id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
11,993 | 2*h_1*h_2 + h_1^2 + h_2 * h_2 = (h_1 + h_2)^2 |
-10,705 | \tfrac{3}{16 + 16\cdot a}\cdot \frac33 = \tfrac{9}{48\cdot a + 48} |
-6,925 | 6 \cdot 8 \cdot 3 = 144 |
-4,409 | \tfrac{1}{x + 4 \cdot (-1)} \cdot 3 + \dfrac{4}{x + 3 \cdot (-1)} = \dfrac{25 \cdot (-1) + 7 \cdot x}{12 + x^2 - 7 \cdot x} |
-11,579 | 12 + 4*i = 4*i + 0 + 12 |
25,358 | \frac{1}{200 \cdot 100} = 1/20000 |
49,981 | \left(\left(\frac{1}{2} = \tan(a) \Rightarrow \cos(a) = 2\sin(a)\right) \Rightarrow \cos^2(a) = 4\sin^2(a) = 4*(1 - \cos^2\left(a\right))\right) \Rightarrow 4 = 5\cos^2\left(a\right) |
-20,674 | \frac{z + 6*\left(-1\right)}{6*(-1) + z}*\frac{1}{10}*9 = \tfrac{1}{60*(-1) + z*10}*(54*(-1) + 9*z) |
34,108 | s \cdot x = x = x \cdot s |
39,625 | 2^5\cdot 5 = 160 |
16,895 | y^{1/k + (-1)} = y^{(1 - k)/k} = (y^{1 - k})^{1/k} |
937 | \pi \cdot x \cdot \nu = \nu \cdot x \cdot \pi |
17,655 | (\left(-1\right) + 2^4) \cdot 3 = 45 |
-11,831 | 1.952 \times 10^{-2} = 1.952 \times 0.01 |
-13,908 | 2 + 9*8 = 2 + 72 = 2 + 72 = 74 |
-6,213 | \frac{3}{10*(-1) + z*5} = \tfrac{3}{5*(2*(-1) + z)} |
-6,254 | \frac{24}{6\cdot \left(z + 6\cdot (-1)\right)\cdot (3 + z)} = \dfrac66\cdot \dfrac{4}{(z + 3)\cdot (z + 6\cdot \left(-1\right))} |
22,426 | x \cdot 2 = 1 + 2 \cdot (-1/2 + x) |
10,426 | Q^2\cdot 4 = (1 + Q^2)\cdot 4 + 4\cdot (-1) |
2,162 | \frac{1}{4}\cdot (-6\cdot x + 600) = -\frac12\cdot 3\cdot x + 150 |
-20,008 | \dfrac{2 - f\cdot 4}{2 - f\cdot 4} = \left(2 - 4\cdot f\right)\cdot \frac{1}{-4\cdot f + 2}/1 |
30,809 | 12/16\cdot \frac{11}{15} = \dfrac{1}{240}\cdot 132 = \frac{1}{20}\cdot 11 |
-20,830 | \frac{8}{5*(-1) + x}*7/7 = \dfrac{1}{7*x + 35*\left(-1\right)}*56 |
-3,147 | 4\cdot 13^{1/2} = 13^{1/2}\cdot \left(1 + 3\right) |
11,924 | \binom{-1/2}{1} = -\frac{1}{2} |
25,270 | x^2 \cdot D = D \cdot x^2 |
-4,521 | -\frac{5}{x + 1} - \dfrac{4}{x + 4} = \frac{-9 \cdot x + 24 \cdot (-1)}{x^2 + 5 \cdot x + 4} |
18,080 | b^{1 + n} = b\cdot b^n |
-12,042 | \tfrac{1}{40} \cdot 17 = \frac{1}{10 \cdot π} \cdot s \cdot 10 \cdot π = s |
22,507 | \left|{I - H \cdot A}\right| = \left|{-H \cdot A + I}\right| |
15,712 | \left(1 + 2 \cdot n\right) \cdot 2 = n \cdot 4 + 2 |
14,262 | 41 = 2^6 + 23*(-1) |
15,141 | n^4 \cdot 16 = -(-1)^4 + 1 + (n \cdot 2)^4 |
