id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-1,074 | \frac{(-1) \frac{1}{8}}{1/4 (-3)} = -\frac{1}{8} (-\frac43) |
-9,747 | 0.01 (-84) = -\dfrac{84}{100} = -\frac{21}{25} |
13,662 | \frac1q \cdot X \cdot x \cdot l = x \cdot X/q \cdot l |
9,080 | \tfrac{1000}{102} = 9.9 - 0.099 + 0.00099 - 9.9*10^{-6} = 9.801 + 0.0009801 = 9.801 |
-26,577 | -8^2 + y^2 = (8(-1) + y) (y + 8) |
-27,369 | 519\cdot (-1) + 725 = 206 |
2,172 | \cos{2} < 1 - \frac{2^2}{2!} + \frac{2^4}{4!} = -\dfrac{1}{3} < 0 |
-188 | \frac{1}{3! \cdot (3 \cdot \left(-1\right) + 8)!} \cdot 8! = \binom{8}{3} |
4,812 | \sum_{m=1}^\infty (m^2*4 + x_m^2 + 4*x_m*m) = \sum_{m=1}^\infty (x_m + 2*m)^2 |
17,909 | \sin(-a \cdot \omega) = -\sin(\omega \cdot a) |
30,345 | m + x + 1 = 1 + m + x |
-11,880 | \dfrac{2.478}{1000} = 2.478\cdot 0.001 |
42,891 | \binom{3+2-1}{2} = 6 |
13,188 | 3\cdot i\cdot i\cdot 3 + z\cdot z - z\cdot i\cdot 3 - z\cdot 3\cdot i = (z - 3\cdot i)\cdot \left(-i\cdot 3 + z\right) |
-5,585 | \dfrac{1}{30 + k^2 + 13\cdot k}\cdot k = \dfrac{1}{\left(3 + k\right)\cdot (10 + k)}\cdot k |
21,505 | \dfrac123 = 1/2 - \tfrac22 + 4/2 |
15,786 | h^{s + \mu} = h^\mu \cdot h^s |
1,128 | u_x + cu_y = 1 = ( 1, c) ( u_x, u_y) |
-2,435 | (2 + 3*(-1) + 4)*7^{1/2} = 7^{1/2}*3 |
9,464 | ({202 \choose 2} - 3\cdot 101)/3! = \frac16\cdot (20301 + 303\cdot \left(-1\right)) = 3333 |
1,147 | \tan{y} + (-1) = \sin{y}/\cos{y} + (-1) = (\sin{y} - \cos{y})/\cos{y} |
11,391 | 3\cdot (3334\cdot \left(-1\right) + 33333)/3 + 1 = \frac13\cdot (10002\cdot (-1) + 99999) + 1 |
-24,141 | 5\cdot 6 + 8\cdot \tfrac{8}{1} = 5\cdot 6 + 8\cdot 8 = 30 + 8\cdot 8 = 30 + 64 = 94 |
-5,620 | \frac{3}{(x + 6)\cdot (x + 8\cdot (-1))} = \dfrac{1}{x^2 - x\cdot 2 + 48\cdot (-1)}\cdot 3 |
1,372 | 29 = 42 + 6\cdot (-1) + 7\cdot \left(-1\right) |
-25,866 | 6^4/6 = \dfrac{1}{6^1}6^4 = 6^{4 + (-1)} = 6^3 |
22,677 | x_i \cdot (\alpha + 1) = x_i + x_i \cdot \alpha |
22,903 | 1/12 + \frac{1}{2} + 1/4 + \frac{1}{6} = 1 |
18,861 | \frac{1}{\cos(z)} \cdot \sin\left(z\right) = \tan(z) |
17,070 | \cos{x} = t \Rightarrow \arccos{t} = x |
3,129 | c^2 - J^2 = (c - J) (J + c) |
9,119 | \sqrt{d^6} = \sqrt{(d^3)^2} = d^3 |
-15,753 | \frac{1}{d^{20}*\dfrac{1}{d^2 * d*r^{15}}} = \frac{\frac{1}{d^{20}}*d * d * d}{\frac{1}{r^{15}}}*1 = \frac{1}{d^{17}}*r^{15} = \frac{r^{15}}{d^{17}} |
-20,391 | -4/\left(-4\right) = \frac{1}{1}\cdot (1/(-4)\cdot (-4)) |
