id
int64
-30,985
55.9k
text
stringlengths
5
437k
25,556
v_2 + v_1 + z = v_2 + v_1 + z
4,488
6 \cdot r + (9 + 2 + 5) \cdot r \cdot 3 = 54 \cdot r
-7,698
\frac{1}{10}\cdot (7 + 11\cdot i - 21\cdot i + 33) = (40 - 10\cdot i)/10 = 4 - i
25,200
-g^2 + a^2 = (a + g) \cdot \left(-g + a\right)
12,229
\frac{1}{{38 \choose 5}} = 5!\cdot 33!/38! = \frac{1}{501942}
10,577
3\cdot x^2 + 1 + x\cdot 2 = \frac{\mathrm{d}}{\mathrm{d}x} (2 + x + x^2 + x^3)
26,732
-r = \dfrac{\pi}{4} + \frac14 \cdot ((-1) \cdot \pi) - r
6,570
\dfrac26 = \tan(a) \Rightarrow 22 = a
28,380
2^3 \cdot 15 = 120
22,856
70 = 20 \cdot 7/2
8,726
\sin\left(y\right) = \sin\left(\pi*2 + y\right)
11,544
n*u^2 = u*n*u
6,595
(1 + h \cdot h + h) \cdot \left((-1) + h\right) = (-1) + h^3
6,164
345600 = -4! \cdot 6! + 9!
13,564
pn = -y + x \Rightarrow \frac{1}{p}(x - y) = n
34,067
9^k = (8 + 1)^k = 8^k + 8^{k + (-1)} + \dots \cdot \dots \cdot 1^k
-12,140
4/9 = \frac{s}{6\pi}*6\pi = s
-1,415
\tfrac{1}{4} 9*\frac{7}{1} = 9*\frac{1}{4}/(1/7)
-4,388
\frac{1}{x \cdot x^2} \cdot x^2 = \frac{x \cdot x}{x \cdot x \cdot x} \cdot 1 = 1/x
38,824
A = \dfrac56 (A + 1) + (2 + A) \frac{5}{36} + 5/216 (3 + A) + 1/216 \cdot 3 \Rightarrow A = 258
-3,866
\frac{r^3}{r} = r\cdot r\cdot r/r = r^2
9,596
\frac{1}{16} = 1/2 \times \frac{1}{2 \times 2}/2
15,663
\cos(x) \sin(x) = \sin\left(x\right) \sin(\pi/2 - x)
37,943
2000 + 600\cdot (-1) = 1400
5,842
\dfrac{1}{10} \cdot (100 + 110 + 120 + 130 + \ldots + 190) = 145
5,318
w_2^3 = (3 + 2^{\frac13})^3 = 29 - 27*w_2 + 9*w_2^3
-30,703
y^2*7 + 21 = 7*(3 + y^2)
27,791
\lim_{t \to \infty} \tfrac{1}{1 - \sin{t}} = \lim_{t \to \infty} \frac{1}{1 + \sin{t}}
35,513
3 = \cos{2\pi\cdot 4} + 2
27,229
-\frac{1}{2^{10}}\cdot 178 + 1 = \dfrac{423}{512}
7,431
b_f = \min{b_f,b_f}
34,101
\sinh(x) = \frac{1}{2} \cdot (e^x - e^{-x}) \cdot \cosh(x) = (e^x + e^{-x})/2
-23,129
-3/8 = \tfrac{3}{4} (-\dfrac12)
-9,352
-9\cdot i + 9 = -3\cdot 3\cdot i + 3\cdot 3
816
35 \cdot 35 = 21^2 + 28^2
19,170
\dfrac{2}{t}\times a = m \Rightarrow 2\times a/m = t
-1,484
36/20 = \frac{36 \cdot \frac{1}{4}}{20 \cdot \frac14} = 9/5
23,908
\sinh^2{x} = \frac{1}{4}\cdot (e^x - e^{-x})^2 = \dfrac14\cdot (e^{2\cdot x} + e^{-2\cdot x} - 2\cdot e^0)
-20,715
\frac{3}{3}\cdot \frac{2 + n\cdot 9}{8\cdot n} = \frac{6 + n\cdot 27}{n\cdot 24}
35,179
\dfrac{1}{7776} \cdot 3600 = 25/54
-20,373
3\cdot y/(24\cdot y) = \dfrac{1/(y\cdot 3)}{8}\cdot 3\cdot y
3,308
\frac{m^5 + \left(-1\right)}{(-1) + m^3} = m^2*\frac{1 - \frac{1}{m^5}}{1 - \frac{1}{m^3}}
51,604
16 = 7 + 5 + 2 + 2
-28,754
\dfrac{1}{x + 2\times (-1)}\times (2\times x^3 - x^2\times 3 - x\times 3 + 2) = x^2\times 2 + x + (-1)
20,234
m^2 = n^2\Longrightarrow n = m
28,247
2^{2m}=(2^2)^m=4^m
15,661
q*r*x^{m + 1} \geq \frac{q*r*x^m*q*r*x}{2} = 19*q*r*x^m \gt q*r*x^m
15,961
\left(l + k\right)\cdot 2 = 2\cdot l + 2\cdot k
14,481
\mu\Rightarrow \mu
6,127
A^{b c} = A^{b c}
29,491
n^2/4 = n/2 \cdot n/2
29,507
r' r = r' r
32,906
