id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-12,332 | 2 \sqrt{6} = \sqrt{24} |
-15,943 | -36/10 = -6*\dfrac{8}{10} + 6*2/10 |
4,777 | y^{\frac{1}{2}}/y = \dfrac{1}{y^{1 / 2}} |
27,005 | (y_1 - \gamma)\cdot (-u + y_2) = y_2\cdot y_1 - u\cdot y_1 - \gamma\cdot y_2 + \gamma\cdot u |
26,428 | ex = -x*(-e) |
12,088 | 205200 = \binom{3}{2} \cdot \binom{5}{2} \cdot \binom{20}{1} \cdot \binom{19}{1} \cdot 18 |
-1,116 | \dfrac{-40}{42} = \dfrac{-40 \div 2}{42 \div 2} = -\dfrac{20}{21} |
-4,155 | \tfrac{1}{2k^3} = \frac{1}{k * k * k*2} |
3,162 | \sin\left(q\right) = \sin(2π + q) |
6,183 | 1/(H\cdot G) = 1/(H\cdot G) |
19,883 | \mathbb{E}[q_2 q_2] \mathbb{E}[q_1] = \mathbb{E}[q_1 q_2^2] |
46,168 | x + 1 = 2^0 + x |
10,543 | -(5 - z)*\left(z + 3*(-1)\right) - 4*(-z*2 + 8) + 17 = z^2 |
35,925 | 1/(\frac{1}{\rho}) = \rho |
-20,845 | \frac{4}{4} \cdot (-\frac{1}{(-1) + G}) = -\frac{4}{4 \cdot G + 4 \cdot (-1)} |
19,595 | \sin^4{x} + \cos^4{x} = (\sin^2{x} + \cos^2{x})^2 - 2*\sin^2{x}*\cos^2{x} = 1 - 2*\sin^2{x}*\cos^2{x} |
38,789 | \binom{3}{2} = \frac{1}{2! \cdot 1!}3! = 3 |
-7,297 | \dfrac{5}{17}*\dfrac{4}{16} = \frac{5}{68} |
-27,885 | \frac{\mathrm{d}}{\mathrm{d}z} (2\cdot \tan(z)) = 2\cdot \frac{\mathrm{d}}{\mathrm{d}z} \tan(z) = 2\cdot \sec^2(z) |
19,759 | m^{1/2} \cdot z_m = \dfrac{1}{\frac{1}{m^{1/2}}} \cdot z_m |
-3,067 | -\sqrt{6} + \sqrt{16}\cdot \sqrt{6} = 4\cdot \sqrt{6} - \sqrt{6} |
2,195 | \ln(2) = 1/2 + 1/6 + \dfrac{1}{30} + 1/56 + \ldots \leq 1 + 1/4 + \dfrac{1}{25} + \frac{1}{49} + \ldots |
-9,471 | 2 \cdot 2 \cdot 3 \cdot 3 + q \cdot 2 \cdot 3 \cdot 7 = 36 + 42 \cdot q |
11,387 | 4!/\left(2!\cdot 2!\right)\cdot 35/768 = 210/768 |
-4,078 | \tfrac{k^2}{36\cdot k}\cdot 28 = k \cdot k/k\cdot 28/36 |
21,137 | \frac14\cdot (f + h + g + x) = \dfrac{1}{2}\cdot (\frac{1}{2}\cdot (g + x) + (f + h)/2) |
24,624 | -\dfrac12*(8! - 7!) + \frac{9!}{2!*3!} = 12600 |
-20,186 | -4/7\cdot \frac{9}{9} = -36/63 |
-20,569 | \frac{1}{z \cdot 9}(-7z + 5(-1)) \frac{8}{8} = \frac{1}{72 z}(-z \cdot 56 + 40 (-1)) |
36,661 | 3^{10^k} = 9^{\frac{10^k}{2}} = (10 + (-1))^{\frac{10^k}{2}} |
-1,868 | -\frac{19}{12} \pi + 19/12 \pi = 0 |
17,849 | z^{\frac{1}{6} \cdot 2} = z^{1/3} |
-9,677 | \frac{4}{25} = \frac{1}{50}8 |
4,144 | -a\cdot (-f) = --a\cdot f = a\cdot f = a\cdot f |
9,516 | \sqrt{z + 4*\left(-1\right)} = i_1 \Rightarrow z = 4 + i_1^2 |