1,563 | \binom{4}{2}*\binom{6}{2}*\binom{2}{2} = 90 |
20,776 | (z^2 + z + 1)\cdot ((-1) + z) = (-1) + z^3 |
604 | r\cdot e_x = r = e_x\cdot r |
15,720 | \max{a, e, c} = \max{a, \max{e,c}} = \max{\max{a,e},c} |
7,706 | D_2^2 D_1^2 = \left(D_1 D_2\right)^2 |
7,380 | 1000 = 6999 + 6000 (-1) + 1 |
-5,537 | \frac{4}{35 (-1) + n \cdot n + n\cdot 2} = \frac{4}{\left(7 + n\right) (n + 5(-1))} |
8,307 | \mathbb{P}(y) = \int (4 \cdot y^4 + 1)\,\mathrm{d}y = 4 \cdot \int y^4\,\mathrm{d}y + \int 1\,\mathrm{d}y |
59 | \tfrac{1}{(1 + m - j) * (1 + m - j)}*\left((-1) + j\right) = \frac{-(m - j + 1) + m}{(m - j + 1)^2} |
5,711 | a + id = di + a |
17,457 | \frac{3\cdot 3/4}{4}/4 = \tfrac{1}{64}\cdot 9 |
13,684 | 1 + 2\cdot 2k = 1 + k\cdot 4 |
-21,595 | \sin{\dfrac{1}{2}\cdot 3\cdot \pi} = -1 |
12,235 | \dfrac{b^7\cdot f^2}{f^3\cdot b}\cdot 1 = b^6/f |
-30,324 | 6(-1) + 10 = 4 |
12,841 | 1^3 = 1 = \left(\frac{2}{2} \cdot 1\right) \cdot \left(\frac{2}{2} \cdot 1\right) |
-22,772 | 54/90 = \frac{3}{18*5}18 |
66 | \left(a\cdot x + b + I\right)^2 = a^2\cdot x^2 + 2\cdot a\cdot b\cdot x + b^2 + I = 2\cdot a\cdot b\cdot x + b \cdot b + 2\cdot a^2 + I |
22,947 | \frac{d}{dt}e^{-tB} = -Be^{-tB} = -e^{-tB}B |
-30,269 | \frac{1}{x + (-1)}\cdot (x^2 + 2\cdot x + 3\cdot (-1)) = \frac{1}{x + \left(-1\right)}\cdot (x + 3)\cdot (x + (-1)) = x + 3 |
8,154 | -i = i*\sin{3*\pi/2} + \cos{\pi*3/2} |
-22,153 | 30/50 = \frac35 |
5,634 | \dfrac{1}{l_1^2}\cdot (l_2 + (-1)) = (\left(-1\right) + l_2)\cdot \frac{1}{l_1}/(l_1) |
33,844 | \frac{1}{2}2^{2/3} = 2^{-\frac13} |
28,098 | z^9 \cdot I^9 = (z \cdot I)^9 |
17,441 | y + \frac{1}{y}*(3 - i) = 3 \Rightarrow 3 - i + y^2 - 3*y = 0 |
30,624 | \tfrac{6!}{2! (6 + 2(-1))!} + \frac{1}{3! (4 + 3(-1))!}4! = 19 |
-13,506 | 2 - 5\cdot 6 + 45/9 = 2 - 5\cdot 6 + 5 = 2 + 30 (-1) + 5 = -28 + 5 = -23 |
32,872 | (1/n + x)*(x + \frac{1}{n}) = x^2 + \frac{x*2}{n} + \frac{1}{n^2} |
-7,908 | \tfrac{1}{20}\cdot (-32 - 56\cdot i + 16\cdot i + 28\cdot (-1)) = (-60 - 40\cdot i)/20 = -3 - 2\cdot i |
25,106 | (z - y)\cdot \left(z^{m + \left(-1\right)} + y\cdot z^{m + 2\cdot (-1)} + z^{3\cdot (-1) + m}\cdot y^2 + \dots + y^{m + 2\cdot (-1)}\cdot z + y^{m + \left(-1\right)}\right) = z^m - y^m |
44,325 | y y = y^2 = y^2 |
-26,468 | 20 + 5*x^2 - x*20 = 5*(x^2 - 4*x + 4) |
-6,597 | \tfrac{1}{2r + 6} = \frac{1}{2(3 + r)} |
473 | \frac{1}{7\cdot \left(-1\right) + m}\cdot (m + 13) = \frac{1}{7\cdot (-1) + m}\cdot 20 + 1 |
