id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,392 | (-b^2 + a^2) u = u\cdot (a - b) (a + b) |
6,129 | \dfrac{1}{2} - \dfrac{1}{4 \cdot 3} = \frac{1}{3 \cdot 4} + \frac13 |
-10,323 | \frac{1}{y*20}*(8*\left(-1\right) + 2*y) = 2/2*\tfrac{1}{10*y}*(4*(-1) + y) |
15,810 | \frac{36!}{(36 + 2*(-1))!} = 1260 |
10,698 | 1 + n\cdot 2 = 5 + x\Longrightarrow x = 2n + 1 + 5(-1) = 2n + 4(-1) |
-1,758 | \pi\times 13/12 = 23/12\times \pi - \frac{5}{6}\times \pi |
281 | n \geq k + 28 \implies k \leq n + 28*(-1) |
35,425 | 1/(2*2) + 1/(2*2) = 1/4 + \frac{1}{4} = 1/2 |
7,969 | \tfrac{1}{2} \cdot (f + d) = d + \left(-d + f\right)/2 |
-2,332 | 9/16 - \frac{1}{16} 4 = \frac{1}{16} 5 |
-1,808 | \pi/4 = \pi \frac{1}{12}19 - \frac{1}{3}4 \pi |
31,642 | \cos\left(E + Rx\right) R = \frac{\partial}{\partial x} \sin(E + Rx) |
-7,849 | (-6 - 18\cdot i + 3\cdot i + 9\cdot \left(-1\right))/5 = \dfrac15\cdot (-15 - 15\cdot i) = -3 - 3\cdot i |
30,468 | 1/x = \dfrac{1}{x} = \tfrac{x}{x^2} |
24,073 | 0.5/4 + 2 \cdot 0.5/16 = \dfrac{1}{16} \cdot 5 \lt 1 |
19,404 | \frac{\tan(G)}{1 + \tan^2(G)} \cdot 2 = \sin(G \cdot 2) |
-3,761 | \frac{k^4\cdot 35}{k^4\cdot 15} = 35/15\cdot \dfrac{1}{k^4}\cdot k^4 |
26,899 | \cos\left(2\cdot x\right) = 1 - \sin^2(x)\cdot 2\Longrightarrow \sqrt{(1 - \cos(x\cdot 2))/2} = \sin(x) |
38,079 | 12288 = 4096\times 3 |
-15,860 | 7 \cdot 5/10 - 8 \cdot \frac{1}{10} \cdot 5 = -5/10 |
31,975 | EB = BE |
8,505 | 25 = \left(y_2 + y + y_1\right)^2 = y_2^2 + y^2 + y_1^2 + 2*\left(y_2*y + y_2*y_1 + y*y_1\right) = y_2^2 + y * y + y_1^2 + 16 |
-26,509 | 10^2 + (9 \cdot x)^2 + x \cdot 9 \cdot 10 \cdot 2 = (10 + 9 \cdot x)^2 |
3,940 | \sum_{l=3}^n l * l = \sum_{l=1}^n l^2 - 1^2 + 2^2 = \sum_{l=1}^n l^2 + 5\left(-1\right) |
18,952 | -((2 \cdot x + 1)^6)^{\frac{1}{2}} = -|(2 \cdot x + 1)^3| = -|2 \cdot x + 1|^3 |
-19,007 | 5/6 = X_x/\left(4\pi\right)*4\pi = X_x |
-19,012 | 17/18 = \frac{A_s}{9\cdot \pi}\cdot 9\cdot \pi = A_s |
38,327 | X^TX = XX^T |
14,882 | {(-1) + 7 + 0(-1) \choose 3 + (-1)} {3 \choose 0} = 15 |
45,111 | \sqrt{-x}=\sqrt{-x} |
2,119 | \cos\left(\frac{\pi*2014}{12}\right) = \cos(-83*\pi*2 + \frac{1}{12}2014 \pi) |
-21,589 | \sin{3*π} = 0 |
40,489 | |\overline{y} + 2(-1)| = |\overline{y + 2(-1)}| = |y + 2(-1)| |
