id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-20,518 | \frac{s}{90 \cdot s} \cdot 20 = \frac{10 \cdot s}{s \cdot 10} \cdot 2/9 |
8,106 | 1/2 = \tfrac13 + \dfrac{1}{6} |
2,314 | \cos{x} = (e^{ix} + e^{-ix})/2 = \frac{1}{2e^{ix}}(e^{2ix} + 1) |
15,394 | \frac{7^{55}}{5^{72}} = (\frac{7^3}{5^4})^{18}\cdot 7 |
27,556 | 6\cdot 11 = 66 = \dfrac{11}{2}\cdot (11 + 1) |
7,747 | |-x_m + x_{m + 1}| = |x_m - x_{m + 1}| |
19,234 | ((-1) + B)\cdot \left(1 + B^4 + B^3 + B^2 + B\right) = B^5 + (-1) |
-22,637 | -4/7\cdot \frac{5}{7} = \dfrac{1}{7\cdot 7}\cdot ((-4)\cdot 5) = -20/49 = -20/49 |
19,221 | \cos{x} = \sin\left(x + π/2\right) |
12,348 | 0.5\cdot y + x = 1.75 \Rightarrow 1.75 - 0.5\cdot y = x |
-22,371 | (p + 7 \cdot (-1)) \cdot \left(6 + p\right) = p^2 - p + 42 \cdot (-1) |
6,175 | 0 = x^4 - 2 \cdot x^3 - 2 \cdot x + 1 = (x^2 - (1 + 3^{1/2}) \cdot x + 1) \cdot (x^2 - \left(1 - 3^{1/2}\right) \cdot x + 1) |
8,138 | \left(5 + y*5 = 20 \Rightarrow 15 = 5*y\right) \Rightarrow 3 = y |
5,821 | -\dfrac{55}{25}\cdot 25 + 80 + 25\cdot \left(-1\right) = 0 |
13,536 | 3 \cdot x \cdot x + x + 24 = -\frac{-287}{12} + 3 \cdot x \cdot x + x + 1/12 |
-8,104 | 21 = \frac{42}{2} \times 1 |
-4,427 | \frac{8*(-1) - 5*x}{x^2 + 3*x + 2} = -\tfrac{2}{x + 2} - \frac{3}{x + 1} |
-23,678 | \frac{12}{35} = \dfrac{1}{7} \cdot 6 \cdot 2/5 |
25,521 | (9 + x) (9(-1) + x) = 81 (-1) + x^2 |
10,208 | \binom{g}{h} = \binom{g}{g - h} |
-26,673 | 8x^2-18x-5=(4x+1)(2x-5) |
-30,339 | 5 \cdot (-1) + 9 = 4 |
6,190 | \frac16\cdot (1 + n)\cdot (1 + n + 1)\cdot (1 + (n + 1)\cdot 2) = 1^2 + 2^2 + 3 \cdot 3 + \ldots + n^2 + (n + 1) \cdot (n + 1) |
28,679 | \frac{5!}{2!}*2*5 = 600 |
-9,880 | \phantom{ \dfrac{1}{1} \times -\dfrac{1}{1} \times -\dfrac{3}{5}} = \dfrac{1 \times -1 \times -3}{1 \times 1 \times 5} = \dfrac{3}{5} |
14,203 | x = x^1 = x^{0 + 1} = x^0 x^1 = xx = x \cdot x |
14,750 | -y^2 + x^2 = \left(-y + x\right)\cdot (x + y) |
6,353 | (m + k) h = -(-m - k) h = -(-m h + -k h) = --m h - -k h = mh + kh |
-23,127 | -\dfrac23 = -\dfrac{2}{3} |
23,895 | 9025 - 190 \cdot s + s^2 = (95 - s) \cdot (95 - s) |
11,222 | \tfrac{1}{z + 1} = \dfrac{1}{(-1)*\left(-1\right) + z} |
