id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,724 | (f*q)^3 = 3375 \Rightarrow 15 = f*q |
-20,802 | 4/1\cdot \tfrac{10\cdot k + 9}{9 + 10\cdot k} = \frac{36 + 40\cdot k}{10\cdot k + 9} |
-7,712 | (104 - 28*i + 78*i + 21)/25 = \dfrac{1}{25}*(125 + 50*i) = 5 + 2*i |
26,922 | \tfrac{1}{x + Q} \cdot (x - Q) = \frac{x - Q}{Q + x} |
19,674 | (-d + x)^2 = d^2 + x x - d x\cdot 2 |
2,652 | m^2 - 7 \times m + 10 = m^2 - 6 \times m + 9 - m + 1 = (m + 3 \times (-1))^2 - m + 1 = (m + 3 \times (-1)) \times (m + 3 \times (-1)) - m + 3 \times \left(-1\right) + 2 \times \left(-1\right) |
-7,062 | 4/39 = 4/13\cdot \frac{1}{12}\cdot 4 |
-10,678 | -\tfrac{1}{12 + z \times 15} \times (18 \times (-1) + z \times 9) = 3/3 \times \left(-\frac{z \times 3 + 6 \times (-1)}{z \times 5 + 4}\right) |
17,148 | A \cdot x/A = x/A \Rightarrow x/A = x |
11,685 | \frac{1}{v^2 + 5} + 4 = \frac{1}{v^2 + 5} (1 + 4 (v v + 5)) = \frac{1}{v^2 + 5} (4 v^2 + 21) |
26,745 | (2 \cdot n) \cdot (2 \cdot n) = (2 \cdot m)^2 \cdot 2\Longrightarrow n \cdot n = 2 \cdot m \cdot m |
44,932 | {6\choose 3} = 20 |
-1,470 | \frac{1}{7}*2/(1/9*\left(-4\right)) = -9/4*\frac27 |
-15,217 | \frac{1}{\frac{1}{i^3 a^2} \dfrac{1}{i^8}} = \frac{i^8}{\frac{1}{a^2} \frac{1}{i^3}} |
-3,024 | 63^{\frac{1}{2}} + 28^{1 / 2} = (9\cdot 7)^{\frac{1}{2}} + (4\cdot 7)^{\frac{1}{2}} |
-10,515 | -\frac{6}{15*k}*4/4 = -24/(60*k) |
2,482 | (2\cdot \left(-1\right) + x)^2 = (2\cdot (-1) + x)\cdot (2\cdot (-1) + x) |
11,432 | 3 \cdot x^2 + 3 \cdot x = 3 \cdot (x + x^2) |
1,167 | \frac{1}{n + (-1)} r*(n - r)/n = \frac{n r - r r}{n^2 - n} |
12,618 | \dfrac{1}{\sqrt{-b + x} (x - a)}(a - b) = \frac{-(-a + x) + x - b}{(x - a) (x - b)} \sqrt{x - b} |
15,631 | 0 = b\cdot (D + (-1)) + x \Rightarrow -\frac{x}{-D + 1} = b |
24,613 | 2x^2 = \left(4 + x\cdot 2\right) x - x\cdot 4 |
-26,578 | \left(4 - x*7\right) (4 + x*7) = 4^2 - (7x)^2 |
24,557 | 3*2^3 + 1^3*6 = 30 |
36,940 | b = \dfrac{r}{9 + 10 \cdot m} \implies r = b \cdot 9 + 10 \cdot b \cdot m |
12,379 | k^2 + 3\times k = k^2 + k + 2\times k = 2\times \binom{k + 1}{2} + 2\times k |
22,454 | b^2 + a^2 - b \cdot a \cdot 2 = (-b + a)^2 |
1,904 | x_1 + x_2 + 2^{1/2}\cdot (g_2 + g_1) = x_1 + 2^{1/2}\cdot g_1 + x_2 + 2^{1/2}\cdot g_2 |
31,961 | 3\times n\times (n + (-1)) = n\times (n + \left(-1\right)) + (n + \left(-1\right))\times n\times 2 |
15,380 | 15 = 5u\Longrightarrow u = 3 |
15,654 | \binom{n}{r} = \dfrac{n!}{\left(n - r\right)! \cdot r!} |
