id
int64
-30,985
55.9k
text
stringlengths
5
437k
15,598
2*\sin(\frac12*x)*\cos(\dfrac{1}{2}*x) = \sin(x)
24,826
\frac{1}{1+\frac{a}{x}} = \frac{x}{a+x}=\frac{-a + a +x}{a+x} = 1 - \frac{a}{a+x}
26,072
x\cdot x! = \left(x + 1 + (-1)\right)\cdot x! = (x + 1)! - x!
12,267
1 \geq \frac1l \Rightarrow 2 \geq 1 + 1/l
26,820
\left((-6) + 9 \cdot B = 3 \implies 9 \cdot B = 3 + 6\right) \implies B = 1
24,547
n \cdot 5 + 1 + n \cdot 7 + 1 = 2 + n \cdot 12
-22,291
\left(x + 2\times \left(-1\right)\right)\times \left(x + 9\times (-1)\right) = x^2 - x\times 11 + 18
8,215
-2\cdot x \cdot x + 8\cdot z = 0 rightarrow z\cdot 4 = x^2
22,013
2 = 1\cdot 2 = \left(4 + 2\right)\cdot (4 + 2\cdot (-1)) = 4^2 - 2^2
-16,381
(25\times 13)^{1 / 2}\times 2 = 2\times 325^{1 / 2}
13,600
\frac{1}{3} + \frac{2}{9} = 3/9 + \dfrac{2}{9} = 5/9
368
\tfrac{1}{2 \cdot 2} + \frac{1}{3 \cdot 2} = 5/12
6,579
100*17 * 17 + 17*20 = 73*100*2^2 + 2*20
21,466
1/(bg) = \dfrac{1}{bg}
5,812
1^i = e^{2x\pi i i} = e^{-2x\pi}
-4,458
\frac{1}{z^2 + 3 \cdot z + 10 \cdot (-1)} \cdot (z \cdot 3 + 20 \cdot (-1)) = -\frac{1}{z + 2 \cdot (-1)} \cdot 2 + \dfrac{5}{z + 5}
36,931
\frac{\partial}{\partial x} (c_2 \cdot c \cdot c_1) = c \cdot c_2 \cdot \frac{\partial}{\partial x} c_1 + c \cdot c_1 \cdot \frac{\partial}{\partial x} c_2 + c_2 \cdot c_1 \cdot \frac{\text{d}c}{\text{d}x}
4,275
x^4 + \left(-1\right) = \left(x^2 + \left(-1\right)\right) \cdot (x^2 + 1) = \left(x + (-1)\right) \cdot \left(x + 1\right) \cdot (x^2 + 1)
17,919
-1/8 + 1/2 = \dfrac18\cdot 3
-4,765
-\frac{1}{4 + y} \cdot 5 - \dfrac{1}{y + 2} \cdot 3 = \frac{-8 \cdot y + 22 \cdot (-1)}{y \cdot y + y \cdot 6 + 8}
5,260
\binom{5}{4}\cdot 1^5 + 5^5 - 4^5\cdot \binom{5}{1} + 3^5\cdot \binom{5}{2} - \binom{5}{3}\cdot 2^5 = 5!