8,708 | \sqrt{3 \cdot 3 + 1^2} = \sqrt{10} |
1,968 | \frac{1}{\frac{1}{1/3 + 2} + 2} = \frac{7}{17} |
-30,579 | 70*(-1) + 40*x = (4*x + 7*(-1))*10 |
21,231 | \cos(\frac{1}{2}\pi + h) = -\sin\left(h\right) |
19,613 | \left(5 + 5 + h\right)*(5*\left(-1\right) + 5 + h) = h^2 + h*10 |
14,309 | \vartheta G = \vartheta G |
15,518 | \frac{(-1) + n^2 c_n}{c_n^2 + n \cdot n} = -\frac{1 + c_n^3}{n \cdot n + c_n^2} + c_n |
-28,771 | -\frac12 - \frac{1}{-z\cdot 2 + 2}\cdot 4 = -1/2 + \frac{1}{(-1) + z}\cdot 2 |
25,773 | -x\cdot 2 + 1 = 1 - x^2 - -x^2 + 2x |
29,061 | 3*n + n = 4*n |
11,615 | 0 = 8 \sin{\pi \cdot 2} |
21,378 | 1/27 = \dfrac{1}{6^3}\cdot 2^3 |
12,263 | h_2^{h_1} \cdot h_2^b = h_2^{b + h_1} |
18,664 | Y^5 + (-1) = (Y + (-1)) (1 + Y^4 + Y \cdot Y \cdot Y + Y^2 + Y) |
-18,529 | z + 3\cdot (-1) = 4\cdot \left(5\cdot z + 8\cdot (-1)\right) = 20\cdot z + 32\cdot (-1) |
9,229 | \frac{(1 + z + z^2)*\left(-z + 1\right)}{(1 - z)^2 * \left(1 - z\right)} = \dfrac{1 + z + z^2}{(-z + 1)^2} |
12,399 | y^4 + 5*y + 1 = \left(y^2 + 1\right)*(y^2 + (-1)) + 5*y + 5*(-1) = (y + \left(-1\right))*\left(y^3 + y * y + y + 6\right) |
19,999 | \sin\left(9 \cdot y\right) + \sin(y) = 2 \cdot \sin((9 \cdot y + y)/2) \cdot \cos\left((9 \cdot y - y)/2\right) = 2 \cdot \sin(5 \cdot y) \cdot \cos(4 \cdot y) |
4,916 | (m + 3 \cdot \left(-1\right))^{1 / 2} = (-(3 - m))^{\frac{1}{2}} = i \cdot \left(3 - m\right)^{\frac{1}{2}} |
2,769 | \beta \cdot x + \gamma \cdot x = (\beta + \gamma) \cdot x |
-24,370 | \frac{1}{6 + 8}*70 = 70/14 = \tfrac{1}{14}*70 = 5 |
-10,264 | -\frac{1}{z + 5} \cdot \frac{3}{3} = -\dfrac{3}{3 \cdot z + 15} |
-14,026 | \dfrac{1}{4 + 6} \cdot 40 = \frac{1}{10} \cdot 40 = \frac{40}{10} = 4 |
3,569 | (5 \cdot 5^{\frac12})^3 = 5^{\frac{1}{2} \cdot 3} \cdot 5^{\frac{1}{2} \cdot 3} \cdot 5^{\frac{1}{2} \cdot 3} = 5^{\tfrac92} = 5^4 \cdot \sqrt{5} |
25,791 | (2^4)^i = 2^{4\cdot i} |
16,859 | 1 + m \times (3 + 2 \times m) = m^2 \times 2 + 3 \times m + 1 |
8,448 | \frac{1}{4}\cdot \left(1 + 2\cdot x\right)^2 = (\frac{1}{2} + x)^2 |
-6,636 | \frac{1}{3 \times y + 3} \times 2 = \frac{2}{(y + 1) \times 3} |
8,809 | \frac{3y + 2(-1)}{y + 1} = \frac{1}{y + 1}\left(3\left(y + 1\right) + 5(-1)\right) = 3 - \frac{5}{y + 1} |
-6,566 | \frac{1}{k*4 + 36} = \frac{1}{4*\left(9 + k\right)} |
1,760 | ( x + 2\cdot (b - h), y) = ( 2\cdot b - -x + 2\cdot h, y) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.