10,146 | \frac12 \cdot (\left(T + B\right)^2 - B^2 - T^2) = T \cdot B |
-13,086 | 2*\left(-2\right) = \frac{2*\left(-2\right)}{1} = -\frac41 |
16,255 | \frac{1}{2} + 1/3 + \dfrac{1}{6} + (-1) = 0 |
-476 | \dfrac{1}{12}\cdot 95\cdot \pi - 6\cdot \pi = 23/12\cdot \pi |
-5,687 | \tfrac{1}{2*(-1) + 2*n}*3 = \dfrac{3}{2*\left((-1) + n\right)} |
34,544 | 6\left(-1\right) + 1 + 2 + 3 + 4 + 5 + 6 = 15 |
-20,983 | \frac{1}{63}\cdot (x\cdot 35 + 63\cdot (-1)) = \dfrac{1}{9}\cdot (9\cdot (-1) + x\cdot 5)\cdot \frac77 |
11,386 | x^4 + (-1) = x^4 - x^3 + x^2 \cdot x + \left(-1\right) |
35,834 | 4 + \sqrt{3} \cdot 2 = 4 + \sqrt{3} \cdot 2 |
13,211 | 30 = \left(63 - 30 p\right) p + (63 - 30 p) p^3 = 63 p - 30 p^2 + 63 p \cdot p \cdot p - 30 p^4 |
4,450 | 6\cdot n \cdot n + n + (-1) = (2\cdot n + 1)\cdot (n\cdot 3 + \left(-1\right)) |
14,358 | z = x \cdot S \Rightarrow |z|^2 = |S|^2 \cdot |x|^2 |
-20,796 | -\frac{3}{a*4 + 9}*5/5 = -\frac{1}{20 a + 45}15 |
20,273 | q^2 + 2xq + (-1) = (\left(1 + x^2\right)^{1 / 2} + q + x) (-(1 + x^2)^{\frac{1}{2}} + q + x) |
16,573 | -2^l + 3*2^l + (-1) = (-1) + 2^l*2 |
20,744 | 0 = 2 \beta \Rightarrow 0 = \beta |
17,597 | c_2 c_1 = 168 \Rightarrow 168/(c_1) = c_2 |
-3,326 | -24^{1/2} + 150^{1/2} + 6^{1/2} = \left(25 \cdot 6\right)^{1/2} + 6^{1/2} - (4 \cdot 6)^{1/2} |
-2,330 | 3/15 - 1/15 = \frac{2}{15} |
40,940 | 5 \cdot (-1) - 2 \cdot 2 + 9 = -5 + 4 \cdot \left(-1\right) + 9 = 0 |
-9,359 | -45 \cdot j = -j \cdot 3 \cdot 3 \cdot 5 |
-6,906 | 48 = 3 \cdot 4 \cdot 4 |
13,826 | \binom{-(R + 1)}{P} = \left(-1\right)^P \cdot \binom{R + P}{P} = (-1)^P \cdot \binom{R + P}{R} |
-10,448 | \frac{7}{x \cdot 4 + 2 \cdot (-1)} \cdot 5/5 = \frac{35}{10 \cdot (-1) + 20 \cdot x} |
1,156 | 1.6^{l + 2*(-1)} + 1.6^{l + 2*(-1)} = 2*1.6^{l + 2*(-1)} |
11,670 | 7 = \left\lfloor{\frac{1}{6{5 \choose 2}}{30 \choose 2}}\right\rfloor |
-20,868 | \dfrac{7}{7}\cdot \frac{2}{1 - a\cdot 8} = \frac{1}{-56\cdot a + 7}\cdot 14 |
15,526 | 2\cdot a\cdot b' + 2 = -a^3 + b'^3\cdot 4 |
6,067 | \operatorname{atan}(z) = z - \dfrac13\cdot z^3 + z^5/5 - z^7/7 + \dotsm |
3,336 | \mathbb{P}(t) = t^4 - 2 t^3 - 6 t t - 2 t + 1 = (t + 1) \left(t t t - 3 t^2 - 3 t + 1\right) = (t + 1)^2 \left(t^2 - 4 t + 1\right) |
4,521 | 18 = \frac{1}{40} \cdot \left(280 \cdot (-1) + 1000\right) |
34,756 | 3^{1 / 2}/3 = \frac{1}{3^{\dfrac{1}{2}}} |
34,091 | \frac{1}{y \times 1/z} = \frac{z}{y} |
