id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
25,556 |
v_2 + v_1 + z = v_2 + v_1 + z
|
4,488 |
6 \cdot r + (9 + 2 + 5) \cdot r \cdot 3 = 54 \cdot r
|
-7,698 |
\frac{1}{10}\cdot (7 + 11\cdot i - 21\cdot i + 33) = (40 - 10\cdot i)/10 = 4 - i
|
25,200 |
-g^2 + a^2 = (a + g) \cdot \left(-g + a\right)
|
12,229 |
\frac{1}{{38 \choose 5}} = 5!\cdot 33!/38! = \frac{1}{501942}
|
10,577 |
3\cdot x^2 + 1 + x\cdot 2 = \frac{\mathrm{d}}{\mathrm{d}x} (2 + x + x^2 + x^3)
|
26,732 |
-r = \dfrac{\pi}{4} + \frac14 \cdot ((-1) \cdot \pi) - r
|
6,570 |
\dfrac26 = \tan(a) \Rightarrow 22 = a
|
28,380 |
2^3 \cdot 15 = 120
|
22,856 |
70 = 20 \cdot 7/2
|
8,726 |
\sin\left(y\right) = \sin\left(\pi*2 + y\right)
|
11,544 |
n*u^2 = u*n*u
|
6,595 |
(1 + h \cdot h + h) \cdot \left((-1) + h\right) = (-1) + h^3
|
6,164 |
345600 = -4! \cdot 6! + 9!
|
13,564 |
pn = -y + x \Rightarrow \frac{1}{p}(x - y) = n
|
34,067 |
9^k = (8 + 1)^k = 8^k + 8^{k + (-1)} + \dots \cdot \dots \cdot 1^k
|
-12,140 |
4/9 = \frac{s}{6\pi}*6\pi = s
|
-1,415 |
\tfrac{1}{4} 9*\frac{7}{1} = 9*\frac{1}{4}/(1/7)
|
-4,388 |
\frac{1}{x \cdot x^2} \cdot x^2 = \frac{x \cdot x}{x \cdot x \cdot x} \cdot 1 = 1/x
|
38,824 |
A = \dfrac56 (A + 1) + (2 + A) \frac{5}{36} + 5/216 (3 + A) + 1/216 \cdot 3 \Rightarrow A = 258
|
-3,866 |
\frac{r^3}{r} = r\cdot r\cdot r/r = r^2
|
9,596 |
\frac{1}{16} = 1/2 \times \frac{1}{2 \times 2}/2
|
15,663 |
\cos(x) \sin(x) = \sin\left(x\right) \sin(\pi/2 - x)
|
37,943 |
2000 + 600\cdot (-1) = 1400
|
5,842 |
\dfrac{1}{10} \cdot (100 + 110 + 120 + 130 + \ldots + 190) = 145
|
5,318 |
w_2^3 = (3 + 2^{\frac13})^3 = 29 - 27*w_2 + 9*w_2^3
|
-30,703 |
y^2*7 + 21 = 7*(3 + y^2)
|
27,791 |
\lim_{t \to \infty} \tfrac{1}{1 - \sin{t}} = \lim_{t \to \infty} \frac{1}{1 + \sin{t}}
|
35,513 |
3 = \cos{2\pi\cdot 4} + 2
|
27,229 |
-\frac{1}{2^{10}}\cdot 178 + 1 = \dfrac{423}{512}
|
7,431 |
b_f = \min{b_f,b_f}
|
34,101 |
\sinh(x) = \frac{1}{2} \cdot (e^x - e^{-x}) \cdot \cosh(x) = (e^x + e^{-x})/2
|
-23,129 |
-3/8 = \tfrac{3}{4} (-\dfrac12)
|
-9,352 |
-9\cdot i + 9 = -3\cdot 3\cdot i + 3\cdot 3
|
816 |
35 \cdot 35 = 21^2 + 28^2
|
19,170 |
\dfrac{2}{t}\times a = m \Rightarrow 2\times a/m = t
|
-1,484 |
36/20 = \frac{36 \cdot \frac{1}{4}}{20 \cdot \frac14} = 9/5
|
23,908 |
\sinh^2{x} = \frac{1}{4}\cdot (e^x - e^{-x})^2 = \dfrac14\cdot (e^{2\cdot x} + e^{-2\cdot x} - 2\cdot e^0)
|
-20,715 |
\frac{3}{3}\cdot \frac{2 + n\cdot 9}{8\cdot n} = \frac{6 + n\cdot 27}{n\cdot 24}
|
35,179 |
\dfrac{1}{7776} \cdot 3600 = 25/54
|
-20,373 |
3\cdot y/(24\cdot y) = \dfrac{1/(y\cdot 3)}{8}\cdot 3\cdot y
|
3,308 |
\frac{m^5 + \left(-1\right)}{(-1) + m^3} = m^2*\frac{1 - \frac{1}{m^5}}{1 - \frac{1}{m^3}}
|
51,604 |
16 = 7 + 5 + 2 + 2
|
-28,754 |
\dfrac{1}{x + 2\times (-1)}\times (2\times x^3 - x^2\times 3 - x\times 3 + 2) = x^2\times 2 + x + (-1)
|
20,234 |
m^2 = n^2\Longrightarrow n = m
|
28,247 |
2^{2m}=(2^2)^m=4^m
|
15,661 |
q*r*x^{m + 1} \geq \frac{q*r*x^m*q*r*x}{2} = 19*q*r*x^m \gt q*r*x^m
|
15,961 |
\left(l + k\right)\cdot 2 = 2\cdot l + 2\cdot k
|
14,481 |
\mu\Rightarrow \mu
|
6,127 |
A^{b c} = A^{b c}
|
29,491 |
n^2/4 = n/2 \cdot n/2
|
29,507 |
r' r = r' r
|
32,906 |
