id
int64
-30,985
55.9k
text
stringlengths
5
437k
-19,707
6*9/(7) = \dfrac{54}{7}
27,869
x\cdot r/s = \tfrac11\cdot x\cdot r/s = \frac{x}{s}\cdot r
33,843
\frac{1}{36}11 = 1100/3600
6,706
-1/t + t = (-b + a)^2 \Rightarrow |-b + a| = \sqrt{t - 1/t}
26,541
1.001*2^{-6}=2^{-6}+2^{-9}=0.017578125
10,250
\left(l + (-1)\right) \cdot l! \cdot (\frac{1}{l!} + ... + \dfrac{1}{l} + 1) = \left((-1) + l\right) \cdot \left(1! + 2! + ... + l!\right)
8,675
\tfrac{1}{h \cdot b} = \frac{1}{h \cdot b} = \frac{1}{b \cdot h}
33,336
-\frac{256}{9 \cdot (r + 4)} + \frac{625}{9 \cdot (5 \cdot (-1) + r)} = \dfrac{41 \cdot r + 420}{r^2 - r + 20 \cdot (-1)}
51,002
(-1) + x^{10} = \left(x + (-1)\right) \cdot (1 + x^4 + x^3 + x^2 + x) \cdot \left(1 + x^4 - x \cdot x^2 + x^2 - x\right) \cdot (x + 1)
-22,399
6 + 10\cdot (-1) = -4
40,163
y' z + xy u + x' z = xy u + zx' + y' z + uz
-18,314
\tfrac{1}{(n + 1) (n + 7\left(-1\right))}(1 + n) (n + 3(-1)) = \frac{3(-1) + n^2 - 2n}{7(-1) + n^2 - 6n}
34,573
A^0\cdot B^k\cdot B^0\cdot A^l = A^l\cdot B^k
-5,180
0.6 \cdot 10^{12 + 5\left(-1\right)} = 10^7 \cdot 0.6
32,314
d\cdot d^{d + (-1)} = d^d
19,388
(i^2 + d^2) \left(f^2 + g * g\right) = (gi + fd)^2 + (gd - if)^2
23,841
\|x\|^4 = \|x\|^2 \cdot \|x\|^2
19,087
d = d + 0 \cdot 0
14,914
(c + g) \cdot (c + g)^k = (c + g)^{k + 1}
17,390
\dfrac{1}{5}\cdot 53 = 1 + \frac15\cdot 48
27,420
-(b \times 9 + g)^2 \times 80 + (80 \times b + 9 \times g)^2 = -b^2 \times 80 + g^2
12,526
(\frac{1}{2})^4 + (\frac{1}{2})^4 = \frac{2}{16} = \frac{1}{8}
10,669
e = e + 0*i
-22,213
18 + x^2 - x\cdot 11 = (x + 9(-1)) \left(x + 2(-1)\right)
36,556
2^{k + 1} = 2^1 \cdot 2^k
8,334
2 = 1^2 + 1 * 1 = (1 + i)*(1 - i)
15,360
4 + k \cdot 4 = 4 + k \cdot 4
33,186
\binom{n}{r + (-1)} \cdot (n - r + (-1))/r = \binom{n}{r + (-1)} \cdot \frac{1}{r} \cdot (n + 1 - r)
-26,648
81*p^8 + 100*(-1) = \left(9*p^4\right) * \left(9*p^4\right) - 10^2
14,791
( dg', xh) = ( g', x) ( d, h)
21,574
A Q = Q A
-18,138
48 + 30 \cdot (-1) = 18
-3,358
(1 + 2)\times 13^{\frac{1}{2}} = 13^{1 / 2}\times 3
-2,416
6^{1/2} \cdot (3 + 1) = 4 \cdot 6^{1/2}
11,949
\dfrac{38\cdot 2}{7} = \frac{76}{7}
24,851
