id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
1,522 | (x - z)*(x^{(-1) + l} + x^{l + 2*(-1)}*z + \cdots + z^{2*\left(-1\right) + l}*x + z^{(-1) + l}) = -z^l + x^l |
-27,686 | \frac{\text{d}}{\text{d}x} \left(18 \cdot \sin{x}\right) = \cos{x} \cdot 18 |
13,278 | 0 = 2 + 4(-1) + x \Rightarrow 2 = x |
-1,303 | 5/1 \cdot (-9/7) = (1/7 \cdot (-9))/(\tfrac15) |
40,312 | ((-1) + z)\times (2 + z) = 2\times (-1) + z^2 + z |
10,179 | \dfrac{1}{\frac{1}{5^l}*3^l} = (\frac53)^l |
-3,042 | -\sqrt{8} + \sqrt{50} = \sqrt{25\cdot 2} - \sqrt{4\cdot 2} |
-7,008 | \frac{6}{7}\cdot 3/8 = 9/28 |
18,267 | 2\left( 3, 4\right) = [6,8] = \emptyset |
17,063 | 55 = \tfrac{11!}{9! \cdot 2!} |
1,827 | \left(l + 1\right) \cdot \left(l + 1\right)^2 + 2\cdot (l + 1) = l^3 + 3\cdot l^2 + 5\cdot l + 3 = l^2 \cdot l + 2\cdot l + 3\cdot \left(l^2 + l + 1\right) |
-1,885 | \frac{1}{4}\cdot 7\cdot \pi + \pi/6 = \frac{23}{12}\cdot \pi |
-10,607 | -\dfrac{1}{k^2\cdot 4}\cdot \left(k\cdot 20 + 8\right) = -\frac{2 + k\cdot 5}{k \cdot k}\cdot 4/4 |
-8,099 | 45 = \dfrac{9*10}{2} |
-20,792 | 8/8 \cdot \frac{1}{-x \cdot 6 + 2} \cdot ((-5) \cdot x) = \dfrac{1}{-x \cdot 48 + 16} \cdot (\left(-40\right) \cdot x) |
13,647 | x \cdot x^Z \cdot f = x \cdot f \cdot x^Z |
4,313 | 26\times 1/9/(13\times \frac19) = 2 = B \Rightarrow B = 2 |
38,497 | \frac{1}{1 + |y|} y = \frac{y}{1 + y} = 1 - \frac{1}{1 + y} |
-28,811 | \tfrac12\cdot (0 + 10) = 10/2 = 5 |
15,399 | \frac{1}{\sec^4\left(x\right)} + 1 = 1 + \cos^4(x) = \frac{1}{8}*(4*\cos(2*x) + \cos(4*x) + 11) |
7,914 | 1 + 2 + ... + l + (-1) + l - l = 1 + 2 + ... + l + \left(-1\right) |
-20,838 | \frac{q + (-1)}{(-1) + q} \cdot (-\dfrac14) = \frac{1 - q}{4 \cdot (-1) + 4 \cdot q} |
-25,810 | \frac{\frac{1}{9}}{4} \cdot 2 = 2/36 |
13,565 | 1.0*10^{17} = 2.0*10^3*10^{13}*5 |
16,475 | \frac{1}{h_2^{h_1}} = h_2^{-h_1} |
-2,659 | \sqrt{25} \cdot \sqrt{3} + \sqrt{3} \cdot \sqrt{4} = 5 \cdot \sqrt{3} + \sqrt{3} \cdot 2 |
-22,668 | -1/4\cdot \left(-4/5\right) = \left((-1)\cdot (-4)\right)/(4\cdot 5) = 4/20 = \frac15 |
31,915 | (x + (-1)) * (x + (-1)) = x^2 - 2*x + 1 \implies \left(x + (-1)\right)^2 + (-1) = -x*2 + x^2 |
-4,972 | 10^0\times 0.56 = 0.56\times 10^{(-5)\times (-1) - 5} |
5,943 | 9 = (8^3 + 10^3 - 2\cdot 9 \cdot 9 \cdot 9)/6 |
-27,485 | g^3\cdot 22 = 2\cdot g\cdot g\cdot g\cdot 11 |