14,553 | 0 = 2 \cdot Z \cdot B_2^4 + 2 \cdot B_1 \cdot B_2^4 - 26 \cdot (Z \cdot B_2^2 + B_1 \cdot B_2^2) + 145 \geq \left(Z \cdot B_2^2 + B_1 \cdot B_2^2\right) \cdot \left(Z \cdot B_2^2 + B_1 \cdot B_2^2\right) - 38 \cdot (Z \cdot B_2^2 + B_1 \cdot B_2^2) + 1 + 18^2 |
11,910 | \cos(\frac{\pi}{2} - w) = \sin{w} |
25,411 | 6*(\frac{5}{4}) * (\frac{5}{4}) = 75/8 \lt 10 |
-28,766 | \frac{1}{y + 2}\cdot \left((-1) + y^3\right) = y \cdot y - 2\cdot y + 4 - \frac{9}{y + 2} |
-4,761 | \dfrac{1}{z + 1}*4 - \frac{5}{3*(-1) + z} = \dfrac{17*(-1) - z}{3*(-1) + z^2 - z*2} |
-5,467 | \dfrac{1}{(7\cdot \left(-1\right) + k)\cdot 2} = \frac{1}{14\cdot (-1) + k\cdot 2} |
-22,181 | \tfrac{10}{2} = 5 |
-17,200 | \dfrac{1}{\cos^2(\theta)} \times \cos^2(\theta) = \frac{1}{\cos^2(\theta)} \times (-\sin^2(\theta) + 1) |
7,524 | \pi*3/8 + \pi = \dfrac{11*\pi}{8}*1 |
27,254 | 7 - \left(2 + 1\right)*2/2 = 4 |
20,481 | (a \cdot c)^n = a^n \cdot c^n = 1 \implies c^{-n} = a^n |
-18,398 | \frac{1}{9x + x^2}(63 + x^2 + x\cdot 16) = \frac{(9 + x) (7 + x)}{x\cdot (x + 9)} |
-21,585 | \cos(-\frac{4}{3}\pi) = -0.5 |
35,779 | 2 \cdot (k + 1) = 2 + k \cdot 2 |
18,663 | \binom{n}{2} + \binom{n}{0} + \binom{n}{1} = \frac12\cdot (n^2 + n + 2) |
24,830 | z \cdot 7 - z \cdot 4 = 3 \cdot z |
-20,362 | \frac{7}{14 - 63 r} = \frac{7 \cdot \frac{1}{7}}{-9r + 2} |
-480 | \pi = 15 \cdot \pi - \pi \cdot 14 |
14,409 | h\cdot x^n = x^n\cdot h |
15,120 | \sqrt{2}*\sqrt{2*\pi} = 2*\sqrt{\pi} |
10,672 | -2\cdot \sin^2{\frac{t}{2}} + 1 = \cos{t} |
-578 | e^{\pi\cdot i/3\cdot 14} = (e^{\pi\cdot i/3})^{14} |
15,365 | 6 \cdot (-1) + n \cdot 3 = n + 4 \cdot (-1) + n + (-1) + n + \left(-1\right) |
19,459 | 2^{2\cdot n + 2\cdot (-1)} = \left(2^{n + (-1)}\right)^2 |
11,741 | -t + x_0 + i \cdot 2 = x_0 + i - t - i |
28,177 | |z + \left(-1\right)| = |z + \left(-1\right) + 0 \cdot (-1)| \leq |z + (-1)| + 0 |
2,818 | -\tfrac{\cos^{1 + j}(y)}{j + 1} = \sin(y)\times \cos^j\left(y\right) |
-19,098 | \frac{1}{45}*2 = A_s/(36*\pi)*36*\pi = A_s |
6,950 | (10\cdot c + b) \cdot (10\cdot c + b) = 100\cdot c \cdot c + 20\cdot c\cdot b + b^2 = 10\cdot (10\cdot c^2 + 2\cdot c\cdot b) + b \cdot b |
-19,511 | \dfrac{\tfrac17 \cdot 9}{3 \cdot \dfrac{1}{8}} = 8/3 \cdot \frac97 |
-7,542 | (-28 + 4*i + 21*i + 3)/25 = \left(-25 + 25*i\right)/25 = -1 + i |
-2,547 | \sqrt{4} \sqrt{6} + \sqrt{16} \sqrt{6} = 4\sqrt{6} + 2\sqrt{6} |
