id
int64
-30,985
55.9k
text
stringlengths
5
437k
10,817
r\cdot (1 + r + r \cdot r + r^3 + r^4 + r^5)/6 = (r + r^2 + r^3 + r^4 + r^5 + r^6)/6
25,950
7(-1) - \frac{1}{3}(1/5 (-24)) = -27/5
17,090
7/2 = \tfrac{1}{1 + \sqrt{1 + 0}}\cdot 7
18,703
(1 + x) \cdot m = m \cdot x + m
16,900
\frac11 \cdot ((- 3 / 4) \cdot t^2) = -t^2 \cdot 3/4
8,838
10^{-2\cdot x + 2 - -3 + x} = 10^{5 - 3\cdot x} = 10^{-4\cdot x + 2\cdot \left(-1\right)}
27,020
\sin{\frac1x} = \sin{1/x}
26,904
8 + 4 + 4 + 4 + 2 \cdot (-1) + 2 \cdot (-1) - (-1) + 2 + 2 + 2 = 11
-1,201
-\tfrac{21}{24} = \dfrac{1}{24 \cdot 1/3} \cdot \left((-21) \cdot 1/3\right) = -\frac18 \cdot 7
8,333
z^2 - l^2 = (z + l)*\left(z - l\right)
25,488
(a_l + 1)\cdot ((-1) + a_l) = (-1) + a_l^2
34,789
1 + y^4 + y^2 = (y^2 - y + 1) \cdot \left(y \cdot y + y + 1\right)
10,743
y^2 \cdot (-\frac12) = (y^2 \cdot \left(-1\right))/2
1,213
\dfrac{1}{1 - \cos(x)} \cdot \sin^2(x) = \dfrac{2}{\sin(x)} \cdot \sin\left(x\right) \cdot \cos(x) = 2 \cdot \cos(x)
34,855
z^{\dfrac{1}{m}} = z^{\dfrac{1}{m}}
3,037
\frac{\sin(y^5)}{y} = \frac{\sin(y^5)}{y^5} y^4
16,140
12 = 33 + 21 \cdot \left(-1\right)
45,826
3!*4!*5 = 3!*5!
32,919
\frac{1}{x} + 1/\epsilon + \dfrac{1}{M} = \frac{1}{\epsilon\times M\times x}\times (\epsilon\times x + \epsilon\times M + M\times x)
1,347
2^{k + \left(-1\right)} = 2^k/2
17,074
17^2 + 5 \cdot 5 + 7^2 + 11^2 + 13^2 = 653
33,982
0 \leq x \implies |x| = x
34,073
T\cdot C = T\cdot C
26,127
D*C + C*G = \left(D + G\right)*C
26,828
83^{\frac{1}{2}} = (\left(-3\right)^2 + (-2) \cdot (-2) + \dots + 5^2)^{\frac{1}{2}}
33,336
\frac{625}{(t + 5\cdot (-1))\cdot 9} - \frac{1}{9\cdot \left(t + 4\right)}\cdot 256 = \frac{1}{t^2 - t + 20\cdot (-1)}\cdot (420 + 41\cdot t)
20,539
x^2 + x^2 + x * x = x*x + x*x + x*x + x*x*x + 1 = x^2 + x^2 + x * x + x^3 + 1
-727
e^{19\cdot 7\pi i/4} = (e^{\dfrac{i\pi\cdot 7}{4}})^{19}
30,221
C = B \cup C \setminus B rightarrow \{B,C\}
25,663
\left(b\cdot (-1)\right)/r = -\frac{b}{r}
6,253
\dfrac{1}{\sqrt{-x^2 + 1}} = \frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1}(x)
-3,012
\sqrt{10} \cdot 5 + \sqrt{10} \cdot 3 = \sqrt{10} \cdot \sqrt{25} + \sqrt{10} \cdot \sqrt{9}
-1,504
\dfrac{36}{72} = 36*\frac{1}{36}/\left(72*\dfrac{1}{36}\right) = \frac{1}{2}
4,719
a^3 - b \cdot b^2 = (a \cdot a + a\cdot b + b \cdot b)\cdot \left(a - b\right)