18,152 | 120 - 3\cdot i > 0 \implies i < 40 |
4,652 | -\sqrt{a} + \sqrt{b} = \dfrac{-a + b}{\sqrt{a} + \sqrt{b}} |
24,940 | a^l \cdot b^n = a^l \cdot b^n |
9,691 | \lim_{x \to -\infty} -x + x = x + \lim_{x \to -\infty} (x^2 + 5*x + 3)^{\dfrac{1}{2}} |
1,108 | \|Y\|*\|Y\| = \|Y\|^2 |
6,389 | 9*n + 6*k = 3*3*n + 2*3*k = 3*(3*n + 2*k) |
-15,210 | \frac{1}{\frac{1}{q^2} \cdot p} \cdot q^{20} = \frac{1}{\dfrac{1}{q^{20}} \cdot \frac{1}{1/p \cdot q^2}} |
-6,748 | \frac{4}{100} + \frac{1}{100}\cdot 50 = 5/10 + 4/100 |
11,957 | \frac12(2 + n^2 - n \cdot 3) - n + 2(-1) + 2 = (3\left(-1\right) + n) (n + 2\left(-1\right))/2 + 2 |
-30,262 | \dfrac{x^2-12x+20}{x-10}=\dfrac{\cancel{(x-10)}(x-2)}{\cancel{x-10}} =x-2 |
-30,898 | -3\cdot 6 + 55 = 37 |
6,793 | 1/4 + 2*1/4 + \frac14*3 + 4*\frac{1}{4} = 2.5 |
-16,489 | 10 \sqrt{12} = \sqrt{4 \cdot 3} \cdot 10 |
-539 | e^{14 \frac{5}{6}i\pi} = (e^{5i\pi/6})^{14} |
26,206 | x^2 + x + 2 \cdot \left(-1\right) = (2 + x) \cdot ((-1) + x) |
16,630 | \dfrac{1}{128}21 = 63/384 |
22,985 | 2^{n + 1} - n^2 + 3\cdot \left(-1\right) = (1 + 1)^{1 + n} - n^2 + 3\cdot (-1) |
16,804 | \frac{1}{12}7 = 1/4 + \frac13 |
33,567 | 1 - \dfrac{1}{2\cdot n + 1}\cdot n = \frac{n + 1}{2\cdot n + 1} |
12,918 | 2\cdot 3^2 = 18 = 34 + 16\cdot (-1) |
34,938 | det\left(It - xX\right) = det\left(It - xX\right) |
-19,817 | 0.01\cdot \left(-122\right) = -122/100 = -1.22 |
11,584 | 2 \cdot \pi \cdot 2 \cdot 16 = \pi \cdot 64 |
11,235 | x + 7 = x - -7 |
32,033 | xz = xz = z = 2 \neq 3 = 2x = zx = zx |
27,805 | (\frac{x}{2})! D * D*\left(O^{22}\right)^{x/2} = D * D*\left(O^{22}\right)^{x/2}*2*3\dotsm x/2 |
7,676 | \int (1 + v) \sqrt{v}\,dv = \int \left(v^{1/2} + v^{\frac32}\right)\,dv |
11,933 | (2^l)^2 = 2^{l*2} |
23,832 | 50 \cdot x + y \cdot 20 = 1020\Longrightarrow 102 = 5 \cdot x + y \cdot 2 |
30,839 | 2^{1/2} = \dfrac{2 - a/b}{\frac{a}{b} + (-1)} = \frac{1}{a - b} \cdot (2 \cdot b - a) |
10,426 | 4 \cdot \left(-1\right) + 4 \cdot (1 + x^2) = 4 \cdot x^2 |
26,575 | 4/2 = \tfrac11 \cdot 2 = 6/3 = \cdots |
31,709 | \frac{1}{1! \cdot 2! \cdot 1! \cdot 1!} \cdot 5! = 60 |
-23,301 | 3/10 = \frac{3}{4}\cdot 2/5 |
32,046 | 4\cdot k = (k + 1)^2 - (k + (-1))^2 |
24,041 | \sin(x) = \sin(x + 2\cdot \pi) |
6,977 | a = 2 \cdot a \cdot f' \cdot g - a \cdot a \cdot x\Longrightarrow x \cdot a = f' \cdot g \cdot 2 + (-1) |