\frac{40}{24} = \tfrac{5}{3}
43,245
881 = 1 + 80 \cdot 11
23,877
\sin{x} = \sin(x/2 + x/2) = 2\cdot \sin{\frac12\cdot x}\cdot \cos{x/2}
4,141
\frac{1}{4 \cdot \dfrac{1}{1000}} = 250
6,668
\frac{1}{2\sin{y}}\sin{y \cdot 2} = \cos{y}
18,294
z^4 + 1 = \left(z^2 + 1\right) \times \left(z^2 + 1\right) - 2 \times z^2
13,485
g*e \coloneqq e*g
14,982
-(1 - x)^2 + x^2 = \left(-1\right) + x \cdot 2
1,044
\sin\left(y + 180\right) = \sin(y)*\cos(180) + \sin(180)*\cos(y) = -\sin(y)
36,629
\overline{y + w} = \overline{y} + \overline{w}
18,641
\left(-1\right)\cdot (-1) = \left(-1\right)^2 = 1
-3,187
\sqrt{5}*5 - \sqrt{5}*4 = \sqrt{5} \sqrt{25} - \sqrt{16} \sqrt{5}
1,513
\cos^2{t} = \sin{2\cdot x} \Rightarrow \sin{2\cdot x} + 1 = (\cos{x} + \sin{x})^2 = \cos^2{t} + 1
-3,731
\frac{t^2 \cdot t}{t\cdot 14}\cdot 21 = 21/14\cdot \dfrac{t^3}{t}
27,889
\operatorname{E}[S + V] = \operatorname{E}[S] + \operatorname{E}[V]
34,501
(-6) \cdot (-1) + 0 = 6
-20,021
\frac{x + (-1)}{x + \left(-1\right)}\cdot \left(-\frac{9}{4}\right) = \frac{-9\cdot x + 9}{x\cdot 4 + 4\cdot (-1)}
10,643
|h_m\cdot b_m - M\cdot h_m + M\cdot h_m - M\cdot x| = |h_m\cdot b_m - x\cdot M|
23,713
0 = 2 \cdot a + b \cdot \sqrt{6} + c \cdot \sqrt{10}\Longrightarrow a = 0,0 = c \cdot \sqrt{10} + b \cdot \sqrt{6}
16,107
\frac{15}{15}\cdot 20\cdot 100 = 2000
-4,976
0.97\cdot 10^{4\cdot (-1) + 8} = 0.97\cdot 10^4
9,250
\frac{1}{\frac1y \cdot x} = \frac{y}{x}
8,745
c = h \Rightarrow h^2 = c^2
23,378
(15 + 5*(-1))*10 = 100
24,193
\theta\cdot \nu_g = \theta\cdot \nu_g
-4,661
\frac{1}{4 (-1) + x} 4 + \dfrac{1}{x + 4} 2 = \frac{8 + x*6}{x^2 + 16 (-1)}
27,510
x = \sqrt{2 + x} \Rightarrow x = 2
-2,743
(1 + 2 + 4)*\sqrt{3} = \sqrt{3}*7
-6,937
396 = 12*3*11
19,440
\frac{1}{w^4} + 2 \times w \times w = \frac{1}{w^7} \times (w^3 + 2 \times w^9)
32,707
m \cdot x + n \cdot y = 3 \cdot x + 2 \cdot y \implies 0 = (2 - n) \cdot y + x \cdot (-m + 3)
-22,901
35/20 = \frac{35}{4 \cdot 5} \cdot 1
35,074
s^2\times 9 - (s + 3)\times 4 = (s\times 3 + \left(-1\right))^2 + 2\times s + 13\times (-1)
24,027
\frac{4 + x}{4 + x} - \frac{5}{x + 4} = \frac{x + (-1)}{x + 4}
18,756
11 = 123 + 45\cdot (-1) + 67\cdot (-1)
-18,341
\frac{\left(q + 9\right)*q}{(q + 7*\left(-1\right))*(q + 9)} = \tfrac{9*q + q^2}{63*(-1) + q * q + q*2}
-4,018
\frac{1}{y^2}5 = \frac{5}{y^2}
2,242
13/8 = 1 + \frac18 \cdot 5 = 1 + \frac{1}{8 \cdot 1/5} = 1 + \dfrac{1}{1 + 3/5}
18,565
\frac{25}{4} = 5 \cdot 1/2/2 \cdot 5
6,288
\cos(z) = \cos(2z/2)
27,389
\sin(2 \cdot \pi - \theta) = \sin{-\theta} = -\sin{\theta}
28,770
f^{12} = (f^4)^3
17,860
3333 = (-3*101 + 20301)/3!
25,751
x \times x \times x = x \times x \times x
15,177
\left(r\cdot z\cdot \delta\right)^2 = (z\cdot \delta\cdot r)^2
28,309
\frac{1}{x}\cdot ((-1) + h\cdot x) = -\frac{1}{x} + h
12,952
x^8 + 16\times (-1) = \left(x^2 + 2\times (-1)\right)\times (2 + x^2)\times \left(4 + x^4\right)
13,478
(y^2 + m^2 + m\cdot y)\cdot 2 = m^2 + y \cdot y + (m + y)^2