id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,818 |
6 \cdot (\frac{1}{216} + 1)^{1/3} = 217^{1/3}
|
-15,874 |
\frac{5}{10} = 7*\dfrac{1}{10}5 - 6*\frac{5}{10}
|
31,837 |
1 \cdot 2 \cdot 3 + 2 \cdot 4 + 3 + 5 + 6 = 6 + 8 + 3 + 5 + 6 = 28
|
20,386 |
a^2 \times b^2 = (a \times b)^2
|
34,010 |
\int (-c)\,\text{d}K = -\int c\,\text{d}K
|
5,077 |
\sin(\frac{y}{2}) = \cos(\dfrac{y}{2}) = \sin\left(\pi/2 - y/2\right)
|
-20,768 |
\frac{3 \cdot k + 9 \cdot (-1)}{3 \cdot k + 12 \cdot \left(-1\right)} = 3/3 \cdot \frac{3 \cdot (-1) + k}{k + 4 \cdot (-1)}
|
20,086 |
2 \cdot 770 + 653 = 2193
|
21,403 |
1 - 3 \times \frac{1}{21} \times 2 = 15/21 = 5/7
|
23,238 |
\left(a \cdot a - 2\cdot a\cdot g + g \cdot g = \left(a - g\right)^2 = 0 \implies 0 = -g + a\right) \implies g = a
|
36,609 |
z \cdot y + z + y + 1 = 20 = (z + 1) \cdot (y + 1)
|
12,536 |
H\cdot m = m\cdot H
|
-2,314 |
\frac{3}{18} = -\frac{6}{18} + \dfrac{1}{18}\cdot 9
|
19,713 |
0 = \cos{0} \sin{0}
|
16,250 |
|\dfrac{z^2}{z} + 0*(-1)| = |z + 0*\left(-1\right)|
|
34,341 |
\cos\left(1/z\right) = 1 - \frac{1}{(z^{22})!} + \frac{1}{(z^{44})!} - ...
|
7,607 |
s\cdot e = s\cdot e
|
33,935 |
7 + 2x = 0 + \frac1441 (x\cdot 8/41 + \frac{28}{41})
|
-10,742 |
-30 = 5 p + 1 + 21 (-1) = 5 p + 20 (-1)
|
7,459 |
3\times \frac{2\times \pi}{5} + 2\times 2\times \pi/5 = \pi\times 2
|
-5,072 |
8.7\cdot 10 = \dfrac{8.7}{100}\cdot 10 = \frac{8.7}{10}
|
930 |
g_{j,\phi} = g_{j,\phi}
|
30,564 |
2 \cdot \left(-1\right) + 6 = -2^5 + 6^2
|
21,761 |
(a^2 + b^2)\cdot (c^2 + d^2) = (a\cdot c + b\cdot d)^2 + (a\cdot d - b\cdot c) \cdot (a\cdot d - b\cdot c) = (a\cdot c - b\cdot d)^2 + (a\cdot d + b\cdot c)^2
|
37,796 |
\mathbb{E}(A_1*A_2) = \mathbb{E}(A_1)*\mathbb{E}(A_2)
|
10,798 |
6 (-1) + 2 k = 0 \Rightarrow 3 = k
|
19,529 |
-z_1 \cdot z_1 + z_2^2 = (-z_1 + z_2)\cdot (z_2 + z_1)
|
35,961 |
2\times \cos{R}\times \sin{R} = \sin{2\times R}
|
16,405 |
(x + 2\cdot (-1))\cdot \left(x + 1\right) = x^2 - x + 2\cdot (-1)
|
-23,426 |
\frac{\frac{1}{5}*4}{2} = 2/5
|
9,556 |
\mathbb{E}\left(|Y| + |Z|\right) = \mathbb{E}\left(|Y|\right) + \mathbb{E}\left(|Z|\right)
