id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-20,365 | \frac{1}{t\cdot 30 + 5}\cdot \left(5\cdot (-1) + 5\cdot t\right) = \frac{t + (-1)}{6\cdot t + 1}\cdot \frac55 |
13,705 | \frac{y^l}{2^l}*2^{l + (-1)} = y^l/2 |
11,086 | 1/16 = -\frac18 + 3/16 |
-20,027 | \frac44 \dfrac{s + 10}{(-1) + s} = \dfrac{1}{4s + 4(-1)}(4s + 40) |
4,875 | \sum_{x=1}^l F_x^2\cdot x^2 = \sum_{x=1}^l F_x \cdot F_x\cdot (1 + x)\cdot \left(x + (-1)\right) + \sum_{x=1}^l F_x^2 |
6,058 | Var\left(R\right) + \mathbb{E}\left(R\right)^2 = \mathbb{E}\left(R \cdot R\right) |
-4,693 | \frac{2*z + 2}{z * z + 2*z + 15*\left(-1\right)} = \frac{1}{z + 3*(-1)} + \frac{1}{z + 5} |
39,789 | \binom{5}{3} = \frac{5!}{3!(5-3)!} = 10 |
-22,431 | 64^{\frac23} = 64^{\frac{1}{3}} \cdot 64^{\frac{1}{3}} = 4^2 = 4\cdot 4 = 16 |
24,415 | \left(1 + n\right)! + (1 + n)!\cdot (n + 1) = (n + 1 + 1)\cdot (1 + n)! |
29,427 | S \cdot S - B_2^2 - (S - B_1)^2 = 0 = 2\cdot S\cdot B_1 - B_2^2 - B_1^2 |
5,382 | \frac{\sin{1/(s_n)}*r_n/(s_n)}{\frac{1}{s_n}} = \sin{1/\left(s_n\right)}*r_n |
13,466 | 1 = \frac{1}{5!}*(2!*3! + 4!*2! + 3*3!*2! + 2*2!*3!) |
-1,845 | \pi \frac135 + \frac74 \pi = \frac{1}{12}41 \pi |
-27,989 | \frac{d}{dx} \sec{x} = \tan{x} \cdot \sec{x} |
-26,495 | x\cdot 30 = 2\cdot x\cdot 5\cdot 3 |
23,420 | t = 1/3 + \frac23 \cdot (1/3 + \frac13 \cdot t) = 5/9 + \frac29 \cdot t |
16,074 | (X\cdot Z)^2 = X \cdot X\cdot Z^2 |
21,590 | x + d = (x + d)^2 = x^2 + x\cdot d + d\cdot x + d \cdot d = x + x\cdot d + d\cdot x + d |
28,195 | \dfrac{1}{Y + u*v^T} = \frac{1}{Y} - \frac{1/Y*\frac1Y*v^T*u}{\frac{u}{Y}*v^T + 1} |
12,311 | \sin(t + x) = \sin\left(t\right) \cos(x) + \cos(t) \sin(x) |
6,367 | \dfrac{1}{52} + 1/26 + 1/39 = 1/12 |
27,159 | \left(1 = 1/x + x \Leftrightarrow 1 + x^2 - x = 0\right) \implies x \cdot x^2 + 1 = (x + 1)\cdot (x^2 - x + 1) = 0 |
14,808 | \frac{y + \left(-1\right)}{y + 1} = 1 - \frac{2}{y + 1} |
20,087 | -24 \cdot 8! + 9! \cdot {4 \choose 2} \cdot 2 = 84 \cdot 8! |
34,253 | 3 \cdot (-1) + 3^4 + 13 \cdot \left(-1\right) = 65 |
11,396 | \frac{10}{2}*1 = 20/4 |
6,743 | \dfrac{1}{2\frac{1}{1 - x^2}(1 + x + 1 - x)} = \frac{1}{2 \cdot (1 - x^2)}2 = \dfrac{1}{1 - x^2} |
19,883 | \operatorname{E}[X_1] \operatorname{E}[X_2^2] = \operatorname{E}[X_1 X_2^2] |
7,580 | (-1) + x^m = ((-1) + x) \cdot (x^{(-1) + m} + x^{m + 2 \cdot (-1)} + \ldots + 1) |