23,004
eae = aee
-10,607
-\frac{k\cdot 20 + 8}{k^2\cdot 4} = \frac44\cdot (-\dfrac{1}{k^2}\cdot (2 + k\cdot 5))
-11,763
(\frac17*10)^2 = \frac{100}{49}
27,980
2^{m + 1} + 2^{m + 1} = 2 \cdot 2^{m + 1}
25,832
\frac{1}{6}\cdot 5/7 = \frac{5}{42}
27,822
x \cdot D = x \cdot D
3,150
\frac{1}{11 + y} \cdot (y \cdot y + y \cdot 9 + a) = y + 2 \cdot \left(-1\right) + \frac{22 + a}{11 + y}
21,094
\frac{a*1/b}{c} = a*1/b/c = \frac{a}{b*c}
5,060
-1 = \frac{1}{-1} \cdot \left(2 \cdot |-1| - (-1)^2\right)^{1/2}
-20,575
\frac{18 + 9*g}{16*(-1) - g*8} = \frac{-g + 2*(-1)}{-g + 2*(-1)}*(-9/8)
14,065
z^3 + 3\cdot z^2 + 6 = (z + 1)^3 - 3\cdot z + (-1) + 6 = (z + 1) \cdot \left(z + 1\right)^2 - 3\cdot (z + 1) + 8
5,626
67 = 1 + 11 \times 2 \times 3
1,041
(x^k)^{12} = 1 \Rightarrow x^k
8,404
((-1) + n) \cdot n = n^2 - n
14,207
\frac1I = 1/(\dfrac{1}{\dfrac1I})
38,630
P*((-1) + 3) + a = 2*P + a
5,421
\operatorname{E}[R_D]*\operatorname{E}[R_H] = \operatorname{E}[R_D*R_H]
-25,818
5/40 = \dfrac{5}{4 \cdot 10}
26,587
x! \dfrac{x}{((-1) + x)!} = x^2
-30,319
6*(-1) + 8 = 2
1,052
\left(a + b\right)*(a^2 - a*b + b^2) = a^3 - a^2*b + a*b * b + a * a*b - a*b^2 + b^3 = a^3 + b^3
35,406
\sqrt{(-5) \cdot (-5)} = \sqrt{25} = 5
31,007
f + w + f + w = 2*(f + w) = 2*f + 2*w = f + f + w + w = f + f + w + w
-11,557
-5 + 8\times (-1) + 18\times i = -13 + i\times 18
27,874
\frac1x \times \left(\sqrt{1 + x + x^2} + \left(-1\right)\right) = -\frac1x + \sqrt{1 + x + x \times x}/x
17,092
m^2 + m + 1 = 1 + (1 + m) \cdot (1 + m) - 1 + m
-1,387
((-1)*1/9)/(\frac{1}{7}*9) = -1/9*\frac79
14,073
\frac{\sinh(y)}{\cosh(y)} = \tanh\left(y\right)
-20,815
\frac{c + 5 \cdot (-1)}{5 \cdot (-1) + c} \cdot (-\frac17) = \frac{5 - c}{7 \cdot c + 35 \cdot (-1)}
-22,384
11*\left(-1\right) + 6 = -5
1,662
-2 \cdot \frac{f'}{a^3} = \frac{f'}{a} \cdot \frac{f'}{a} \cdot 2
15,739
(3^{19} - 2^{20} + 1) \cdot 3 = 3^{20} - ((-1) + 2^{20}) \cdot 3
4,629
1 = \frac{1}{2^{\frac{1}{2}}}\cdot 2^{1 / 2}
-15,617
\frac{k^{15}}{k\cdot \frac{1}{a^2}} = \dfrac{1}{\frac{1}{a^2}\cdot k\cdot \frac{1}{k^{15}}}
14,599
\left(n^4*2 - 2n * n + 1\right)^2 + (n*2 + n^5 - 2n^3) * (n*2 + n^5 - 2n^3) = 1 + n^{10}
10,097
\tan{2 \times x} + \tan{x} = 0\Longrightarrow \tan{x} = 0
2,967
(1 - d) \cdot (1 - e) = 1 - d - e + d \cdot e \geq 1 - d - e
-7,712
\frac{1}{25}\cdot (104 - 28\cdot i + 78\cdot i + 21) = \frac{1}{25}\cdot (125 + 50\cdot i) = 5 + 2\cdot i
-2,732
5*\sqrt{7} + 2*\sqrt{7} = \sqrt{4}*\sqrt{7} + \sqrt{25}*\sqrt{7}
-20,015
\frac{r + 9*(-1)}{-r*2 + 3}*\frac{6}{6} = \frac{54*\left(-1\right) + r*6}{18 - r*12}
12,349
1 - 3 \cdot s + 3 \cdot s^2 - s^3 = (1 - s)^2 \cdot \left(1 - s\right)
33,058
\frac13\cdot 6\cdot 2 = 6/3\cdot 2
38,291
303 = 30\cdot 10 + 3
27,167
1.0 = 1.0 = ... = 1 \cdot ...
