id
int64
-30,985
55.9k
text
stringlengths
5
437k
11,993
2*h_1*h_2 + h_1^2 + h_2 * h_2 = (h_1 + h_2)^2
-10,705
\tfrac{3}{16 + 16\cdot a}\cdot \frac33 = \tfrac{9}{48\cdot a + 48}
-6,925
6 \cdot 8 \cdot 3 = 144
-4,409
\tfrac{1}{x + 4 \cdot (-1)} \cdot 3 + \dfrac{4}{x + 3 \cdot (-1)} = \dfrac{25 \cdot (-1) + 7 \cdot x}{12 + x^2 - 7 \cdot x}
-11,579
12 + 4*i = 4*i + 0 + 12
25,358
\frac{1}{200 \cdot 100} = 1/20000
49,981
\left(\left(\frac{1}{2} = \tan(a) \Rightarrow \cos(a) = 2\sin(a)\right) \Rightarrow \cos^2(a) = 4\sin^2(a) = 4*(1 - \cos^2\left(a\right))\right) \Rightarrow 4 = 5\cos^2\left(a\right)
-20,674
\frac{z + 6*\left(-1\right)}{6*(-1) + z}*\frac{1}{10}*9 = \tfrac{1}{60*(-1) + z*10}*(54*(-1) + 9*z)
34,108
s \cdot x = x = x \cdot s
39,625
2^5\cdot 5 = 160
16,895
y^{1/k + (-1)} = y^{(1 - k)/k} = (y^{1 - k})^{1/k}
937
\pi \cdot x \cdot \nu = \nu \cdot x \cdot \pi
17,655
(\left(-1\right) + 2^4) \cdot 3 = 45
-11,831
1.952 \times 10^{-2} = 1.952 \times 0.01
-13,908
2 + 9*8 = 2 + 72 = 2 + 72 = 74
-6,213
\frac{3}{10*(-1) + z*5} = \tfrac{3}{5*(2*(-1) + z)}
-6,254
\frac{24}{6\cdot \left(z + 6\cdot (-1)\right)\cdot (3 + z)} = \dfrac66\cdot \dfrac{4}{(z + 3)\cdot (z + 6\cdot \left(-1\right))}
22,426
x \cdot 2 = 1 + 2 \cdot (-1/2 + x)
10,426
Q^2\cdot 4 = (1 + Q^2)\cdot 4 + 4\cdot (-1)
2,162
\frac{1}{4}\cdot (-6\cdot x + 600) = -\frac12\cdot 3\cdot x + 150
-20,008
\dfrac{2 - f\cdot 4}{2 - f\cdot 4} = \left(2 - 4\cdot f\right)\cdot \frac{1}{-4\cdot f + 2}/1
30,809
12/16\cdot \frac{11}{15} = \dfrac{1}{240}\cdot 132 = \frac{1}{20}\cdot 11
-20,830
\frac{8}{5*(-1) + x}*7/7 = \dfrac{1}{7*x + 35*\left(-1\right)}*56
-3,147
4\cdot 13^{1/2} = 13^{1/2}\cdot \left(1 + 3\right)
11,924
\binom{-1/2}{1} = -\frac{1}{2}
25,270
x^2 \cdot D = D \cdot x^2
-4,521
-\frac{5}{x + 1} - \dfrac{4}{x + 4} = \frac{-9 \cdot x + 24 \cdot (-1)}{x^2 + 5 \cdot x + 4}
18,080
b^{1 + n} = b\cdot b^n
-12,042
\tfrac{1}{40} \cdot 17 = \frac{1}{10 \cdot π} \cdot s \cdot 10 \cdot π = s
22,507
\left|{I - H \cdot A}\right| = \left|{-H \cdot A + I}\right|
15,712
\left(1 + 2 \cdot n\right) \cdot 2 = n \cdot 4 + 2
14,262
41 = 2^6 + 23*(-1)
15,141
