id
int64
-30,985
55.9k
text
stringlengths
5
437k
-18,305
\frac{1}{p * p + p + 72 (-1)}(p^2 - 7p + 8(-1)) = \frac{1}{(8\left(-1\right) + p) (p + 9)}(p + 1) (p + 8\left(-1\right))
-26,439
y^2 - 3 y + 2 = (y + (-1)) (y + 2 (-1))
-19,728
\frac68 \cdot 7 = 42/8
30,542
1 + (\sqrt{5})^2 - 2\cdot \sqrt{5} = ((-1) + \sqrt{5})^2
-18,799
\frac{1}{9}\cdot 9\cdot x = x
50,691
8191 = 2^{13} + (-1)
9,249
\cos(b + 2 \cdot \pi) = \cos(b)
-14,917
6\times 85 + 4\times 100 = 910
13,758
1/\left(\eta h\right) = \frac{1}{h\eta}
-7,964
\frac{1}{29}*(38 + 50*i + 95*i + 125*\left(-1\right)) = (-87 + 145*i)/29 = -3 + 5*i
-29,370
\left(7 + y\right)*(7 - y) = 7^2 - y^2 = 49 - y^2
31,597
(a + b)^2 = b * b + a^2 + ba*2
13,884
\frac{1}{x \cdot x + (-1)}(5(-1) + x^3 \cdot 3 - x \cdot x \cdot 5 - x \cdot 5) = \frac{1}{((-1) + x \cdot x) ((-1) + x)}((-1) + x) (x^3 \cdot 3 - x^2 \cdot 5 - x \cdot 5 + 5(-1))
21,089
\frac{f^2}{x^2} = \sqrt{3}/4 \Rightarrow f = \sqrt{3}, x = 2
-25,986
\frac{1}{0.01} \times 11 = 11/0.01 = \frac{11.0 \times 100}{0.01 \times 100}
-29,023
3.9 \cdot 152.6 = 595.14
34,415
68567040 = 31\times 2\times 64\times 24\times 720
25,145
7 = 2^2 - 2 \times 3 + 3^2
-7,010
\frac{2}{13} \cdot 6/14 = \frac{6}{91}
-4,461
\dfrac{1 - \omega\cdot 5}{12 (-1) + \omega^2 + \omega} = -\frac{2}{3(-1) + \omega} - \frac{3}{\omega + 4}
40,602
-4 \cdot \sin(y) \cdot \cos(y) = -2 \cdot 2 \cdot \sin(y) \cdot \cos(y) = -2 \cdot \sin(2 \cdot y)
18,295
E(X) = E(X_1 + \dotsm + X_{15}) = E(X_1) + \dotsm + E(X_{15})
26,936
-405 = \frac{45}{2} \cdot (158 + 44 \cdot \left(-4\right))
-2,298
3/11 - \frac{1}{11} = \frac{1}{11} \cdot 2
25,533
h - f = -(f - h)
-17,869
9 = 79 + 70\cdot \left(-1\right)
14,279
\cos^{-1}(\cos(0))=\cos^{-1}(\cos(2\pi))
12,677
x^2 + 8x + 14 - \alpha = 0 \Rightarrow (-8 +- \sqrt{4\alpha + 10})/2 = x
27,021
\dfrac{1}{2}\cdot \sqrt{\pi} = \int\limits_0^\infty e^{x^2}\,\text{d}x > \int\limits_0^1 e^{x^2}\,\text{d}x
9,770
z^3 + y \cdot y \cdot y = \left(y \cdot y + z^2 - z\cdot y\right)\cdot (y + z)
-5,741
