id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
13,791 | -\left(y + 1\right) \cdot (2 \cdot \left(-1\right) + y) \cdot 3 = -3 \cdot y^2 + 3 \cdot y + 6 |
-483 | e^{\pi i*19/12*3} = (e^{i\pi*19/12})^3 |
-23,238 | 0.17 \cdot 0.029 = 0.17 \cdot (0.17 \cdot 0.17) = 0.17^3 |
25,000 | 2^k\cdot 2^z = 2^{z + k} |
11,043 | \mathbb{E}\left[V \cdot V\right] = \mathbb{E}\left[V\right] \cdot \mathbb{E}\left[V\right] + \mathbb{Var}\left[V\right] |
22,589 | z + 2\times a + x = z + a\times 2 + x |
8,590 | \cos{\frac{11}{7} \cdot \pi} = \cos{\frac{\pi}{7} \cdot 3} |
-9,134 | 40\times (-1) + p\times 20 = -5\times 2\times 2\times 2 + p\times 2\times 2\times 5 |
-23,178 | 63/16 = 3/4 \cdot \frac{21}{4} |
29,776 | f + \left(-1\right) + \frac{1}{9} \cdot 99 = 10 + f |
109 | (-\cos\left(x\cdot 2\right) + 1)/2 = \sin^2(x) |
40,222 | \sqrt{(-1)^2} = 1 |
14,416 | |x^3 + 3\cdot x^2\cdot h + 3\cdot x\cdot h^2 + h^3 - x^3| = |3\cdot x^2\cdot h + 3\cdot x\cdot h^2 + h^3| \geq 3\cdot x^2\cdot h |
-8,457 | -2 = (-1) \cdot 2 |
15,505 | \dfrac{1}{2}*V = E \Rightarrow E \gt V |
7,189 | (-z)^{2/3} = ((-z)^2)^{\frac{1}{3}} = z^{\frac23} |
228 | f_1^l\cdot f_2/(f_2) = (\frac{f_1}{f_2}\cdot f_2)^l |
-14,437 | 4 + (3 - 7*6) = 4 + (3 + 42*(-1)) = 4 - 39 = 4 + 39*(-1) = -35 |
422 | \frac{3}{3\cdot 2} = \frac{1}{2} |
-7,071 | 4/6*\frac{5}{7}*3/5 = \dfrac{2}{7} |
34,186 | 84 = 3\binom{6 + 3 + (-1)}{3 + (-1)} |
29,577 | -21 = 27*(-1) + 30 + 24*(-1) |
26,239 | y \cdot x = 24\Longrightarrow y \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\mathrm{d}y}{\mathrm{d}t} \cdot x = 24 |
25,399 | (d_1^2 + d_2^2) \cdot (r^2 + s^2) = (d_1 \cdot s + d_2 \cdot r)^2 + (d_1 \cdot r - d_2 \cdot s) \cdot (d_1 \cdot r - d_2 \cdot s) |
-4,025 | \dfrac{15 \cdot z^3}{3 \cdot z^5} \cdot 1 = \frac{1}{z^5} \cdot z^3 \cdot 15/3 |
41,569 | 2\cdot \left(1 + 3\right) = 8 |
30,820 | a^m\cdot a^0 = a^m = a^{m + 0} |
28,390 | (m + 2)! = (m + 2) \cdot (1 + m) \cdot m \cdot \ldots |
12,765 | n*3 + 2 = n + (n + 1)*2 |
5,826 | (a + b)/2 = a + \dfrac12 \cdot (b - a) = b - \tfrac12 \cdot \left(b - a\right) |
-19,385 | \frac{3}{\dfrac13*5}*1/8 = 3/5*3/8 |
-22,297 | \left(k + 3\right) \cdot (k + (-1)) = 3 \cdot (-1) + k^2 + 2 \cdot k |
13,068 | \frac{\partial}{\partial x} |z\cdot x|^{0.5} = (x^2\cdot z^2)^{1/4}/\left(2\cdot x\right) |
35,530 | \frac{1}{6} ((-1) + 3) = \dfrac{1}{3} |