-19,558 | \frac72 \dfrac{1}{5} = \frac{7}{2 \cdot 5} = \dfrac{7}{10} |
21,015 | -h*x + n*x = x*(n - h) |
-5,273 | 10^{9 + 5 \cdot (-1)} \cdot 5.3 = 10^4 \cdot 5.3 |
28,972 | X\cdot X^n = X^{1 + n} |
29,587 | 1 + 3(-1) = 6(-1) + 4 |
3,579 | 0 = 24 + 4\cdot y \Rightarrow -6 = y |
1,780 | 2\cdot b\cdot x + 2\cdot y = 4 \implies y = 2 - x\cdot b |
4,858 | \dfrac{x + 1}{(-1) + x} = \frac{1}{\left(-1\right) + x}2 + 1 |
-26,554 | -(3x)^2 + 10^2 = (-3x + 10) (x*3 + 10) |
-8,370 | -3 \times -2 = 6 |
13,578 | \mathbb{E}((-\mathbb{E}(X) + X)^2) = -\mathbb{E}(X) \cdot \mathbb{E}(X) + \mathbb{E}(X^2) |
-645 | \frac{209}{12} \pi - 16 \pi = \frac{17}{12} \pi |
-20,812 | \frac{70}{56*(-1) - 14*t} = \dfrac17*7*\dfrac{10}{8*(-1) - t*2} |
13,910 | \frac{16}{3} = \tfrac{1}{4}*16 + 16/12 |
-2,063 | -\pi/4 = -\pi \cdot \frac23 + \frac{5}{12} \cdot \pi |
37,263 | 2+7+9=18 |
11,832 | \left(x * x - 4*x + 13\right)*\left(x + 2\right)*(1 + x) = 26 + x^4 - x^3 + 3*x * x + 31*x |
18,323 | r \cdot (J + w) = J \cdot r + r \cdot w |
13,182 | ( x^2, x\cdot z) = ( x \cdot x, x) \cap ( x^2, z) = x \cap ( x^2, z) |
47,481 | 6 + 25 + 28 + 21 + 10 + 1 = 91 |
36,739 | 4^{2n} = 16^n |
2,661 | -(180 - B - Y) + 180 = B + Y |
-6,384 | \frac{1}{\left(8(-1) + q\right)*3} = \frac{1}{3q + 24 (-1)} |
-3,269 | \sqrt{6} \cdot \sqrt{9} + \sqrt{6} \cdot \sqrt{16} = \sqrt{6} \cdot 4 + \sqrt{6} \cdot 3 |
13,659 | 1 + y^2 = 10001 - (100 - y) (y + 100) |
27,055 | 2036 = (503 + 499 \cdot (-1)) \cdot 509 |
4,063 | \lambda^{-b} = \frac{1}{\lambda^b} |
18,484 | 2 \times 6 =12 |
-20,310 | \tfrac{1}{2*(-1) + t}*(2*(-1) + t)*(-5/6) = \dfrac{1}{6*t + 12*(-1)}*(-t*5 + 10) |
49,817 | 910 = 182 \cdot 5 |
9,339 | -\alpha \gt \beta \Rightarrow \alpha < -\beta |
-30,112 | \frac{\mathrm{d}}{\mathrm{d}z} z^k = k\cdot z^{k + \left(-1\right)} |
14,198 | \tan{x} = E/10\Longrightarrow 10*\tan{x} = E |
29,442 | -(-q - x) = x - q + q \cdot 2 |
20,303 | \mathbb{E}\left((Q - \mathbb{E}\left(Q\right)) \cdot (-\mathbb{E}\left(x\right) + x)\right) = -\mathbb{E}\left(x\right) \cdot \mathbb{E}\left(Q\right) + \mathbb{E}\left(x \cdot Q\right) |
26,738 | 3 + 11 + 19 = 33 |
3,034 | k^3 = 12\cdot k - 5\cdot k^2 = 12\cdot k - 5\cdot (12 - 5\cdot k) = 37 - 60\cdot k |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.