|
-25,049 |
5/13 \cdot 4/12 = \frac{20}{156} = 5/39
|
22,311 |
D_i \cdot D_x = D_i \cdot D_x
|
14,273 |
2 z \frac{dz}{dx} = \frac{d}{dx} z z
|
22,079 |
\tfrac16 = 2/12
|
18,286 |
E*X = X*E
|
-10,364 |
\dfrac{1}{2} \cdot 2 \cdot \dfrac{4}{y \cdot 10} = \dfrac{8}{20 \cdot y}
|
5,447 |
\frac{1}{6} + 1/6 + \frac16 = 3/6
|
-29,581 |
d/dy (-y \cdot 10 + y^4 - y^2 \cdot 4) = 10 \cdot \left(-1\right) + y^3 \cdot 4 - 8 \cdot y
|
13,206 |
-(-y + 1) + y = 2 \cdot y + (-1)
|
-1,458 |
\dfrac17*8*\left(-5/7\right) = 8*1/7/\left((-1)*7*\frac{1}{5}\right)
|
-18,418 |
\dfrac{l}{(4 \cdot (-1) + l) \cdot (9 \cdot (-1) + l)} \cdot (9 \cdot (-1) + l) = \frac{l^2 - 9 \cdot l}{l \cdot l - l \cdot 13 + 36}
|
23,142 |
\frac {6\cdot 5 \cdot 4 \cdot 3 \cdot 2}{5}=144
|
-6,007 |
\frac{4}{(y + 4) \cdot (10 + y)} = \frac{4}{y^2 + 14 \cdot y + 40}
|
36,238 |
K^c + S^c = K^c + S = K + S^c
|
27,213 |
3\zeta_{12}^6 = (\zeta_{12} \cdot 3^{1/6})^6
|
-6,625 |
\frac{1}{3 \cdot (s + 8)} \cdot 5 = \frac{5}{24 + s \cdot 3}
|
28,145 |
d = x^r\Longrightarrow d^{1/r} = x
|
6,606 |
9(-1) + ((5 + (2 + 1)*3*4)*6 + 7)*8 = 2015
|
624 |
(n!)! > \left(n^2\right)^{n! - n^2} = n^{2*n! - 2*n^2} > n^{n!}
|
7,917 |
\dfrac{1}{12} - \frac{1}{60} = \frac{1}{15} = 1/(3*5)
|
31,066 |
d/dx \tan^{-1}{x} = \frac{1}{1 + x^2}
|
10,095 |
-\frac{1}{5} + 1 - 1/5 = \frac{3}{5}
|
20,594 |
(\mu - \delta) (\mu + \delta) = \mu - \delta^2 = (\mu + \delta) \left(\mu - \delta\right)
|
2,999 |
(0 \cdot (-1) + x) \cdot 2 = y + (-1) \Rightarrow y = 1 + 2 \cdot x
|
15,375 |
1/64 + \frac{1}{64} \cdot 15 + 6/64 = 22/64
|
32,800 |
-9\cdot y^2 = -9\cdot y\cdot y
|
-6,076 |
\frac{1}{2\cdot m^2 + 12\cdot m + 54\cdot (-1)}\cdot (8\cdot \left(-1\right) + 3\cdot m + 27 - m\cdot 6 + 18) = \frac{1}{54\cdot (-1) + 2\cdot m \cdot m + 12\cdot m}\cdot (37 - 3\cdot m)
|
15,728 |
58 = \left\lfloor{\frac{1}{17} \times 1000}\right\rfloor
|
-9,367 |
-12\cdot m + 8\cdot m^2 = m\cdot 2\cdot 2\cdot 2\cdot m - m\cdot 2\cdot 2\cdot 3
|
11,435 |
\left(-d_1 + d_2\right)^2 = d_2^2 + d_1^2 - d_1 d_2*2
|
-9,425 |
t*3 + 3 = t*3 + 3
|
-2,581 |
\sqrt{6} = \left(2 + (-1)\right) \sqrt{6}
|