n^4 \cdot 16 = -(-1)^4 + 1 + (n \cdot 2)^4
-11,056
14 = \dfrac{1}{12}\cdot 168
-28,810
\frac12 \times (0 + 100) = \frac{100}{2} = 50
-1,602
3/4 \pi = -\pi \frac{13}{12} + \pi \cdot 11/6
25,343
3 \cdot 3 - \dfrac82 = ((-1) \cdot 8)/2 + 9
28,437
1/\left(gd\right) = 1/\left(dg\right)
15,646
\frac{x + 2\times (-1)}{4\times \left(-1\right) + x^2} = \frac{1}{x + 2}
-23,646
4/25 = \frac{4}{5} \cdot 1/5
-27,213
\sum_{l=1}^\infty \frac{(5 + 3 \cdot (-1))^l}{l \cdot 2^l} = \sum_{l=1}^\infty 1 \cdot \dfrac{2^l}{l \cdot 2^l} = \sum_{l=1}^\infty \tfrac{1}{l}
13,348
(b + 2*c + d + 2*c)^2 + (d + b)^2 = (c*4 + d + b)^2 + (d + b)^2
40,224
6 = 7 -1
17,238
(b*i + a)^{-1} = (i*b + a)^{-1}
9,619
\sin(x + y) = \sin(x) \cdot \cos(y) + \sin(y) \cdot \cos(x) = \sin(x) + \sin(y)
32,470
\dfrac14 + s*3/4 = (1 - s)/4 + s
36,685
e^{y + z} = e^z\cdot e^y
21,470
\dfrac{1}{49} = \frac{1}{100 + 2 \cdot (-1)} \cdot 2
34,135
2 x = \left(1 + 1\right) x = x + x = x + x
-467
\left(e^{\frac{5}{12} i \pi}\right)^{17} = e^{17 \frac{5}{12} \pi i}
3,779
-x \cdot x + x + 2 = (x + 1) (-x + 2)
30,442
\frac{\text{d}w}{\text{d}x}\times \frac{\partial}{\partial w} w^m = \frac{\partial}{\partial x} w^m
-1,211
-8/9 \cdot (-2/9) = \dfrac{1}{(-1) \cdot 9 \cdot 1/8} \cdot (\dfrac{1}{9} \cdot (-2))
-20,340
\frac{7}{7} \cdot \frac{z \cdot (-5)}{5 \cdot (-1) + z} = \frac{(-35) \cdot z}{35 \cdot (-1) + 7 \cdot z}
25,940
-T^{x + 1} + I = (-T + I) (I + T + T^2 + \ldots + T^x)
31,019
\frac{1}{(-1) + y} = \dfrac{1}{(-1) + y}
5,965
\sum_{k=1}^\infty hk \cdot (-1 + 2(-1))^k = \sum_{k=1}^\infty h \cdot (-3)^k k
23,026
x^3 + x + 2 = (x + 1) (x^2 + 2x + 2) = (x + 1) \left((x + 1)^2 + 1\right)
-10,094
\tfrac{-\tfrac{1}{20}*19*1/2}{2} = (-19)/\left(20*2*2\right) = -19/80
1,712
l - h + l - v + 2\cdot \left(-1\right) = l\cdot 2 + 2\cdot (-1) - h - v
-6,565
\frac{5}{(y + 9*\left(-1\right))*2} = \dfrac{5}{18*(-1) + 2*y}
26,729
p \cdot p = (p + 1)\cdot (p + (-1)) + 1
36,642
8^2 = (-1) + 5*13
29,326
\dfrac1z = \frac{1}{(1 + (z + 4 \cdot (-1))/4) \cdot 4}
28,700
\frac{1}{13} \cdot 6 = \dfrac{1}{26} \cdot 12
-18,319
\frac{1}{x*(7\left(-1\right) + x)}(7(-1) + x) (x + 6(-1)) = \frac{1}{x^2 - x*7}(x^2 - x*13 + 42)