33,385 | \cos^2{x} \cos^2{x} = \cos^4{x} |
7,787 | \frac{1}{\sqrt{k}} = \frac{2}{\sqrt{k} + \sqrt{k}} \lt \dfrac{2}{\sqrt{k} + \sqrt{k + (-1)}} |
22,320 | 4 + x^2 + 2x = (x + 1) \cdot (x + 1) + 3 |
38,556 | (e^x)^2 = e^{2\cdot x} \neq e^{x^2} |
23,878 | h_i\cdot h_i\cdot h_i = h_i \cdot h_i^2 |
-30,565 | -\frac{1}{-81}\cdot 243 = -\frac{81}{-27} = -27/\left(-9\right) = 3 |
29,483 | 3\cdot x = \frac{x^3\cdot 3}{x^2} |
23,031 | \left(2 = \dfrac{1}{b^2} \cdot x^2\Longrightarrow 2 \cdot b^2 = x^2\right)\Longrightarrow 2^{1 / 2} \cdot b = x |
29,612 | c \cdot (4 + 4 + 4) = 6 \cdot 2\Longrightarrow c = 1 |
-2,889 | 11^{1 / 2} \times 3 = (5 + 2 \times (-1)) \times 11^{\frac{1}{2}} |
-20,973 | \frac{1}{-t\cdot 21 + 12}\cdot (16 - 28\cdot t) = \frac{-t\cdot 7 + 4}{-7\cdot t + 4}\cdot \frac43 |
-7,031 | 5/13*\frac{6}{14} = \frac{1}{91}*15 |
9,711 | 2^4*5*3 * 3 = 720 |
11,844 | x^2 + z^2 = 10^2 rightarrow z = \sqrt{10^2 - x^2} |
-3,356 | 11^{1 / 2} \cdot 16^{\frac{1}{2}} - 11^{\dfrac{1}{2}} = -11^{\dfrac{1}{2}} + 4 \cdot 11^{\frac{1}{2}} |
1,448 | \frac32x=n\implies x=\frac23n |
31,354 | |x| = \|\frac12 \cdot (x + y) + (x - y)/2\| \leq (|x + y| + |x - y|)/2 |
19,388 | (g^2 + x^2)\cdot (h^2 + f \cdot f) = (x\cdot f + h\cdot g)^2 + (h\cdot x - f\cdot g)^2 |
-5,689 | \frac{2}{(y + 1)\cdot (6\cdot (-1) + y)}\cdot y = \dfrac{y\cdot 2}{y \cdot y - y\cdot 5 + 6\cdot (-1)} |
21,831 | 0 = d + 0 + 0 \implies d = 0 |
-25,790 | \dfrac{1}{7}\cdot 10/4 = 10/28 |
13,895 | x_2^2 + x_1 \cdot x_1 + 2 \cdot x_1 \cdot x_2 = \left(x_2 + x_1\right)^2 |
46,371 | \cos^4\left(x\right) = \cos^2(x) \cdot (1 - \sin^2(x)) = \cos^2\left(x\right) - \cos^2(x) \cdot \sin^2(x) |
-10,703 | \tfrac{4}{4}*\dfrac{3}{x} = \frac{12}{x*4} |
19,490 | \left(800^2 + 800^2\right)^{1 / 2} = 2^{\frac{1}{2}}*800 \approx 1131 |
-23,477 | \dfrac{5}{16} = \frac{5}{2} \cdot 1/8 |
19,376 | \frac{1}{m\cdot (m + (-1)) ((-1) + m)!} = \frac{1}{m! \left(m + (-1)\right)} |
4,588 | z^5 + (-1) = \left(z + (-1)\right) (1 + z^4 + z^3 + z^2 + z) |
-12,039 | 14/15 = s/\left(4*\pi\right)*4*\pi = s |
16,543 | 3^x + 3^z = 3^x*(1 + 3^{z - x}) |
2,982 | (-w + v)\cdot \left(v - w\right)^x = (-w + v)\cdot (v - w)^x |
6,615 | \sin{y} = \cos{y} rightarrow (-e^{-yi} + e^{iy})/(2i) = (e^{-yi} + e^{yi})/2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.