-24,667 | -(i \cdot 4 + 3) - 13 + 16 \cdot i = i \cdot 12 - 16 |
25,647 | -(180 + 90) + 300 \implies 20 = 300 + 280\cdot (-1) |
-1,203 | \left((-9)*\frac{1}{7}\right)/(8*1/3) = -\frac17*9*3/8 |
19,895 | (1 - \cos{H})\cdot \left(\cos{H} + 1\right) = (1 - \cos{H})\cdot (1 + \cos{H}) = 1 - \cos^2{H} = \sin^2{H} |
-24,185 | 7 + 7 \cdot 7 = 7 + 7\cdot 7 = 7 + 49 = 56 |
29,282 | z^k = zz^{k + (-1)} |
14,930 | g^b = g^{2 \cdot \frac{b}{2}} = (g^2)^{\frac{b}{2}} |
-5,464 | \dfrac{m \cdot 3}{(m + 5) \cdot (5 \cdot (-1) + m)} = \frac{m \cdot 3}{m^2 + 25 \cdot (-1)} |
7,491 | y^0 = \frac{y^4}{y^4} \times 1 |
55,005 | 2^7= 128 |
-11,569 | -9i = -i*9 + 0 + 0(-1) |
6,368 | \dfrac{1}{A + \frac{1}{A}} = 1/(2*A) = \frac{2}{A} = 2*A |
40,912 | 3^7 = 3^3 \times 3^4 |
8,688 | S \cdot Q = S \cdot Q |
4,032 | 8 = \dfrac{1}{1 - \dfrac{a}{2}}\cdot a \implies a = 8 - 4\cdot a |
33,036 | -1.625=-\frac {13}8 |
13,880 | \dfrac{1}{1 - \frac{1}{e}} = \frac{e}{e + (-1)} |
35,284 | 36 = 2^2\times 3^2 = 6^2 |
-24,092 | \frac{48}{3 + 5} = \frac1848 = \frac{48}{8} = 6 |
8,069 | (b\cdot 2 + (-1))\cdot y_1\cdot y_2 = b\cdot y_1\cdot y_2 + (b + \left(-1\right))\cdot y_2\cdot y_1 |
5,605 | \left(e^1 - 1/e\right)/2 = \sinh\left(1\right) |
17,221 | \frac12 \cdot (1 - 1/100) = \frac{1}{200} \cdot 99 = 0.495 |
11,962 | 0 = \overline{\sum_{l=0}^x g_l\cdot y^l} = \sum_{l=0}^x g_l\cdot \overline{y}^l |
-13,184 | -\frac{0.01932}{-0.4} = 0.0483 |
5,738 | 2^{1/2} = \frac{4\cdot \cos(\pi/12)}{3 - \tan(\pi/12)}\cdot 1 |
14,084 | \sin{z} = \sin((2l + 1) \pi - z) = \sin(z + 2l\pi) |
44,469 | 459818240 = 2^8\times 5\times 7\times 19\times 37\times 73 |
-20,416 | \frac{z\cdot 5 + 2}{2 + 5\cdot z}\cdot \frac27 = \dfrac{10\cdot z + 4}{35\cdot z + 14} |
-10,486 | -\dfrac{1}{y^2 \cdot 60} \cdot (48 \cdot y + 72) = 12/12 \cdot (-\dfrac{y \cdot 4 + 6}{y \cdot y \cdot 5}) |
2,730 | \lambda dy = \lambda d y |
15,850 | \binom{2(-1) + r + (-1) + k}{2(-1) + k} = \binom{r + k + 3(-1)}{k + 2(-1)} |
12,337 | \frac{1}{a\cdot f} = \dfrac{1}{f\cdot a} \neq \frac{1}{a\cdot f} |
7,786 | 2^{55}-2=2\cdot3^4\cdot7\cdot19\cdot73\cdot87211\cdot262657 |
26,921 | 25 \times \left(-1\right) + 25 = 25 + 25 \times (-1) |
25,468 | 10118160 = \binom{48}{4}\cdot \binom{4}{3}\cdot 13 |
19,088 | 5\cdot 10^{k + 1} + 10^k + 3 = 10^k\cdot 10\cdot 5 + 10^{k + (-1)}\cdot 10 + 30 + 27\cdot (-1) |