39,520
32 = 49 \left(-1\right) + 81
3,346
1 + x^4 - 2x^2 = (x^2 + (-1))^2
29,641
1 + \lambda^2 + \lambda = 0 \implies \lambda = \dfrac12\left(-1 \pm \sqrt{3} i\right)
2,368
2 \cdot (-\frac{1}{2} + y) = (-1) + 2 \cdot y
37,059
(n\cdot 2 + \left(-1\right))\cdot |\frac1n\cdot 6| = 10.5\Longrightarrow n = 4
4,565
\frac{1}{EA} = \frac{1}{AE}
38,090
9800 \cdot \dfrac{1}{3}28 = \frac{274400}{3}
14,994
RM^3 R^X M^3 = R^X M^3 RM^2 \cdot M
7,999
g \cdot g^{x + 2 \cdot (-1)} = g^{x + (-1)}
36,990
84 = 21/2\cdot 8
25,998
((-1) + z)^4 + z^2 \cdot 3 - 6 \cdot z + 5 = ((-1) + z)^4 + 3 \cdot (\left(-1\right) + z) \cdot (\left(-1\right) + z) + 2
48,531
2 \cdot 2 \cdot 2 + 3^3 = 8 + 27 = 35
-4,954
\frac{1}{10}\cdot 2.7 = 2.7/10
32,341
4544 = 4845 + 210\cdot \left(-1\right) + 126\cdot \left(-1\right) + 35
26,730
5 \cdot 4 = \tfrac{5!}{3!}
-1,379
-7/9*7/2 = 7*1/2/((-9)*1/7)
6,709
e^{-a y} = (e^{-y})^a \approx (1 - y)^a
24,364
(1+x)^{m_1}(1+x)^{m_2} = (1+x)^{m_1+m_2}
13,501
\tfrac16*5*\pi*34 = \pi*85/3
2
10 + a^3 + a = (5 + a \cdot a - 2\cdot a)\cdot (a + 2)
-5,614
\frac{1}{5 \cdot (a + 6)} \cdot 5 = \dfrac{5}{5 \cdot a + 30}
-1,180
-5/6 \cdot \frac{1}{2} \cdot 9 = \frac{1}{\frac19 \cdot 2} \cdot ((-5) \cdot \dfrac{1}{6})
4,007
36 = 3^2 \cdot \left(1 + 1\right) \cdot (1 + 1) = 3^2 \cdot \left((1 + 1)^2 + (1 + (-1))^2\right)
-3,129
(4 + 5)*3^{1 / 2} = 3^{\frac{1}{2}}*9
23,610
7 \cdot y_1 = -7 \cdot y_2 \Rightarrow -y_2 = y_1
2,595
n + 2 (-1) = (3 (-1) + n) + 1
34,556
0 = \theta^4 - 5*\theta^3 + 20*\theta + 16*(-1) = (\theta + (-1))*\left(\theta^3 - 4*\theta * \theta - 4*\theta + 16\right) = (\theta + (-1))*\left(\theta^2 + 4*(-1)\right)*(\theta + 4*(-1))
17,878
\sinh^2{y} = (\frac12*\left(e^y - e^{-y}\right))^2 = \dfrac{1}{4}*(e^{2*y} + e^{-2*y} + 2*(-1))
7,853
\frac{1}{1} \cdot \tan{g} = \tan{g}
30,628
\dfrac{1}{d_1 \cdot d_2} = \frac{1}{d_1 \cdot d_2}
6,423
e^{-\mathbb{P}(t)} = e^{7\cos\left(t\right)} = e^{7\cos(t)}
31,661
108^{\frac{1}{2}} + 10 = 10 + 6 \cdot 3^{\dfrac{1}{2}}
-20,738
\tfrac{-a*8 + 5 (-1)}{a*56 + 35} = -1/7 \dfrac{1}{5 + a*8} (5 + 8 a)
12,993
2\cdot p = s \Rightarrow p = \frac{s}{2}