6,467
\left((-1) + k\right)\cdot 2 + 1 = (-1) + 2\cdot k
-30,542
\frac{dy}{dx} = \dfrac{1}{y \cdot x^3} = \frac{1}{x^3 \cdot y}
5,927
y^6 + \left(-1\right) = (1 + y^4 + y^2) \cdot (y^2 + (-1))
-2,847
\sqrt{4} \cdot \sqrt{3} + \sqrt{3} = \sqrt{3} + \sqrt{3} \cdot 2
28,432
I + x \cdot E = \left(x + 1\right) \cdot (-\frac{x}{1 + x} \cdot (-E + I) + I)
21,666
\left(x = (d + x)^{\dfrac{1}{2}} \Rightarrow x * x - x - d = 0\right) \Rightarrow \frac{1}{2}*\left((1 + 4*d)^{\frac{1}{2}} + 1\right) = x
6,844
q^2 - q = q*(1 + q) - q - q + 1 + 1
-20,926
\frac{-k\cdot 2 + 9\cdot (-1)}{-2\cdot k + 9\cdot (-1)}\cdot \dfrac{1}{10}\cdot 3 = \tfrac{-6\cdot k + 27\cdot \left(-1\right)}{90\cdot (-1) - 20\cdot k}
23,143
(x^2 + 6\cdot x + 6) \cdot (x^2 + 6\cdot x + 6) - x^2 = (1 + x)\cdot (x + 6)\cdot (x + 3)\cdot (x + 2)
4,172
\frac{10\cdot \pi^3}{81\cdot \sqrt{3}} = 10\cdot \pi \cdot \pi^2\cdot \sqrt{3}/243
16,115
5 \cdot a + \sqrt{5} \cdot b = \sqrt{5} \cdot (b + a \cdot \sqrt{5})
-9,267
-27\cdot a + a^2\cdot 30 = a\cdot 2\cdot 3\cdot 5\cdot a - 3\cdot 3\cdot 3\cdot a
23,256
10 + 10^3\cdot 3 - 3\cdot 10^2 = 2710
-22,204
2 + k^2 - k\cdot 3 = \left(k + (-1)\right)\cdot (k + 2\cdot (-1))
1,845
1 = -B \cdot 4\Longrightarrow -1/4 = B
-22,055
\frac{1}{12} \times 28 = \frac13 \times 7
26,898
(x^2 + 13/25)\cdot 25 = 13 + 25\cdot x^2
20,995
-\sin{-\psi}\cdot (-1) = \sin{-\psi} = -\sin{\psi}
31,915
\left((-1) + x\right)^2 = x^2 - 2*x + 1 \Rightarrow (-1) + (x + (-1))^2 = -x*2 + x^2
13,257
(-1)*4 + 9 = \frac{(-1)*8}{2} + 9
-29,348
x\cdot \left(-4\right) (x + 6(-1)) = x^2 - 6x - 4x + 24 = x \cdot x - 10 x + 24
5,146
-\dfrac{t^3}{1 + t} + 1 - t + t^2 = \frac{1}{1 + t}
17,665
i + k < l \Rightarrow i < l - k
9,802
\frac{-q^{2k} + 1}{1 - q^k} = q^k + 1
6,300
\sqrt{g_2} \cdot \sqrt{g_2} \cdot \sqrt{g_1} \cdot \sqrt{g_1} = g_2 \cdot g_1
31,982
1010 \cdot x - x \cdot 404 = x \cdot 606
18,556
1 - \mathbb{P}\left(A\right) - \mathbb{P}\left(H\right) + \mathbb{P}(A) \cdot \mathbb{P}(H) = \left(1 - \mathbb{P}(A)\right) \cdot \left(-\mathbb{P}\left(H\right) + 1\right)
-6,465
\frac{1}{4 (q + 8)} = \frac{1}{32 + 4 q}
-20,023
(7 - a*56)/14 = (1 - 8a)/2*\frac{7}{7}
11,101
\sec{x}*p = r*\csc{x} \implies \frac{r}{p} = \tan{x}
33,825
e^{\dfrac12 \cdot ((-1) \cdot \theta)} = (e^{\frac{1}{4} \cdot ((-1) \cdot \theta)})^2
14,979
6 + 2*((-5)^{1 / 2} + 1) = 8 + 2*\left(-5\right)^{\frac{1}{2}}
9,091
\frac{g^l}{z}*z = (z*\tfrac{1}{z}*g)^l
39,123
(a + b)^2 = a \cdot a + 2ab + b^2 \geq a^2 + b^2
12,054
2 \sin{i} \sin{D} = -\cos(D + i) + \cos(-D + i)