20,856 | A^T\times A\times A\times A^T\times A\times A^T = A\times A^T\times A\times A^T\times A\times A^T |
309 | 9\cdot x \cdot x + (-1) = (3\cdot x)^2 - 1^2 = (3\cdot x + (-1))\cdot (3\cdot x + 1) |
27,526 | \sin(f)*\cos\left(c\right) + \cos(f)*\sin\left(c\right) = \sin(c + f) |
-3,351 | 2^{1 / 2}*(1 + 4) = 2^{1 / 2}*5 |
21,365 | f^x = f^x \cdot \frac{x!}{x! \cdot 0!} |
-3,410 | (3 + (-1))*\sqrt{3} = \sqrt{3}*2 |
6,551 | 734 = 34 + 500 + 334 + 200 + 167\cdot \left(-1\right) + 100\cdot (-1) + 67\cdot \left(-1\right) |
12,290 | 149 \cdot 103 = 15347 |
-26,151 | 9\cdot 1^{\frac13\cdot 4} - 9\cdot \left(-1\right)^{\frac13\cdot 4} = 9 + 9\cdot (-1) = 0 |
-9,426 | f*2*2*2*3*f = f^2*24 |
20,939 | \left(5\cdot x + 1\right)\cdot (2\cdot (-1) + t) = (2\cdot (-1) + x)\cdot (5\cdot t + 1) \Rightarrow 2\cdot (-1) + t\cdot x\cdot 5 - 10\cdot x + t = 2\cdot (-1) + t\cdot x\cdot 5 - 10\cdot t + x |
-22,042 | \frac{1}{10}*16 = \frac85 |
-1,340 | \dfrac{5}{4} \cdot (-\frac18 \cdot 9) = \frac{5}{1/9 \cdot \left(-8\right)} \cdot 1/4 |
20,505 | \left(693 + 5\cdot (-1)\right)/2 = 344 |
48,718 | 4^2 = 3^2 + 4 + 3 = 9 + 4 + 3 = 16 |
24,544 | -2 + 2\times (-1) + 2\times (-1) = (-3)\times 2 |
20,983 | -32 + 32\times i = (i + (-1))\times 2^5 |
7,490 | 5^2*2*7 * 7 = 2450 |
8,770 | a^2 + b^2 \geq a^2 = a^{\alpha} \times a^{2 - \alpha} \geq a^{\alpha} \times b^{2 - \alpha} |
-22,937 | \frac{9 \cdot 9}{5 \cdot 9} = \frac{81}{45} |
18,362 | -(-d + 3) = 3 \cdot (-1) + d |
36,661 | 3^{10^x} = 9^{10^x/2} = \left(10 + (-1)\right)^{10^x/2} |
-13,244 | \frac{6}{4 + 2 (-1)} = 6/2 = 6/2 = 3 |
37,649 | G_1 + Y_1 = G_1 + Y_1 |
16,012 | \sqrt{\frac{2}{1 + 5/13}} = \sqrt{13}/3 |
20,699 | 11 \cdot e = e + e \cdot 10 |
-6,723 | 20/100 + \frac{5}{100} = 2/10 + \dfrac{5}{100} |
2,769 | x \cdot \nu + \nu \cdot \beta = \nu \cdot (\beta + x) |
12,651 | \mathbb{E}(B + T) = \mathbb{E}(T) + \mathbb{E}(B) |
-3,923 | \dfrac{1}{q^3\cdot 96}\cdot q^3\cdot 80 = \frac{q^3}{q^3}\cdot \tfrac{80}{96} |
-16,377 | \sqrt{44}*10 = \sqrt{4*11}*10 |
23,266 | 4^{m + 1} + 15 \times (m + 1) + \left(-1\right) = 4 \times 4^m + 15 \times m + 15 + (-1) = 4^m + 15 \times m + \left(-1\right) + 3 \times (4^m + 5) |
28,184 | 3/1024 = (1/4)^4*3/4 |
-23,242 | 5/18 = \frac58\cdot \frac{4}{9} |