-20,459 | \frac{1}{2 \cdot k + 5 \cdot \left(-1\right)} \cdot (35 - 14 \cdot k) = \frac{1}{2 \cdot k + 5 \cdot (-1)} \cdot \left(2 \cdot k + 5 \cdot \left(-1\right)\right) \cdot (-\frac71) |
19,571 | (n-3)(n-2)=2\binom{n-2}{2} |
5,229 | e^{\frac{i}{4} \cdot \pi} \cdot 16 = z\Longrightarrow z^{1/4} = e^{\dfrac{i}{16} \cdot \pi} \cdot 2 |
24,543 | A \cdot B^2 \cdot A = A^2 \cdot B \cdot B |
14,353 | x\cdot y + x - x + y - y + 1 + (-1) + (-1) = 1 + x + (-1) + y + (-1) + x\cdot y - x - y |
9,052 | 2*\left(3*x + 1\right) = 2 + 6*x |
41,896 | \frac{1}{z^2 + z + 3} = \frac{1}{z^2 + z + 3} |
-7,647 | \frac{1}{-1}\times (-3\times i + 3) = -\frac{i\times 3}{-1} + \frac{3}{-1} |
-5,329 | 1.82*10 = \frac{10}{10^5}1.82 = \frac{1.82}{10000} |
17,511 | \dfrac{1}{2^n \cdot 2^n} = \dfrac{1}{4^n} |
-20,042 | \dfrac{36\cdot \left(-1\right) - z\cdot 12}{4\cdot (-1) + 24\cdot z} = \frac{9\cdot \left(-1\right) - z\cdot 3}{z\cdot 6 + (-1)}\cdot \frac44 |
-3,984 | \frac{p^4}{p}\cdot \dfrac{1}{81}\cdot 90 = 90\cdot p^4/(81\cdot p) |
13,434 | h\cdot d = -d\cdot \left(-h\right) |
-9,176 | 12 (-1) - 12 n = -n*2*2*3 - 2*2*3 |
13,769 | \psi r_1 + (x + r_3) r_2 + r_3 r_4 = r_3 r_2 + r_3 r_4 + r_1 \psi + r_2 x |
-20,556 | (24 - y \cdot 6)/54 = (-y + 4)/9 \cdot 6/6 |
30,451 | 2 \cdot (-1) + 2^7 = 126 |
-2,590 | \sqrt{3}*(5 + 1 + 3*(-1)) = \sqrt{3}*3 |
-22,712 | 60/90 = \frac{30 \cdot 2}{3 \cdot 30} |
13,829 | d^2/4 - (-d/2 + r)^2 = -r^2 + d\times r |
539 | -\frac{1}{8}\cdot (\cos(\pi) - \cos(0)) = -\frac{1}{8}\cdot \left(-1 + \left(-1\right)\right) = 1/4 |
11,573 | (1 + y) \cdot (1 + k \cdot y) = 1 + (k + 1) \cdot y + k \cdot y \cdot y \geq 1 + (k + 1) \cdot y |
-2,731 | 80^{1/2} - 20^{1/2} = (16\cdot 5)^{1/2} - (4\cdot 5)^{1/2} |
31,567 | 14.5 = \frac{1}{20}*(30 + 252 + 8) |
3,633 | \cos\left(\operatorname{asin}\left(x\right)\right) = \sqrt{1 - \sin^2(\operatorname{asin}(x))} = \sqrt{1 - x^2} |
7,801 | 1/A*1/x/C = \frac{1}{A x C} |
28,644 | n^2 + 2 \cdot n + 6 = (1 + n) \cdot (1 + n) + 5 |
14,237 | L = 2 \cdot L \Rightarrow L = 0 |
5,568 | 4 \cdot (-1) + k = k - 2 \cdot (3 + (-1)) |
32,099 | |u \times u - v^2 + 2 \times i \times u \times v| = \sqrt{(u \times u - v^2)^2 + \left(2 \times u \times v\right)^2} = u^2 + v \times v |
-20,286 | -30/21 = -10/7\cdot \frac33 |
-1,599 | -\frac{\pi}{4} + \pi/2 = \frac{\pi}{4} |
-2,880 | -5^{1 / 2} + (4\cdot 5)^{1 / 2} = 20^{1 / 2} - 5^{\frac{1}{2}} |