-520 | \pi = -\pi*18 + 19 \pi |
3,202 | \frac1d \left(-f + b\right) = -\frac1d f + b/d |
-23,084 | -4/3 = 2 (-2/3) |
6,530 | c^k \cdot a = a \cdot c^k |
21,687 | A*9 = 9 rightarrow A = 1 |
22,894 | \int x^3 \cdot e^{-x}\,dx = -x^3 \cdot e^{-x} + \int 3 \cdot x^2 \cdot e^{-x}\,dx = -x^3 \cdot e^{-x} - 3 \cdot x^2 \cdot e^{-x} + 6 \cdot \int x \cdot e^{-x}\,dx |
10,732 | \dfrac{1}{28} \cdot 3 = -\frac{25}{28} + 1 |
39,064 | \left(12 + 5 + 10\right) \cdot 4 \cdot 0.25 \cdot 0.25 = 6.75 |
3,668 | x^2\cdot 4/5/8 = \frac{1}{10}x^2 |
15,505 | A = Z/2 \implies A \gt Z |
5,715 | 9 \cdot (9^x + (-1)) = 9^{x + 1} + 9(-1) |
-4,283 | \frac{r^5}{r} \cdot 54/45 = \frac{r^5 \cdot 54}{45 \cdot r} |
-3,062 | (1 + 2 + 4)\times 5^{1/2} = 7\times 5^{1/2} |
25,362 | ( a, h, e) = ( h, e, a) = \left( e, a, h\right) |
35,490 | -\sin(D) = \sin(-D) |
-510 | (e^{3*\pi*i/4})^3 = e^{3*3*i*\pi/4} |
-15,964 | -62/10 = \frac{10}{10} - 8\cdot \frac{9}{10} |
-5,890 | \frac{1}{3*(2*(-1) + r)}*3 = \frac{3}{6*(-1) + r*3} |
-7,661 | \dfrac{1}{26} \cdot (100 + 150 \cdot i - 20 \cdot i + 30) = \dfrac{1}{26} \cdot (130 + 130 \cdot i) = 5 + 5 \cdot i |
11,805 | \sin{y} = \frac{\tan{y/2}\cdot 2}{1 + \tan^2{\frac{y}{2}}} |
29,176 | \dfrac{1}{14} = 216/3024 |
34,521 | a^{n + m} = a^m*a^n |
14,734 | 3 \cdot (1 + m) + 1 = 3 \cdot m + 4 |
30,534 | i = 2^{2(x + 1)} + (-1) = 4\cdot 4^x + (-1) |
-5,487 | \frac{4}{(2 \left(-1\right) + z)*5} = \frac{4}{5 z + 10 (-1)} |
14,676 | 16 + 36 \cdot (-1) = 45 \cdot \left(-1\right) + 25 |
-20,109 | \frac37 \tfrac{1}{6\left(-1\right) + c}(c + 6(-1)) = \frac{c \cdot 3 + 18 (-1)}{42 \left(-1\right) + c \cdot 7} |
10,863 | \dfrac{1}{1 + y^2}\times 8 = d/dy \tan^{-1}(y)\times 8 |
-6,259 | \dfrac{f\cdot 4}{20 + f^2 - f\cdot 12} = \dfrac{4\cdot f}{(f + 10\cdot \left(-1\right))\cdot (2\cdot \left(-1\right) + f)} |
1,715 | 1 + 10^n = m^2 \Rightarrow 10^n = ((-1) + m)\times (1 + m) |
24,536 | 2*(2*\left((-1) + x*2\right)*(k*2 + \left(-1\right)) + 2*x + 2*k + 2*(-1)) = (4*x*k - k - x)*4 |
-23,611 | 5/9\cdot \frac56 = 25/54 |
-8,040 | \frac{1}{-1 + i}\cdot (2\cdot i + 4) = \dfrac{-1 - i}{-1 - i}\cdot \frac{4 + 2\cdot i}{-1 + i} |
-25,023 | \operatorname{atan}(-x\cdot 4) = -4\cdot x + x^3\cdot 64/3 - 1024/5\cdot x^5 + 16384/7\cdot x^7 - \dots |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.