32,412 | 2^n + 2 (-1) - 2 (\left(-1\right) + n) = 2^n - n \cdot 2 |
-12,445 | 200/5 = 40 |
27,145 | (2 \cdot k^{1/2})^3 = k^{\frac32} \cdot 8 |
-25,964 | 48/0.24 = 48/0.24 = \frac{48 \cdot 100}{0.24 \cdot 100} |
-18,606 | 3f + 5(-1) = 6*\left(3f + 4(-1)\right) = 18 f + 24 \left(-1\right) |
-17,123 | -5 = -5*\left(-4*x\right) - 40 = 20*x - 40 = 20*x + 40*(-1) |
16,084 | 2 + z < 0 \Rightarrow z \lt -2 |
-22,907 | \dfrac{15}{25} = \tfrac{3\cdot 5}{5\cdot 5} |
16,609 | \frac{1}{1!*1!*1!} (1 + 1 + 1)! = 3! = 6 |
4,347 | 4*z = 4*z + 1 = z + z + 1/4 + z + 2/4 + z + 3/4 |
8,732 | \dfrac{\tau}{m} \cdot 1/y = \frac{1/m}{y} \cdot \tau = \dfrac{\tau}{y \cdot m} |
9,171 | det(A^2 - I) = 0 \Rightarrow det(A-I) = 0 |
31,382 | \dfrac{6}{\left(2 \cdot \left(-1\right) + \nu\right)^3} = z \implies \left(\nu + 2 \cdot (-1)\right) \cdot \left(\nu + 2 \cdot (-1)\right) \cdot \left(\nu + 2 \cdot (-1)\right) = 6/z |
-22,182 | 21/15 = \tfrac75 |
40,712 | \frac{\sin{\theta}}{\cos{\theta}} = \tan{\theta} |
17,058 | u + w = v \Rightarrow v - u = w |
17,597 | 168 = db \Rightarrow \frac1b168 = d |
8,690 | 0 = x_3 - x_1 \cdot 7 - 11 \frac{1}{5}\left(2x_1 - x_2\right) \Rightarrow 0 = 5x_3 - x_1 \cdot 57 + x_2 \cdot 11 |
39,334 | -15 = 37 \cdot \left(-1\right) + 22 |
11,825 | (z + (-1))^2 + \left(-1\right) = -2\cdot z + z \cdot z |
34,549 | 4\cdot i^2 = (2\cdot i)^2 |
28,804 | t^H\cdot t^Z = t^{Z + H} |
16,840 | (p^3 - p^2)/2 = ((-1) + p)/2 \cdot p^2 |
-25,370 | \frac{\mathrm{d}}{\mathrm{d}y} (\sin{y}/\cos{y}) = \sec^2{y} |
37,103 | 16\times 6 + 4 = 100 |
7,074 | {3 \choose 2} \cdot s_1 \cdot s_2^3 = 3 \cdot s_2 \cdot s_2 \cdot s_2 \cdot s_1 |
-27,167 | \sum_{n=1}^\infty \tfrac{\left(0 + 4\right)^n}{n \cdot 4^n} = \sum_{n=1}^\infty \frac{4^n}{n \cdot 4^n} = \sum_{n=1}^\infty \frac{1}{n} |
25,485 | ((-1) + s) \times (s^2 + s + 2) + 2 = s + s^3 |
28,554 | \cos{2\cdot z} = (-1) + 2\cdot \cos^2{z} |
21,415 | 3 + 2 \cdot 2 \cdot 2 = 11 |
30,352 | \frac{1}{3 + 1}(3^2 + 3) = 3 |
-3,792 | r^4*144/\left(r*36\right) = r^4/r*144/36 |
13,858 | \left(1 + 1\right) (2 + 1) (1 + 1) = 12 |
8,455 | \frac{1}{3} = 0.33333\cdot \dots |
15,451 | \int \frac{1}{u^2 + 1}\,\text{d}u = \arctan(u) |
7,040 | \frac{1}{18} = \tfrac{17}{18} \cdot \frac{16}{16} \cdot 1/17 |
-28,763 | -\frac12 - \dfrac{4}{2 - 2 \cdot y} = \dfrac{5 \cdot \left(-1\right) + y}{2 - 2 \cdot y} |