28,440 | \dfrac{(-1) + l}{4\cdot l^2} + \dfrac{1}{l^2\cdot 4} + \frac{(-1) + l}{l \cdot l\cdot 4} = \tfrac{1}{4\cdot l^2}\cdot ((-1) + 2\cdot l) |
26,043 | 2*B*C = B*C + B*C |
-1,127 | \tfrac{1/2\times (-7)}{\frac18\times (-9)} = -\frac89\times \left(-\frac{1}{2}\times 7\right) |
-642 | (e^{\pi i/3})^8 = e^{\pi i/3 \cdot 8} |
-7,174 | 2/7*4/7 = \frac{8}{49} |
29,975 | \frac{10!}{3!\cdot 3!\cdot 4!} = 4200 |
26,596 | z^2 - 3*z + 2 = (z + \left(-1\right))*\left(z + 2*(-1)\right) |
8,223 | \cos^{\sin\left(y\right)}(y) = (\cos^2\left(y\right))^{\frac{\sin(y)}{2}} = (1 - \sin^2(y))^{\sin(y/2)} |
-11,740 | 81/16 = (\frac94) (\frac94) |
23,701 | (1 + d)^2 - d^2 = d*2 + 1 |
13,803 | \frac13\cdot \left(-1/3 + 1\right) = \frac19\cdot 2 |
808 | \cos{y} = (e^{iy} + e^{-iy})/2 = \overline{\cos{y}} = \dfrac{1}{2}\left(e^{-iy} + e^{iy}\right) |
39,323 | 0 = 3 + 1 + 4(-1) |
-24,655 | \dfrac{4 \cdot 5}{4 \cdot 6} = \dfrac{20}{24} |
32,587 | 675 = 3^3 \times 5^2 |
42,458 | \dfrac{1}{19} \cdot 36 = 1 + \frac{17}{19} = 1 + \frac{1}{19 \cdot \frac{1}{17}} = 1 + \frac{1}{1 + 2/17} = 1 + \frac{1}{1 + \dfrac{1}{17 \cdot 1/2}} = 1 + \tfrac{1}{1 + \frac{1}{8 + \frac12}} |
21,961 | \Z_{28} = \left\{5, 1, \ldots, 4, 0, 27, 3, 2\right\} |
2,595 | 2*(-1) + n = (n + 3*(-1)) + 1 |
-18,273 | \frac{1}{(9 + z) (z + 5)} (9 + z) z = \frac{9 z + z^2}{45 + z^2 + z \cdot 14} |
48,454 | 1 = 632\times 2452 - 313\times 4951 |
34,033 | I*I*f = f = I*I*f |
5,018 | \frac{(3 \cdot (-1) + n) \cdot (n + 4 \cdot (-1))}{((-1) + n) \cdot (n + 2 \cdot (-1))} = \frac{1}{\binom{n + (-1)}{2}} \cdot \binom{n + 3 \cdot (-1)}{2} |
-15,892 | (5\cdot\dfrac{3}{10}) + (-10\cdot\dfrac{7}{10}) = -\dfrac{55}{10} = - |
14,964 | \frac{1}{100}\cdot y\cdot z = y\cdot \frac{z}{100} |
18,103 | 7/2 \cdot 2 = 7 |
10,628 | -(y^2 + (-1)) + y^2 + y = y + 1 |
-12,332 | \sqrt{24} = 2\sqrt{6} |
-10,788 | -\dfrac{30}{z^2 z\cdot 80} = \dfrac15 5 (-\frac{6}{z^3\cdot 16}) |
-1,719 | -\pi\cdot 7/6 + 0 = -\pi\cdot 7/6 |
6,302 | 0 = x \cdot 3 + (-1) \Rightarrow \frac13 = x |
10,154 | v' + D = v + 1 \implies v' = v - D + 1 |
17,109 | \sin{B} \cos{B}\cdot 2 = \sin{2B} |
-20,336 | \frac{2}{-x\cdot 7 + 5\cdot (-1)}\cdot 2/2 = \dfrac{4}{10\cdot (-1) - x\cdot 14} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.