\frac{3*p}{(9*(-1) + p)*(p + (-1))} = \frac{3*p}{p * p - p*10 + 9}*1
4,248
x_2 x_1 h = x_1 hx_2
3,530
(y + \left(-1\right)) \cdot ((-1) + y) = (y + (-1)) \cdot (y + (-1))
-189
{10 \choose 5} = \frac{10!}{(5 \cdot (-1) + 10)! \cdot 5!}
2,279
\frac{Y^2}{y + z} = \frac14 \cdot \frac{1}{y + z} \cdot 4 \cdot Y \cdot Y \geq \left(4 \cdot Y - y - z\right)/4
10,945
n \cdot d = n = d \cdot n
-1,462
\frac{6}{56} = 6\cdot \dfrac12/\left(56\cdot \dfrac{1}{2}\right) = 3/28
12,584
\frac{1}{4}*(3^{31} + 3*(-1)) = \dfrac{1}{8}*(3^{31} + 3*(-1) + 3*(-1) + 3^{31})
37,074
p_2\cdot p_1 = p_2\cdot p_1
13,821
\frac{\mathrm{d}}{\mathrm{d}y} \dfrac{1}{y} = -\frac{1}{y^2}
32,550
\sin{\pi \cdot 11/6} = \sin((\left(-1\right) \pi)/6 + \frac{\pi \cdot 12}{6}1)
14,771
-w_2 * w_2 + w_1 * w_1 = (w_2 + w_1)*\left(-w_2 + w_1\right)
29,335
x^3 + 4 \cdot x \cdot x + 5 \cdot x + 2 = (1 + x) \cdot (x^2 + x \cdot 3 + 2)
-3,118
\left(4 + 3 + 5\right)\cdot \sqrt{2} = 12\cdot \sqrt{2}
29,137
z^3 = z^3 + 1 + (-1) = (z + 1) (z^2 - z + 1) + (-1)
885
1 + \tan^2{x} = \frac{1}{\cos^2{x}} = \dfrac{2}{1 + \cos{2x}}
27,705
4 \cdot (n^2 + 6 \cdot n + 25) \leq 4 \cdot (n^2 + 6 \cdot n^2 + 25 \cdot n^2) = 128 \cdot n^2 \lt 1000 \cdot n^2
-3,466
\frac{8}{10} = \frac{4 \cdot 2}{2 \cdot 5}
28,371
\frac{1}{36*(\frac{1}{36} + \frac{895}{7776})} = \frac{216}{1111} \approx 0.1944
-19,338
\frac{4}{7} \cdot \frac{1}{3} \cdot 2 = \frac{4 \cdot 1/7}{\frac12 \cdot 3}
840
\frac{1}{16}\cdot 37 = 2 + \frac{1}{\dfrac{1}{5} + 3}
-10,613
-\frac{1}{2 + y \cdot 3} \cdot \left(4 \cdot y + 3\right) \cdot \frac{4}{4} = -\frac{1}{8 + 12 \cdot y} \cdot (12 + 16 \cdot y)
25,122
3360 = \frac{8!}{2!\cdot 3!}
9,490
x_i^2-x_{i-1}^2=(x_i-x_{i-1})(x_i+x_{i-1})
-4,973
51\cdot 10^{2 - 1} = 51.0\cdot 10^1
-5,152
0.7\cdot 10^1 = 0.7\cdot 10^{1 + 0\cdot (-1)}
11,882
-\dfrac{1}{44} + 1/2 + 1/4 = \frac{8}{11}
-19,630
\frac{3\cdot \frac{1}{2}}{2} = \dfrac{1}{2/3\cdot 2}
-20,287
-\frac{9}{s + 4}*\frac{4}{4} = -\frac{36}{s*4 + 16}
26,072
kk! = (k + 1 + (-1)) k! = \left(k + 1\right)! - k!
