 + c |
26,054 | \frac{1}{6\cdot 2} = \dfrac{1}{12} |
4,173 | 8 \cdot 8 - 7^2 = 4^2 - 1^2 |
3,772 | -z*(-1) + x = z + x |
20,649 | m*9 + 9*(-1) = 3*\left(m + (-1)\right)*3 |
-23,041 | \frac{8}{9} = \frac13\cdot 4\cdot 2/3 |
16,370 | \left\lfloor{41 \cdot 13/57}\right\rfloor = 9 |
-11,556 | 2\cdot i + 3 + 0\cdot (-1) = i\cdot 2 + 3 |
4,581 | 6^2 + 12^2 + 12 * 12 = 4*9 * 9 |
-15,544 | \dfrac{l^5 \cdot z^5}{\frac{1}{l^{10}} \cdot \frac{1}{z^6}} = \frac{z^5 \cdot l^5}{\frac{1}{l^{10} \cdot z^6}} |
11,706 | \cos{n \cdot \phi} = \cos{-\phi \cdot n} |
-4,815 | 10^{4 + 0}*29.2 = 10^4*29.2 |
16,272 | (2*n + 2)! = (2 + n*2)*\left(2*n + 1\right)*(2*n)! |
-5,460 | \frac{1}{2\cdot n^2 + 98\cdot (-1)}\cdot \left(4\cdot (-1) + n\cdot 6 + 42\cdot (-1) - n + 7\cdot \left(-1\right)\right) = \frac{1}{2\cdot n^2 + 98\cdot (-1)}\cdot (5\cdot n + 53\cdot (-1)) |
22,190 | \dfrac{1}{4\cdot (-1) + n^2}\cdot 4 = \frac{1}{2\cdot (-1) + n} - \frac{1}{2 + n} |
-10,573 | 120 = 15\cdot x + 30 + 30\cdot \left(-1\right) = 15\cdot x = 15\cdot x |
15,323 | x \cdot e^z \approx dy = e^x - e^z \approx dx \Rightarrow e^z - e^x \approx dx + x \cdot e^z \approx dy = 0 |
6,357 | x^2 \cdot 3 - x \cdot 7 + 2 = \left((-1) + 3 \cdot x\right) \cdot (2 \cdot (-1) + x) |
28,150 | \sqrt{64 r \cdot r S^4 + 4} = \sqrt{4\cdot \left(16 r \cdot r S^4 + 1\right)} = 2\sqrt{16 r^2 S^4 + 1} |
20,323 | 7/24 = \frac{1}{24} \cdot 5 + \frac{1}{12} |
-7,598 | \dfrac{6 - 14\cdot i}{-i\cdot 2 + 2}\cdot \dfrac{1}{2 + 2\cdot i}\cdot (2 + i\cdot 2) = \frac{1}{2 - 2\cdot i}\cdot (6 - i\cdot 14) |
9,896 | a \cdot d \cdot a - a = \frac{1}{\dfrac{1}{a - 1/d} - \dfrac1a} |
1,342 | 6^n\cdot 5 + 6^n + \left(-1\right) = (-1) + 6^n\cdot (1 + 5) |
17,846 | (x * x)^{1 / 2} = ((-x)^2)^{\frac{1}{2}} = |x| |
8,432 | 2 + 2 \cdot y = 2 \cdot \left(y + 1\right) |
3,971 | \left(1 + 4^3 - 4^2 + 4 \cdot (-1)\right) \cdot 4^{2013} = 4^{2013} + 4^{2016} - 4^{2015} - 4^{2014} |
2,119 | \cos{\pi \cdot 2014/12} = \cos(\dfrac{\pi}{12} \cdot 2014 - 83 \cdot \pi \cdot 2) |
-19,123 | \dfrac{14}{45} = A_s/\left(9\times π\right)\times 9\times π = A_s |
10,837 | \frac{1}{2 \cdot 100} + \frac{1}{200 \cdot 2} = 3/400 |
43,236 | 4 \times (-1) + 7 = 3 |
29,078 | \frac{1}{f_1 + f + f_2} = \frac{1}{f*f_1*f_2}*\left(f*f_1 + f*f_2 + f_2*f_1\right) \implies f*f_2*f_1 = (f_1 + f + f_2)*(f*f_1 + f_2*f + f_2*f_1) |
19,151 | (2 + l) \cdot \left(2 \cdot \left(-1\right) + l\right) = l^2 + 4 \cdot (-1) |
-5,494 | \frac{3}{5 \cdot (r + 6)} = \dfrac{1}{5 \cdot r + 30} \cdot 3 |
35,873 | 1 = e^{i\cdot 0} = e^{i\cdot 3\cdot π/2} = -i |
-1,265 | 15/72 = \frac{15 \cdot 1/3}{72 \cdot \frac13} = \frac{5}{24} |
21,446 | \sin(\frac{\pi}{2}\cdot 3) = \sin(\pi + \frac{1}{2}\cdot \pi) |
18,605 | \frac{1}{2}\cdot (2011 + (-1)) = 1005 |
5,370 | \frac{1}{(\tau_F \cdot x)^5} \cdot \left(x \cdot \tau_F\right)^9 = (x \cdot \tau_F)^4 |
-28,982 | q\cdot 100\cdot q = 100\cdot q \cdot q |
-1,382 | -20/54 = \dfrac{(-20) \cdot 1/2}{54 \cdot \frac{1}{2}} = -\frac{10}{27} |
-1,450 | -\frac{1}{45} 5 = \frac{(-5) \cdot 1/5}{45 \cdot 1/5} = -\frac{1}{9} |
-26,724 | \sum_{n=1}^∞ \dfrac{1}{n*7^n}*\left(3 + 4\right)^n*(n + 6) = \sum_{n=1}^∞ \frac{7^n}{n*7^n}*(n + 6) = \sum_{n=1}^∞ (n + 6)/n |
3,365 | x * x * x - 5x^2 + hx + (-1) = (x + (-1)) (1 + x^2 - x*4) + x*(h + 5(-1)) |
26,753 | \dfrac{1}{a\dfrac{1}{a}} = \dfrac{a}{a} |
-26,576 | 2\cdot z^2 + 162\cdot (-1) = 2\cdot (z^2 + 81\cdot \left(-1\right)) = 2\cdot (z + 9)\cdot (z + 9\cdot (-1)) |
52,690 | |q_1| + |q_2| = q_1 - q_2 = |q_1 - q_2| |
1,450 | \frac{(-1)\cdot \pi}{6} = -2\cdot \pi\cdot 84 + \frac{2014}{12}\cdot \pi |
-20,314 | 9/4\cdot \tfrac{1}{5\cdot s + 7}\cdot (7 + 5\cdot s) = \frac{63 + 45\cdot s}{28 + 20\cdot s} |
19,377 | ( d, i)*( h', x) = ( h', x)*( d, i) |
-9,183 | -130 \cdot k \cdot k = -k \cdot k \cdot 2 \cdot 5 \cdot 13 |
6,482 | \left(\left(-1\right) + \frac{m\cdot x\cdot f}{h\cdot l\cdot o}\right)\cdot 100 = \frac{1}{o\cdot l\cdot h}\cdot (-o\cdot l\cdot h + x\cdot f\cdot m)\cdot 100 |
40,263 | \cosh\left(x\right) + \sinh(x) = e^x |
-11,578 | -25 + 0(-1) + 20 i = i*20 - 25 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.