21,535 | \sin(A) \sin\left(B\right)*2 = -\cos(A + B) + \cos\left(A - B\right) |
-12,296 | \frac{5}{12} = \frac{s}{18 \pi} \cdot 18 \pi = s |
39,064 | 6.75 = 4 \cdot (12 + 5 + 10) \cdot 0.25 \cdot 0.25 |
13,213 | \pi/12 = \pi/3 - \tfrac{\pi}{4} |
9,301 | x\cdot H_{11} = x\cdot H_{11} |
51,043 | \left(-1\right)^3 = -1 |
2,156 | \frac{1}{\sqrt{8}}*\sqrt{64} = \sqrt{\tfrac{1}{8}*64} = \sqrt{8} = 2*\sqrt{2} |
4,534 | 3\cdot z^2 + 1 = 4 + ((-1) + z^2)\cdot 3 |
-25,789 | \frac{4}{40} = \frac{4}{5 \cdot 8} |
7,005 | 4 \cdot 4 \cdot 4 = 2 \cdot 2\cdot 2^3 + 2^3\cdot 2^2 |
4,751 | |-2 \cdot y + z| = |2 \cdot y - z| |
34,470 | 2^n = (1 + 1)^n = \sum_{k=0}^n {n \choose k}*1^{n - k}*1^k = \sum_{k=0}^n {n \choose k} |
28,311 | 908 = 2 \cdot 2 \cdot 227 |
20,152 | t_1 \cdot z \cdot t_2 = t_1 \cdot z \cdot t_2 |
-25,813 | 3/60 = \dfrac{3}{10 \cdot 6} \cdot 1 |
-30,595 | 4*(6 + x^2) = 24 + x^2*4 |
-7,251 | 4/15*\frac{1}{16}5 = 1/12 |
24,078 | ( a + h, a - h) = ma + mh + na - nh = ma - nh + na + mh |
24,735 | 8*r^3 - 12*r^2 + 6*r + (-1) = 16*r^3 - 48*r^2 + 48*r + 16*(-1) = 24*r^3 - 108*r^2 + 162*r + 81*(-1) |
32,918 | \dfrac{20}{3} \cdot 1 = 20/3 |
-28,407 | x^2 - 14*x + 58 = x^2 - 14*x + 49 + 9 = (x + 7*(-1))^2 + 9 = (x*\left(-7\right))^2 + 3^2 |
-27,528 | 16 =2\cdot2\cdot2\cdot2 |
-22,778 | \dfrac{60}{108}= \dfrac{2\cdot30}{2\cdot54}= \dfrac{2\cdot 2\cdot15}{2\cdot 2\cdot27}= \dfrac{2\cdot 2\cdot 3\cdot5}{2\cdot 2\cdot 3\cdot9}= \dfrac{5}{9} |
19,349 | m + 1 = m/1 + m/m |
5,697 | \sqrt{\frac14π} = (1/2)! |
21,833 | \binom{n}{1 + l} = \binom{n + (-1)}{l} + \binom{n + 2\times \left(-1\right)}{l} + \cdots + \binom{l}{l} |
19,951 | d^{l m} = (d^l)^m = (d^m)^l |
4,157 | \sec(\tfrac{\pi}{2} - x) = \csc(x) |
18,086 | x^2 + (-1)^k*x - \dfrac{1}{4} = 0 \Rightarrow ((-1)^{1 + k} + \sqrt{2})/2 = x |
-30,916 | 3*b + 6 = 6 + 3*b |
-1,605 | \pi*7/6 - \pi/2 = 2/3 \pi |
14,180 | x^{t^h} = x \Rightarrow x = (x^{t^{\left(-1\right) + h}})^t |
18,431 | \left(6m + 3*(2n + 1) = 9 = 6(m + n) + 3\Longrightarrow 1 = n + m\right)\Longrightarrow m = 1 - n |
5,196 | \dfrac1b \cdot \left(-(-y_{i + 1} + y_i) + y_{i + (-1)} - y_i\right) = \frac1b \cdot (y_{(-1) + i} - 2 \cdot y_i + y_{i + 1}) |
-21,052 | \frac{1}{8}\cdot 4 = \dfrac14\cdot 2\cdot \frac{2}{2} |
7,577 | \frac{2\cdot z^2 + z}{z \cdot z + 1} = 1 + \frac{z^2 + z + (-1)}{z^2 + 1} = 1 + \dfrac{2\cdot z^2 + 2\cdot z + 2\cdot (-1)}{2\cdot \left(z^2 + 1\right)} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.