-27,563
\frac{\mathrm{d}}{\mathrm{d}z_1} z_2 = \frac{\left(-1\right)\cdot (6\cdot z_1^2 - 5\cdot z_2)}{(-1)\cdot (5\cdot z_1 + 2\cdot z_2)} = \tfrac{1}{5\cdot z_1 + 2\cdot z_2}\cdot (6\cdot z_1^2 - 5\cdot z_2)
-28,411
z^2 - 8 \cdot z + 65 = z^2 - 8 \cdot z + 16 + 49 = (z + 4 \cdot (-1))^2 + 49 = \left(z \cdot (-4)\right) \cdot \left(z \cdot (-4)\right) + 7^2
-186
\frac{1}{(5 (-1) + 8)!*5!} 8! = {8 \choose 5}
-9,309
-36p^3 - 63p^2 = - (2\cdot2\cdot3\cdot3 \cdot p \cdot p \cdot p) - (3\cdot3\cdot7 \cdot p \cdot p)
-11,626
(0 + 8) + (-8i) = 8-8i
25,519
1 + A^4 - 4 A^3 - 19 A^2 - 4 A = \left(1 + A A - 7 A\right) (1 + A^2 + 3 A)
3,569
(5*5^{\tfrac{1}{2}})^3 = (5^{3/2})^3 = 5^{\tfrac92} = 5^4*5^{1/2}
29,954
9604^{1/2} = 98
-16,739
-6*x = -6*x*2*x - 6*x = -12*x^2 - 6*x = -12*x^2 - 6*x
25,538
1 + 2 z^2 + z = (-1) + 2 (z^2 - 3 z + 1) + z \cdot 7
34,096
j = xc \Rightarrow \dfrac{1}{xc} = \dfrac{1}{j}
15,022
1 + 10^4*1.0 = 10^4*\left(1.0 + 0.0001\right)
32,083
d^2=0 \implies d=0
47,162
\left(-1\right) + 288 = 287
22,409
2 \cdot U^2 - 2 \cdot U + 1 = a^2 - j^2 = (a + j) \cdot (a - j) = (101 - 2 \cdot U) \cdot (a - j)
-16,580
5\cdot 9^{1 / 2}\cdot 5^{1 / 2} = 5\cdot 3\cdot 5^{\frac{1}{2}} = 15\cdot 5^{1 / 2}
10,304
(-3\cdot y^2\cdot g + g\cdot z^2)/y + y\cdot g\cdot z\cdot 2/z = -3\cdot g\cdot y + g\cdot y\cdot 2 + \frac{g}{y}\cdot z^2
14,164
c^x\cdot x = \frac{\partial}{\partial c} c^x\cdot c
11,243
5 \cdot 5 + 5^2 = 1^2 + 7 \cdot 7 = 50
1,827
(n + 1)^3 + 2 \times \left(n + 1\right) = n^3 + 3 \times n^2 + 5 \times n + 3 = n^3 + 2 \times n + 3 \times (n \times n + n + 1)
10,798
2n + 6(-1) = 0 \Rightarrow 3 = n
-30,547
\frac{15}{30} = \frac{1}{60} \cdot 30 = 60/120 = 1/2
12,756
x = i \times \tfrac{x}{i} = x/i + \frac{1}{i} \times x
5,624
g \cdot x' = x' \cdot g
1,451
\sin\left(Y + F\right) = \sin(F)\times \cos(Y) + \sin(Y)\times \cos(F)
-26,893
\sum_{l=1}^\infty \frac{\left(l + 5\right)\cdot (-5)^l}{l^2\cdot 5^l} = \sum_{l=1}^\infty \frac{1}{l^2\cdot 5^l}\cdot (-1)^l\cdot 5^l\cdot (l + 5) = \sum_{l=1}^\infty (-1)^l\cdot \frac{1}{l^2}\cdot (l + 5)
16,821
\sqrt{5}*15/5 = 3 \sqrt{5}
24,238
(-7) * (-7) + 8^2 = 113
28,283
(-i + 6)/6 = -i/6 + 1
15,387
a\times a_1\times m/a = \frac{a_1}{a}\times a\times m
32,021
2^3\cdot 3\cdot 5 \cdot 5 = 600
13,109
\dfrac{1}{2^{10}}*520 + \dfrac{1}{2^{10}}*520 - \frac{1}{2^{10}}*846 = \frac{194}{2^{10}}
-1,347
-21/24 = ((-21)*1/3)/\left(24*\frac{1}{3}\right) = -\tfrac78
-9,469
81 - 54\cdot q = -q\cdot 2\cdot 3\cdot 3\cdot 3 + 3\cdot 3\cdot 3\cdot 3
14,249
7 d + 13 (-1) = 71 \implies d = 12
16,548
\binom{10}{0} \binom{20}{4} + \binom{10}{1} \binom{20}{3} = 16245
40,403
16^{1/2} = 20/5
-22,768
\dfrac{3\cdot 12}{12\cdot 5} = \frac{1}{60}\cdot 36
4,891
g/a = \dfrac{1}{a\cdot 1/g}
1,974
1 + d + d^2 + d^3 + ... = \dfrac{1}{1 - d}