-11,056 | 14 = \dfrac{1}{12}\cdot 168 |
-28,810 | \frac12 \times (0 + 100) = \frac{100}{2} = 50 |
-1,602 | 3/4 \pi = -\pi \frac{13}{12} + \pi \cdot 11/6 |
25,343 | 3 \cdot 3 - \dfrac82 = ((-1) \cdot 8)/2 + 9 |
28,437 | 1/\left(gd\right) = 1/\left(dg\right) |
15,646 | \frac{x + 2\times (-1)}{4\times \left(-1\right) + x^2} = \frac{1}{x + 2} |
-23,646 | 4/25 = \frac{4}{5} \cdot 1/5 |
-27,213 | \sum_{l=1}^\infty \frac{(5 + 3 \cdot (-1))^l}{l \cdot 2^l} = \sum_{l=1}^\infty 1 \cdot \dfrac{2^l}{l \cdot 2^l} = \sum_{l=1}^\infty \tfrac{1}{l} |
13,348 | (b + 2*c + d + 2*c)^2 + (d + b)^2 = (c*4 + d + b)^2 + (d + b)^2 |
40,224 | 6 = 7 -1 |
17,238 | (b*i + a)^{-1} = (i*b + a)^{-1} |
9,619 | \sin(x + y) = \sin(x) \cdot \cos(y) + \sin(y) \cdot \cos(x) = \sin(x) + \sin(y) |
32,470 | \dfrac14 + s*3/4 = (1 - s)/4 + s |
36,685 | e^{y + z} = e^z\cdot e^y |
21,470 | \dfrac{1}{49} = \frac{1}{100 + 2 \cdot (-1)} \cdot 2 |
34,135 | 2 x = \left(1 + 1\right) x = x + x = x + x |
-467 | \left(e^{\frac{5}{12} i \pi}\right)^{17} = e^{17 \frac{5}{12} \pi i} |
3,779 | -x \cdot x + x + 2 = (x + 1) (-x + 2) |
30,442 | \frac{\text{d}w}{\text{d}x}\times \frac{\partial}{\partial w} w^m = \frac{\partial}{\partial x} w^m |
-1,211 | -8/9 \cdot (-2/9) = \dfrac{1}{(-1) \cdot 9 \cdot 1/8} \cdot (\dfrac{1}{9} \cdot (-2)) |
-20,340 | \frac{7}{7} \cdot \frac{z \cdot (-5)}{5 \cdot (-1) + z} = \frac{(-35) \cdot z}{35 \cdot (-1) + 7 \cdot z} |
25,940 | -T^{x + 1} + I = (-T + I) (I + T + T^2 + \ldots + T^x) |
31,019 | \frac{1}{(-1) + y} = \dfrac{1}{(-1) + y} |
5,965 | \sum_{k=1}^\infty hk \cdot (-1 + 2(-1))^k = \sum_{k=1}^\infty h \cdot (-3)^k k |
23,026 | x^3 + x + 2 = (x + 1) (x^2 + 2x + 2) = (x + 1) \left((x + 1)^2 + 1\right) |
-10,094 | \tfrac{-\tfrac{1}{20}*19*1/2}{2} = (-19)/\left(20*2*2\right) = -19/80 |
1,712 | l - h + l - v + 2\cdot \left(-1\right) = l\cdot 2 + 2\cdot (-1) - h - v |
-6,565 | \frac{5}{(y + 9*\left(-1\right))*2} = \dfrac{5}{18*(-1) + 2*y} |
26,729 | p \cdot p = (p + 1)\cdot (p + (-1)) + 1 |
36,642 | 8^2 = (-1) + 5*13 |
29,326 | \dfrac1z = \frac{1}{(1 + (z + 4 \cdot (-1))/4) \cdot 4} |
28,700 | \frac{1}{13} \cdot 6 = \dfrac{1}{26} \cdot 12 |
-18,319 | \frac{1}{x*(7\left(-1\right) + x)}(7(-1) + x) (x + 6(-1)) = \frac{1}{x^2 - x*7}(x^2 - x*13 + 42) |