{\left(-1\right) + 28 + 5 \choose 28} = {28 + 5 + (-1) \choose \left(-1\right) + 5}
41,450
Q^Q \leq (2^Q)^Q = 2^{Q\cdot Q} = 2^Q
5,951
(y + z)*x = x*y + z*x
9,415
1 = 1^{1/2} = (e^{2 \cdot \pi \cdot i})^{\dfrac12} = e^{\pi \cdot i} = -1
11,242
9/48 + 3/54 = \frac{3}{16} + 1/18 = \dotsm
5,646
(-7 + 89^{1/2})/4 = \tfrac{1}{4} \cdot 89^{1/2} - \dfrac{7}{4}
14,088
r = x \frac1r/(y*1/r) \frac{x}{r} = x^2/(y r)
-3,800
\dfrac{q \cdot 7}{4q^4}1 = \frac{q}{q^4} \cdot 7/4
9,442
\cos^2{\theta} = \frac{1}{2}\cdot \left(\cos{\theta\cdot 2} + 1\right)
-10,743
-\frac{21}{9\times p + 15\times (-1)} = -\dfrac{7}{p\times 3 + 5\times (-1)}\times \tfrac{3}{3}
12,613
1 + y = 1 + y^2/2 + y - \frac12 \times y^2
31,519
x\cdot f^Y\cdot c = x\cdot c\cdot f^Y
-12,015
4/5 = \frac{t}{8 \cdot π} \cdot 8 \cdot π = t
31,925
A - B \cup C = A \cap B \cup C^\complement = B^\complement \cap (A \cap C^\complement) = C^\complement \cap (A \cap B^\complement) = A - B - C
4,105
(\int\limits_0^{\pi/2} 1\,\mathrm{d}z)\cdot 3 = \int_0^{\frac32\cdot \pi} 1\,\mathrm{d}z
-17,636
54 + 22\times (-1) = 32
-19,459
\frac{1}{1/6} \cdot \dfrac{5}{3} = 5/3 \cdot \dfrac61
5,530
\frac{1}{\left(-1\right) + y}*(y + 1)*\left((-1) + y\right) = 1 + y
12,625
(b + a) \cdot (b + a) = a \cdot b \cdot 2 + a \cdot a + b^2
5,471
\frac12\cdot \left(-\sqrt{5} + 1\right) = -\tfrac{1}{2}\cdot \sqrt{5} + 1/2
-10,753
12/12\cdot \dfrac{8}{3\cdot y} = \frac{96}{36\cdot y}
32,359
\frac14 \cdot (20 + 30 + 10 + 5) \cdot \frac{1}{4} \cdot (5 + 6 + 100 + 4) = 16.25 \cdot 28.75 = 467.18
18,540
3^{2\cdot n} + (-1) = 9^n + \left(-1\right) = (8 + 1)^n + (-1)
7,608
(s\cdot t)^2 = s^2\cdot t^2
18,142
(\cos{I*2} + 1)/2 = \cos^2{I}
-20,250
\frac{10}{-5} = -\frac{5}{-5} \cdot (-2/1)
-16,488
7 \cdot 9^{1 / 2} \cdot 2^{1 / 2} = 7 \cdot 3 \cdot 2^{\frac{1}{2}} = 21 \cdot 2^{\frac{1}{2}}
-23,104
--\frac13 \times 4 \times 3 = 4
8,991
5 (3 (-1) + x^2) = 15 (-1) + x^2 \cdot 5
36,032
-\cos{\theta}*3 + 4\cos^3{\theta} = \cos{3\theta}
22,837
m + 2 \left(-1\right) + m + (-1) = 3 (-1) + 2 m
9,598
Y^l*Y^l = Y^{2*l}
-17,206
\dfrac{1}{\sec^2{\theta}}*\sec^2{\theta} = \dfrac{1}{\sec^2{\theta}}*(1 + \tan^2{\theta})
-30,264