\frac{40}{24} = \tfrac{5}{3}
|
43,245 |
881 = 1 + 80 \cdot 11
|
23,877 |
\sin{x} = \sin(x/2 + x/2) = 2\cdot \sin{\frac12\cdot x}\cdot \cos{x/2}
|
4,141 |
\frac{1}{4 \cdot \dfrac{1}{1000}} = 250
|
6,668 |
\frac{1}{2\sin{y}}\sin{y \cdot 2} = \cos{y}
|
18,294 |
z^4 + 1 = \left(z^2 + 1\right) \times \left(z^2 + 1\right) - 2 \times z^2
|
13,485 |
g*e \coloneqq e*g
|
14,982 |
-(1 - x)^2 + x^2 = \left(-1\right) + x \cdot 2
|
1,044 |
\sin\left(y + 180\right) = \sin(y)*\cos(180) + \sin(180)*\cos(y) = -\sin(y)
|
36,629 |
\overline{y + w} = \overline{y} + \overline{w}
|
18,641 |
\left(-1\right)\cdot (-1) = \left(-1\right)^2 = 1
|
-3,187 |
\sqrt{5}*5 - \sqrt{5}*4 = \sqrt{5} \sqrt{25} - \sqrt{16} \sqrt{5}
|
1,513 |
\cos^2{t} = \sin{2\cdot x} \Rightarrow \sin{2\cdot x} + 1 = (\cos{x} + \sin{x})^2 = \cos^2{t} + 1
|
-3,731 |
\frac{t^2 \cdot t}{t\cdot 14}\cdot 21 = 21/14\cdot \dfrac{t^3}{t}
|
27,889 |
\operatorname{E}[S + V] = \operatorname{E}[S] + \operatorname{E}[V]
|
34,501 |
(-6) \cdot (-1) + 0 = 6
|
-20,021 |
\frac{x + (-1)}{x + \left(-1\right)}\cdot \left(-\frac{9}{4}\right) = \frac{-9\cdot x + 9}{x\cdot 4 + 4\cdot (-1)}
|
10,643 |
|h_m\cdot b_m - M\cdot h_m + M\cdot h_m - M\cdot x| = |h_m\cdot b_m - x\cdot M|
|
23,713 |
0 = 2 \cdot a + b \cdot \sqrt{6} + c \cdot \sqrt{10}\Longrightarrow a = 0,0 = c \cdot \sqrt{10} + b \cdot \sqrt{6}
|
16,107 |
\frac{15}{15}\cdot 20\cdot 100 = 2000
|
-4,976 |
0.97\cdot 10^{4\cdot (-1) + 8} = 0.97\cdot 10^4
|
9,250 |
\frac{1}{\frac1y \cdot x} = \frac{y}{x}
|
8,745 |
c = h \Rightarrow h^2 = c^2
|
23,378 |
(15 + 5*(-1))*10 = 100
|
24,193 |
\theta\cdot \nu_g = \theta\cdot \nu_g
|
-4,661 |
\frac{1}{4 (-1) + x} 4 + \dfrac{1}{x + 4} 2 = \frac{8 + x*6}{x^2 + 16 (-1)}
|
27,510 |
x = \sqrt{2 + x} \Rightarrow x = 2
|
-2,743 |
(1 + 2 + 4)*\sqrt{3} = \sqrt{3}*7
|
-6,937 |
396 = 12*3*11
|
19,440 |
\frac{1}{w^4} + 2 \times w \times w = \frac{1}{w^7} \times (w^3 + 2 \times w^9)
|
32,707 |
m \cdot x + n \cdot y = 3 \cdot x + 2 \cdot y \implies 0 = (2 - n) \cdot y + x \cdot (-m + 3)
|
-22,901 |
35/20 = \frac{35}{4 \cdot 5} \cdot 1
|
35,074 |
s^2\times 9 - (s + 3)\times 4 = (s\times 3 + \left(-1\right))^2 + 2\times s + 13\times (-1)
|
24,027 |
\frac{4 + x}{4 + x} - \frac{5}{x + 4} = \frac{x + (-1)}{x + 4}
|
18,756 |
11 = 123 + 45\cdot (-1) + 67\cdot (-1)
|
-18,341 |
\frac{\left(q + 9\right)*q}{(q + 7*\left(-1\right))*(q + 9)} = \tfrac{9*q + q^2}{63*(-1) + q * q + q*2}
|
-4,018 |
\frac{1}{y^2}5 = \frac{5}{y^2}
|
2,242 |
13/8 = 1 + \frac18 \cdot 5 = 1 + \frac{1}{8 \cdot 1/5} = 1 + \dfrac{1}{1 + 3/5}
|
18,565 |
\frac{25}{4} = 5 \cdot 1/2/2 \cdot 5
|
6,288 |
\cos(z) = \cos(2z/2)
|
27,389 |
\sin(2 \cdot \pi - \theta) = \sin{-\theta} = -\sin{\theta}
|
28,770 |
f^{12} = (f^4)^3
|
17,860 |
3333 = (-3*101 + 20301)/3!
|
25,751 |
x \times x \times x = x \times x \times x
|
15,177 |
\left(r\cdot z\cdot \delta\right)^2 = (z\cdot \delta\cdot r)^2
|
28,309 |
\frac{1}{x}\cdot ((-1) + h\cdot x) = -\frac{1}{x} + h
|
12,952 |
x^8 + 16\times (-1) = \left(x^2 + 2\times (-1)\right)\times (2 + x^2)\times \left(4 + x^4\right)
|
13,478 |
(y^2 + m^2 + m\cdot y)\cdot 2 = m^2 + y \cdot y + (m + y)^2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.