4,647 | \frac{-x^3 + x^{n + 1}}{x + (-1)} = 0 \cdot x + x^2 \cdot 0 + x^3 + \dots + x^{(-1) + n} + x^n |
3,632 | n \cdot (n + (-1))/n = n + (-1) |
-24,193 | \frac{1}{6 + 5}*44 = 44/11 = \dfrac{1}{11}*44 = 4 |
-1,701 | -2 \cdot π + π \cdot \frac{17}{6} = \frac56 \cdot π |
21,080 | 6 \epsilon = 3 \epsilon + 3 \epsilon |
21,471 | \frac3x\cdot i\cdot V = w^2 \Rightarrow \sqrt{\dfrac1x\cdot i\cdot 3\cdot V} = w |
-26,408 | \frac{z^3}{z^4} = z^{-4 + 3} = \frac{1}{z} |
30,302 | \frac25 = \tfrac{1/9}{1/9 + 1/6} |
29,673 | 2 \cdot \theta + \left(2 \cdot \theta + 1\right) \cdot (2 \cdot \theta + 1)^2 + 1 = 8 \cdot \theta^3 + 12 \cdot \theta \cdot \theta + 8 \cdot \theta + 1 = 4 \cdot (2 \cdot \theta^3 + 3 \cdot \theta^2 + 2 \cdot \theta + 1) |
-26,394 | \dfrac{1}{y^7 \cdot \frac{1}{y^{13}}} = y^{-7 - -13} = y^{-7 + 13} = y^6 |
-16,822 | 4 = 4 \cdot 2 \cdot y + 4 \cdot 5 = 8 \cdot y + 20 = 8 \cdot y + 20 |
-15,749 | \tfrac{x^5}{\frac{1}{\tfrac{1}{x^{10}}\cdot z^6}} = \tfrac{x^5}{x^{10}\cdot \frac{1}{z^6}} |
-9,317 | b*5*b - 5*7*b = 5*b^2 - b*35 |
-12,747 | 18 + 3\left(-1\right) = 15 |
-29,356 | x\times (-7)\times (x + 3\times \left(-1\right)) = x^2 - 3\times x - 7\times x + 21 = x^2 - 10\times x + 21 |
5,392 | \frac{k!}{2^k} \geq \frac{1}{2^{\frac32 \cdot k}} \cdot k^{\frac{k}{2}} = (\frac{1}{2 \cdot 2 \cdot 2} \cdot k)^{k/2} = (k/8)^{k/2} |
29,894 | 4 \cdot \pi \cdot r^2 = 2 \cdot r \cdot \pi \cdot 2 \cdot r |
139 | \frac{\dfrac{1}{3}*2*1/3}{3}*2 = 4/27 |
8,676 | z^5 = 1 \cdot 1 \cdot z^1 \cdot z \cdot z \cdot z \cdot z = 1^1 \cdot z^3 \cdot \left(z^2\right)^1 = 1^0 \cdot z^5 \cdot (z^2)^0 |
-20,823 | \frac{1}{30 \cdot x} \cdot \left(80 \cdot (-1) - 60 \cdot x\right) = \frac{1}{3 \cdot x} \cdot (-6 \cdot x + 8 \cdot (-1)) \cdot 10/10 |
2,132 | 4 \cdot \dfrac{2^3}{3^4} + \tfrac{2^4}{3^4} = \dfrac{1}{27} \cdot 16 |
36,429 | 5^2 + 6 \cdot 6 = 61 |
1,192 | \cos(\alpha - \beta) = \sin{\alpha} \cdot \sin{\beta} + \cos{\beta} \cdot \cos{\alpha} |
-20,737 | 7/7 \cdot \dfrac{1}{r + 5 \cdot (-1)} \cdot \left(r + 9 \cdot \left(-1\right)\right) = \frac{1}{35 \cdot (-1) + 7 \cdot r} \cdot (63 \cdot (-1) + r \cdot 7) |
-15,944 | \frac{1}{10}*4*7 - 10*\frac{6}{10} = -\frac{32}{10} |
11,628 | \frac{1}{2}*(1 - \cos\left(2*x\right)) = \sin^2\left(x\right) |
114 | \frac14\cdot \frac13/2 = 1/24 |
49,404 | 12^2 = 4! + 5! |
33,376 | x \cdot x \cdot x^2 = x^4 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.