31,275
(4 w + 6)/4 = w + \tfrac64 = w + 1 + 1/2
4,085
1/(x \mu) = 1/(x \mu)
5,129
y + 3 - 4\sqrt{y + (-1)} = y + (-1) + 4 - 4\sqrt{y + (-1)} = y + (-1) - 4\sqrt{y + (-1)} + 4 = (\sqrt{y + \left(-1\right)} + 2(-1))^2
-25,057
3/7 \cdot 3/8 = \dfrac{9}{56}
4,851
\sum_{i=1}^n i\cdot z^i = z\cdot \frac{\partial}{\partial z} \sum_{i=1}^n z^i
12,207
-\frac{2}{1 + z \cdot 2} = -\frac{1}{2 \cdot z + 1} \cdot 2
-528
(e^{i \cdot \pi \cdot 11/6})^4 = e^{\frac{11}{6} \cdot \pi \cdot i \cdot 4}
-5,815
\frac{4}{2 \times (7 + k)} = \frac{4}{14 + 2 \times k}
21,456
\dfrac{1}{1 + 0*(-1)} = 1
16,625
D^{x + l} = D^l\cdot D^x
-20,576
\tfrac{-16\cdot n + 16}{10\cdot (-1) + n\cdot 10} = \dfrac{2\cdot (-1) + n\cdot 2}{n\cdot 2 + 2\cdot (-1)}\cdot \left(-\frac15\cdot 8\right)
30,574
26^3 = (6 \cdot (-1) + 2^5)^3
23,701
c*2 + 1 = (1 + c)^2 - c^2
504
\frac{\pi}{3} - \pi/2 = -\pi/2 + \tfrac{\pi}{3}
15,434
d/dx y^2 = d/dy y \cdot y\cdot \frac{dy}{dx} = 2\cdot y\cdot \frac{dy}{dx}
21,753
2 = \left(3 * 3 + 0^2 + 0^2 + 1^2 + 1^2 + 1^2\right)/6
-16,587
4 \cdot \sqrt{25 \cdot 11} = \sqrt{275} \cdot 4
29,308
\overline{x*b} + \overline{b*x} = 10*x + b + 10*b + x = 11*(x + b)
42,685
\binom{6 + 2(-1)}{1} = \binom{4}{1} = 4
16,444
1/3 + \frac15 + 1/6 = 7/10 < \dfrac{3}{4}
27,537
1/(g*f) = \frac{1}{f*g}
24,206
x^2+y^2+0\cdot y=x^2+y^2
1,538
\cos(c)*\sin(c)*2 = \sin(2*c)
10,295
4 + 27\cdot 2 + 81\cdot q = 58 + 81\cdot q
29,840
z^2 - y^2 = \left(z - y\right)\cdot \left(y + z\right)
-5,446
\tfrac{0.86}{10} = 0.86/10
14,505
216 = 6 \cdot 6 \cdot 6 = 2^3\cdot 3^3
-1,577
-2*\pi + \frac{25}{12}*\pi = \frac{\pi}{12}
15,168
b_j + d_j = b_j + d_j
15,290
\left(b \cdot 2 + 25 = 6 + a \Leftrightarrow (a + 6) \cdot 13 = 13 \cdot (b \cdot 2 + 25)\right) \Rightarrow a = 19 + b \cdot 2
2,341
t \cdot \cot{t} = 1 - t^2/3 - \frac{t^4}{45 \cdot \dotsm} \approx e^{((-1) \cdot t^2)/3} \cdot \left(1 - \frac{7}{90 \cdot t^4} + \dotsm\right)
-30,339
4 = 9 + 5*(-1)
25,555
y^2\times 9 + x^2 + 4\times x\times y = y^2\times 5 + (2\times y + x) \times (2\times y + x)
-20,892
-\frac{30}{25} = \frac{5}{5} \cdot (-\frac{6}{5})
4,094
\binom{l}{k} = 0 = \binom{l + \left(-1\right)}{k + (-1)} + \binom{l + \left(-1\right)}{k}
13,970
z^{30} + 1 = 1 + \left(z^2\right)^{15}
9,194
1 = v'' x^2 + xv' \Rightarrow v' + v'' x = 1/x