39,520 | 32 = 49 \left(-1\right) + 81 |
3,346 | 1 + x^4 - 2x^2 = (x^2 + (-1))^2 |
29,641 | 1 + \lambda^2 + \lambda = 0 \implies \lambda = \dfrac12\left(-1 \pm \sqrt{3} i\right) |
2,368 | 2 \cdot (-\frac{1}{2} + y) = (-1) + 2 \cdot y |
37,059 | (n\cdot 2 + \left(-1\right))\cdot |\frac1n\cdot 6| = 10.5\Longrightarrow n = 4 |
4,565 | \frac{1}{EA} = \frac{1}{AE} |
38,090 | 9800 \cdot \dfrac{1}{3}28 = \frac{274400}{3} |
14,994 | RM^3 R^X M^3 = R^X M^3 RM^2 \cdot M |
7,999 | g \cdot g^{x + 2 \cdot (-1)} = g^{x + (-1)} |
36,990 | 84 = 21/2\cdot 8 |
25,998 | ((-1) + z)^4 + z^2 \cdot 3 - 6 \cdot z + 5 = ((-1) + z)^4 + 3 \cdot (\left(-1\right) + z) \cdot (\left(-1\right) + z) + 2 |
48,531 | 2 \cdot 2 \cdot 2 + 3^3 = 8 + 27 = 35 |
-4,954 | \frac{1}{10}\cdot 2.7 = 2.7/10 |
32,341 | 4544 = 4845 + 210\cdot \left(-1\right) + 126\cdot \left(-1\right) + 35 |
26,730 | 5 \cdot 4 = \tfrac{5!}{3!} |
-1,379 | -7/9*7/2 = 7*1/2/((-9)*1/7) |
6,709 | e^{-a y} = (e^{-y})^a \approx (1 - y)^a |
24,364 | (1+x)^{m_1}(1+x)^{m_2} = (1+x)^{m_1+m_2} |
13,501 | \tfrac16*5*\pi*34 = \pi*85/3 |
2 | 10 + a^3 + a = (5 + a \cdot a - 2\cdot a)\cdot (a + 2) |
-5,614 | \frac{1}{5 \cdot (a + 6)} \cdot 5 = \dfrac{5}{5 \cdot a + 30} |
-1,180 | -5/6 \cdot \frac{1}{2} \cdot 9 = \frac{1}{\frac19 \cdot 2} \cdot ((-5) \cdot \dfrac{1}{6}) |
4,007 | 36 = 3^2 \cdot \left(1 + 1\right) \cdot (1 + 1) = 3^2 \cdot \left((1 + 1)^2 + (1 + (-1))^2\right) |
-3,129 | (4 + 5)*3^{1 / 2} = 3^{\frac{1}{2}}*9 |
23,610 | 7 \cdot y_1 = -7 \cdot y_2 \Rightarrow -y_2 = y_1 |
2,595 | n + 2 (-1) = (3 (-1) + n) + 1 |
34,556 | 0 = \theta^4 - 5*\theta^3 + 20*\theta + 16*(-1) = (\theta + (-1))*\left(\theta^3 - 4*\theta * \theta - 4*\theta + 16\right) = (\theta + (-1))*\left(\theta^2 + 4*(-1)\right)*(\theta + 4*(-1)) |
17,878 | \sinh^2{y} = (\frac12*\left(e^y - e^{-y}\right))^2 = \dfrac{1}{4}*(e^{2*y} + e^{-2*y} + 2*(-1)) |
7,853 | \frac{1}{1} \cdot \tan{g} = \tan{g} |
30,628 | \dfrac{1}{d_1 \cdot d_2} = \frac{1}{d_1 \cdot d_2} |
6,423 | e^{-\mathbb{P}(t)} = e^{7\cos\left(t\right)} = e^{7\cos(t)} |
31,661 | 108^{\frac{1}{2}} + 10 = 10 + 6 \cdot 3^{\dfrac{1}{2}} |
-20,738 | \tfrac{-a*8 + 5 (-1)}{a*56 + 35} = -1/7 \dfrac{1}{5 + a*8} (5 + 8 a) |
12,993 | 2\cdot p = s \Rightarrow p = \frac{s}{2} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.