26,707 | 128 = (3 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 3) |
6,402 | 1 \leq 4\cdot y \lt 2\Longrightarrow y\cdot 4 + 1 = 4\cdot y |
-5,768 | \frac{x \cdot 2}{x^2 + x \cdot 14 + 45} = \frac{2 \cdot x}{\left(x + 5\right) \cdot (9 + x)} |
32,874 | 2 \cdot 2^2\cdot 3^{2\cdot 3} = 5832 |
7,302 | e^V = e^V |
22,679 | \dfrac{1}{6}\cdot 10 + 1/6\cdot 9 + 4/6\cdot 7 = \frac16\cdot 47 \lt 8 |
24,514 | (-x)^{1/2}*\left(-x\right)^{1/2} = (\left(-x\right)^{1/2})^2 = -x |
24,454 | 1 + 2\cdot \infty = \infty \Rightarrow \infty = -1 |
29,094 | 3\cdot y + 3\cdot \left(-1\right) + (y^2 + y + 2\cdot (-1))\cdot (y + (-1)) = y^3 + (-1) |
18,357 | 73 = (-\sqrt{2}\cdot 12 + 19) (19 + \sqrt{2}\cdot 12) |
18,933 | \sin(3\cdot z) = \sin(2\cdot z + z) = \sin\left(2\cdot z\right)\cdot \cos(z) + \cos(2\cdot z)\cdot \sin(z) |
-3,024 | 63^{1/2} + 28^{1/2} = (4*7)^{1/2} + (9*7)^{1/2} |
4,935 | e^{1/n} = e^{1/n} = 1 + 1/n + ... > 1 + \frac1n |
4,389 | a_1 + d\cdot 2 = 71\Longrightarrow a_1 = 71 - 2\cdot d = 71 - 2\cdot (-4) = 71 + 8 = 79 |
21,947 | \frac{1}{B \cdot k} \cdot (k \cdot k + B^2) = B/k + k/B |
3,340 | \left(C + D\cdot i\right)\cdot W = 0 rightarrow C\cdot W = 0,0 = W\cdot D |
28,165 | y \cdot t_1 \cdot t_2 = t_1 \cdot t_2 \cdot y |
-17,646 | 68 + 24 = 92 |
8,651 | \mathbb{E}\left[U_1^2\right] + \mathbb{E}\left[U_2\right] = \mathbb{E}\left[U_1 \cdot U_1 + U_2\right] |
54,564 | 1+\omega=\omega<\omega+1 |
15,663 | \sin(x)\sin(\frac{\pi}{2}-x)=\sin(x)\cos(x) |
22,993 | b^k \cdot g^k \cdot b^k \cdot g^k \cdot b^k \cdot g^k = g^k \cdot b^{2 \cdot k} \cdot b^k \cdot g^{2 \cdot k} |
-22,156 | \frac{1}{40}35 = \dfrac{1}{8}7 |
-8,016 | (12 + 6\cdot i)/3 = \frac13\cdot 6\cdot i + \frac13\cdot 12 |
18,590 | \sin(\frac{1}{2}*(\left(-3\right)*\pi)) = 1 |
18,088 | e^{\frac{i*x}{2}} - e^{((-1)*i*x)/2} = \cos(\frac{x}{2}) + i*\sin(\frac{x}{2}) - \cos(((-1)*x)/2) + i*\sin(\frac{(-1)*x}{2}) = 2*i*\sin\left(x/2\right) |
-2,315 | -\frac{1}{13} + \frac{1}{13} 4 = \frac{1}{13} 3 |
-20,769 | \tfrac{-y\cdot 30 + 50}{y\cdot 36 + 60\cdot (-1)} = -5/6\cdot \dfrac{y\cdot 6 + 10\cdot (-1)}{y\cdot 6 + 10\cdot (-1)} |
15,957 | x \cdot x + 1 = 3 - 2 - x^2 |
9,582 | \frac{\partial}{\partial x} (v\cdot u) = \frac{\partial}{\partial x} \left(v\cdot u\right) + u\cdot \frac{dv}{dx} |
19,883 | E(X_1) E(X_2 X_2) = E(X_1 X_2^2) |
21,208 | 0.0001 = 0.01*0.01 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.