4,255
y^9 + \left(-1\right) = \left(y * y * y + (-1)\right)*\left(y^6 + y^3 + 1\right) = (y + (-1))*\left(y * y + y + 1\right)*\left(y^6 + y^3 + 1\right)
15,403
z + y \cdot z^2/2! + \cdots = \frac1y \cdot (\left(-1\right) + e^{y \cdot z})
8,873
{i + n \choose i} = {n + 1 + i \choose i} - {i + n \choose i + \left(-1\right)}
20,112
x \lt b \Rightarrow x^2 \lt b^2 = \frac{1}{9}
13,012
-6 = 1 + 1 + 8\left(-1\right)
-20,938
\frac{1}{81}\cdot (54 + 9\cdot x) = (6 + x)/9\cdot 9/9
4,369
(\dfrac{1}{2} \cdot \left(\sqrt{13} + 1\right)) \cdot (\dfrac{1}{2} \cdot \left(\sqrt{13} + 1\right)) \cdot (\dfrac{1}{2} \cdot \left(\sqrt{13} + 1\right)) = 5 + 2 \cdot \sqrt{13}
21,207
0 \lt \sqrt{7 - C} - \sqrt{7 - h} = \frac{h - C}{\sqrt{7 - C} + \sqrt{7 - h}} \lt \dfrac12\cdot (h - C)
29,793
\mathbb{Var}\left(X\right) = Cov\left(X,X\right)
3,862
(X + Y)^{x + 1} = \left(X + Y\right)^x*(X + Y) = (X + Y)^x X + \left(X + Y\right)^x Y
20,334
0.066^2\cdot 0.023^2\cdot \dotsm = \frac{1}{1000000000000000000000000000000000}\cdot 8.4
23,046
\left(5/3\right)^k = \frac{1}{3^k \cdot \frac{1}{5^k}}
194
4 \cdot x \cdot S = -(x - S)^2 + \left(S + x\right) \cdot \left(S + x\right)
6,078
\dfrac{121}{11\cdot (10 + 1)} = \frac{1}{11\cdot 11}\cdot 121 = 121/121 = 1
37,782
\pi = \arccos{-1}
-30,912
\frac{1}{50}b = b/150 \cdot 3
2,967
(1 - x) \cdot (1 - b) = 1 - x - b + x \cdot b \geq 1 - x - b
-12,908
5/8 = \dfrac{15}{24}
8,228
b'^2*\cos^2(x) + b'^2*\sin^2(x) + 2*b'^2*\cos(x) = -2*\cos(-x + \pi)*b' * b' + b' * b'
114
\frac{1/3*1/4}{2} = 1/24
8,636
a\cdot E\cdot n\cdot E/(a\cdot E) = n\cdot E = a\cdot \frac{n}{a}\cdot E
16,808
\left(y + 2\right)*(1 + y) = \frac{1}{y + 1}*\left(y^3 + y^2*4 + y*5 + 2\right)
10,855
a^{i + 2}\times b^{i + 2} = (a\times b)^{i + 2} = \left(a\times b\right)^{i + 1}\times a\times b = a^{i + 1}\times b^{i + 1}\times a\times b
20,959
(h + 3)^2 = h^2 + 3^2 + h \cdot 2 \cdot 3
15,387
g \cdot \dfrac{g_1}{g} \cdot n = g \cdot n/g \cdot g_1
44,245
\frac{2}{z + 2\cdot \left(-1\right) + 3\cdot \left(-1\right)} + 1 = \frac{\left(-1\right) + z + 2\cdot \left(-1\right)}{3\cdot (-1) + z + 2\cdot (-1)}
19,178
\frac100^2 = 0^{2 + (-1)}
3,572
\delta = 0,v \neq 0 \Rightarrow \frac{\delta^2 v}{\delta^4 + v^2} = 0
23,018
\cos(z_1 + z_2) = \cos(z_1) \cos(z_2) - \sin(z_1) \sin(z_2)