\tfrac{1}{y + 3} \cdot \left(y \cdot y + 6 \cdot y + 9\right) = \frac{1}{y + 3} \cdot \left(y + 3\right)^2 = y + 3
-3,573
\frac{z}{z^4} = z/(z*z*z*z) = \frac{1}{z^3}
1,375
1/\left(x\times f\right) = 1/(f\times x)
-20,068
\tfrac{x\cdot (-45)}{x\cdot (-20)} = \frac{x\cdot (-5)}{\left(-1\right)\cdot 5\cdot x}\cdot \frac{9}{4}
-2,946
13^{1/2}\cdot (3 + 5) = 13^{1/2}\cdot 8
16,565
\frac{5}{2} \cdot \frac{1}{3} \cdot 2 = \frac53
-6,231
\frac{3 \cdot (p + 8)}{15 \cdot (p + 3 \cdot (-1)) \cdot (p + 8)} = \dfrac{\frac{1}{3 \cdot (8 + p)} \cdot 3 \cdot \left(8 + p\right)}{(p + 3 \cdot (-1)) \cdot 5} \cdot 1
37,803
Z \cdot X = Z \cdot X
77
a^4 + b^4\cdot 4 = (a^2 - 2 a b + b b\cdot 2) (a a + 2 a b + 2 b^2)
30,842
\frac{1}{2}\cdot a\cdot a=\frac{a^{2}}{2}
14,632
\left|{A Z}\right| = \left|{Z A}\right|
-22,346
Z^2 - 13 Z + 36 = (4 (-1) + Z) (Z + 9 (-1))
-5,768
\frac{z*2}{\left(z + 9\right) \left(z + 5\right)} = \frac{2z}{45 + z^2 + 14 z}
29,310
-\cot\left(\dfrac{\pi}{2} + x\right) = \tan{x}
3,230
\int d*d*|W|/(d*|W|)\,\mathrm{d}W = \int d\,\mathrm{d}W
6,866
-x + (-1) = (x^2 + x)/\left(x*\left(-1\right)\right)
-20,086
4/1 \cdot \frac122 = 8/2
22,456
E[U\cdot 2] = 2E[U]
15,685
(x + 1)\cdot \left(x + 2\right)\cdot (x + 3)\cdot (x + 4) = (x^2 + 5\cdot x + 5 + 1)\cdot \left(x^2 + 5\cdot x + 5 + (-1)\right) = (x^2 + 5\cdot x + 5)^2 - 1 \cdot 1
16,129
f = \frac{f!}{((-1) + f)!}
1,901
\frac{4}{\sqrt{2} + 2} = \frac{\sqrt{2} \cdot 2}{2 + \sqrt{2}} \cdot \sqrt{2}
-15,336
\frac{k*y}{(y^5*k^3)^2} = \frac{y*k}{k^6*y^{10}}
-20,250
10/(-5) = -\frac{5}{-5}*(-2/1)
-23,201
\frac12 \cdot 27 = \dfrac32 \cdot 9
-18,264
\dfrac{1}{m^2 + m \cdot 6} \cdot \left(54 \cdot (-1) + m^2 - 3 \cdot m\right) = \frac{(m + 6) \cdot (9 \cdot (-1) + m)}{m \cdot (m + 6)}
41,458
(-2)\cdot 10 + 21 = 1
4,058
k\cdot f\cdot d/d = \frac{f}{d}\cdot d\cdot k\cdot d/d
11,884
1 + \dfrac{x}{(-x + 1)^2} = 1 + x + 2*x^2 + 3*x * x * x + \dots
24,289
5 * 5*6^4 \binom{5}{3} \binom{9}{4}*4^3 = 2612736000
-28,939
2 = \frac12 \times 4
27,219
(n + 6 \cdot (-1)) \cdot 8/2 = 24 \cdot (-1) + n \cdot 4
22,409
2*s^2 - 2*s + 1 = d^2 - n^2 = (d + n)*\left(d - n\right) = \left(101 - 2*s\right)*(d - n)