4,330 |
\left(n + 1\right)\cdot a = a + a\cdot n
|
-8,013 |
(50 - 150 \cdot i + 50 \cdot i + 150)/50 = \left(200 - 100 \cdot i\right)/50 = 4 - 2 \cdot i
|
7,018 |
f \approx a\Longrightarrow f \approx a
|
2,020 |
\|z\| * \|z\| = \left\{z\right\} = \|Wz\|^2 = ( Wz, Wz)
|
6,180 |
(\sin(x) + \cos(x))^2 = 1 + 2 \cdot \sin(x) \cdot \cos\left(x\right) = 1 + \sin(2 \cdot x) = 1^2 = 1 \Rightarrow 0 = \sin(2 \cdot x)
|
48,244 |
5^0\cdot 2^3 = 8
|
-22,280 |
x^2 + 12 x + 27 = (x + 3) \left(x + 9\right)
|
-3,470 |
\frac{5}{20 \cdot 5} \cdot 9 = 45/100
|
26,279 |
\frac{1}{x^{1/2}}3 = \tfrac{1}{x^{1/2}}3
|
31,724 |
E_R\cdot x\cdot D = x\cdot E_R\cdot D
|
3,164 |
(1 + n - k) (n - k)! = (n - k + 1)!
|
8,915 |
u_1^Y x_1 = u_1^Y x_1
|
-4,389 |
\frac{70 k^2}{k^4 \cdot 120} = \frac{1}{k^4}k^2 \cdot \frac{1}{120}70
|
25,428 |
1/2 \times 2 = 1
|
-11,031 |
\dfrac19*72 = 8
|
-2,540 |
\sqrt{6} \cdot (4 + 3 + 2) = \sqrt{6} \cdot 9
|
383 |
0 = \mathbb{E}[X^5] \Rightarrow \mathbb{E}[X X X] = 0
|
4,948 |
l\cdot m = l + l\cdot \left((-1) + m\right)
|
-1,743 |
-\pi/12 = -\pi/6 + \pi/12
|
19,803 |
-c_1 + c_2 = -(c_1 - c_2)
|
12,552 |
y^2 = (0*(-1) + y)*(y + 0*\left(-1\right))
|
28,131 |
1/6 + 1/6 + \dfrac16 + \frac16 = \frac{2}{3}
|
34,505 |
9 - \sqrt{3}*5 = 6 - 2*\sqrt{3} - 3*\sqrt{3} + 3
|
12,988 |
2 \cdot 2 + 2^4 \cdot 3 - 2^3 \cdot 3 = 28
|
26,710 |
|D/x| = |D|/|x|
|
28,100 |
\operatorname{atan}\left(3^{1 / 2}/3\right) = \dfrac{\pi}{6}
|
29,775 |
m_2*x*m_1 = x*m_2*m_1
|
-4,833 |
0.83*10^4 = 0.83*10^{2 - -2}
|
17,052 |
z^{w_2} z^{w_1} = z^{w_1 + w_2}
|
31,427 |
\frac{4577}{8} = 572.125
|
17,317 |
\pi \cdot 180 = 5 \cdot \pi \cdot 2 \cdot 18
|
28,041 |
\tan^{-1}(-\dfrac{1}{\sqrt{3}}) = -\pi/6
|
15,000 |
10\cdot \left(-1\right) + y^2 + 3\cdot y = (y + 2\cdot (-1))^2 + 7\cdot (y + 2\cdot (-1))
|
28,111 |
2^{-2/3} = 2^{\frac{1}{3}}/2
|
23,563 |
0 = \sin{\frac{π}{4}} \sin{0}\cdot 2
|
-9,146 |
32 + x \cdot 16 = x \cdot 2 \cdot 2 \cdot 2 \cdot 2 + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
|
2,547 |
\dfrac{1}{3}*(1 - 6*n) = \tfrac13 - 6*n/3 = 1/3 - 2*n
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.